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A B S T R A C T

This study provides a cutting-edge machine learning approach to forecast ammonium (NH+
4 ) levels in River Lee

London. Ammonium concentrations were predicted over several time intervals using a complete dataset that
includes temperature, turbidity, chlorophyll, dissolved oxygen, conductivity, and pH. Our technique captures the
intricate connections between environmental conditions and ammonium concentrations using developed algo-
rithms, including Temporal Fusion Transformer (TFT), Random Forest (RF) and Extreme Gradient Boosting
(XGBoost) levels versus the important factors, considerably improving prediction accuracy. The novel aspect of
this study is the utilisation of the TFT model for multi-horizon forecasting, which offers high accuracy and
interpretability in hydrological predictions by combining convolutional components with an attention mecha-
nism. The study also demonstrates the effectiveness of the TFT model in capturing short-term fluctuations while
retaining accuracy over long time periods, which is a major difficulty in environmental modelling. The models
used, have exceptional forecasting skills, predicting 150, 200, 365, 730, and 1095 days based on daily average
and 12, 24 and 30 months based on monthly average. This dual-scale model combines flexibility and resilience,
making it an effective tool for forecasting both short- and long-term environmental changes. The RF model
excelled in long-term forecasts, sustaining high R-squared (R2) (0.97) values and low root mean square error
(RMSE) (0.18), and the second best one was the XGBoost with optimiser with R2 of (0.92) and RMSE of (0.25)
with forecasting 1095 days. The results also found that whilst the TFT captured the fluctuations in the short-term,
it struggled with the longer-term predictions due to data granularity. The XGBoost model did remarkably well in
monthly forecasts up to 12 months, maintaining low RSME. The findings also highlight the necessity of proactive
water management techniques to reduce the risk of potential ecological effects, including hypoxia and oxygen
depletion. The findings support resource managers in addressing prospective ammonium toxicity concerns such
as oxygen depletion and ecological stress.

1. Introduction

Rivers provide several functions, such as maintaining hydrological
equilibrium, facilitating floods, source of fresh water and providing food
for numerous living forms. Vega et al. (1998) emphasise the need to
evaluate and assess river health to maintain an ecological balance,
improve water quality and fulfil domestic demand. Ammonium (NH+

4 ),
an essential nutrient for aquatic ecosystems, can be harmful in excessive
amounts, causing eutrophication and negatively changing the quality
and dynamics of the ecosystem (Huang et al., 2018). Eutrophication is
the process by which water bodies become extremely nutrient-rich,
resulting in excessive algae growth and oxygen depletion, is a severe
hazard to aquatic life (Akinnawo, 2023). Ammonium contamination

comes from various sources, including diffuse agricultural runoff and
point sources like urban and industrial water discharge (Maranon et al.,
2006; Krapac et al., 2002). Therefore, targeted strategies and focused
methods for reducing ammonium concentrations in aquatic environ-
ments are critical as their conversion under certain conditions poses an
indirect yet potential risk to human health (Britto and Kronzucker, 2002;
Lin et al., 2017). These types of health conditions vary from liver dis-
eases, kidney diseases, immune system problems and encephalopathy
(Kanjilal et al., 2024) Although ammonium (NH+

4 ) is less toxic than
Ammonia (NH3) (Sawyer, 2008), but still it plays a crucial role in the
nitrogen cycle and the overall aquatic ecosystem health (Bhatnagar and
Sillanpää, 2011). The equilibrium between ammonium (NH+

4 ) and the
unionised ammonia (NH3) is determined by water pH and temperature,
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which can vary greatly in natural water bodies (Nollet and De-Gelder,
2000). As the pH in water increases and the surrounding conditions
become more alkaline, ammonium converts to ammonia, which is
especially harmful to aquatic life. This accelerated transition takes place
at higher temperatures, making warm, alkaline waters more sensitive to
ammonia toxicity. Although ammonium dynamics in wastewater (Icke
et al., 2020) and groundwater (Perović et al., 2021) have been the
subject of several research, a limited focus has been provided to accu-
rately predict ammonium levels in river systems, especially over long
horizon where varying environmental conditions plays critical condi-
tions. These extended horizons often introduce complexity that con-
ventional models frequently fail to account for. The complex non-linear
interactions and temporal dependencies in river ecosystems are over-
looked by statistical models and simple machine learning approaches,
leading to predictions that become unreliable as environmental cir-
cumstances change over time.

Machine learning approaches have been used in several research to
simulate the ammonium levels in river ecosystems. For example, Khullar
and Singh (2021) offered a thorough analysis of machine learning
models for predicting parameters like dissolved oxygen (DO), chemical
oxygen demand, and biochemical oxygen demand, such as artificial
neural network (ANN) adaptive neuro-fuzzy inference systems (ANFIS),
and support vector machines (SVM). Even while these models showed a
great deal of promise in capturing the intricate non-linear correlations
between the input variables, they frequently struggle to handle temporal
dependencies and provide forecasts with many horizons. However, most
of these models are designed mainly for predictions over a single time
horizon, and they are not robust enough to be employed in long-term
forecasting scenarios where environmental factors are changing over
time. They also frequently need a lot of data for training and are sen-
sitive to the quality of the data, which presents a problem in real-world
applications where the data is frequently irregular or sparse.

1.1. Amounts of ammonium in water

According to the Environment Agency (2014), in unpolluted water-
ways, ammonium concentrations usually fall between 0.2 and 1 mg/l,
with a focus on the nitrogen (N) component of the compound. However,
levels in treated sewage effluent can vary between 10 and 20 mg/l as N.
It is noteworthy that unionised ammonia concentrations as low as
0.025 mg/l may harm fish (Parvathy et al., 2023), demonstrating the
narrow margin between acceptable and hazardous levels. An ammo-
nium concentration of 2.5 mg/l as NH+

4 indicates potentially dangerous
circumstances for aquatic life, emphasising the significance of constant
monitoring and control of water quality (Chapman, 1996). whilst the
dangers of ammonium pollution are generally acknowledged, current
research has mostly focused on groundwater and wastewater sources of
contamination, with rivers receiving far less attention. Notably, while
studies by Liang et al. (2022), Zhang et al. (2020) and Ayejoto et al.
(2022) have investigated ammonium dynamics in groundwater and
wastewater, respectively, and others, such as Covatti and Grischek
(2021), have touched on river systems, the specific focus on river water,
particularly in the context of the United Kingdom, remains unexplored.
This gap persists despite periodic examinations of riverbank implica-
tions on pollution levels (Groeschke et al., 2017; De Vet et al., 2010).

1.2. Ammonium and aquatic life

Understanding and predicting NH+
4 concentrations in river ecosys-

tems is crucial. This is because it not only involves managing nutrients,
but also involves anticipating conditions that can lead to the formation
of hazardous ammonia. High NH3 levels can harm fish and invertebrates
by disrupting their respiratory and reproductive systems. This can result
in respiratory problems, toxin build-up, and even death (Azrour et al.,
2022). NH+

4 can also combine with other molecules in water to form

nitrites and nitrates, which can be harmful to human and animal health
(Mejía and Barrios, 2023).

1.3. Traditional techniques for measuring NH+
4

Conventional techniques like the Nessler method, evaporation
determination method, indicator method, and fluorescence method for
ammonia nitrogen detection suffer from complex procedures, low
sensitivity, and limited accuracy (Wang et al., 2023). Indophenol blue
colourimetry is one of the most famous methods for measuring ammo-
nium concentrations. However, this method has considerable limitations
due to its complexity, toxicity and time-consuming (Ma et al., 2018;
Holmes et al., 1999). Additionally, real-time monitoring is a viable
avenue for forecasting concentrations, but its high cost, as well as the
limitations of standard approaches to capture nonlinear and nonsta-
tionary water quality data, highlight the need for a more advanced
methodology (Li et al., 2022). The limitations of existing monitoring
approaches, which frequently fall short of sensitivity, accuracy, and
practicality for real-time analysis, highlight the need for a paradigm
change.

