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Abstract 

 

The principal objective of this investigation is to develop a constitutive model to 

simulate the hysteresis behaviour of unbonded flexible risers. A new constitutive model 

for flexible risers is proposed and a procedure for the identification of the related input 

parameters is developed using a multi-scale approach. The constitutive model is 

formulated in the framework of an Euler-Bernoulli beam model, with the addition of 

suitable pressure terms to the generalised stresses to account for the internal and 

external pressures, and therefore can be efficiently used for large-scale analyses. The 

developed non-linear relationship between generalised stresses and strains in the beam 

is based on the analogy between frictional slipping between different layers of a flexible 

riser and frictional slipping between micro-planes of a continuum medium in non-

associative elasto-plasticity. Hence, a linear elastic relationship is used for the initial 

response in which no-slip occurs; an onset-slip function is introduced to define the ‘no-

slip’ domain, i.e. the set of generalised stresses for which no slip occurs; a non-

associative rule with linear kinematic hardening is used to model the full-slip phase. 

The results of several numerical simulations for a riser of small-length, obtained with a 

very detailed (small-scale) non-linear finite-element model, are used to identify the 

parameters of the constitutive law, bridging in this way the small scale of the detailed 

finite-element simulations with the large scale of the beam model. The effectiveness of 

the proposed method is validated by the satisfactory agreement between the results of 

various detailed finite-element simulations for a short riser, subject to internal and 

external uniform pressures and cyclic bending and tensile loadings, with those given by 

the proposed constitutive law. The merit of the present constitutive law lies in the 

capturing of many important aspects of risers structural response, including the energy 

dissipation due to frictional slip between layers and the hysteretic response. This 

privilege allows one to accurately study the cyclic behavior of unbonded flexible risers 

subject to axial tension, bending moment, internal and external pressures. 
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 1 

1 Introduction 

 

 

1.1 General introduction 

 

The continuous development of unbonded flexible risers is a core factor supporting the 

evolution of the subsea oil industry to face the challenges associated with the increasing 

demand for deep-water applications. Developments in the capabilities of finite element 

analysis technology have been influential to the success of these new projects. 

 

The location of vast parts of the oil and gas fields in deep waters presents clear 

challenges for the design and installation of extra-long risers. A number of design 

standards for extra-long risers fall beyond the scope of the current design codes, so 

specialised engineering assessments should be applied. 

 

Deepwater and ultra deepwater riser fatigue failure due to vortex induced vibration 

(VIV) is currently considered by the oil industry to be a very significant unresolved 

problem. When the vortex shedding frequency coincides with a natural frequency of the 

riser the resulting response can have catastrophic repercussions.  Risers are subjected to 

severe current in most deepwater development areas, resulting in accumulation of 

significant VIV short cycle fatigue induced damage. Both drilling and production risers, 

usually designed for long service lives, are affected by VIV. The main techniques used 

to model this behaviour are predominantly based on analytical or numerical models 

which utilise empirical force coefficient data taken from simplified cases and are 

therefore possess a significant degree of uncertainty in general application.  VIV is 

essentially a coupled fluid-solid interaction phenomenon and as such should be treated 

and simulated as fully coupled. This, however, in view of the highly non-linear 

behaviour of a flexible riser and the very large size of the full 3-dimensional CFD 

required presents an enormous computational challenge which cannot be performed on 

any current computational platforms in a practical length of time. 
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1.2 Flexible riser 

 

Marine risers are classified into two categories: drilling and production risers. A drilling 

riser is used for exploratory drilling and is made of steel which contains the drill string 

and drilling mud. A production riser consists of a cluster of flow-lines, which transfer 

the crude oil from seabed to sea-surface. Traditional production marine risers are 

vertical rigid steel structures, which are prevented from buckling by application of a 

tensile force to its top end. This makes these structures suitable for shallow water 

applications. Flexible risers, as modern production risers, withstand much greater vessel 

motions than rigid steel risers and do not require external tensile force at their extremes 

(O'Brien and McNamara, 1988).  

 

Flexible riser was introduced to the marine market in the early 70’s and was installed in 

the Enchova field offshore Brazil in 1978 (Machado and Dumay, 1980). Two generic 

types exist for flexible risers: unbonded flexible riser, without adhesive agents between 

the layers, and bonded flexible riser with the reinforcing bonded to an elastomeric 

matrix (Out et al., 1995). The term ‘flexible riser’ refers to the capacity of a pipe to 

combine low bending stiffness with high axial tensile stiffness. However, unbonded 

flexible risers offer a better option which features both of these characteristics. 

Withstanding significant flexure together with maintaining the required axial strength 

and pressure integrity makes unbonded flexible risers a unique structure suitable for 

ultra deepwater applications (Kraincanic and Kebadze, 2001).  

 

A flexible riser is comprised of several distinct layers. This modular assembly allows 

each layer to be made fit-for-purpose and independently adjusted to best meet a specific 

field development requirement. In these types of pipes although the layers are 

independent, they are designed to interact with one another. The pipe cross-section of a 

flexible riser is a combined construction of spirally wound steel layers and 

thermoplastic materials. The main components are leak-proof thermoplastic barriers and 

corrosion-resistant steel layers such as carcass and pressure armour layers. The helically 

wound steel wires at the helical armour layer give a high-pressure resistance and 

excellent bending characteristics to the whole system of assembly, which results in the 

flexibility and a superior dynamic behaviour. 
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The space between the internal sheath layer and the most outer layer is known as the 

annulus. The layers occupy approximately 90 percent of the annulus and the remaining 

10 percent is gaps between layers, which facilitate lateral movements of the layers as 

the riser bends. Geometric non-linearity originated from the helical configuration of the 

tendons within a helical layer together with the material nonlinearity originated from the 

polymeric layers, non-linearity introduced by layer interaction and the changing contact 

conditions under load, makes the unbonded flexible riser to reveal highly non-linear 

mechanical properties with coupling effects between axial, torsional and flexural 

deformations (Witz 1996). Further details on the function and design of the layers are in 

Recommended Practice for flexible pipe (API RP 17B, 2002; API Spec 17J, 2002). 

 

1.3 Problem statement 

 

The growing economic importance of structural integrity of risers for deep waters and 

ultra deep waters for the oil and gas industry demands enhanced simulation techniques. 

A methodology is required to significantly reduce the computational time associated 

with running of the finite element detailed models of riser structure.  Such a capability 

should have significant benefits for cost effective deep water flexible riser design 

practise. 

 

 

1.4 Research objectives 

 

The aim of the present project is to develop a constitutive model for unbonded flexible 

risers. The results from a detailed verified finite element model or experiment of the 

cross-section of unbonded flexible risers can then be replaced by this constitutive 

model, taking into account all the geometric nonlinearity, detailed frictional effects and 

hysteresis effects. This type of hysteretic constitutive model will be suitable for 

implementation into finite element codes to analyze the highly non-linear behaviour of 

long unbonded flexible riser structures.  
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1.5 Main contributions of the work 

 

The present project aims to develop a constitutive model to describe a very detailed 

behaviour of the unbonded flexible risers including highly non-linear geometric feature 

of the flexible riser as well as the inter-layer contact and stick-slip effects. The 

constitutive model can then be implemented into a global nonlinear beam element finite 

element code to analyse the nonlinear coupled fluid-solid interaction response. This 

multi-scale approach significantly reduces the computational time usually associated 

with full finite element runs. 

 

 

1.6 Layout of the thesis 

 

The first chapter is an introduction and the identification of the research problem. It also 

gives a brief description of the objectives of the research. The second chapter contains a 

literature review in which previous studies and research on the flexible riser have been 

reviewed. An explanation of the problem and importance of the research as well as the 

motivation and the novel aspects of the research have also been presented in this 

chapter. In the third chapter, a finite element analysis of the behaviour of multi-layer 

unbonded flexible risers, subjected to various types of loading, is developed. The fourth 

chapter outlines an analytical solution of a riser subjected to several loading cases. This 

chapter clearly explains the fundamental principles involved in the problem.  

 

In chapter five, the numerical model is verified and validated by the analytical model 

and limited published experimental results. Chapter six discusses the approach followed 

to develop a general constitutive model in which the constitutive law for the 3D beam 

model is formulated, the key issue of the identification of the parameters of the beam 

constitutive model is addressed, and numerical results are presented and discussed to 

validate the effectiveness of the proposed method. Conclusions and future work are 

discussed in Chapter seven, where other aspects to be investigated in future work are 

addressed, followed by a list of references, appendices, and publications by author. 
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2 Literature Survey and Motivation 

 

 

2.1 Introduction 

 

Preventing failure in deeper water risers is a new industrial challenge. As exploration 

for oil and gas move into deeper waters, rig maintenance and repair become more 

difficult and expensive. Therefore, a high degree of structural integrity has to be 

attained at the design stage.  

 

The need for design tools and processes to improve riser installation and operation 

success rates becomes more acute as water depth increases. Rigorous analysis and 

testing of riser designs are crucial to ensure in-service performance failure prevention. 

The analysis and testing should simulate as closely as possible the real-life conditions 

under which the riser will function.  

 

At the sea-surface, a riser structure is subjected to a high mean tension combined with 

cyclic loading, and at the seabed, it is subjected to severe external pressure, axial 

compression, bending and torsion. In the installation procedure however, the pipe is 

empty, and it experiences high combined axial compression and bending at the 

touchdown point (TDP) (Brack et al., 2005).  

 

A flexible riser comprises of several different layers. Starting from the most inner layer, 

these include a carcass, an internal pressure sheath made of polymeric material, an 

interlocked pressure armour layer, an anti-wear layer, two tensile armour layers and an 

outer sheath with each layer having a particular function (Kagoura et al., 2003). All 

layers are free to slide with respect to each other. Figure 2.1 illustrates the various layers 

of a typical unbonded flexible riser. The external plastic sheath layer protects the riser 

from surrounding seawater intrusion, external damages during handling and corrosion. 

The internal plastic sheath layer ensures internal fluid integrity and is made from 

polymer.  
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Anti-frictional layers are non-metallic thermoplastic sheaths or tape wrappings, used 

between structural layers to decrease abrasion and wear (Kraincanic and Kebadze 

2001). Wearing of these layers around the neutral axis can occur in bending fatigue 

analysis of unbonded flexible pipes (Tuohy et al., 1999). This layer can be replaced by a 

solid lubricating layer which is sufficiently thick to prevent all the wear in the structure 

layers (Out et al., 1995). The carcass layer is a metallic structure which mainly resists 

radial inward forces, providing partial resistance to collapse of the layers when the riser 

is subjected to various types of external loading. This layer is made up of an interlocked 

profiled strip in an almost circumferential lay (Witz, 1996).  

