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Global climate change is leading to an increase in compound hot-dry events, significantly impacting 
human habitats. Analysing the causes and effects of these events requires precise data, yet most 
meteorological data focus on variables rather than extremes, which hinders relevant research. A 
daily compound hot-dry events (CHDEs) dataset was developed from 1980 to 2100 under various 
socioeconomic scenarios, using the latest NASA Earth Exchange Global Daily Downscaled Projections 
(NEX-GDDP-CMIP6) dataset to address this. The dataset has a spatial resolution of 0.25 degrees 
(approximately 30 kilometres), including three indicators, namely D (the yearly sum of hot-dry extreme 
days), prI (the intensity of daily precipitation), and tasI (the intensity of daily temperature). To validate 
the accuracy of the dataset, we compared observational data from China (National Meteorological 
Information Center, NMIC), Europe (ERA5), and North America (ERA5). Results show close alignment 
with estimated values from the observational daily dataset, both temporally and spatially. The predictive 
interval (PI) pass rates for the CHDEs dataset exhibit notably high values. For a 90% PI, D has a pass 
rate exceeding 85%, whilst prI and tasI respectively show a pass rate above 70% and 95%. These results 
underscore its suitability for conducting global and regional studies about compound hot-dry events.

Background & Summary
Global climate change contributes to an increasing trend in compound extreme events, resulting in widespread 
adverse impacts on the environment and humanity1,2. The IPCC AR6 report highlights that, as global warming 
intensifies, the likelihood of compound events occurring in many regions is set to rise3. Under the influence of 
climate change, compound hot-dry events (CHDEs) are projected to become notably more frequent4. Existing 
research indicates an anticipated increase in CHDEs across Europe, Asia, North America and Australia5–8. 
Consequently, the risk of heightened occurrences of CHDEs is anticipated in the future9. Regions prone to 
frequent wildfires, such as Australia, may experience an elevation in wildfire incidents due to the increased fre-
quency of compound hot-dry events10,11. That becomes imperative to enhance future assessments of changes in 
compound hot-dry events, along with research into driving factors and their resultant impacts12.

Currently, research studies on CDHEs are being conducted worldwide, comparing the characteristics, 
driving factors, variations (detection, attribution, and prediction), and impacts of compound dry-hot condi-
tions. Observational findings indicate an overall increase in regional and global CDHEs over the past few dec-
ades13. Experimental results, coupling the Weather Research and Forecasting (WRF) model with urban canopy 
parameterisation, demonstrate that climate warming induced by greenhouse gases is a primary driver for the 
increased frequency and duration of CDHE event14. Studies on impacts suggest that by the end of the 21st cen-
tury, depending on different scenarios, an additional 700 million to 1.7 billion people globally will be exposed to 
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expanding compound events. Furthermore, the cultivated land affected by these events is expected to increase by 
2-5.7 million square kilometers9. These studies underscore the importance of effective governance in mitigating 
and managing the escalating risks associated with compound events.

A comprehensive understanding of causative analysis and impact assessment relies heavily on a substantial and 
dependable dataset, which significantly advances related research15,16. Hydrological datasets play a pivotal role in 
facilitating regional water resource management17. Global Climate Model (GCM) and Regional Climate Model 
(RCM) datasets supplement observational gaps, addressing research voids in regions with data insufficiency18. 
Despite the introduction of the advanced CMIP6 dataset, which provides high-precision climate data, prevailing 
meteorological data repositories predominantly offer variables-based data rather than event-based data. This diver-
gence complicates the research landscape, amplifying the workload associated with relevant investigations19,20.

The absence of comprehensive compound event datasets may stem from divergent definitions employed 
in various studies. The IPCC categorises compound events as instances where multiple extreme events occur 
simultaneously, sequentially, or in distinct regions21. Consequently, researchers often define compound events 
based on the specific impacts they investigate within their studies22,23.

The objective of this paper is to facilitate research focused on the impacts of CHDEs (Compound Hot-Dry 
Events). To achieve this, we propose a universally recognised definition for CHDEs. In this definition, extreme 
events of mean temperature and precipitation are characterised as values above the 90th percentile and below 
the 10th percentile, respectively, which have gained widespread acceptance and served as the prevailing method 
for studying CHDEs12,24–27. Using this established definition, we aim to construct a comprehensive global dataset 
that encompasses both the intensity and duration of CHDEs. This dataset will be instrumental in capturing the 
spatiotemporal characteristics of CHDEs, providing valuable support for future research endeavours in this field.