Existing models, including linear regression and basic decision tree
methods, often lack the ability to capture the complex, non-linear cor-
relations and long-term dependencies that are present in environmental
data (Maganathan et al., 2020). Due to these constraints, multi-horizon
forecasts, which are essential for efficient water management and policy
formulation, perform poorly

1.4. Introduction to machine learning

The combination of these limitations highlights the urgent need for a
revolutionary solution. Machine learning (ML) emerges as a cutting-
edge alternative that has the potential to revolutionise this measure-
ment with remarkable efficiency and precision. Looking further into ML,
some models stand out for their novel methods of predictive analysis in
environmental research. In this study, we employed models like Tem-
poral Fusion Transformer (TFT), XGBoost and Random Forest Regressor,
which are known for productive accuracy and adaptability to various
data types

TFT utilises a novel architecture combining convolutional compo-
nents with an attention mechanism for multi-horizon forecasting, as Lim
et al. (2021) outlined. It provides a unique mix of flexibility and inter-
pretability, making it especially useful for hydrological prediction, as
noted by Fayer et al. (2023), Ahmed et al. (2024), and evidenced by Ali
et al. (2024). In the context of ammonium concentration in rivers, TFT
excels in forecasting by effortlessly integrating numerous data sources
and handling complexity with the requirement of hyperparameter
modifications (Lim et al., 2021). This capability is significant as it allows
the model to learn and adjust to changes in ammonium levels over time.
The versatility of this makes it perfect for studying riverine ecosystems,
where comprehending the intricate variability and interactions of mul-
tiple variables, particularly those affecting ammonium levels, is crucial.

Following TFT’s unique approach, Extreme Gradient Boosting
(XGBoost) stands out for its remarkable efficiency and performance in
classification and regression problems. XGBoost, developed by Chen and
Guestrin (2016), uses a clever method to optimise both speed and pro-
cessing resources while maintaining model performance. XGBoost’s
resistance to overfitting, achieved mostly through built-in regularisation
algorithms, makes it especially useful in environmental data analysis,
where avoiding overly complicated models is critical (Wang and Ni,
2019). Furthermore, XGBoost model feature significance evaluation
identifies the most important predictors of ammonium levels, allowing
researchers to pinpoint crucial environmental elements impacting water
quality. This feature not only improves the model’s interpretability, but
it also informs future data gathering and policy-making efforts. A
comprehensive review of the different ensemble methods models for
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hydrological, including river water quality predictions, is provided by
Zounemat-Kermani et al. (2021)

In addition to the complex techniques of TFT and XGBoost, the
Random Forest Regressor appears as a critical component in the hy-
drology field (Tyralis et al., 2019). Random Forest (RF) was developed
by Breiman (2001), and was considered one of the most successful
machine learning algorithms in water science and hydrological appli-
cations (Tyralis et al., 2019). It has been applied in various scientific
areas, including agriculture (Liakos et al., 2018), land cover classifica-
tion (Gislason et al., 2006) and biological studies (Goldstein et al.,
2011). RF, which is based on the ensemble learning paradigm, uses
several decision trees to create a more generalised model, considerably
lowering the risk of overfitting (Breiman, 2001). Its strength is the
ensemble method, aggregating predictions from several trees to improve
forecast accuracy and stability. RF’s capacity to generate estimates of
feature value is consistent with our goal of discovering significant pre-
dictors of ammonium content in rivers.

1.5. Model performance metrics and validation techniques

Regarding model evaluations, it is critical to address the methods to
measure their performance in time-series forecasting. Rolling window
analysis has historically been employed for such evaluations, giving
information on a model’s stability across time (Kombo et al., 2020;
Hussein et al., 2020). This approach computes parameter estimates
throughout a fixed-size window of the sample, providing a measure of
parameter constancy, which is critical in dynamic scenarios. However,
using this approach in hydrological forecasting, particularly to estimate
ammonium levels in rivers, necessitates subtle customisation. Riverine
ecosystems, unlike groundwater systems, have significant temporal and
geographical variability as a result of their direct interaction with both
land and atmospheric systems (Dingman, 2015). This interaction pro-
vides a degree of complexity and unpredictability that challenges the
assumption of constant parameters, a topic frequently discussed in the
context of financial time series (Zivot et al., 2003). To improve the
robustness of our evaluation, we also used the holdout approach
(Roelofs et al., 2019; Cerqueira et al., 2020). This strategy supports
rolling window analysis by reserving a portion of the dataset for final
assessment, guaranteeing that the model’s performance is evaluated
against previously unknown data. Such an approach is required for a
thorough knowledge of the model’s forecasting powers and flexibility to
the inherent diversity seen in river ecosystems.

1.6. Research gaps and novelty

This research marks a breakthrough in environmental science by
combining hydrological knowledge with cutting-edge machine learning
tools to accurately anticipate ammonium (NH+

4 ) concentrations in river
ecosystem. Key innovations in this study includes:

• This analysis goes beyond traditional methods by incorporating a
dynamics assessment of NH+

4 levels against environmental factors
such as temperature, pH, turbidity, chlorophyll, dissolved oxygen,
and conductivity. This helps predict conditions that may lead to
ammonia toxicity in river ecosystems.

• The new application of advanced machine learning models, such as
the Temporal Fusion Transformer (TFT), a strong tool for dealing
with time-series data, in conjunction with well-established ap-
proaches such as Extreme Gradient Boosting (XGBoost) and Random
Forest Regressor (RF). This combination takes advantage of the
benefits of both cutting-edge and classic algorithms to improve
prediction performance.

• The models established in this work can anticipate ammonium levels
over lengthy periods of time utilising daily and monthly data. They
are highly accurate, forecasting up to 30 months ahead with monthly

averages and up to 3 years with daily data. This dual-scale method is
flexible and resilient in anticipating both short- and long-term
environmental changes, making it an effective tool for environ-
mental management.

• The study fills the gap between theoretical research and actual
application by providing a scalable and adaptable paradigm for river
systems beyond the United Kingdom. This versatility helps to pro-
mote global water sustainability by offering a useful resource for
regulating water quality in a variety of environmental scenarios.

This study offers a significant advancement in predicting ammonium
levels in river ecosystem and by incorporating advanced machine
learning models such as TFT, XGBoost and Random Forest. The study’s
dual-scale forecasting capacity enhances its applicability, offering a
valuable tool for water resource managers to reduce ecological hazards
related to ammonium toity.

2. Materials and methods

This section outlines our approach for estimating ammonium levels
in a UK river. It uses a combination of deep learning and decision tree
models, including TFT, XGBoost, its enhanced variant with random
search optimisation, and Random Forest Regressor. We describe our
data collecting and preparation methods, discuss the mechanics of each
ML model, and explain the assessment criteria.

2.1. Data collection and pre-processing

We compiled large historical data from River Lee located in the heart
of central London, UK’s capital city. The data source is from the Envi-
ronment Agency’s Hydrology Data Explorer, which provides extensive
spatial and temporal hydrological data across the United Kingdom. The
area of interest was a stretch of the River Lee in East London, England,
which is about 7 kilometres from the River Thames in East London. Data
on important water quality parameters, including ammonium levels,
temperature, turbidity, chlorophyll, dissolved oxygen, conductivity, and
pH, were supplied by a number of monitoring sites throughout the
country. However, the selection of the monitoring station was based on
the availability of these parameters, as not every station had full data on
all features, and some were newly recorded.