 

The 'zeta'-shaped helical or interlocked pressure armour layers have reinforcement 

effects against internal and external pressure and support hoop loading. This layer 

provides support outside the fluid barrier layer by resisting ovalisation of the underlying 

structure such as carcass layer (Zhang et al., 2003). The 'zeta'-shaped layer is not 

capable of withstanding either axial or bending loads significantly. This is because it is 

wound in a helix with a short pitch with a lay angle close to 90 degrees and with a gap 

between turns, of an interlocked metal profile wires (Leroy and Estrier, 2001). This 

layer can be complemented by a backup pressure layer which is a metallic layer, wound 

 
 

Figure 2.1: Layer structure of a typical unbonded flexible riser 
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at short pitch and provides additional resistance to the radial force in very high pressure 

risers (Feret and Bournazel, 1987).  

 

Tensile armour layers are a pair of contra-wound wraps of even number of wires laid 

with a long pitch. These layers mostly withstand axial load, torsional and bending 

moments. They are not usually self-equilibrating structures. In the case of external 

tension, an internal torque is induced which tends to unwind the layer. Therefore 

variations in the axial direction lead to variation in the circumferential direction, 

transmitting a torque to the support (Lanteigne, 1985). Flexibility in bending of 

unbonded risers originates from the ability of the tendons of helical layers to slip with 

respect to each other. This leads to wear and ultimately to the fatigue of the tendons. 

The amount of slip is inversely proportional to the lay angle of the tendons (Out and 

Morgen, 1997).  

 

The advantages of flexible risers with respect to rigid steel risers is the much lower 

bending stiffness of the former, leading to smaller radiuses of curvature with the same 

pressure capacity, due to the complex make up of flexible risers (API RP 17B, 2002; 

API Spec 17J, 2002), in turn resulting in increased ability of undergoing large 

deformations under loads induced by the sea current, vortex induced-vibrations, the 

motion of the floating-vessel and during installation. 

 

One of the problems associated with the complex design of unbonded flexible risers is 

the difficulty in its analysis. To capture the many important aspects of their structural 

response, including the energy dissipation due to frictional slip between layers, the 

hysteretic response and the fatigue damage, efficient and accurate tools are required. 

 

Current methods are generally divided into two categories: analytical formulations and 

finite-element models. The analytical models share many of the following simplifying 

assumptions, which significantly limit the range of applicability of the results: 

displacements and strains are small (Feret and Bournazel, 1987; Claydon et al., 1992; 

Harte and McNamara, 1993); some coupling terms in total stiffness matrix are neglected 

(Harte and McNamara, 1993); the conventional elastic thin-walled theory can be 

assumed valid (McNamara and Harte, 1989; Claydon et al., 1992); tendons are 

restricted from rotating about their local helical axis (Claydon et al., 1992); strains 
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and/or stresses across the layer thickness are constant (Claydon et al., 1992); 

thicknesses of layers remain constant during deformation (Claydon et al., 1992); plane 

sections remain plane (Harte and McNamara, 1993); ovalisation effects are neglected 

(Harte and McNamara, 1993; Kraincanic and Kebadze, 2001); contact and/or frictional 

effects are ignored (Witz and Tan, 1992a&b; Harte and McNamara, 1993; McIver, 

1995; Brack et al., 2005; Tan et al., 2005); no slip occurs between layers (Zhang et al., 

2003); tendons are constrained to slide only along their own axis (Kraincanic and 

Kebadze, 2001); tendons respond only axially, (bending and torsional stiffness 

neglected) (Claydon et al., 1992; Harte and McNamara, 1993; Kraincanic and Kebadze, 

2001); the interlayer contact pressure is constant (Feret and Bournazel, 1987; 

Kraincanic and Kebadze, 2001); the contribution of the plastic sheaths to the strength 

and stiffness of the riser can be neglected (Feret and Bournazel, 1987; McIver, 1995); 

layers remain constantly in contact (no bird-caging effect) (Feret and Bournazel, 1987; 

McNamara and Harte, 1989; Claydon et al., 1992); the radial deformation is the same 

for all layers (Claydon et al., 1992; Kraincanic and Kebadze, 2001; Bahtui et al., 

2008b); initial manufacturing residual stresses can be ignored (Brack et al., 2005). 

Therefore all available analytical methods are restricted because of the complexity of 

modelling layers. 

 

The downside of finite-element type of analysis is the high computational cost so that, 

to make the analysis feasible, the riser model length is restricted to only few meters or 

few layers in the best case scenario and even for such limited models intensive 

computational capabilities and solution time are required. This is the main reason that 

all numerical methods are restricted to very simple modelling cases.  

 

There are two approaches to model a flexible riser: classical approach and multi-layer 

approach. In the classical approach an equivalent beam model is used to represent all 

layers by summing up the contributions of all the layers in the cross-sectional and 

material properties of the beam. The advantage of this approach, referred to as 

"Composite" riser modelling scheme, is in its computational efficiency. This method, in 

which the riser is modelled as one homogeneous structure is currently being used as an 

industry-standard dynamic analysis method in some of the software tools.  
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The main problem in these conventional modelling and analysis approaches is that it is 

not possible to capture the actual detailed three-dimensional behaviour of the unbonded 

flexible riser. Such behaviour is largely due to their nonlinear response which is caused 

by the existence of interaction between numerous helically-wound layers and contact 

between various layers. 

 

The multi-layer modelling scheme approach was therefore provoked by the inadequacy 

of composite model results. An important application of the multi-layer approach is that 

it offers the possibility of conducting riser bending-curvature analysis. This is because 

the inner layer does not have the same bending-curvature characteristics as the outer 

layer, and only the multi-layer modelling approach, which incorporates the effect of the 

inter-layer contact, can simulate this influence.  

 

The multi-layer modelling scheme also makes it feasible to calculate the amount of 

pressure preload required for the inner layer. Over preloading causes the internal layer 

to come into contact with the outer part at the most bent regions. On the other hand, not 

enough preload causes the inner layer compression leading to full cycle fatigue (Roger, 

2000).   

 

The amount of friction between layers of a typical unbonded flexible pipe depends on 

the interaction between its individual component layers. This analysis is only possible in 

the multi-layer modelling scheme. When the shear forces between layers are smaller 

than the frictional forces, the riser behaves as a solid rod and its response is linear. The 

response of these structures can be nonlinear when the shear forces overcome the 

interlayer frictional forces and sliding occurs between the layers (Kebadze and 

Kraincanic, 1999). 

 

In the multi-layer modelling approach, although the loads (tension, shear and moment) 

in each layer are fully captured and the interaction between layers is considered, the 

disadvantages include the considerable modelling effort involved and the computational 

inefficiency. A main motivation for this work is to seek a novel approach to study the 

behaviour of unbonded flexible risers in more detail and with more efficiency. 
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2.2 Composite riser modelling scheme 

 

Modelling the response of flexible risers is much more challenging than that of steel 

rigid risers. Flexible risers are subjected to severe currents and waves in most deepwater 

applications. The risers can undergo large displacements. The flexible riser problem is 

therefore essentially a fully three dimensional problem, and as such should be simulated 

as a three dimensional model. In view of its non-linear behaviour, this makes the task of 

modelling and analysis of the riser a very significant and computationally challenging 

effort.  Due to the significant complexity of the problem, methods presented before the 

90’s were mostly based on the assumption of treating the riser as a homogenous 

material. 

 

Among the first works on the composite riser modelling scheme was that of Knapp 

(1979). He derived an element stiffness matrix for cable elements subjected to tension 

and torsion by replacing the cross-section of a cable with a single composite element. 

His approach was quite general and included consideration of the geometric non-

linearities, compressibility of the core, arbitrary cross section of the core, variation of 

lay angles and the number of wire layers. However, treating the cross-section of a cable 

as a single composite element potentially ignores any interaction between layers and 

neglects contact and hysteresis effects in his analysis. Similar assumptions have been 

made in the following papers reviewed in this section, all of which ignore the effects of 

friction between layers as a result of which the any energy dissipation due to contact 

between layers of unbonded flexible risers is captured. 

 

A static analysis procedure for the numerical determination of nonlinear static 

equilibrium configurations of deep-ocean risers was performed by Felippa and Chung 

(1980). The riser was modelled by three-dimensional beam finite elements which 

included axial, bending, and torsional deformations. They extended their model by 

taking the deformations coupled through geometrically nonlinear effects (Felippa and 

Chung, 1981a). The resulting tangent-stiffness matrix included three contributions 

identified as linear, geometric (initial-stress) and initial-displacement stiffness matrices. 

For the solution, a combination of load-parameter incrementation, state updating of 

fluid properties and corrective Newton-Raphson iteration was used.  The detailed 
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computerised analysis of their work is found in Felippa and Chung (1981b) in which 

they discussed the importance of drag force along the pipe, varying significantly along 

the depth. The authors are of the opinion that the sensitivity of the results to 

environment characterization necessitates a review of many modelling and analysis 

practices. 

 

McNamara and Lane (1984) studied the two-dimensional response of the linear and 

nonlinear static and dynamic motions of offshore systems such as risers and single-leg 

mooring towers. Their proposed method was based on the finite element approach using 

convected coordinates for arbitrary large rotations and includes terms due to loads such 

as buoyancy, gravity, random waves, currents, ship motions and Morison's equation. 

The same authors extended their work to the three-dimensional frequency domain 

computational dynamic analysis of deep-water multi-line flexible risers (McNamara and 

Lane, 1992). 

 

O'Brien et al. (1988) presented a three-dimensional finite element modelling of marine 

risers, pipelines and offshore loading towers based on the separation of the rigid body 

motions and deformations of elements under conditions of finite rotations. This paper 

includes all nonlinear effects including geometry changes, bending-axial and bending-

torsional coupling and follower forces and pressures. The authors developed their model 

by dividing the riser into a series of catenaries where the buoyancy modules were 

described as inverted catenaries (O'Brien and McNamara, 1988). They obtained 

economical and accurate solution based on a single-step implicit time integration 

operator with a variable increment size. Both works assumed an equivalent single layer 

representing all layers of the riser. 

 

A two-dimensional static and dynamic analysis of flexible risers and pipelines in the 

offshore environment subjected to wave loading and vessel movements was presented 

by McNamara et al. (1998). They developed a hybrid beam element formulation where 

the axial force was combined with the corresponding axial displacements via a 

Lagrangian constraint. The hybrid beam element was capable of applying to offshore 

components varying from mooring lines or cables to pipelines with finite bending 

stiffnesses. However, they failed to consider contact and frictional effects between layer 

components of the riser. 
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Hoffman et al. (1991) reviewed the design technique of deep and shallow water marine 

bonded riser systems as well as their dynamic analytical and numerical analysis and the 

non-linearities arising from hydrodynamic loading and dynamic boundary conditions. 

This paper contains design methodology criteria, parameters and procedures of flexible 

riser systems. They categorised the designing of this structure into three stages: 

Determining an acceptable system layout, assessing the global dynamic response, and 

performing detailed static and dynamic analysis of local areas. 

 

Ong and Pellegrino (2003) studied the nonlinear dynamic behaviour of mooring cables 

in the frequency domain. They ignored the effects of friction and impact between the 

cable and the seabed. Their proposed method models the time-varying boundary 

condition at the touchdown by replacing the section of cable interacting with the seabed 

with a system of coupled linear springs. They decomposed the seabed interaction into 

axial stretching of laid riser and the catenary action at the touchdown using a linear 

stress-strain relationship. Catenary action is the liftoff-and-touchdown behaviour of the 

pipe lying on the seabed. 