Methods
Data source. Compound hot-dry events were calculated based on the NASA Earth Exchange Global Daily 
Downscaled Projections (NEX-GDDP-CMIP6) gridded dataset28. The NEX-GDDP-CMIP6 dataset comprises a 
total of 25 models. In our study, we have selected the 11 most widely utilised models (as shown in Table 1), which 
is deemed sufficient to establish the stability of the results.

Model name Modelling center Variant

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization r1i1p1f1

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organization r1i1p1f1

BCC-CSM2-MR Beijing Climate Center, China Meteorological Administration r1i1p1f1

CanESM5 Commonwealth Scientific and Industrial Research Organization r1i1p1f1

CNRM-ESM2-1 Centre National de Recherches Météorologiques/ Centre Européen de Recherche et Formation Avancée en Calcul Scientifique r1i1p1f2

INM-CM4-8 Institute for Numerical Mathematics r1i1p1f1

IPSL-CM6A-LR Institute Pierre Simon Laplace r1i1p1f1

KACE-1-0-G Korean Air Quality Model for Climate and Health Effects r1i1p1f1

MIROC6 Atmosphere and Ocean Research Institute, The University of Tokyo and Japan Agency for Marine-Earth Science and Technology r1i1p1f1

MPI-ESM1-2-HR Max Planck Institute for Meteorology r1i1p1f1

UKESM1-0-LL Max Planck Institute for Meteorology r1i1p1f2

Table 1. CMIP6 models used in this study.

Index duration (D) temperature intensity (tasI) precipitation intensity (prI)

Dimensions

longitude = 1400 longitude = 1400 longitude = 1400

latitude = 600 latitude = 600 latitude = 600

time = unlimited//30 currently time = unlimited// 30 currently time = unlimited// 30 currently

Variables

double longitude (longitude) double longitude (longitude) double longitude (longitude)

longitude: units = “degrees_east” longitude: units = “degrees_east” longitude: units = “degrees_east”

longitude: long_name = “longitude” longitude: long_name = “longitude” longitude: long_name = “longitude”

double latitude (latitude) double latitude (latitude) double latitude (latitude)

latitude: units = “degrees_north” latitude: units = “degrees_north” latitude: units = “degrees_north”

latitude: long_name = “latitude” latitude: long_name = “latitude” latitude: long_name = “latitude”

int time (time) int time (time) int time (time)

time: units = “years since 0” time: units = “years since 0” time: units = “years since 0”

time: long_name = “time” time: long_name = “time” time: long_name = “time”

time: calender = “standard” time: calender = “standard” time: calender = “standard”

double Total_Duration(time, latitude, longitude) double Tas_Intensity(time, latitude, longitude) double Pr_Duration(time, latitude, longitude)

Total_Duration: units = “day” Tas_Intensity: units = “K” Pr_Duration: units = “kg/m^2/s”

Total_Duration: _FillValue = −9999 Tas_Intensity: _FillValue = −9999 Pr_Duration: _FillValue = −9999

Table 2. Data information for each index of CHDEs in the netcdf files.
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Observed daily mean temperature and precipitation data were obtained from the National Meteorological 
Information Center (CN0.5, http://data.cma.cn) and fifth generation ECMWF (European Centre for 
Medium-Range Weather Forecasts) atmospheric reanalysis of the global climate (ERA5, https://cds.climate.
copernicus.eu/cdsapp). The CN0.5 dataset has a high degree of correlation with the original sequence and small 
errors, making it an accurate reflection of spatiotemporal precipitation and temperature characteristics29. ERA5, 
based on global observational data, numerical models, and physical parameterisation schemes, employs data 
assimilation and numerical simulation techniques to reconstruct and simulate weather conditions over the past 
several decades (from 1940 to the present). This process generates high spatiotemporal resolution atmospheric 
and surface variable data. The data can be utilised in various fields such as climate research, weather analysis, 
climate model validation, environmental monitoring, and more30.

Compound hot-dry events. Our analysis primarily focuses on the average temperature and precipitation 
during the warm season (in terrestrial regions), specifically the three consecutive months with the highest average 
temperature. For each model, extreme events for mean temperature and precipitation are respectively defined as 
values exceeding the 90th percentile and falling below the 10th percentile of the distribution obtained from each 
GCM member’s data over the 1981-2010 period (thereby defining extreme events in the warm climate based on 
historical percentile thresholds). Subsequently, utilising historical period thresholds, the assessment of forthcom-
ing CHDEs is conducted across various Shared Socioeconomic Pathways (SSPs).

In detail, on a global scale, we independently model 265,272 grid points. Initially, we organize daily evalu-
ation temperature and precipitation data for each grid during the historical period (1981-2010), sorting them 
in ascending order. We then calculate the 90th percentile for average temperature and the 10th percentile for 
average precipitation, which serve as the thresholds for CHDEs. When a specific day satisfies both criteria, we 
identify it as a compound hot and dry event occurrence at that point.