The data selected were from March 2016 to January 2024. These
data were used to predict ammonium NH+

4 levels in river ecosystems by
refining data pre-processing procedures to better reflect the complex-
ities of hydrological and nitrogen cycles (Yang et al., 2021). Although
the model’s dependence on historical data gives it a strong basis,
changes in the environment, such as shifting climatic patterns, urbani-
sation, or policy changes, could have an impact on the model’s accuracy
in the future. These changes may affect the relationship between envi-
ronmental factors and ammonium levels, which could impact forecast
accuracy. Regular retraining with current data could help alleviate issue
and keep the model relevant. Moreover, adding scenario-based tech-
niques and outside data sources, such climate projections, might
enhance the model’s ability to include future uncertainty. (Newhart
et al., 2020)

Initially, the data was collected at hourly intervals, which resulted in
some temporal coverage irregularities. As a result, the normalisation
approach was applied to a uniform daily time series (Kang and Tian,
2018), with the mean value of available data calculated for each day. We
efficiently minimised the effect of missing records by calculating the
mean values for each day, ensuring that our datasets mirrored the daily
resolutions, which provided a better assessment of hydrological trends
and nutrient cycling patterns within the aquatic system. This method of
using daily averages is especially relevant to our knowledge of the ni-
trogen cycle. This step is critical for models like TFT, XGBoost, and
Random Forest, which are sensitive to the scale of input features (Vafaei
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et al., 2018; Murray et al., 2010). Our aim is to improve model
convergence, stabilise the learning process and stop any single feature
from dominating due to scale disparities by normalising the data. Nor-
malisation can accelerate the convergence of deep learning models such
as TFT by balancing the gradients and preventing problems with dis-
appearing or bursting gradients (Wu et al., 2020b). Additionally, nor-
malisation contributes to more regular and understandable splits, which
enhances the accuracy and generalisability of tree-based models like
Random Forest and XGBoost. The monthly analysis followed the same
procedure. We computed the mean values of the daily data for each
month to produce a consistent monthly time series. This method guar-
anteed that the datasets ha a consistent temporal resolution, allowing for
a full analysis of long-term hydrological and nutrient cycle patterns. By
using standard approaches on both daily and monthly datasets, we
guaranteed that our prediction models were reliable and comparable
across multiple time periods. Since changes in ammonium levels are
driven by both biotic and abiotic processes, that was explained by Yang
et al. (2021) on a scale that hourly data cannot effectively reflect.
Furthermore, a linear interpolation (Huang, 2021) approach was
implemented to retain the temporal integrity for analysing quality
trends. This technique preserved the dataset’s integrity and enabled
continual examination of environmental factors influencing NH+

4 con-
centrations. Although this technique offers a straightforward and effi-
cient way to generate continuous time series data, it assumes that values
will transition smoothly, which may not capture the sharp fluctuation or
abrupt swings that might happen in dynamic riverine environments (Liu
et al., 2011). These biases can affect machine learning like TFT and
XGBoost, which depend on precise input data to identify patterns and
make accurate forecasts more sensitive. In order to reduce this risk, the
influence of interpolation on model accuracy was minimised by utilising
a holdout dataset with low interpolated values to test the model’s per-
formance (Cerqueira et al., 2020).

Daily and monthly durations were chosen to properly capture
ammonium dynamics since they reflect the impact of both short-term
and long-term processes on ammonium concentrations. Daily time-
scales enable the models to detect quick variations in ammonium con-
centrations induced by diurnal cycles, wastewater discharge, or rainfall
events, which is crucial for real-time management. Monthly timeframes,
however, aid in detecting seasonal tendencies. This approach is consis-
tent with Watson et al. (2017) findings, who demonstrated that
short-term scales such as daily to weekly intervals are critical for un-
derstanding variability in environmental factors such as rainfall, which
has a direct impact on nutrient concentrations in water bodies (Watson
et al., 2017).

The pre-processing steps are to maintain the dataset’s homogeneity
and correspond with our goal of understanding environmental in-
fluences on river ecosystems (Wang et al., 2023). By fine-tuning our
dataset to represent the daily cycles of hydrological and nitrogen pro-
cesses, we enabled a more thorough and contextually appropriate study
with advanced machine learning algorithms. In addition, it provides us a
vital insight into the temporal dynamics of river ecosystems and a better
understanding of water quality management.

We combined a wide range of environmental parameters, such as pH,
temperature, dissolved oxygen, turbidity, chlorophyll and conductivity,
with ammonium levels to create a multidimensional dataset targeted at
forecasting future ammonium concentration across a variety of time
periods. This approach ensures that our predictive models capture the
complex processes that influence ammonium levels in the river envi-
ronment, as was done by Li and Li (2023) to predict ammonia nitrogen.

Furthermore, we methodically proceeded to split the dataset into
training, validation and holdout purposes. This data splitting technique,
designed to thoroughly analyse the model’s performance (Ransom et al.,
2017), supports our aim of predicting accurate and actionable forecasts
for successful water quality management. Allocating 70 % of the data to
the training set enables the models to get a thorough grasp of the

interactions between numerous environmental conditions and ammo-
nium levels, which is essential given the complexities of these natural
processes. This extensive training volume allows the models to recreate
the subtle patterns found in river ecosystems properly. The remaining
data was distributed evenly between validation and holdout sets, with
each getting 15 %. The validation set is critical throughout the model
tuning phase, allowing adjustments to improve forecast accuracy whilst
avoiding overfitting. Conversely, the 15 % holdout set, designated for
the final evaluation, serves as a rigorous test of the model’s capacity to
generalise to new, unseen data, reflecting standard ML practices for
ensuring the final assessment is both strict and reliable (Dwork et al.,
2015).

It is important to note that despite these quality assurance measures,
limitations in the data sets should be acknowledged. For instance,
because of the monitoring stations’ poor spatial resolution, certain areas
of the river were not as well-represented as others. Furthermore, even
though the dataset had sufficient temporal coverage, unforeseen
weather occurrences or abrupt changes in land use during the research
period might have introduced unpredictability that the data did not
completely capture.

2.2. Machine learning models

2.2.1. Temporal fusion Transformer (TFT)
Our methodology for predicting ammonium (NH+

4 ) levels in river
ecosystems incorporates advanced ML techniques and uses the TFT,
which has an unsurpassed capacity to handle complicated, multi-
temporal data (Marcellino et al., 2006; Li et al., 2019). To enrich the
input data with temporal dynamics indicative of hydrological cycles and
nitrogen transformations, pre-processing steps included building a
dataset with lagged and rolling features for numerous environmental
parameters, with exception of target variable (NH+

4 ) (González-Enrique
et al., 2022). We specifically structured the dataset to contain previous
observations (lagged features) and smoothed trends (rolling averages)
across defined time periods, corresponding to natural changes in river
water quality and the interaction of causes controlling ammonium
levels.

The TFT model, designed for the sensitive problem of ammonium
prediction, has a sophisticated attention-based architecture that can
deconstruct our dataset’s deep temporal correlations (Vaswani et al.,
2017). This design enables a thorough knowledge of how temperature,
pH dissolved oxygen and other factors interact over time to alter con-
centrations. The architecture of the model includes components such as
a gating mechanism and variable selection networks, which are capable
of filtering through noise to focus on the most important predictors at
any given time (Clevert et al., 2015; Appels et al., 2015; Dauphin et al.,
2017). Such accuracy is essential in hydrology, where many causes
might affect water quality differently (Kushwaha et al., 2024).

The Gated Residual Network (GRN) and Variable Selection Networks
are critical components of the TFT model’s operation, allowing for se-
lective processing and prioritisation of input data (Lim et al., 2021):

• The GRN uses Layer Normalisation and Gated Linear Units to adapt
dynamically to changing environmental factors, improving model
accuracy and efficiency. The formula for the GRN operation is:

GRNω(a, c) = LayerNorm(a+GLUω(η1) )

η1 =W1ωη2+ b1ω

η2 = ELU(W2ωa+W3ωc+ b2ω)

• Variable Selection Networks focus the model’s attention on the most
relevant variables at each timestep, which is crucial for regulating
the many impacts on NH+

4 levels. The mechanism works as follows:
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υXt = Softmax(GRNυX(Ξt, cs))

The implementation begins with altering the scaled features using
lagging and rolling, followed by dividing the dataset into training,
validation, and holdout sets to ensure a thorough assessment frame-
work. The TFT model was built using embedding layers for input pro-
cessing, multi-head self-attention layers for capturing long-term
dependencies, and LSTM layers for temporal pattern recognition. It
ended with a dense output layer for exact amplitude level forecasting.
The training was optimised with an early-stopping call-back to prevent
overfitting and keep the model generalisable to new data. TFT was
selected for its capacity to capture long-term temporal dependencies and
manage different time horizons, which makes it an ideal model for non-
linear and time-varying interactions in the River Lee dataset.