 

Zhang et al. (2003) discussed analytical tools for improving the performance of 

unbonded flexible pipe. This work uses an equivalent linear bending stiffness which is 

derived from experimental data to calculate the maximum bending angle range. It 

contains reports on irregular wave fatigue analysis, collapse, axial compression and 

bird-caging for riser systems. The authors are of the opinion that the combined bending, 

axial compression and torsion could lead to the tendon being separate from the cylinder 

in a helix layer, and may lead to out of plane buckling. However the assumption of 

equivalent linear bending stiffness neglects all the interactions between layer 

components of an unbonded flexible riser and makes it to behave as a bonded riser. 

 

Willden and Graham (2005) reported results from two strip theory CFD investigations 

of the Vortex-Induced Vibrations of model riser pipes of which the first one is 

concerned with the vibrations of a vertical riser pipe that was subjected to a stepped 

current profile, and the second one is concerned with the simultaneous in-plane and out-

of-plane vibrations of a model steel catenary riser that was subjected to a uniform 

current profile. Their method was based on computing the fluid flow in multiple two-



 13 

dimensional planes that are positioned at intervals along the length of a body. It was 

found that six to seven simulation planes are required per half-wavelength of pipe 

vibration in order to obtain convergence. This work is based on modelling of bonded 

risers and ignores the effects of friction between layers and does not capture any energy 

dissipation due to contact between layers. 

 

 

2.3 Multi-layer modelling scheme 

 

Unbonded flexible risers are being increasingly used in the oil industry.  However, their 

behaviour, particularly in deep water applications, is not yet well understood.  This is 

largely due to their complex structure which makes their response extremely difficult to 

analyze. Prediction of the cyclic behaviour of a flexible riser is of particular importance 

to ensure their structural integrity during service (Out et al. 1995). The interest of the 

engineers in this subject has been renewed recently due to the increased use of flexible 

risers in deep water applications. Practical reports indicated the applicability of larger 

diameter (greater than 10”) flexible risers in waters as deep as 1000 m (Serta and Brack, 

1990). 

 

In the past three decades several simplified analytical riser models, mainly of helical 

armour layer type, have been developed. Electrical engineers were first in analysing 

helix layers. McConnel and Zemke (1982) presented a simplified mathematical model 

to predict the coupled axial - torsion properties of ACSR electrical conductors. The 

general conclusion from their work is that the axial-torsional behaviour is highly 

coupled and axial motion causes torsional motion and vice versa. They validated their 

analytical results by experimental data and demonstrated reasonable agreement.  

 

Lanteigne (1985) took into consideration the effect of the coupling parameters, tension-

bending, and torsion-bending by analyzing the response of helically armoured cables 

subjected to tension, torsion and bending. This work contains the derivation of the 

stiffness matrix of a straight cable for small and large curvatures as well as the 

investigation of the influence of internal radial forces and curvature on the effective 

flexural rigidity. It has been stipulated that in the absence of external compression on 
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the conductors, the flexural rigidity decreases as the curvature increases. Furthermore, 

when the conductor is perturbed by one or many strand failures, the coupling 

parameters, tension bending and torsion bending which are generally zero, must be 

taken into account. Finally, sliding of the first two internal layers of the conductor could 

not occur upon bending, because the radial compressive force component induced was 

such that tensile forces developing could not overcome the resulting frictional forces. 

 

Out and Morgen (1997) presented the slippage of helical armour layers on a bent 

unbonded flexible riser. They studied the amount of slip and the change of the curvature 

of the individual tendons. During the investigation of the slippage they discovered that 

the amount of slip is expected to be an upper bound for the slip of the helical armour 

layers of an unbonded flexible pipe in practice. The general conclusion was that in a 

fatigue analysis, both changes of the normal and bi-normal curvatures should be 

considered. 

 

One of the recent works on helix layers is that of Tan  et al. (2005) in which their higher 

order geometrical effects has been investigated taking into consideration the effect of 

the tendon cross-section characteristics. In this paper a rather accurate analytical strain 

energy model has been developed, although frictional effects were ignored. This work 

also discusses a brief structural coupling between bending and axial-torsional behaviour 

of the pipe. Comparing their analytical and numerical results shows that numerical 

results are conservative in nature allowing for confidence in use of finite element model 

for practical designs. This conservative nature of the numerical model originates from 

the stronger constraint condition adopted by the model, authors claimed. 

 

The forgoing works involved analysing a single helix layer without the need to consider 

frictional contact behaviour. Accurate simulation of the various constituent layers of the 

flexible riser is very important as a typical flexible riser is made up of a number of 

discrete layers each of a different type and with a particular function. Among the first 

papers on the detailed mechanical behaviour of unbonded flexible risers were those of 

Oliveira et al. (1985), Feret et al. (1986), Feret and Bournazel (1987) and Out (1989). 

These works contain the first proposed methods for evaluating the service life and 

fatigue design of unbonded flexible risers. These methods are based on a cumulative 

damage rule that accounts for the hysteretic nature of bending only. The frictional 
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contact analysis in these works is restricted to helical armour layers at most and is very 

limited. 

 

Later, Claydon et al. (1992) studied the prediction of the dynamic service life of an 

unbonded flexible riser under cyclic loading conditions. They took the interlayer contact 

pressures into account and also considered stress recovery, slip between layers and riser 

interlayer wear and fatigue. Their work contains individual analysis for each layer, 

summation of these individual layer stiffnesses as the total bending stiffness and 

presents a theoretical basis for each stage of service life prediction. However, frictional 

contact analysis in this work is based on several assumptions and only for helix layers 

and for bending moments loading only. 

 

Witz and Tan presented two consecutive reports on the behaviour of marine flexible 

pipes of which the first one concentrated on the axial-torsional structural behaviour 

(Witz and Tan, 1992a) and the second one covers the flexural structural behaviour of 

these structures (Witz and Tan, 1992b). The first general conclusion of their first work 

is that an inappropriate choice of tendon lay-angle in helix layers can lead to bird-caging 

at relatively small deformations and has a significant influence on the axial –torsional 

load-displacement relationship. “Bird-caging” is a failure mode in which the tensile 

armour tendons buckle radially and layer separation occurs. This usually happens in 

case of compressive axial loading and also can occur if the torsion is applied in the 

opposite direction of the most external tensile armour layer. Secondly, the boundary 

conditions at the terminations have a noticeable effect on the tensile stiffness. Their 

incorrect report in this work is possibly to conclude that the axial-torsional load-

displacement relationships are highly linear. Witz and Tan (1992b) extended their work 

to the rotary bending test of marine cables and umbilicals. They assumed an arbitrary 

curvature distribution along the length of the marine cable in their analytical model. 

They reported a hysteretic bending moment-curvature relationship for generic flexible 

structures. By taking into account the terminal boundary conditions and a finite sample 

length, they found that the frictional restrictions which keep armours constraint non-

uniformly can be overcome, allowing the tendons to slide axially only. Furthermore, 

bending of rectangular tendons in the normal and bi-normal directions is prevented by 

geometrical shape and can not be overcome unless the structure is destroyed. They 

reported the failure of the armour wires at the middle of the specimen, where maximum 
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bending curvature exists. The authors are of the opinion that surface defects have a 

significant effect on the fatigue life of these components. Both works studied 

frictionless interaction between layers through calculating interlayer pressures which 

fails to capture energy dissipation due to friction. 

 

Harte and McNamara (1993) developed an analytical model composed of individual 

isotropic and orthotropic layers each of which has a unique stiffness. The total stiffness 

matrix for the whole model has been calculated by the summation of all stiffnesses. 

Their work, however, did not include the contact and friction between layers. By 

assuming a unique radial displacement for all layers, they implied that the riser is 

bonded and strains are in the linear domain. 

 

Witz (1996) discussed a case study analysis of flexible risers, comparing results from 

the works carried out at ten different institutions which included stress analysis of 

marine cables in rotary bending test (Witz and Tan, 1995). It was shown that if layer 

interaction is considered, current methods agree with the experimental data for the 

axial-torsional structural response. However this conclusion excludes the flexural 

structural response. He supported the argument that internal pressure does not 

significantly affect the full slip bending stiffness. It was concluded that in the case of 

axisymmetric loading, suitable methods exist for predicting the structural response of a 

flexible pipe including interaction effects between the component layers. Furthermore, 

models which do not consider this interaction may give erroneous results for some 

axisymmetric load cases. He suggested that more research is needed in this area to 

establish the structural behaviour of flexible pipe under coupling loading. 

 

Kebadze and Kraincanic (1999) studied the nonlinear bending behaviour of offshore 

flexible pipes. The effect of terminations was neglected and the Coulomb friction model 

was used for frictional behaviour. The static and dynamic frictional coefficients were 

taken to be equal. It has been stipulated that since sliding of helical strips is 

accompanied by fretting and wear, it may be necessary to predict not only the 

cumulative value of the interlayer slip, but also how slip progresses as a function of 

applied loads on the flexible pipe. They assumed that armour layers can slide only along 

their own axis. This work neglects the bending and torsional stiffness of individual 

helical strips which implies that tendons carry only axial loadings. This assumption is 
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based on the previous work of same second author (Raoof and Kraincanic, 1994). 

Nevertheless, they only considered the bending stiffness corresponding to bending 

radius greater than the contact radius. Flexural analysis is restricted to determining the 

upper and lower bounds of the bending stiffness and the critical curvature at which the 

change from the upper (no-slip) limit to the lower (full slip) limit takes place. Critical 

curvature is when slip initiates on the neutral axis of a bent pipe, or rather when the 

interlayer friction overcomes. Authors reported the initiation of interlayer slippage in 

tendons at the neutral axis of the pipe cross-section. Furthermore, even for the 

maximum curvature applied on a pipe, parts of tendons at the extreme fibre positions do 

not slide. It was found that maximum stress in tendons is proportional to the magnitude 

of bending curvature and does not depend on the level of interlayer friction. On the 

other hand, the bending stiffness of a pipe is proportional to the bending curvature, level 

of interlayer friction (Kebadze and Kraincanic, 1999) and interlayer contact pressures 

(Kraincanic and Kebadze, 2001). They concluded that a curvature variation from zero to 

a given value doubles the slip compared to a constant curvature of the given value. 

Furthermore, the flexible pipe response to axisymmetric loads is nearly linear and can 

be modelled reliably.  