To further analyse temporal and spatial characteristics of CHDEs, we defined the frequency (i.e., D), precip-
itation intensity (i.e., prI) and temperature intensity (i.e., tasI) as follows:

Fig. 1 Future duration of CHDEs (i.e., D) under the SSP2-4.5 scenario for the 2050 s (left column) and 2080 s 
(right column): (a,b) 10th percentile, (c,d) 50th percentile and (e,f) 90th percentile.

https://doi.org/10.1038/s41597-024-03883-z
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where N is the number of extreme events within a particular, D is the yearly sum of hot-dry extreme days, i is 
the subscript of a hot-dry event, and j is the day in the hot-dry event (i). di is the duration of a hot-dry event (i), 
pri,j and tasi,j is the daily precipitation and temperature at the day j during the hot-dry extreme event (i), prthres,j 
and tasthres,j are the 10th percentile threshold for the daily precipitation and 90th percentile threshold for the daily 
temperature at the day j. The definitions of frequency and intensity of CHDEs were developed here following the 
relevant definitions of compound heatwaves proposed in Ma and Yuan31. These indices enable us to identify and 
quantify CHDEs effectively across diverse geographical locations and serve as a basis for our research analysis.

Data Records
Our dataset can be accessed from the associated permanent DOI (https://doi.org/10.6084/m9.figshare. 
24038790.v6)32. Each site encompasses four SSP-RCPs (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) and three dis-
tinct periods: historical (1981-2010), 2050 s (2041-2070), and 2080 s (2071-2100). Each scenario encompasses 
three variables at a monthly time step: duration (D), precipitation intensity (prI), and temperature intensity 

Fig. 2 Future temperature intensity (i.e., tasI) of extreme hot events under the SSP2-4.5 scenario for the 2050 s 
(left column) and 2080 s (right column): (a,b) 10th percentile, (c,d) 50th percentile and (e,f) 90th percentile.
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(tasI). The dataset has a spatial resolution of 0.25 degrees (approximately 30 kilometres). We have organised the 
data for each scenario into netcdf files with the data information for each index of CHDEs provided in Table 2.

technical Validation
Figure 1 illustrates the future projected annual mean frequency of compound extreme hot and dry events under 
the SSP2-4.5 scenario, considering different percentile levels. Spatially, it is expected that in the future, there 
will be an increased concentration of compound hot and dry events between 0° and 45° north latitude at the 
50th percentile level, particularly in western Asia, North America, and southern Africa. The southern regions of 
Greenland and central Australia are also likely to experience longer durations of dry and hot compound events 
amidst global warming. Temporally, the areas impacted by compound events are anticipated to expand during 
the 2070 s compared to the 2050 s.

Figures 2 and 3 display the spatial distribution of hot-dry extreme event intensity under the SSP2-4.5 sce-
nario. The intensity of these compound events is measured by two indicators: the deviation of daily mean tem-
perature from the historical 90th percentile value (i.e., tasI), and the deviation of daily precipitation from the 
historical 10th percentile baseline (i.e., prI). Regarding temperature, there is a clear spatial pattern where the 
Northern Hemisphere exhibits higher intensity compared to the southern regions. At the end of this century, it 
is expected that larger areas will encounter more intense extreme heat events. For precipitation, compared to the 

Fig. 3 Future precipitation intensity (i.e., prI) of extreme dry events under the SSP2-4.5 scenario for the 2050 s 
(left column) and 2080 s (right column): (a,b) 10th percentile, (c,d) 50th percentile and (e,f) 90th percentile.

Range

Parameter

Duration prI tasI

China
90% PI Pass Rate 85.21% 86.59% 98.09%

100% PI Pass Rate 99.71% 98.52% 100.00%

Europe
90% PI Pass Rate 100.00% 78.43% 99.17%

100% PI Pass Rate 100.00% 100.00% 99.58%

North America
90% PI Pass Rate 99.99% 71.31% 95.50%

100% PI Pass Rate 99.99% 99.81% 97.19%

Table 3. Comparison of Pass Rates. *PI: predictive interval.
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threshold in the baseline (10th percentile), the corresponding precipitation deficit is predominantly observed 
near or south of the equator, particularly in most parts of South America, indicating that the intensity of drought 
in this region will worsen. In other words, these regions will experience a significantly higher severity of drought 
events compared to other areas.
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Fig. 4 Spatial patterns covering China Pearson correlation coefficient between CHDEs dataset and CN0.5 
during a 30-year period (1981-2010).
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Fig. 5 Spatial patterns covering the North America Pearson correlation coefficient between CHDEs dataset and 
ERA5 during 30 years (1981-2010).
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The accuracy of CHDEs relies significantly on the reliability of the meteorological variables used for their 
computation. The CN0.5 dataset has been widely utilised and validated. Similarly, we employed this dataset 
to identify data for the three variables during the historical period. Using China, North America and Europe 
as examples, we performed a quality control check on the dataset output by comparing results from 14,752 
calculations with values extracted from CN0.5. Simultaneously, we applied the same methodology to compare 
the North American Region (47,964) and the European Region (18,844). All these were done to ensure that the 
numerical outputs fall within realistic ranges.