2.2.2. Extreme gradient boosting (XGBoost)
Building on the approach used for the TFT, we expand our prediction

framework by incorporating XGBoost, a scalable ML system known for
its success in tree boosting (Chen and Guestrin, 2016). This technique
stands out for its scalability and has been widely used by data scientists
to generate cutting-edge outcomes across various ML. XGBoost presents
a unique sparsity aware algorithm, which considers data independently
for approximation tree learning, making it ideal for our study’s focus on
forecasting ammonium levels in river ecosystems (Nalluri et al., 2020).

XGBoost’s capacity to handle sparse data is critical for environ-
mental datasets, which frequently contain missing values or zero entries
as a result of data collection and feature engineering techniques such as
one-hot encoding (Abou Omar, 2018). By adding a default direction for
tree nodes in the case of missing data and using a sparsity-aware split
finding technique, XGBoost ensures that all accessible data contributes
to the model’s learning process, no matter how partial. Given the
unpredictability and occasional gaps in environmental monitoring data,
this is a very important consideration for our research. XGBoost opti-
mises the following objective function, which is critical for under-
standing how effective it is in handling complex environmental datasets
(Chen and Guestrain, 2016):

Obv(θ) =
∑n

i=1
l(Y i , Ŷ

(t)
i )+

∑t

k=1
Ω(fk)

Where, l is the differentiable convex loss function that computes the

difference between the expected Ŷ
(t)
i and the actual Y i values.

Furthermore, the regularisation term is denoted by Ω with
fkrepresenting the k-th tree. The regularisation term smooths the final
learning weight to prevent overfitting. This is especially important since
some of the variables with the ammonium do not have a direct impact on
ammonium levels, such as chlorophyll and conductivity. Additionally,
XGBoost’s distinct contribution to gradient boosting is the efficient
implementation of tree learning methods and the regularisation term,
which is defined as (Chen and Guestrain, 2016):

Ω(f) = γT+
1
2

λ
∑T

j=1
w2j

Where, T is the number of leaves in the tree, γandλ are the parameters
that control the complexity of the model and w j is the score on the j-th
leaf. XGBoost was selected because of its resilience and capacity to avoid
overfitting, particularly in big and complex datasets. It is well-known for
managing non-linear connection and missing data.

2.2.3. XGBoost with random search optimization
We further enhanced our model’s efficacy by using Random search

optimisation for hyperparameter tuning that was developed by Bergstra
and Bengio (2012). This optimisation approach is critical for finetuning
XGBoost’s complex parameters, ensuing that the model operates not
only accurately but also efficiently across a wide range of environmental
conditions. Random search (RS) is used to systematically explore the

model’s enormous hyperparameter space, which includes a wide range
of parameters (Haidar et al., 2019). In this study, we used learning rate,
number of trees, tree depth, regularisation, sum of instance weight, and
subsample ratio. Random search, unlike grid search, which thoroughly
evaluates all potential hyperparameter combinations, randomly selects
a selection of parameter combinations. This technique is both
time-efficient and frequently produces comparable high performance,
making it ideal for high-dimensional hyperparameter spaces (Bergstra
and Bengio, 2012; Putatunda and Rama, 2019). The process involves
specifying a distribution for each hyperparameter rather than a discrete
set of values, resulting in a greater search range and the ability to reveal
the optimum settings that would otherwise be ignored by a more rigid,
grid-like search algorithm. It is worth mentioning that the hyper-
parameter approach did not include cross-validation because the main
focus was on employing a holdout set for final validation. Although
overfitting is often prevented via cross-validation, we employed a
separate validation set to track the model’s performance and avoid
overfitting during tuning, and a holdout test set for the final model
assessment. This approach avoided the additional computational burden
of cross-validation and guaranteed a trustworthy evaluation of model
generalisability (Cerqueira et al., 2020).

Each iteration of the random search selects a set of parameters,
which are then assessed by training the XGBoost model and testing its
performance on a validation set (Bergstra and Bengio, 2012). In our
study, RMSE (Root Mean Squared Error) is the performance parameter
used to steer optimisation, providing a clear standard for model accu-
racy in forecasting ammonium levels. This hyperparameter was for
improving performance through the use of random search optimisation,
which decreased overfitting and increased accuracy over a range of time
horizons.

2.2.4. Random forest regressor
We also incorporate the Random Forest Regressor (RF) to make use

of its powerful ensemble learning capabilities. Random Forests, devel-
oped by Breiman (2001), uses numerous decision trees to improve
forecast accuracy and reduce model overfitting, making them especially
useful for complicated environmental datasets. Each tree in the RF is
constructed using a bootstrap sample, which is a randomly selected
subset of the retraining data (Biau and Scornet, 2016). This process is
called bagging or bootstrap aggregating, which is a procedure that helps
to reduce variation. Furthermore, at each node of the tree, a subset of
characteristics is randomly chosen to decide the split, which adds ran-
domisation to the trees and makes the model more robust to noise. This
sampling method can be expressed as (Biau and Scornet, 2016):

D∗
i ∼ Uniform(D), fori = 1,…, n

Where D is the dataset and n is the number of samples. The decision tree
construction can be expressed as follows:

ΔVar(t) = Var(t) − (Var
(
tleft

)
+Var

(
tlright

)
)

Where, the variance of the target variable at nude t is denoted by Var(t)
and the nodes resulting from the split are denoted by tleft and tlright,
respectively.

Our implementation defines the RF model’s hyperparameters, such
as a number of trees, the depth of each tree and a minimum number of
samples required. These parameters are modified using Random-
izedSearchCV, which optimises for the optimal combination based on
cross-validation findings and is consistent with the theoretical frame-
work mentioned above for handling the bias-variance trade-off required
in environmental modelling (Shaikh-Mohammad and Siddiqui, 2021).
The selection of RF was based on its robust ensemble learning capabil-
ities, which minimise overfitting and offer insights into feature signifi-
cance. This makes RF an excellent choice for determining the primary
drivers of ammonium levels in dynamic river systems.
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2.3. Evaluation methods

2.3.1. Rolling window analysis
Each model in our study was assessed using a consistent assessment

process geared to our goal of forecasting ammonium levels in river
ecosystems. We employed a rolling window for post-data pre-process-
ing; it generates lagged and rolling window features that help us un-
derstand how previous environmental conditions influence the current
ammonium levels. The rolling window technique evaluates a model’s
performance at a single time instance i utilising data from i − 1 to i − N
prior observations, providing h-step forward predictions (Amor et al.,
2016). This strategy is consistent with the dynamic character of river
habitats, in which previous events and circumstances change water
quality measures like ammonium levels. As the window moves forward
one period at a time, the model updates continually, adding fresh data to
improve future forecasts. This continuing modification helps to reflect
the constant changes observed in natural water systems, ensuring that
our projections are relevant and accurate throughout time.

2.3.2. Holdout set method
The holdout method is an important methodology for measuring the

performance of time series forecasting models, particularly for non-
stationary time series. This strategy separates the data into two sets:
training and testing. Models are trained on the first segment before being
tested on the second, allowing for the evaluation of previously unknown
data. This methodology is especially useful for non-stationary series
since it provides more robust validation than approaches like cross-
validation. The holdout approach is important because it tests the
model’s ability to anticipate fresh, previously unknown data, which is
critical for assuring prediction dependability in real-world settings
(Cerqueira et al., 2020).

2.3.3. Performance metrics (RMSE, R2, MAE and NSE)
We evaluated our models’ performances using three metrics: Root

Mean Square Error (RMSE), R-squared (R2), Mean Absolute Error
(MAE), and the Nash-Sutcliffe Efficiency coefficient (NSE). These mea-
sures were chosen to give a thorough assessment of the model’s pre-
diction accuracy and dependability (Chicco et al., 2021; Duc and
Sawada, 2023).