 

The same authors discussed the slip initiation and progression in helical armouring 

layers of unbonded flexible pipes and its effect on pipe bending behaviour (Kraincanic 

and Kebadze, 2001). In this work, in addition to the previous mentioned assumptions, 

they also assumed the followings: interlayer contact pressure is constant everywhere in 

the interface; bending occurs far from terminations; friction between the armouring 

tendons within a helical armour layer is not considered because of gaps between the 

tendons. They derived the minimum and maximum critical bending curvature as a 

function of the interlayer friction coefficient and the interlayer contact pressure using a 

Coulomb friction model. Their approach is attractive in decomposing the curvature 

domain by assuming a gradual transition and progression of stiffness between the 'no-

slip' and the 'full-slip' stiffness. This assumption prevents the bending stiffness of 

dropping drastically to zero when the bending curvature reaches the minimum critical 

bending curvature which is an improvement on their previous work. However, their 

simplified method considers the slippage between component layers in the bending 

analysis only and it is not capable of analysing the coupling between bending, tension 

and torsion. They mentioned that helical layers need to be supported by surrounding 
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cylindrical layers to have significant structural strength and integrity. Meanwhile, the 

non-linearity of the response associated with the sliding of individual helical elements 

between the surrounding layers was considered. Therefore, the influence of the 

surrounding layers in terms of interlayer friction is inevitable. The first general 

conclusion is that the neutral axis has the largest forces trying to slide the tendons. 

Therefore, if the tendon is only restrained by the friction, the interlayer slippage initiates 

at the neutral axis. Should the helical layer be fixed mechanically at the neutral axis, 

like terminations, the stress concentration leads to break at those points. Secondly, in 

the maximum curvature situations in the regions far from terminations, tendons do not 

slide at the extreme fibre positions. Thirdly, interlayer pressures always exist in actual 

pipes because of manufacturing process. Therefore they suggested that the initial 

manufacturing interlayer pressures are important and should be given alongside the pipe 

construction data. Furthermore, the bending stiffness of flexible pipe is highly 

dependent on the magnitude of the interlayer friction coefficient. Fourthly, the flexible 

pipe stiffness is more sensitive to the external pressure than to the internal one. This 

work preceded that of Kebadze (2000) in which an analytical model of an unbonded 

flexible riser had been proposed.  

 

All analytical models proposed so far have some sort of limitation on their scope of 

applicability due to the simplifying assumptions on which they have been based. 

Neglecting frictional effects is among the hypotheses commonly made. The interlayer 

frictional effects are the underlying cause of highly nonlinear behaviour of unbonded 

flexible risers and this has indeed been one of the main motivations of considerable 

research efforts into the development of finite element models for risers.  

 

Numerical solutions have also been difficult to achieve due to the very significant 

computational requirements associated with solving such large models. Contact 

algorithms, in particular, introduce a high degree of nonlinearity into the finite element 

problem which in turn increases the solution time drastically. The helical armour layers 

are particularly difficult to mesh due to their special shape and, as a result, this usually 

leads to having to include a coarse mesh with elements whose scaled-Jacobians exceed 

acceptable limits (Knupp, 2000). 
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Brack et al. (2005) reviewed the works from researchers on the flexible riser resistance 

against combined axial compression, bending, and torsion in ultra-deep water depths. 

They reported that in order to prevent bird-caging phenomenon, high resistance tapes 

should be helically applied over the most external tensile armour layer. Meanwhile, 

special care should be taken to prevent the extra increase of the pipe axial stiffness. 

Furthermore, an adequate design of tensile armour layer and a correct assessment of 

required resistance of the tapes is necessary when the real axial compression is 

associated with cyclic bending. This is due to the tendon buckling which may occur on 

the cylindrical surface where the tendons have been applied on (even without any 

significant radial deformation). Their study shows that the majority of the models which 

predict bending response of the flexible pipe structures intended to simulate only the 

riser top region, which is under high tension loads. Therefore, there are not many papers 

which deal with the behaviour of the riser bottom region, where bending combined with 

compression tend to occur. They evaluated the influence of the tendon restriction to 

axial rotation and concluded that the tendon restriction to axial rotation is function of 

the tendon width, torsion inertia and of the contact pressure from the high resistance 

tapes. A helix layer with high lay angle exposes high radial deformation when subjected 

to axial compression forces, for the same weight per unit length, Brack et al. reported. 

For higher angles, structure resistance to tension is lower. As a result, a thicker high 

resistance tape layer is required to prevent bird-caging. This work shows that most of 

current finite element models, including this work, neglect the effects of physical non-

linearity, residual stresses due to pipe manufacturing and friction between layers.  

 

2.4 Requirement of a constitutive model 

 

The development in the use of unbonded flexible risers for floating production systems 

has advanced dramatically over the past decade. Significant insights have been obtained 

into the stress analysis of riser cross-sections by analytical modelling of each individual 

layer taking into account the slippage of only helix layers under bending moments. 

These researches, despite suffering from fundamental simplifications and ignoring of 

important inter-layer frictional effects in all stages of analysis, have produced new 

analytical and numerical models in the form of packages for the prediction of riser 

behaviour. 
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Hibbitt et al. (1979) presented highly nonlinear analysis of marine pipelines, involving 

both geometric nonlinearity (due of the large rotations) and frictional effects caused by 

the pipeline lying directly on the seabed. The motions, caused by moving the already 

laid down pipelines into a correct position, typically involve very large translations and 

rotations. The authors are of the opinion that the usual stiffness formulation is not 

practicable due to the slender characteristics of the pipelines. Their method is based on 

numerical models for the components of the system (pipeline, friction, drag chains, 

towing cable) which lead to the efficient solution of typical problems. Due to the strong 

path dependency of the system, a nonlinear incremental scheme has been used. 

 

Nielsen et al. (1990) presented the capability to predict the service life of dynamic 

flexible risers which was conducted by three organizations. This paper contains a 

review of static and dynamic analyses of the riser, each stage performed by one 

organization. It is a practical application of the hysteresis model proposed by Witz and 

Tan (1989) to analysis fatigue. The model is based on a slip onset criterion for bending 

loading only. The work of Nielsen et al. further estimates the service life of dynamic 

flexible risers based on results obtained from Flexriser 4 program, which is a package 

originally developed for the Chevron Spain Montanozo project. 

 

Relative slippage between helix and other layers leads to the modelling of the stiffness 

of unbonded flexible risers by a bi-linear curve, Bech et al. reported (1992). They used 

this model to analysis the structural damping of this structure. Damping measures were 

obtained for tension, torsion and bending deformations. It has been stipulated that the 

obtained equivalent damping ratio is high in bending (10 to 30%) and can significantly 

influence the dynamic response. 

 

Saevik (1993) utilised the kinematic restraints present when the tendons of a helix layer 

slides only in the curvilinear plane of the supporting pipe to develop an eight degree of 

freedom curved beam element. His approach used the Green stain tensor to obtain strain 

and stress measures in the nonlinear finite element formulation based on an updated 

Lagrange formulation for arbitrarily large displacements and rotations but with small 

strains. The interaction between pipe and tendons was handled by a combination of 
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hyperelastic (bonded pipes where the tendon is surrounded by an elastomer) and 

elastoplastic (unbonded pipes to simulate friction) springs in the nodal points. 

 

McIver in 1995 studied the mathematical basis of a model used to model the detailed 

behaviour of the individual components of bonded and unbonded flexible pipe sections 

including frictional effects. However the analysis was based on non-slip full-slip 

assumption. Four commonly used wire sections were modelled while considering layer 

separation effects. A post contact analysis was performed neglecting contact of wires 

within a layer. Tension, torque, shear forces, bending moments, wall pressure and 

temperature differentials were considered in the analysis. The formulation is limited to 

linear behaviour between bending moment and curvature. Temperature was assumed to 

be uniform within each layer. McIver developed effective (average) material properties 

for the compound section, which leads to neglecting the actual riser structural effects. 

Nevertheless, this work neglects initial stress condition, its geometrical stiffening effect, 

the effect of end terminations, layer contact in bending, initial interlayer gaps and 

hysteresis effects. It is concluded in this paper that strong coupling exists amongst most 

degrees-of-freedom and that due to the powerful effect exerted by layer separation 

under loading, stresses built in during manufacture should be considered in any flexible 

pipe model. The author is of the opinion that flexible riser behaves differently if 

installed from point A to point B rather than from point B to point A (McIver, 1995).  

 

In 1995 Out et al. studied the integrity of flexible pipe. In their study, they searched for 

an inspection strategy by using a certain technique to look at the structure and assessing 

its suitability. This work discusses the type of defects and degradation in all phases of 

the pipe's life. The design of flexible riser systems for mechanical deterioration is not 

fully proven and the governing failure modes are quantitatively uncertain. It has been 

stipulated that acoustic emission is suitable for the inspection of flexible pipe for wear 

damage. For the inspection of flexible pipe for fractured outer tensile armours 

radiography, magnetic strayflux and eddy current are the best methods. Finally, eddy 

current and acoustic emission were considered suitable for the inspection of flexible 

pipes for fatigue cracking of the pressure reinforcing (Out et al., 1995). 
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A comprehensive overview of status of analysis techniques for flexible riser design as 

well as a historical overview of the development of hydrodynamic analysis techniques 

were reported in 1995 by Patel and Seyed. This work discusses the models which are 

being exploited in the optimization of pipe construction and highlights key issues 

addressed during these developments including the effects of internal and external 

hydrostatic pressures. This work concludes by highlighting the potential gaps in this 

filed of study which is the effects of structural damping, tangential hydrodynamic drag 

loads, and seabed interaction effects, the effects of vortex shedding and out of plane 

oscillations of mid-water buoys. It also expresses concern about the lack of sufficiently 

wide ranging and openly available model testing and full-scale data on flexible risers 

(Patel and Seyed, 1995). 

 

Atadan et al. studied dynamic three-dimensional response of risers in the presence of 

ocean waves and ocean currents undergoing large deflections and rotations. They 

included shear effects based on nonlinear elastic theory in their formulation. It is 

concluded that the length of the riser is the most important parameter which affects the 

deflections of the marine-riser (Atadan et al., 1997). 

 

Yazdchi and Crisfield used a simple two-dimensional lower-order beam element 

formulation for static nonlinear analysis of riser structures including the effects of 

buoyancy, steady-state current loading and riser top-tension. They assumed linearly 

elastic material property for the riser by employing a constant modulus of elasticity. 

They studied the static behaviour of flexible pipelines and marine risers, using the types 

of finite elements that had been developed for conventional non-linear analysis 

(Yazdchi and Crisfield, 2002a). Same authors continued their research by using a beam 

finite element formulation based on Reissner–Simo beam theory for the static and 

dynamic non-linear analysis of three-dimensional flexible pipes and riser systems in 

present of hydrostatic and hydrodynamic forces. Employing a linearly elastic material 

property, their work concentrates on the non-linearities due to the fluid loading and the 

associated large deformations and considers hydrodynamic forces due to effects such as 

wave, drag and current action (Yazdchi and Crisfield, 2002b).  

 

Recent developments on the fatigue analysis of unbonded flexible risers reveal the 

necessity of a comprehensive global dynamic analysis together with the detailed 
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hysteresis damping of the riser loading response and the three-dimensional local stress 

analysis. Smith et al. (2007) presented an application based on a fatigue reassessment of 

a riser system and claimed that the advanced fatigue methods produce longer fatigue 

lives than the current state-of-practice methods, despite the fact that their method was 

based on an elastoplastic model of riser bending response. 