Table 3 illustrates the probabilities of the calculated mean variables falling within the range of observed data 
results. While values exceeding these ranges are not necessarily erroneous, they should not occur frequently. 
In fact, within a 100% range, these disparate values only reached a rate of 0.29% (D), 1.48% (prI) and 0% (tasI) 
in China. In both Europe and North America, the differences are similarly minimal. The specific figures are as 
follows: in Europe, they are 0%, 0%, and 0.42%, while in North America, they are 0.01%, 0.19%, and 2.81%. 
Within a 90% range, the pass rates are also quite satisfactory, with a pass rate of 85.21% for D, 86.59% for prI, 
and 98.09% for tasI in China. For Europe, the pass rates are 100.00% for D, 78.43% for prI and 99.17% for tasI. In 
North America, the figures are 99.99% for D, 71.31 for prI and 95.50% for tasI. These results indicate a favorable 
level of consistency between the calculated values and observed data, reinforcing the validity and reliability of 
our approach in assessing CHDEs.

Furthermore, we assessed the spatial correlation of the data, revealing a strong consistency between the 
duration and temperature variables across both CHDEs dataset and CN0.5 datasets (as shown in Fig. 4). The 
Pearson correlation coefficient for the precipitation variable is not as robust as the first two variables, but this is 
not unexpected due to the inherent challenges in precipitation simulation at a daily temporal and spatial resolu-
tion. However, given high pass rates for the 90% predictive interval shown in Table 3, the precipitation intensity 
(i.e., prI) in the observed CHDEs can be likely bracketed by the predictive intervals in the CHDE dataset from 
11 GCMs. These findings reinforce the reliability of our data assessment process, indicating that despite the 
challenges in accurately estimating daily precipitation at high spatial or temporal resolutions, the overall results 
are robust and dependable Fig. 5.

Similarly, we compared the CHDEs dataset and data from ERA5 to present a more equitable evaluation. The 
comparison methods were consistent, as illustrated in Figs. 6 and 7. From the figures, it can be observed that the 
results for Europe and North America are roughly similar to those for China. In fact, for the parameter prI, we 
anticipate that the results for Europe and North America would be superior to those for China, possibly due to 
differences in the observational datasets. This divergence may arise because ERA5 data undergo reconstruction 
and simulation, while CN0.5 data undergoes only spatial interpolation, resulting in relatively lower correlation. 
Moreover, we calculated the spatial correlation between the mean values of D, prI, and tasI and the corresponding 
observations over the three tested region. The results indicate significant correlation between CHDE indices (i.e.,  

D prI

tasI
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Fig. 6 Spatial patterns covering Europe Pearson correlation coefficient between CHDEs dataset and ERA5 
during 30 years (1981-2010).
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D, prI, tasI) and those from observations with P-values less than 0.04. (as shown in Fig. 7). In summary, akin to 
the findings in the Chinese region, the validation of the CHDEs dataset in Europe and North America is consid-
ered reliable. This dataset can be utilised for subsequent impact assessments and other analyses in these regions.

Limitations
Similarly, our study has some limitations. Specifically, due to computational and data storage constraints, we 
selected 11 CMIP6 datasets developed by renowned research institutions worldwide instead of utilising the 
complete set of 25 models. There are also certain shortcomings in terms of uncertainty, and future research will 
seek more collaborations to meet hardware requirements and reduce uncertainty arising from the number of 

(a) CN_D (b) CN_prI (c) CN_tasI

(d) EU_D (e) EU_prI (f) EU_tasI

(g) NA_D (h) NA_prI (i) NA_tasI

Fig. 7 Spatial correlation between CHDEs from GCM simulations and those from observations in China (CN), 
Europe (EU) and North America (NA).
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models. Regarding validation, we only validated the data for three regions: China, Europe, and North America. 
The experimental results confirmed the reliability of the CHDEs dataset, researchers in other Regions, particu-
larly those with higher accuracy requirements, are advised to conduct their validation when using this data. We 
will continue our efforts to extend validation to more countries and regions.
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