• The RMSE evaluates the size of predicted mistakes, providing in-
formation about the average magnitude of the error. It takes the
square root of the average squared discrepancies between predicted
and actual values, which provides a clear measure of the model’s
accuracy. The formula for the RMSE is:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(Xi − Yi)2

√

; (best value = 0 ,worst value = +∞)

• MAE calculates the average magnitude of mistakes in a series of
predictions without considering their direction. It’s the average over
the test sample of the absolute differences between prediction and
actual observation, with all individual deviations having equal
weight.

MAE =
1
m

∑m

i=1
|Xi − Yi|; (best value = 0 ,worst value = +∞)

• R-squared (R2) measures how much of the dependent variable’s
variation is predicted from the independent variables. Based on the
fraction of total variance explained by the model, it assesses how
effectively observed outcomes are replicated by the model.

R2 = 1 −

∑m

i=1
(Xi − Yi)2

∑m

i=1
(Y − Yi)2

; (best value = +1 ,worst value = − ∞)

• The Nash-Sutcliffe Efficiency (NSE) is particularly important in hy-
drological modelling to assess model prediction ability. An efficiency
of 1 (NSE = 1) indicates a perfect match between the modelled
discharge and the observed data. An efficiency of 0 (NSE= 0) implies
that the model predictions are as accurate as the observed data’s
mean, whereas an efficiency less than zero shows that the observed
mean outperforms the model. It’s computed as (Duc and Sawada,
2023):

NSE = 1 −
∑n

i=1(Y i − Ŷ i)
2

∑n
i=1(Y i − Y )

2 ; (best value = +1 ,worst value = − ∞)

3. Results and discussion

This section is divided as follows: first, we presented the correlation
heat map to present the relationships between each variable and
ammonium. This was followed by the results in the training phase,
noting that the value of NSE results closely matched the values of R2

results in the holdout sets and that agrees with Duc and Sawada (2023).
The daily predictions are then shown in the scatter plot, with an
emphasis on the RMSE value for the holdout sets, to observe the
robustness of the models on new unseen data. To give a thorough un-
derstanding of the model’s performance, we also present the plots of
actual against predicted data and the error distribution data. Lastly, we
show the outcomes of the monthly data forecasts, pointing out that the
models had a difficult time efficiently learning the patterns because the
monthly averages had shrunk the data size. This section is structured to
give a thorough understanding of each model’s prediction capabilities
by highlighting its strengths and weaknesses in relation to various time
scales and data combinations.

We use powerful machine learning approaches to analyse the per-
formance of our models over multiple time scales and configurations,
improving our capacity to forecast key water quality metrics that are
important for environmental management and policy-making. The data
used in this study included all of the variables, which are temperature,
turbidity, chlorophyll, dissolved oxygen, conductivity, and pH, with
ammonium serving as the target variables. This comprehensive method
guarantees that the interaction between hydrological parameters and
ammonium concentrations is effectively documented, resulting in a
strong foundation for forecasting situations that may lead to ammonia
toxicity in river ecosystems (Li and Li, 2023).

3.1. Correlation analysis

The correlation heatmap (Fig. 1) helps understand the relationships
between the variables (Ji et al., 2019), specifically between ammonium
levels and the other variables. Notably, there is a moderate negative
correlation (-0.16) between NH+

4 and dissolved oxygen (O2), indicating
that greater O2 levels often correlate to lower ammonium concentration.
This also aligns with the findings of Ortiz-Santaliestra andMarco (2015).
They also found this link is crucial because excessive ammonium levels
can deplete oxygen, resulting in hypoxic conditions that harm aquatic
life. Furthermore, a modest positive correlation of (0.17) with temper-
ature indicates that rising water temperatures may encourage higher
NH+

4 concentration, which is a concern in the context of climate change
(Jones and Hood, 1980). The weak correlation between chlorophyll, pH
and turbidity indicates that these variables may impact ammonium
levels indirectly or through complicated interactions. During the early
stages of water bloom, increased algal density leads to increased
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chlorophyll levels, which improve photosynthesis and O2 levels (Kube
et al. 2018). However, algae growth on the water’s surface prevents
sunlight from reaching organisms, resulting in aerobic respiration and
fast oxygen consumption (Huang and Zhang, 2024).

From a hydrological perspective, these conclusions emphasise the
interdependence of physical, chemical and biological processes in river
systems. Fundamental hydrological processes include dissolved oxygen
levels, which are regulated by water movement, temperature and bio-
logical activity. The substantial negative association (-0.69) between O2
and temperature highlights the need to maintain normal flow regimes
and thermal conditions to support oxygenation and manage ammonium
levels. Understanding these relationships is critical for developing
effective water management strategies, such as increasing riparian
vegetation to regulate water temperature and improve dissolved oxygen
levels (Dugdale et al., 2024) and managing nutrient inputs from agri-
cultural and urban runoff to avoid excessive ammonium accumulation.
This integrated approach is critical for forecasting and mitigating the
effect of environmental changes on river ecosystem, therefore preser-
ving their health sustainability.

3.2. Model performance

The performance of the final model was assessed on the holdout
datasets to determine its generalisability. The holdout set, containing
data that is not used during model training or validation, but used to test

important metrics such as RMSE, MAE and R2, showing the models’
prediction accuracy and generalisability.

The results in Table 1 and Table 2 present that the prediction accu-
racy varies dramatically between models and prediction horizons.
XGBoost model and its variant with random search optimisation out-
performed other models in daily data predictions, consistently reaching
near-perfect R2 values, which agree with Chicco et al. (2021) and high
holdout NSE values. The TFT likewise performed well, although with
somewhat higher RMSE and lower NSE values than XGBoost with
random search. In the monthly data prediction, XGBoost consistently
outperformed the other models, with excellent R2 values and high
holdout NSE values. However, it is clear that the models’ performance
degrades across longer prediction horizons, especially in the TFT model,
which showed increasing RMSE and falling NSE values as the prediction
horizon increased. The consistent model performance across short time
periods could have been facilitated by the use of linear interpolation
(Huang, 2021) for missing data. However, it could also explain some of
the limitations in capturing long-term trends or sudden fluctuations, as
observed by the TFT model’s increasing RMSE over longer horizons.

Despite its efficacy, the TFT model may suffer to anticipate in the
long run due to the data granularity (Cirillo et al., 2021). This can cause
overfitting on shorter scales and underperformance on longer ones as the
model’s assumptions lose validity over time (Popovic et al., 2015).
When the model is rich with information, which in this case the daily
data, it could efficiently capture short-term fluctuations and seasonal

Fig. 1. Correlation of the 7 parameters.
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patterns. However, forecasting long-term trends can be difficult due to
the accumulation of prediction horizons; small errors might accumulate,
resulting in higher RMSE and lower NSE values (Wu et al., 2020a).
Furthermore, long-term forecasting is more susceptible to unexpected
external factors such as major weather occurrences, land use changes,
and policy changes. These variables provide additional unpredictability
and uncertainty, which the model may not account for, resulting in poor
performance (Deng et al., 2023). In addition to the correlations between
NH+

4 concentration and environmental factors may shift over time as a
result of seasonal climate changes and human activities (Tang et al.,
2022). Models such as XGBoost and TFT may struggle to retain accuracy
over longer timescales if they are unable to adapt to these changing
dynamics (Wulfmeyer et al., 2011; Guo et al., 2021).

Whilst the models worked well on the River Lee dataset, its capacity
to generalise to other rivers or geographic areas may be limited by the
hydrological and environmental conditions unique to the River Lee.
Rivers in various geographic areas may have varied water quality dy-
namics due to variances in temperature, land use, pollution sources, and
hydrological patterns (Egbueri et al., 2023). Thus, the models’

generalisability to other areas would most likely be determined by how
comparable those ecosystems were to the circumstances found in the
River Lee. To make the model more applicable to different rivers, it
might be retrained on a regular basis with local data from other
geographic regions. Furthermore, including exogenous factors, such as
climate projections or land-use data, may improve its capacity to
generalise across varied situations. The holdout set performance implies
that the model can make reliable predictions in similar ecosystems, but
more testing on more river systems is needed to demonstrate its broader
application.