 

Lacarbonara and Pacitti presented a geometrically exact formulation for dynamic 

analysis of cables with linearly elastic material behaviours subjected to axial stretching 

and flexural curvature. The formulation was based on nonlinearly viscoelastic 

constitutive laws for the tension and bending moment with an additional constitutive 

nonlinearity accounting for the no-compression condition (Lacarbonara and Pacitti, 

2008). 

 

Some works in the literature however consider a bi-linear bending stiffness. These 

works take into account the energy dissipation originated from frictional contact 

between layers in bending moment analysis (Bech et al., 1992; Smith et al., 2007). 

However the bi-linear bending stiffness proposed by these papers does not depend on 

internal and external pressures. This generates significantly inaccurate results when 

studying the response of a long riser floating in ultra-deep water depth. Moreover the 

study has been performed only on the hysteresis effects in bending analysis whereby 

hysteresis effects for axial strain or any coupling with radial displacement are ignored. 

On the other hand the bi-linear model in these works is based on two different 

stiffnesses, one when stick and one when slip occur between layers. This type of models 

are restricted and are not capable of  taking into account kinematic hardening, 

stabilization, variable stick or slip stiffness dependency due to pressure difference.   

Hysteresis is intrinsically linked to the frictional resistance of unbonded flexible riser 

after its compounding layers become in contact by tensile load, torque, bending 

moment, pressure or any combination of these loadings. Hysteresis damping effect 

occurs as energy is lost after every loading cycle. Friction originates structural damping 

in global dynamic motion and local stress analysis of the riser and makes its response 

hysteresis which is less widely understood and is often neglected for simplicity of 

producing a conservative analysis.  
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As a result, new packages predicating the service life of unbonded flexible riser 

demands comprehensive detailed cross-sectional models which take into consideration 

of the fine nonlinear hysteresis behaviour of geometric and material effects; a 

constitutive model which accurately simulate the fine detailed hysteresis stiffness of an 

unbonded flexible riser. This can be performed by a robust and active constitutive 

model which include variables such as internal and external pressures, and which is 

capable of being implemented into existing finite element packages and perform 

efficient fatigue or VIV computational calculations 

 

 

2.5 Motivation and the novel research approach 

 

From the above discussion and the previous studies, it is important to note that the 

detailed behaviour of unbonded flexible riser has to date not been accurately analysed 

and a new approach to modelling their behaviour could help to mitigate their failure in 

ultra-deep waters. This approach should go beyond the ‘Composite’ riser and multi-

layer modelling scheme to encompass three-dimensional extra-long lengths and to 

account for detailed cross-sectional contacts. It improves confidence levels and helps 

avoiding over engineering of dynamic unbonded flexible risers.  

 

Sophisticated numerical tools such as ABAQUS software are capable of modelling 

complex geometries and component interaction within a very short length riser. These 

types of software demand computational power that can make them impractical for 

modelling an entire length of dynamic riser and are not practical for day-to-day 

engineering analysis and design. 

 

The quest for larger models while maintaining greater accuracy has stimulated the 

activity to develop a novel constitutive model for unbonded flexible risers. This model 

aims at combining the accuracy of a detailed finite element model of a short part of 

riser, with the low computational cost of a three-dimensional Euler-Bernoulli beam 

element, in the framework of a novel, multi-scale approach capable of addressing large 

scale problems.  
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3 Numerical Modelling of Unbonded Flexible Risers 

 

 

3.1 Introduction  

 

The work outlined in this chapter presents a very detailed finite element model of an 

unbonded flexible riser. The finite element method is a powerful numerical technique 

for the simulation and analysis of a variety of problems encountered in engineering. The 

use of finite element method to support research and product development and the 

availability of faster and cheaper hardware has created the opportunity to solve larger 

and more detailed models. There are generally two different numerical schemes which 

can be adopted in the finite element procedure: implicit and explicit time integration 

algorithms. 

 

Implicit algorithm requires iterative solutions for each time increment (time step). 

Explicit algorithm, avoiding iterations and convergence problems, is generally used for 

highly nonlinear problems with many degrees of freedom, for which iterations are very 

expensive and convergence problems are frequent. For stability reasons, explicit 

methods use smaller time steps than implicit ones. 

 

The explicit dynamics procedure can be an effective tool for solving an unbonded 

flexible short-length riser model, because the cost per increment of an implicit method 

is far greater than that of an explicit method. In this methodology, the turnaround time is 

largely determined by the number of elements and the smallest element dimension. This 

method requires a small time increment size that depends solely on the highest natural 

frequencies of the model and is independent of the type and duration of loading.  

 

The most striking feature of the explicit method is the lack of a global tangent stiffness 

matrix, which is required with implicit methods. Since the state of the model is 

advanced explicitly, iterations and tolerances are not required. 

 

 



 26 

3.2 Finite element packages 

 

There are many finite element software packages, both free and proprietary. To make 

the analysis more secure, the Abaqus FEA software is used to conduct the analyses. The 

Abaqus solver has been enhanced to include expanded feature coverage, reduced 

memory usage and improved performance. The improved performance is particularly 

noticeable in large models with over a million degrees of freedom. Abaqus has reduced 

simulation times, and improved the efficiency and accuracy of pipeline design. 

 

The unbonded flexible riser problem is well-suited to Abaqus/Explicit. The 

Abaqus/Explicit can readily analyze problems involving complex contact interaction 

between many independent bodies. It is also very efficient in solving highly nonlinear 

classes of problems that are essentially static. Quasi-static process simulation problems 

involving complex contact generally fall within this class.  

 

Another finite element package which can be used potentially to analyze complex 

problems involving interaction, such as risers, is LS-DYNA. This software is basically a 

general-purpose, nonlinear finite element analysis software used to analyze the 

nonlinear dynamic response of three-dimensional inelastic structures. Its fully 

automated contact analysis capability and error-checking features have enabled users 

worldwide to solve successfully many complex crash and forming problems. Livermore 

Software Technology Corporation (LSTC) develops sophisticated tools for modelling 

and simulating the large deformation behaviour of structures. These tools include LS-

DYNA for analysis, LS-POST for post-processing which are interfaced with leading 

CAD, FEA, and FEM systems. 

 

 

3.3 Geometry of the riser 

 

Flexible risers consist of different layers (Figure 3.1), each one designed for a specific 

task. Main components are the helical armour layers and a set of sealing and/or anti- 
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Figure 3.1: Schematic of a typical six-layer unbonded flexible riser. 

 

wear polymer layers, while additional components which are typically present include a 

metallic internal ‘carcass’ and a pressure armour layer (API, 2002). The geometry of an  

 

Table 3.1: Flexible pipe geometrical data. 

Layer Type ri (mm) ro (mm) r (mm) t (mm) α (degrees) 

1 Carcass 85.54 90.54 88.04 5 88.44 

2 Anti-wear Layer 90.76 97.46 94.11 6.7 90 

3 Helical Armour 1 99.43 103.42 101.43 3.99 36.54 

4 Anti-wear Layer 103.55 104.95 104.25 1.4 90 

5 Helical Armour 2 105.17 109.17 107.17 4 -35.59 

6 Outer Sheath 109.4 116.3 112.85 6.9 90 

 

Definitions: 

  Type  - Layer description 

  ri/ ro  - Radius to layer inner/ outer surface 

  r   - Layer mean radius 

  t  - Layer thickness 
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actual flexible pipe was chosen from manufacturer as shown in Table 3.1. More detailed 

views of helical armours and carcass layer are in Figures 3.2 and 3.3, respectively. 

 

 

 α

  - Tendon angle relative to pipe axis 

 

Figure 3.2: Detailed geometry of riser. 

 

 

 

 

 

Figure 3.3: Carcass layer profile. 
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3.4 Element formulation  

 

The elements used in the model are of 8-noded linear brick type (Figure 3.4) with 

reduced integration and hourglass control for the sheath, anti-wear and the helical 

armour layers and 4-node doubly curved thin shell type with reduced integration and 

hourglass control for the carcass layer. The integration along the shell thickness is 

accomplished using the Simpson’s integration technique. The number of section points 

through the thickness of the shell is three, integrated during all iterations of the analysis.  

 

 

 

Figure 3.4: An 8-noded linear brick type element. 

 

 

3.5 Material properties 

 

All layers except the carcass layer were assumed to have isotropic type of properties. 

The material data for the riser analysis is listed in Table 3.2. Modelling a three-

dimensional carcass layer in very detail leads to excessive computational solution time. 

The carcass layer is thus replaced by an equivalent material and geometric orthotropic 

layer. 

 

The material property of the equivalent orthotropic layer was derived by comparing 

results from the actual carcass layer and results from the embedded orthotropic sheath 
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Table 3.2: Material data for the riser. 

Layer Type E (N/mm
2
) ν  yσ (N/mm

2
) ρ (kg/m

3
) 

1 Carcass 
E1 = 1.50E+5 

E2 = 1.24E+4 
0.3 250 7860 

2 Anti-wear Layer 3.50E+2 0.4 21 1030 

3 Helical Armour 1 2.10E+5 0.3 740 7860 

4 Anti-wear Layer 3.50E+2 0.4 21 1030 

5 Helical Armour 2 2.10E+5 0.3 740 7860 

6 Outer Sheath 3.50E+2 0.4 21 1030 

 

layer. The orthotropic material properties are then evaluated using Equation (3.1) for 

structural stability (Lempriere, 1968). 
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To rewrite the last term in the above equation, the relation between the major Poisson’s 

ratio and the minor Poisson’s ratio  
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have to be substitute, which results in 
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3.6 Modelling and mesh 

 

A detailed three-dimensional finite element model is developed under a global 

cylindrical coordinate system with its origin located at the centre of riser bottom end. 

Layers were modelled individually and then assembled together. The two helical armour 

layers are wounded in opposite directions and have different radii, resulting in a non 

axi-symmetric geometry and therefore a full three dimensional model had to be 

developed in order to capture all the fine details of the behaviour of this structure. The 

tendons of the helical armour layers have been modelled separately as 3D beams, each 

having a rectangular cross-section, revolved around the riser axis in the circumferential 

direction with a constant pitch. Figure 3.5 shows the initial un-deformed finite element 

mesh for the entire model of the six-layer riser. Different meshing schemes were used 

for various layers.  

 

 

 

 

 

Figure 3.5: Meshed version of six-layer unbonded flexible riser. 

 

 

Using few elements in the circumferential direction for different layers may lead to 

initial layer penetration between layers in the radial direction. “ABAQUS/Explicit 

determines which slave nodes in the predicted configuration penetrate the master 

surfaces. The depth of each slave node's penetration, the mass associated with it, and the 
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time increment are used to calculate the resisting force required to oppose penetration. 

ABAQUS/Explicit uses these distributed forces and masses to calculate an acceleration 

correction for the master surface nodes.” (Abaqus, 2007). This makes those detected 

nodes to move very significantly in one increment which renders the analysis to become 

completely unstable during the first initial increments. 

 

Therefore a minimum number of elements is chosen in the circumferential direction 

which also prevent initial layer penetration between layers in the radial direction. This 

avoids initial radial acceleration as a result of the layer penetration detection by contact 

algorithm between layers. Meanwhile, mesh convergence was fully studied by 

comparing results for different number of elements for the whole riser. 

 

 

3.7 Interaction between layers  

 

Three-dimensional contact interaction is introduced between all layers, so that the layers 

are allowed to slide with respect to each other during all stages of loading. The contact 

interaction is also allowed for between each tendon of a helical armour layer. Contact is 

simulated, using a penalty contact method based on Coulomb friction model together 

with the general contact algorithm of Abaqus/Explicit (Abaqus, 2007). Abaqus contact 

algorithm uses sophisticated tracking procedures to ensure that proper contact 

conditions are enforced efficiently and also is well compatible with three-dimensional 

surfaces. The general contact algorithm generates contact forces to resist node-into-

surface and edge-into-edge contact penetrations. The primary mechanism for enforcing 

contact is node-to-surface contact. The general contact algorithm also considers edge-

to-edge contact, which is very effective in enforcing contact that cannot be detected as 

penetrations of nodes into faces. The coefficient of friction between polymer sheath 

layers, steel helical armour layers and carcass layer is taken as 0.1, as given in 

experimental results (Saevik and Berge, 1995).  
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3.8 Dynamic quasi-static analysis 

 

A static analysis is required to study the behaviour of a riser and obtain its load-

displacement curves. Since a global set of equations must be solved in each increment, 

the cost per increment of a static implicit method is far greater than that of an explicit 

method. The explicit dynamics procedure is ideally suited for the analysis of quasi-static 

processes. The advantage of the explicit method is that it allows the solution to proceed 

without iterations and without requiring tangent stiffness matrices to be formed. It also 

simplifies the treatment of complicated contact conditions. One advantage of the 

explicit procedure over the implicit procedure is the greater ease with which it resolves 

complicated contact problems. In addition, as model is very large, the explicit procedure 

requires less system resources than the implicit procedure (Abaqus, 2007).  The explicit 

method is computationally efficient because it uses only 400MB memory to run rather 

than the implicit method which requires more than 40GB of memory for a six-layer 

riser model, which is currently not feasible on most platforms. 

 

Due to the complexity of the detailed three-dimensional model and the large number of 

contact surfaces, an explicit quasi-static type of analysis is a natural choice to simulate 

the flexible riser problem. For the simulation to be quasi-static, the loading rates must 

be such that the kinetic energy remains small compared to the internal energy 

throughout the analysis. Each load is applied with a low enough loading rate to allow 

the structure to settle into a steady state, avoiding any significant vibration. This has 

been verified by comparing the results of various analyses done with different loading 

rates. Therefore the time-history in the explicit analysis does not influence the result. 

The time increment used depends on modulus of elasticity, density, and element size.  

For this analysis the time increment was set to a value of 7105 −×=∆t  seconds. This 

implied a computationally intensive solution procedure, so that a parallel cluster 

composed of 16  processors was used. 
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3.9 Load cases and boundary conditions 

 

Loads - The load cases considered are tension, torsion, and bending.  These will be 

referred to as cases 1, 2 and 3, respectively. All the load cases include an initial pressure 

load step which accounts for the internal fluid pressure and the external hydrostatic 

pressure, as outlined in Table 3.3. In the tension and torsion load cases the riser is 

initially subjected to an internal pressure loading of 3MPa but no external pressure load 

is applied. The bending load case, however, includes a 14MPa internal pressure and a 

12MPa external pressure. Internal pressure is applied on the inner surface of the 

innermost layer after the carcass, and the external pressure is applied on the outer 

surface of the outermost layer.  

 

Table 3.3: Load Cases – Types. 

Load Case Load type applied to riser 

1 Initial pressure + Tension along Z direction 

2 Initial pressure + Torsion around Z direction 

3 Initial pressure + Bending around X direction 

 

All three load cases include three steps: an initial pressure loading (installation phase), 

an external loading, and an unloading step. All loads are applied as a linear function of 

time in each step. The tension load is represented by an axial load of 500kN and the 

torsion load is a 30kNm torque applied to the riser. In the bending load case, a 8kNm 

couple is applied. These are outlined in Table 3.4. 

 

Table 3.4: Load Cases – Steps and Values. 

Loads applied to riser Load 

Case Loading Linear Loading Linear Unloading 

1 Int. Pressure = 3MPa;   Axial Force = 500kN Axial Force = 500kN 

2 Int. Pressure = 3MPa;   Torque = 30kNm Torque = 30kNm 

3 
Int. Pressure = 14MPa;  

Ext. Pressure = 12MPa;  

Bending Moment = 

8kNm 

Bending Moment = 

8kNm 
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Loading points and boundary conditions in finite element analysis – All the nodes at 

each of the two cross sections at both ends of the riser are rigidly connected to two 

reference points which are positioned at the centre of the sections. All boundary 

conditions for both ends are applied to these two reference points only. All loads (such 

as tension, torsion, and bending) are applied to the references point at the top end of the 

riser only. Figure 3.5 shows the top reference point as RP.  

 

The reference point connected to the bottom end of the riser is completely constrained 

in all translational and rotational directions during the analysis. The reference point 

which is connected to the top end of the riser model is completely free during the 

pressure loading step, and for the other loading steps has the following constraints:  

 

• torsional loading and unloading: free in all degrees of freedom 

• axial & bending loading and unloading: fixed in the rotational direction about 

the longitudinal axis of the riser 

 

 

3.10 Simulation 

 

The analysis is carried out as a geometrically non-linear problem. This non-linearity 

occurs due to the presence of contact surfaces as well as large rigid body displacement 

taking place in the tendons of the helical armour layer. Elements are therefore distorted 

from their original shapes as the deformation increases. Elements, used in the mesh, are 

chosen to be well compatible with large-displacement effects. 

 

Hourglassing is monitored carefully by keeping the ratio of hourglass energy to internal 

energy well below 5%.  All elements are of acceptable shape with respect to aspect 

ratio, scaled-Jacobian, and warpage measures. Although the finite element analysis 

takes into account the effects of large deformations and rotations, these nonlinear effects 

should be ignored when the validating the results against the analytical formulation 

explained in Chapter 4.  Therefore, the magnitude of all the loads applied in various 

cases is kept relatively low to ensure that the resulting strains are kept within elastic 

limits. This makes finite element results to be comparable with analytical ones. This 
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constraint was imposed on the solution because the analytical results are based on 

elasticity theory. 

 

 

3.11 Solution 

 

Using the numerical models described above, a 1.7 meter long flexible riser made up of 

the carcass layer, three polymer sheath layers and two steel helical armour layers of 

equal and opposite lay angles is considered. This length equals approximately twice the 

length of one pitch in the helical armour layer, as suggested by the manufacturer. The 

proposed 1.7m length of the riser is long enough to eliminate the effect of boundary 

conditions at both ends on the results at middle length section. All layers exist in full 

length. Connection between layers is through both ends as well as contact between their 

internal and external 3D surfaces.  

 

 

 

 

 

 

 



 37 

4 Analytical Modelling of Unbonded Flexible Risers 

 

 

4.1 Introduction  

 

The work outlined in this chapter presents an analytical approach to the analysis of the 

unbonded flexible riser. In this approach, each layer of the riser is analysed separately 

and its stiffness influence is added to the overall riser behaviour. The main contribution 

of this chapter is a switch algorithm which is incorporated to prevent layer separation. 

As discussed further, this algorithm switches Equation (4.35) by Equation (4.41) when 

layer separation occurs. 

 

Figure 4.1 shows the axial displacement zu , together with the axial rotationφ , the 

rotations about the normal and bi-normal directions xψ  and yψ , and the radial 

displacement ru .  

 

It is assumed that the layers are allowed to move in radial direction independently. This 

implies that layer separation and bird-caging effect (Bahtui et al., 2008d) are allowed. 

The hypothesis of small displacements and strains is made. 

x

y

z

ψ
y

ψ
x

φ

u
zur

 

Figure 4.1: Sign conventions of a layer. 
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4.2 Definitions 

 

Next two sections are dedicated to two fundamental definitions which will be used 

further in the analytical solution. 

 

 

4.2.1 Internal energy 

 

Energy is defined as the capacity to do work. In solid deformable elastic bodies under 

loads, the work done by external loads is stored as recoverable internal energy. The 

internal energy stored in the body under deformation in 1-2-3 orthogonal coordinate 

system is then defined as (Garg et al., 1973) 

 

dVU
V∫ +++++= )(

2

1
121231312323332211 γτγτγτεσεσεσ . (4.1) 

  

 

Using appropriate Hooke’s Law, this equation can be written containing stress 

components only and the result is called the complementary energy σ
U . Rewriting this 

equation in terms of strain components, the result is called the strain energy ε
U . These 

two energies, for a linear Hookean material, are equal 

 

εσ
UU = . (4.2) 

 

With plane-stress assumption, ,, 233 τσ  and 13τ  are set to zero in equation (4.1). Looking 

at this equation, we find 

 

dVU
V∫ ++= )(

2

1
12122211 γτεσεσ . (4.3) 
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4.2.2 Hooke’s law for isotropic and orthotropic materials 

 

The most general strain-stress relationship for a three-dimensional body in 1-2-3 

orthogonal coordinate system in terms of compliances is given as follows 
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In the above equation )6,...,3,2,1,( =jiS ij are compliances and are 
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where )3,2,1( =iEi are values for elasticity modulus in three directions, )3,2,1,( =jiGij  

are values for shear modulus, and )3,2,1,( =jiijν are Poisson ratios. The inverse relation 

becomes 
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where )6,...,3,2,1,( =jiCij are values for component of stiffness matrix and are given by  
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For plane-stress case, where ,, 233 τσ  and 13τ  are zero, equation (4.4) becomes 
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And equation (4.6) becomes 
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The )6,2,1,( =jiQij are called the reduced stiffnesses and from equation (4.6) we have 
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The compliance components in the above equation in terms of the engineering constants 

is (Hyer, 1998) 

 

1266

2112

2
22

2112

121

2112

212
12

2112

1
11

1

11

1

GQ

E
Q

EE
Q

E
Q

=

−
=

−
=

−
=

−
=

νν

νν

ν

νν

ν

νν

 (4.11) 

 

 

For an isotropic material the reduced stiffnesses become 
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4.3 Modelling isotropic layers  

 

Anti-wear layers and sheath layers can be modelled as an isotropic layer in plane-stress. 

Strains and equilibrium equations for only one isotropic layer are presented here. For 

more than one isotropic layer, the number of equilibrium equations will be multiplied 
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by the number of layers. A uniform strain state is assumed along the length of the pipe, 

so that the strains of isotropic layers are related to the displacements by the following 

equations  
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where L  is total length of the riser, R  is the radius of the middle surface and  subscripts 

1 and 2 indicate the longitudinal (parallel to z) and circumferential directions, 

respectively. The reference coordinate system x, y, z is shown in Figure 4.1. 

Furthermore, yxzu ψψ ∆∆∆ ,,  and φ∆  indicate the change of yxzu ψψ ,,  and φ  over the 

length L. 