3.3. Detailed analysis of findings

It is important to note that Table 1 and Table 2 represent the training
results, which show howwell the models match the training data. On the
other hand, Fig. 2 and Fig. 7 illustrate the holdout RMSE of the valida-
tion results, showing the model’s performance on new, unseen data. The
differentiation is significant because it emphasises the model’s capacity
to generalise outside of the training, which is essential for accurate long-
term forecasts.

Moreover, the importance of environmental factors in forecasting
NH4 levels was determined using feature importance metrics supplied
by machine learning algorithms, particularly XGBoost and Random
Forest. These models rank attributes depending on how they help to
reduce prediction error. Dissolved oxygen (O2) appeared as one of the
most important predictors, suggesting its vital role in regulating
ammonium concentrations via processes like as nitrification and oxygen
depletion (Qiao et al., 2020). Temperature and pHwere also consistently
important, altering the balance of ammonium and unionised ammonia,
which varies with temperature and water chemistry.

The significance of these factors varies throughout time spans. Var-
iables like temperature and dissolved oxygen have a greater influence on
short-term forecasts (daily) since they fluctuate rapidly in response to
daily environmental circumstances. Over longer time scales (e.g.,
monthly or multi-year predictions), parameters like turbidity and con-
ductivity become more important since they represent wider hydro-
logical and biogeochemical processes, such as seasonal runoff patterns
and nitrogen cycling. This shift in variable importance emphasises the
intricate interaction of physical, chemical, and biological components in
river ecosystems, with short-term projections more susceptible to rapid
environmental changes and long-term forecasts impacted by bigger,
slower-moving processes.

3.3.1. Predicting 3 years based on daily data
The findings highlight how well ML models predict the ammonium

levels in river ecosystems. The robust performance of the models over
both long- and short-term horizons represents a substantial development
in environmental modelling, and essential tool for proactive water
management. Fig. 2 represent the RMSE of the holdout set which shows
how the models are performing on new unseen data.

The capacity to anticipateNH+
4 levels up to 3 years in the future using

daily data is a noticeable achievement in machine learning. Daily data
offer a high-resolution temporal framework that captures the complex
fluctuations in environmental circumstances required to describe the
dynamics of ammonium levels effectively. The Random Forest Regressor
(RF) model performed well in this long-term forecasting, as shown in
Fig. 2. This model’s resilience is demonetised by its capacity to sustain
high R2 (0.97), and low RMSE of (0.18) over 3 years, indicating that it
successfully represents the complex interactions between ammonium
and the other environmental variables such as temperature, turbidity,
chlorophyll, dissolved oxygen, conductivity, and pH. This model’s
robustness is especially notable since it continuously obtains low RMSE
values across several steps, indicating steady and reliable performance.

To test the model’s robustness, we illustrated and analysed model
performance across a 1095-day prediction horizon. The figures below

Table 1
Daily data.

Prediction
Horizon

Model Type Train Holdout
NSE

RMSE MAE R2

150 Days TFT 0.16 0.10 0.97 0.900
XGBoost 0.25 0.20 0.94 0.875
XGBoost (Random
Search)

0.05 0.04 1.00 0.924

Random Forest 0.05 0.02 0.99 0.832
200 Days TFT 0.17 0.11 0.97 0.877

XGBoost 0.24 0.18 0.94 0.874
XGBoost (Random
Search)

0.05 0.03 1.00 0.905

Random Forest 0.05 0.02 1.00 0.849
365 Days TFT 0.16 0.10 0.97 0.894

XGBoost 0.21 0.17 0.96 0.880
XGBoost (Random
Search)

0.08 0.06 0.99 0.914

Random Forest 0.05 0.02 1.00 0.828
730 Days TFT 0.14 0.09 0.99 0.913

XGBoost 0.13 0.11 0.98 0.913
XGBoost (Random
Search)

0.06 0.04 1.00 0.923

Random Forest 0.04 0.02 1.00 0.940
1095 Days TFT 0.25 0.15 0.95 0.969

XGBoost 0.06 0.05 1.00 0.918
XGBoost (Random
Search)

0.12 0.08 0.99 0.916

Random Forest 0.08 0.06 0.99 0.966

Table 2
Monthly data.

Prediction
Horizon

Model Type Train Holdout
NSE

RMSE MAE R2

12 months TFT 0.35 0.27 0.85 ¡1.276
XGBoost 0.04 0.03 1.00 0.747
XGBoost (Random
Search)

0.23 0.13 0.97 ¡5.814

Random Forest 0.17 0.08 0.89 ¡2.362
24 months TFT 0.90 0.56 0.13 0.162

XGBoost 0.02 0.01 1.00 0.862
XGBoost (Random
Search)

0.25 0.13 0.96 ¡5.070

Random Forest 0.45 0.25 0.37 ¡0.159
30 months TFT 0.85 0.51 0.56 ¡40.943

XGBoost 0.02 0.01 1.00 ¡5.157
XGBoost (Random
Search)

0.18 0.11 0.95 ¡0.295

Random Forest 0.59 0.33 0.39 ¡15.383
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demonstrate the actual versus the predicted ammonium levels over a
period of 1095 days, highlighting the model’s ability to track observed
data patterns closely. Furthermore, the distribution of prediction errors,
which usually shows a tight clustering around zero, indicates good
prediction accuracy and dependability (Pinson and Kariniotakis, 2004).

Fig. 3 illustrates the performance of RF in predicting the 1095 days;
Fig. 3a shows a good fit to the actual ammonium levels, closely matching
the observed data patterns. This suggests that the models accurately
represent the underlying patterns and fluctuations in the data (Khozani
et al., 2022). Furthermore, Fig. 3b shows a small, narrow and centred
error distribution around 0, indicating great precision and low bias in
the model’s predictions. This shows how well the RF handles long-term
acting.

The model is quite narrow and centred, with the majority of errors
clustered between − 0.2 and 0.2. This suggests that the model is typically
pretty accurate in its predictions over the 1095-day timeframe. The
distribution is somewhat tilted to the right, with a few errors larger than
0.6, but these are outliers. This behaviour indicates that Random Forest
operates well under typical settings but may fail to manage extreme
values or rapid changes in environmental parameters. The model’s
stability, as evidenced by the error distribution, suggests that it is well
suited for long-term forecasts in stable contexts. Its capacity to give
consistent predictions is due to its ensemble learning method, which
combines the outcomes of several decision trees (Breiman, 2001). This
strategy reduces overfitting and improves model resilience, especially in
datasets with noise and unpredictability. However, the occurrence of a
few high-error outliers indicates that the model may fail to capture all
complicated interactions between environmental factors in extreme
circumstances. Future enhancements might include adding more envi-
ronmental features or adjusting the model to better handle outlier
events.

The TFT model captures overall trends and seasonal patterns, but it
struggles with high values and has a bigger error distribution. It has a
larger error distribution than Random Forest, ranging from − 0.75–0.75.
While the distribution’s apex stays centred around 0, the longer tails on
both sides show that the TFT model is more prone to higher prediction
mistakes over longer time horizons. This suggests that, while the model
is effective for broad forecasts, it may not be dependable for accurately

anticipating exceptional events. This drawback might be attributed to
the TFT model’s sensitivity to data granularity since short-term swings
are efficiently recorded, but longer-term patterns result in compounding
inaccuracies. The broader error distribution, as shown in Fig. 4b, in-
dicates that the model may not be capturing all underlying processes or
that it is more prone to overfitting on shorter patterns, which becomes
less valid over longer time horizons. The errors are more uniformly
distributed, with a clear tail towards higher error values, showing that
certain forecasts vary more considerably from the actual values.