 

Using the principle of virtual work, which implies equating the variation of the external 

work to the variation of the internal energy, the equilibrium equations are derived. 

Using equation (4.3), the strain energy U is  
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Substituting the above equation into equation of strain energy gives 
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Taking its first variation gives 
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The potential of the external loads W which is the work done by all external loads under 

the specified incremental deformation is  
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where N , T , xM  and yM   are the axial force, the axial torque, the moment about the 

normal direction, the moment about the bi-normal direction, respectively. p∆  is the 

radial pressure differential across the layer, that is the difference between the internal 

pressure inp  and the external pressure outp , that is outin ppp −=∆ . Taking the first 

variation of external work gives  

 

LR
L

u

R

u
pMMTuNdW zr

yyxxz

2
)2( π

δδ
ψδψδφδδ

∆
+∆+∆+∆+∆+∆=  (4.19) 

 

By equating external work to internal work and taking a first variation 

 

 

dWdU =  (4.20) 

 

The stationarity of the total potential energy provides the equilibrium equations for the 

isotropic layer, which in matrix form are given by 
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where xI  and yI  are the second moment of inertia about axes x and y, zI  is the polar 

moment of inertia and A  is the area of the cross section of the layer. 

 

 

4.4 Modelling Carcass layer 

 

Flexible risers are structures used under water and are therefore subjected to an external 

hydrostatic pressure especially in the installation phase. The internal interlocked helical 

layer, known as the carcass, is used primarily to take up the external pressure. A riser 

without the carcass layer can carry only a minimal amount of external pressure, since 

both the plastic tubes and the helical tendons have very low stiffnesses in the radial 

direction. Even without any hydrostatic pressure applied, the axisymmetric loading 

would cause an unrealistically large stretch, which occurs due to low stiffness of the 

riser (without the carcass layer) in the radial direction.  

 

The structure of the carcass layer causes the stiffness in axial direction to be totally 

different comparing to the circumferential one, so that an orthotropic model is a 

reasonable choice. A linear elastic plane-stress orthotropic material model is chosen for 

the analytical formulation, which is governed by the following constitutive equation: 
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It is worth noting that the plane-stress assumption leads to a relation involving only 

strains and stresses in the 1 (or z) and 2 (orθ ) directions, which are axial and 

circumferential directions respectively in a cylindrical coordinate system. The elasticity 

modulus in the circumferential direction is equal to that of a steel material. Because the 

carcass layer does not sustain much axial stress and hence the axial stress is not of much 

interest to the riser manufacturers, the elasticity modulus in the axial direction is chosen 

to be as small as possible compared to the circumferential direction. Values for material 

properties are checked to hold all material stability conditions, Equation (3.1), for an 

orthotropic layer. Substituting Equation (4.9) into the strain energy equation gives 
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Substituting Equation (4.13) and taking first variation gives, 
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Substituting Equation (4.24) into the principle of virtual works and using the same 

formulation as in Equation (4.19) results in the following equilibrium equations in 

matrix form 
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4.5 Modelling helical armour layers 

 

The equilibrium equations for the helical armour layer are derived in a manner similar 

to that outlined for the isotropic layer. The total linear strain for a tendon of a helical 

armour layer in the direction of tendon's axis is given by (Lanteigne, 1985; Bahtui et al., 

2008d): 

 

α
ψ

θα
ψ

θ

αα
φ

ααε

22

22

coscoscossin

cossinsincos

L
R

L
R

L
R

R

u

L

u

yx

rz

∆
+

∆
+

∆
+

∆
+

∆
=

 (4.26) 

 

where all quantities as well as those in Equations (4.27) and (4.28) are related to the 

helical armour layer,α  is the lay angle of the tendon, and θ  is the angular position of 

the tendon on the cross-section, as shown in Figure 4.2. With the assumption of linearly 

of elastic tendons and ignoring all stresses except the axial stress in the tendon, the 

elastic energy for the helical armour layer is the summation of this value for all tendons 

in that layer (Lanteigne, 1985) 

 

 

 

Figure 4.2: Geometry of a helix. 
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where n  is the number of tendons in a layer, iA  is the cross-sectional area of the ith 

tendon, and z  is the axial direction. Following the principle of virtual works, used in 

Section 4.3, the equilibrium equations for the helical armour layer in matrix form are as 

follows: 
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where the constants )5,...,1,( =jiijκ  have the following expressions: 
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The matrix in Equation (4.28) is symmetric. 

 

 

4.6 Bending stiffness analysis of helical armour layers in the slip phase 

 

Friction is accounted for during bending loading and ignored in pressure, tension and 

torsion loading steps. That is because the latter types of loadings do not generate 

considerable energy dissipation due to friction. Contact (and slip) is assumed to occur 

between internal and external surfaces of different layers. Contact between tendons of 

each helical armour layer is ignored in the analytical model. 
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In order to include friction into the analysis for the case of the bending load, we follow 

an earlier work by Kraincanic and Kebadze (2001) and introduce the concept of critical 

bending curvatures, so that the bending process is divided into three phases: no-slip, 

partial slip and full slip. Accordingly, two critical values as minimum and maximum 

critical curvatures are defined. Curvatures smaller than the minimum critical curvature 

imply no slip. Curvatures between the minimum and maximum values imply that some 

tendons in the helical armour layer have already started to slip and some other tendons 

have not slipped yet (partial slip). Curvatures larger than maximum critical curvature 

imply full slip. The procedure to evaluate the maximum and minimum critical values is 

discussed in Kraincanic and Kebadze (2001) in detail, and therefore it is not reported 

here for the sake of brevity.  

 

 

 

4.7 Total riser stiffness 

 

The overall stiffness of the whole model is found by summing the stiffness 

contributions of the isotropic layers, the carcass layer and those of the helical armour 

layers. A unique length L is used for all layers, so that axial and torsional displacements 

as well as bending curvatures are the same for all layers. To include layer separation, 

layers are allowed to have different radial displacements, and all radial displacements 

are incorporated in the matrix of unknowns. Each layer has a different and unique initial 

radius R.  

 

Consider a special case where the unbonded flexible riser of six-layers in Figure 3.1 is 

going to be modelled. By summing Equations (4.21), (4.25), and (4.28) together, the 

equilibrium equations for the whole riser are then written in the matrix form as follows 
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(4.30) 

where the i(i=1,…,6) subscript indicates components in the ith layer and layers are 

numbered as in Figure 3.1. The coefficients 33K  and 44K  depend on the bending 

curvatures and vary during the bending process (Kraincanic and Kebadze 2001). The 

values )10,...,1,( =jiK ij  of the total stiffness matrix and of the force vectors NT, TT, 

MxT and MyT are calculated from Equation (4.30). The expressions of the coefficients of 

the total stiffness matrix are given by 
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where the subscripts refer to the different layers as in Table 3.1. 

 

To solve Equation (4.30), the interlayer contact pressures 61 ,..., pp ∆∆  within the load 

matrix should be known. These values depend on the unknown displacement vector in 

Equation (4.30) and therefore an iterative scheme has to be used.  

 

At each iteration, the interlayer contact pressures applied to each layer should be 

calculated to act as an input for the next iteration. These values for the helical armour 

layers, 3p∆ and 5p∆ , are derived by Lanteigne (1985): 
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Although the carcass layer is the innermost layer, the internal pressure is, in practice, 

applied to the outer layer after the carcass layer, whereby 01 =∆p . To calculate the three 

interlayer contact pressures 42 , pp ∆∆  and 6p∆ , some equations are needed. One 

equation comes from the pressure equilibrium equations  
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which yields  

 

53642 ppPPppp outin ∆−∆−−=∆+∆+∆  (4.34) 

 

where inP  and outP  are the internal and external input pressures, respectively.  

 

The remaining equations come from the continuity of radial displacements. Therefore 

the following compatibility relationships for all layers would need to be satisfied:  
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where outr∆  and inr∆  are the change in the outer and the inner radiuses outR  and inR  at 

each layer. Assuming the helical armour layers to move rigidly in the radial direction 
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Figure 4.3: Side view of a single layer before and after deflection. 

 

 ( outin
rr 33 ∆=∆  and outin

rr 55 ∆=∆ ) results in Equations (4.35) to reduce to two equations 
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The changes in the thicknesses for the isotropic layers are: 
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where it  is the thickness of layer i. t∆ can also be calculated from the theory of strength 

of materials for an isotropic hollow cylinder:  
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On the other hand the following equation holds in the radial direction for each layer 

(Figure 4.3): 
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Substituting the compatibility Equations (4.36) and Equations (4.37-38) into the 

Equations (4.39) results in the following five equations 
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(4.40) 

 

Equations (4.40) together with the pressure equilibrium equation (4.34) provide six 

sufficient equations which then are used to find all six unknowns at each iteration, 

which are three pressure imbalances 42 , pp ∆∆  and 6p∆  and three values for inin rr 42 , ∆∆  

and in
r6∆ .  

 

In case of layer separation, Equations (4.35) should be overwritten using a switch 

algorithm which will be discussed in Section 4.8 in detail. Convergence is achieved 

when the pressure equilibrium and the compatibility equations are all satisfied. 

 

 

4.8 Layer separation and penetration 

 

The amount of gap between layers, when separation occurs, can be derived using the 

interlayer pressures and the compatibility equations. If two layers are in contact and 

separation has not occurred, the value for the interlayer pressure is greater or equal to 

zero. Otherwise, in the case of layer separation, the value for the interlayer pressure 

would become negative. In this case we should re-write the compatibility equations 

(4.35) as 

 

5,...,2,1 =+∆=∆ + irr i

in

i

out

i η  (4.41) 
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where iη  is the amount of the positive gap between layers i and i+1. The solution 

procedure starts by setting the values for all iη  variables zero and subsequently finding 

the interlayer pressures between all layers. If the interlayer pressure value for each layer 

i is positive, which means layer separation has not occurred, iη  is zero. In this case 

Equations (4.35) should be used. Otherwise, if the interlayer pressure is negative, which 

is physically impossible, the value for those negative interlayer pressures should be 

replaced by zero and the compatibility equations (4.35) should switch to Equations 

(4.41) for those layers. Using this scheme ensures that the values for iη  are always 

positive, which means layer penetration will not occur. 

 

An iterative solution scheme is used to prevent layer penetration. The analytical 

formulation is coded in MATLAB (2006). The switch algorithm with the algorithmic 

steps is shown in Table 4.1.  
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Table 4.1: Schematic flow-chart of the analytical computation. 
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5 Validation and Verification of the Numerical and the 

Analytical Modelling 

 

 

5.1 Introduction  

 

There are no published experimental results in the literature with sufficient input data 

which would allow a comparison with the work outlined in this thesis. To demonstrate 

the accuracy, stability and computational suitability of the method, three case studies 

have been carried out using analytical and numerical models, described in Chapters 4 

and 3, and comparisons were made between the results computed using each method. 