Many approaches may be considered to deal with these challenges.
To minimise compounding errors over time, the model may benefit from
aggregating data (Zeng et al., 2024) into wider periods, such as weekly,
to focus on general trends rather than short-term fluctuations.

The XGBoost model is effective at accurately monitoring real
ammonium levels while preserving a tight error distribution. It is more
concentrated than the TFT model, although it has a tiny right skew, with
most errors falling between − 0.2 and 0.4. The distribution’s peak is
somewhat moved to the right of 0, showing that the model tends to
overestimate ammonium levels. While this improves overall accuracy
and reduces significant mistakes, it may add a small bias in predictions,
especially in datasets with unbalanced distributions or skewed variables.
Calibration or regularisation strategies might be investigated to solve
the persistent over-prediction and enhance the model’s performance.
Nonetheless, the model’s capacity to avoid huge mistakes makes it an
excellent option for long-term predictions since it stays consistent even
when dealing with complicated interactions between environmental
factors., however across all the models, this model had the highest
RMSE, as shown in Fig. 2. XGBoost’s good performance can be due to its
adept handling of non-linear correlations and interactions between
features, as Wang et al. (2021) presented in their study. The model’s
accuracy in long-term forecasting demonstrates its applicability for ap-
plications that need a thorough grasp of temporal dynamics, such as
anticipating seasonal variations and responding to slow adjustments in
environmental circumstances

Fig. 6 illustrates the performance of model XGBoost with optimiser
across 1095 days; this model is the second-best model after RF. With
closely matched actual and predicted values, as seen in Fig. 6a. The
optimisation process enhanced the accuracy of this model (Sun, 2020) to

Fig. 2. The holdout RMSE in the daily prediction.
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predict ammonium levels over extended horizons. The model’s capacity
to generalise from the training data to unknown data was probably
strengthened by the use of random search optimisation, which adjusted
the hyperparameters that control the model’s learning process. This
version has been optimised to better handle complicated relationships
and better adjust to the inherent unpredictability in the environment.

From the hydrological perspective, estimating ammonium levels
with such accuracy over long periods is essential. Long-term forecasting
allows water resource managers to foresee and minimise prospective
ammonium toxicity concerns, such as oxygen depletion and the stress
caused to aquatic life (Jia et al., 2023). Predicting changes in water
quality over a 3-year period allows for proactive interventions to reduce
nutrient loads, regulate water flows, and maintain ideal environmental
conditions. This predictive capacity facilitates the creation of long-term
water management systems that can adapt to changing climate and
human effects.

Figs. 3–6 illustrate that the TFT model has a larger error distribution,
especially for longer prediction horizons. This might be due to a variety
of circumstances. First, data granularity is important, since the model

covers short-term variations well but suffers with long-term forecasts
when tiny mistakes compound. Over time, these compounding mistakes
produce larger error distributions, as shown in multi-horizon fore-
casting. Furthermore, the TFT model is susceptible to abrupt changes or
outliers in environmental variables, such as temperature or oxygen
levels. The attention mechanism in TFT, which is useful for short-term
prediction, may become less efficient if the associations between vari-
ables change slowly or unexpectedly over time, resulting in decreased
performance. Certain characteristics, including as turbidity and chlo-
rophyll, may also contribute to increasing inaccuracy since their dy-
namics are impacted by complex and nonlinear environmental
interactions that the model may not completely reflect in long-term
projections.

This error study indicates that, whilst the TFT model excels at
capturing immediate trends, modifications are required for longer-term
forecasting. Future research might look into data aggregation ap-
proaches or model regularisation procedures to improve the model’s
capacity to generalise across longer time periods. Furthermore,
including more exogenous variables, such as climate or land-use data,

Fig. 3. a) RF actual vs predicted across 1095 days b) RF distribution of errors for 1095 days.
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may allow the model to better account for external influences impacting
the overall error distribution.

3.3.2. Predicting 30 months based on monthly data
Fig. 7 presents the holdout RMSE for estimating the ammonium

levels based on monthly data at various prediction horizons (12, 24, and
30) months ahead. The finding demonstrates the efficacy of the XGBoost
model, which continually maintained a low RMSE across all horizons.
The model’s performance demonstrates its capacity to capture long-term
trends and seasonal fluctuations in ammonium levels, making it an
important tool for hydrological forecasting.

The capacity of the XGBoost model to generalise successfully from
monthly aggregated data is evidenced by its consistent RMSE values,
which demonstrate its robustness in dealing with long-term predictions.
This is especially essential for strategic planning and policy making, as
understanding seasonal peaks and long-term patterns in the ammonium
level may help direct the timing of measures like improved monitoring
or nutrient reduction programmes to reduce the risk of ecological
damage.

The TFT model, on the other hand, showed rising RMSE values over
larger time frames, indicating difficulties in sustaining accuracy over
protracted durations. This might be owing to the model’s complexity
and the possibility of overfitting to shorter-term trends, which was a
main focus in Ali et al., (2024)’s study, resulting in worse performance
over longer time periods. The Random Forest model demonstrated
consistent performance with generally steady RMSE values, showing its
capacity to handle monthly aggregated data successfully.

Precise long-term forecasting of ammonium levels can effectively
prevent such ecological disruption. Ammonium prediction can help in
proactive steps to minimise nutrient inputs (Li et al., 2014), including
restricting agricultural runoff or improving wastewater treatment fa-
cilities (Kube et al., 2018). Additionally, by reducing the amount of
ammonium entering river systems, these actions can stop the circum-
stances that cause hypoxia (Geeraert et al., 2021). Where a body of
water’s oxygen concentration drops below the required levels to sustain
the majority of marine life. Specifically, dissolved oxygen values of less
than 2 mg/l are frequently used to characterise hypoxic environment.
Long term hypoxia can lower biodiversity since only a small number of

Fig. 4. a) TFT actual vs predicted across 1095 days b) TFT distribution of errors for 1095.
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tolerant species can endure. Furthermore, the insight gained from the
models can be a tool to provide information about the timing and the
strength of treatment. Monitoring the seasonal and long-term pattern in
NH+

4 concentration help in planning the best times to take measures like
aerating water, flushing out water bodies or using chemical treatments
to neutralize ammonium.

This study emphasises the complex interaction between ammonium
levels and numerous environmental conditions. The mild negative
connection between NH+

4 and O2 shown in Fig. 1, as well as the positive
correlation with temperature, aligns with accepted hydrological con-
cepts that emphasise the impact of oxidation processes (Liu and Wang,
2023) and thermal dynamics (Pei et al., 2015) on water quality. These
linkages are critical for understanding how changes in environmental
circumstances caused by variables such as climate change and human
activity affect river ecosystems.

The findings also emphasise the importance of integrated water
management techniques that account for the intricate interplay between
physical, chemical and biological processes in river systems. For
example, maintaining normal flow regimes and temperature conditions
is critical for sustaining dissolved oxygen levels (Dowling and Wiley,

1986). Furthermore, the base flow and storm flow of rivers have a major
influence on the ammonium concentration. Storms and other high flow
events can cause more runoff from urban and agricultural regions, which
can increase the amount of ammonium that enters rivers (Lin et al.,
2022). Ammonium levels are also influenced by sediment transport
processes since ammonium can be absorbed by sediments and released
back into the water column when sediment transport dynamics are
altered, as they can be during high flow episodes.

Machine learning models give practical insight into water quality
management. Short-term forecasting using TFT model can assist water
authorities in implementing re-time interventions, such as altering
oxygenation levels or treatments to avoid hypoxia (Geeraert et al.,
2021). Long-term predictions for XGBoost and RF allow for strategic
planning of infrastructure expenditures, such as updating wastewater
treatment plants in response to certain environmental circumstances,
such as changing water flow during periods of low dissolved oxygen
(Dowling and Wiley, 1986).

Nitrification and denitrification are two important nitrogen cycle
that control ammonium levels in rivers (Qiao et al., 2020). Under aer-
obic settings, nitrification transforms ammonium into nitrate, whereas

Fig. 5. a) XGBoost actual vs predicted across 1095 days b) XGBoost distribution of errors for 1095.
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under anaerobic conditions, denitrification lowers nitrate to nitrogen
gas. These processes are influenced by variables like pH, temperature
and dissolved oxygen concentrations. In sediments, ammonium may be
absorbed into organic materials and clay particles (Fan et al., 2021). The
process of absorption-desorption can be affected by variations in
ambient factors like pH and iconic strength impacting ammonium con-
centration in water.

Ammonium is necessary for the growth of aquatic plants and algae
(Akinnawo, 2023), and elevated ammonium levels can cause algal
blooms. When these blooms decompose, the amounts of dissolved oxy-
gen in water will decrease, leading to exacerbating hypoxia. Addition-
ally, microorganisms are essential to the nitrogen cycle because they
mediate nitrification and denitrification. The activity of these microbes
is affected by variables such as temperature, organic carbon availability
and oxygen levels, which together work to control the concentration of
ammonium in the water (Pajares and Ramos, 2019).

The combination of machine learning algorithms and extensive
environmental information creates a potential way to forecast and
regulate water quality. The better effectiveness of models such as
XGBoost with random search optimisation indicates how modern data-
driven approaches may successfully capture the complex dynamics
influencing ammonium levels. This integrated method enables more
accurate and trustworthy projections, which are essential for

establishing proactive water management policies.
Since TFT has multi-time horizon processing and attention-based

architecture, it is recognised for being computationally demanding
system, which may limit its application in real-time or resource-
constrained environments (Wang et al., 2024). In comparison to the
RF and XGBoost models, this makes the TFT model more
resource-demanding in terms of memory and processing time. Never-
theless, the model’s capacity to identify intricate temporal patterns and
provide incredible precise short-term forecasts more than makes up for
the increase computing expense. Moreover, the models assume that the
correlations between environmental factors and ammonium levels are
constant over time; however, disruptions caused by climate change,
land-use changes, or human activities may impair the accuracy of
long-term projections.

On the other hand, RF and XGBoost models are more effective for
long-term forecasting since they use less computing power and can
handle big datasets with missing values as shown in Table 1 and Table 2.
Whilst TFT excels in short-term prediction accuracy, in longer horizons
XGBoost and RF provided a superior balance between computational
efficiency and predictive effectiveness. To further increase the model’s
efficiency, the XGBoost Random Search optimiser enables efficient
tuning without using a lot of resources.

Although the models used in this study was trained using historical

Fig. 6. a) XGBoost with optimiser actual vs predicted across 1095 days b) XGBoost with optimiser distribution of errors for 1095.
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data to forecast ammonium levels it is difficult to account for any future
changes in the environment or human activity that might not have been
captured in the training set. Climate change land-use shifts, urbanisa-
tion, and changes in agricultural techniques might all have a large
impact on ammonium dynamics that historical patterns do not account
for. This is a challenge for long-term forecasts, as the model’s capacity to
generalise may deteriorate if situations vary from prior trends. To
address this, future iterations of the program might include scenario-
based forecasting techniques (Li et al., 2018). The models might be
modified to mimic probable fur environmental alterations by including
external information such as climate predictions, land-use models, or
forecasts of policy change. Furthermore, periodic retraining with
updated data might help keep the model relevant as new information
becomes available (Angel and McCabe, 2022). This would enable the
mode to adapt to new trends in environmental factors and human ac-
tivities, hence enhancing its long-term forecast accuracy.

The hydrological insights gained from these models are critical for
understanding and regulating the processes that determine ammonium
levels in river ecosystems. These models help to establish effective
management plans for mitigating the effects of environmental changes
and human activities on water quality by accurately anticipating future

circumstances. This integrated strategy improves our capacity to antic-
ipate and manage the health of aquatic ecosystems, preserving their
long-term viability in the face of persistent environmental threats.

For water management authorities, the contributions of this study
offer insightful information, especially when it comes to forecasting
ammonium levels over the short and long term. Water resource man-
agers can take pre-emptive steps to reduce ammonium concentrations in
rivers since models like Random Forest and XGBoost can produce reli-
able long-term forecasts (up to three years). For instance, anticipating
rises in ammonium levels can assist authorities in organising corrective
measures like streamlining wastewater treatment procedures, cutting
down on agricultural runoff, or putting in place regulations to manage
fertiliser inputs. These predictions can inform policy adjustments, such
as implementing stricter fertiliser application limits during seasons of
high runoff to avoid excess ammonium from entering rivers. In urban
settings, authorities might update wastewater discharge rules depending
on expected ammonium levels, ensuring that treatment plants adjust
operations during high-risk times. Proactive policies based on realistic
model projections can result in more sustainable water management
practices, decreasing the ecological effect of human activities on river
systems.

Fig. 7. The holdout RMSE in the monthly prediction.
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Real-time monitoring is possible with short-term forecasts, which is
where the TFT excels. These can direct quick hus, including raising the
water’s oxygen content to stop hypoxia when ammonium levels rise. The
models’ ability to provide both short- and long-term projections can help
in the development of more flexible and successful water management
plans, enhancing the general health of rivers and lowering ecological
threats like oxygen depletion and toxic algal blooms.

4. Conclusion

This paper advanced the use of machine learning in environmental
science, especially for forecasting ammonium NH+

4 levels in river eco-
systems. We created a solid framework by combining hydrological
knowledge with powerful machine learning algorithms, improving our
capacity to anticipate water quality in the short and long term. The key
finding of this study are:

• This is the first research to predict ammonium levels up to 3 years in
advance using daily data and up to 30 months ahead using monthly
data. This dual-scale forecasting capacity offers flexibility in
addressing a variety of environmental concerns and is essential for
both short- and long-term water management planning. This is a
paradigm change in how machine learning may be applied to
ecological forecasting, bringing new levels of interpretability and
precision.

• Our technique, which includes a dynamic evaluation of several
environmental parameters such as temperature, pH, turbidity,
chlorophyll, dissolved oxygen, and conductivity. This thorough
evaluation gives a complete knowledge of the circumstances that
might contribute to ammonia toxicity in river ecosystems.

• The created framework is scalable to other river systems than the
United Kingdom, making it an important tool for worldwide water
sustainability programmes. This scalability means that the model
may be utilised in a variety of environmental scenarios, increasing its
usefulness and effect.

• This study’s findings promote the development of proactive water
management measures. Water resource managers can employ pre-
cise forecasting to avoid possible concerns such as oxygen depletion
and biological stress caused by increased ammonium levels.

• We also investigated that precise forecasts enable prompt nutrient
load reduction initiatives, including using best management prac-
tices (BMPs) in agriculture to regulate fertiliser application and
runoff.

First, the use of advanced machine learning models, namely Tem-
poral Fusion Transformer (TFT), for multi-horizon ammonium level
forecasting is a noteworthy breakthrough. The capacity of the TFT
model to deal with both short-term fluctuation and long-term trends
establishes a new standard for forecast accuracy in complicated river
systems such as the River Lee, where previous models frequently fail.

Third, by making long-term forecasting, this study fills a gap in
ammonium level prediction, particularly in respect to multi-scale envi-
ronmental variables such as seasonal climate change and human activ-
ity. The combination of short and long-term perspectives distinguishes
this study, which provides a flexible and comprehensive prediction
framework that can be immediately applied to the policymakers.
Finally, the study’s multi-model strategy, which incorporates Random
Forest, XGBoost, and TFT, gives compelling evidence of how diverse
machine learning approaches may work together to improve overall
knowledge of environmental processes. This study sets a new bench-
mark for future research in the predictive modelling of water quality and
other environmental issues.
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Bhatnagar, A., Sillanpää, M., 2011. A review of emerging adsorbents for nitrate removal
from water. Chem. Eng. J. 168 (2), 493–504.

Biau, G., Scornet, E., 2016. A random forest guided tour. Test 25, 197–227.
Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.
Britto, D.T., Kronzucker, H.J., 2002. NH4+ toxicity in higher plants: a critical review.

J. Plant Physiol. 159 (6), 567–584.
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