 

Unbonded flexible riser is usually a three–dimensional phenomenon that cannot be 

reduced to a two-dimensional symmetric problem. Comparison is made between the 

results from analytical work and the fully three-dimensional numerical analysis for 

various load cases which include axial, torsional, and bending loads. In each case, an 

internal and/or external pressure loading is applied initially, followed by the application 

of an external loading and unloading event. A fully explicit solution scheme is adopted 

and the total energy during the loading and unloading events is monitored carefully to 

ensure that a smooth converged solution is achieved. 

 

Results for the six-layer unbonded flexible riser are illustrated in the form of stress 

contour plots (Figures 5.1, 5.3, 5.4, 5.6, 5.7 and 5.11) and are compared between 

analytical and numerical solutions (Figures 5.2, 5.5 and 5.8). The load cases used in 

these case studies are typical modes of loading to which the riser is subjected to. The 

results shown in Figures 5.2, 5.5 and 5.8 include the results from the last two steps i.e. 

the external loading and the unloading steps. The pressure step causes an initial bulging 

out in the radial direction and shortening in the axial direction of the riser. Additionally 

an initial rotation of the layers also takes place due to the helical effects in the geometry 

of the riser. These effects are shown in Figures 5.2 and 5.5 as initial displacement and 

rotation, respectively.  
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5.2 Case 1: Pressure and tension loads 

  

Result for the axial-stress contour plot for the first problem, the riser subjected to 

tension, is shown in Figure 5.1 (Bahtui et al., 2008a). Hoop and radial stress results 

were well below the axial stresses. The magnitude of hoop stress for the riser is below 

51MPa and result for the radial stress is below 35MPa. Therefore axial-stress contour 

plot was selected because it shows higher value of the stresses. As the stresses were 

concentrated mostly at the helical armour layer, other layers were hidden in the figure in 

order to present a better view of the maximum stress distribution. Figure 5.1 shows that 

axial stresses in the inner tensile armour layer are almost 1.2 times greater than those in 

the outer tensile armour layer because of the difference in their radii. 

 

Figure 5.2 shows the axial displacement of the riser. It is seen in this figure that the 

finite element results are in good agreement with those obtained from the analytical 

model. The solid line which corresponds to the analytical model exhibits a linear 

relationship. This is due to the fact that the analytical formulation does not include the 

frictional effects. 

 

 

 

Figure 5.1: Axial-stress contour plot for a cross section at the middle of the riser under 

tensile loading (Pa). 
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Figure 5.2: Axial force vs. displacement at the top reference point. 

 

The ABAQUS result is however more realistic since the numerical model takes into 

account various details of the physical riser which are not possible to include in the 

analytical model. 

 

 

  

 

Figure 5.3: Hoop-stress contour plot for a cross section at the middle of the riser under 

torsional loading (Pa). 
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 Figure 5.4: Axial-stress contour plot for a cross section at the middle of the riser under 

torsional loading (Pa). 

 

 

5.3 Case 2: Pressure and torsion loads 

 

Figure 5.3 and 5.4 show contour plots of the hoop-stress and axial-stress component for 

the riser subjected to linear torsional loading. Helix layers expose high hoop stress 

compared to other layers. In order to gain a better view of maximum stress distribution, 

other layers have been hidden in these figures.  Stress values are tensile in the outer 

helical layer and compressive in the inner one. The torsional load is applied in the 

direction which causes tightening of helical armour layers causing the anti-wear layer to 

go into compression. A torsional load in the opposite direction will cause bird-caging 

effect. Axial stress is not significantly higher than hoop stress. This is due to helical 

geometry of helix armour layers which convert torsional load to axial strain and 

decrease the magnitude of axial stress. Figure 5.5 shows a plot of rotation versus the 

applied torque. The initial counter-clockwise offset in rotation is due to the initial 

rotation which was induced in the pressure step. 
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Figure 5.5: Torque vs. axial rotation at the top reference point. 

 

 

5.4 Case 3: Pressure and bending loads 

 

Figures 5.6 and 5.7 correspond to the case of bending load and show contour for the 

radial and axial component of the stress. Radial stress changes periodically along the 

length of the riser between tensile to compressive values. Figure 5.7, however, shows 

the stresses for the outer (a) and inner (b) helical armour layers separately. Both helical 

armour layers have higher axial stresses at the upper layer’s half than that of the lower 

part. The inner helical armour layer has higher stresses because it has smaller cross-

sectional second moment of inertia comparing to the outer helical armour layer. 

 

Figure 5.8 illustrates the variation of the bending moment against curvature. Results 

shown are highly nonlinear because of the significant frictional sliding. The solid line 

corresponds to the analytical results which are the results from the first loading-

unloading cycle. The loading phase in the analytical results consists of three sections: 

curvatures smaller than the minimum critical curvature (OA), curvatures between the 

minimum and the maximum critical curvatures (AB), and curvature greater than the 

maximum critical curvature (BC). This is not the case for the unloading phase, which 

only consists of curvatures greater than the maximum critical curvature. The numerical 
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results are much more realistic due to the fact that the numerical model gradually takes 

into account the effect of friction, as the curvature increases. 

 

Abaqus results show the hysteresis effect in the unbonded type of flexible riser which 

exists in all load cases, but are particularly significant in the bending case, as shown in 

Figure 5.8, where the loading and unloading paths are well distinct. Results in this 

figure follow a hysteresis pattern which already has been published in the literature 

(Kraincanic and Kebadze, 2001) as experimental results and is presented here in Figure 

5.9. Figure 5.9 shows theoretical prediction and experimental measurements of the 

bending moment-curvature for a 2.5 inch flexible pipe under 300 bar internal pressure. 

 

 

 

 

 

 

Figure 5.6: Radial-stress contour plot for a cross section at the middle of the riser under 

bending loading (Pa). 
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Figure 5.7: Axial-stress contour plot for a cross section at the middle of the riser under 

bending loading (Pa); (a): outer helix layer; (b): inner helix layer. 

 

 

 

 

 

 

(b) 

(a) 
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Figure 5.8: Bending moment vs. curvature. 

 

 

 

 

 

 

Figure 5.9: Theoretical prediction and experimental measurements of the bending 

moment-curvature reported in Reference (Kraincanic and Kebadze, 2001). 
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Figure 5.10: Slipping between adjacent layers. 

 

Figure 5.10 illustrates the amount of slippage which occurs between all layers. It can be 

seen that, the distance between two selected points A and B in the left-hand side figure 

is more than that in the right-hand side figure. The two line paths in both figures, which 

pass through edges of elements, also show that rotations for the two helical armour 

layers are in opposite directions. This indicates the significant amount of frictional 

slippage occurring between all layers, which in turn results in significant amount of  

 

 

Figure 5.11: Maximum contact pressure contour plot (Pa). 

Start of analysis End of analysis 
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Figure 5.12: Percentage of energy dissipation to the strain energy. 

 

energy dissipation. Figure 5.11 shows the contour plot for the maximum contact 

pressure between two helical armour layers and the tube layer, which is calculated as 

the magnitude of the net contact normal force per unit area. 

 

Figure 5.12 shows the percentage of frictional energy dissipation to strain energy for 

Case 3. The results shown in this figure include the results from all steps i.e. the initial 

pressure, external loading and the unloading steps. The curve starts with a short impulse 

which is due to the impact caused by the initial pressure loading step. As the pressure 

increases, the gaps between layers close and a stable contact between layers establishes. 

As seen, the amount of energy dissipation is increasing gradually and smoothly 

afterward which is due to frictional slippage between all adjacent layers. 

 

 

5.5 Cyclic loading analysis 

 

In order to gain a better understanding of the energy dissipation phenomenon which 

occurs due to the existence of slippage between various layers in unbonded flexible 

risers, the riser’s behaviour under cyclic loading is analysed. The same model, presented 

in Chapter 3, excluding carcass layer was utilised to investigate the cyclic axial and 

torsional loading. Then, the original six-layer model, which includes carcass layer, was 

utilised to investigate the cyclic bending moment (Bahtui et al., 2007).  
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Figures 5.13 and 5.15 represent two common cyclic load cases, one for axial force and 

another for torsional load, which consist of four loading and unloading steps, preceded 

by only one pressure loading step at the beginning. In this example, a 23MPa internal 

pressure as well as a 3MPa external pressure was applied. All boundary conditions are 

the same as those in the pervious section. Other details of the riser are also the same as 

those in the pervious section. Figure 5.14 shows the axial displacement as a function of 

axial input force. An offset at the beginning is due to the pressure loading step. Results 

for the second and subsequent cycles are consistent with each other but are different 

from the first cycle.  

 

 

 

 

Figure 5.13: Axial force vs. time, for the case of cyclic loading. 
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Figure 5.14: Axial force vs. axial displacement, for the cyclic loading case. 

 

 

 

 

Figure 5.15: Torsion vs. time, for the case of cyclic loading. 
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Figure 5.16: Torsion vs. rotation, for the cyclic loading case. 
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Figure 5.17: Bending moment vs. time, for the case of cyclic loading. 
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Figure 5.16 shows the rotation as a function of torsional input force (Figure 5.15). The 

different paths between loading and unloading curves show the hysteresis effect. The 

first cycle includes the displacement due to inter-layer gap closure resulting in a 

different curve compared to those for the subsequent cycles. 

 

The same model, introduced in the last chapter, including the carcass layer was 

subjected to 16 kNm cyclic bending moment resulting in the curves shown in Figure 

5.17. The loading consists of four and half loading and unloading steps, preceded by 

only one pressure loading step at the beginning. In this example, a 30MPa internal 

pressure as well as a 23.4MPa external pressure was applied. As seen, the model, 

including the carcass layer sustains much higher external pressures. All boundary 

conditions are the same as the pervious example. Result for the curvature is shown in 

Figure 5.18 where significant hysteresis effects can be seen. 
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Figure 5.18: Bending moment vs. curvature, for the cyclic loading case. 
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5.6 Energy dissipation  

 

Figure 5.19 shows the percentage of frictional energy dissipation to strain energy for 

bending moment cyclic loading analysis in Section 5.5. The results shown in this figure 

include the results from all steps i.e. the initial pressure, external loading and the 

unloading steps. The curve starts with a jump which is due to the impact caused by the 

initial pressure loading step. As the pressure increases, the gaps between layers close 

and a stable contact between layers is established. As seen, the amount of energy 

dissipation is subsequently increasing smoothly indicating the occurrence of frictional 

slippage between all adjacent layers. 
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Figure 5.19: Percentage of energy dissipation to the strain energy. 

 

The investigation of cyclic tensile (Figure 5.14), torsional (Figure 5.16) and bending 

(Figure 5.18) loading reveals the hysteresis effects of unbonded flexible risers. The 

cyclic behaviour of riser structures is due to slip-stick behaviour in the riser. The area 

between loading and unloading curves in force-displacement figure is the amount of 

energy dissipated due to this phenomenon. 
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6 Numerical Derivation of Constitutive Models 

 

 

6.1 Introduction  

 

The work outlined in this chapter introduces an ‘equivalent elasto-plastic’ constitutive 

law for the beam cross-section to relate axial strain, torsion and bending curvatures to 

their conjugate stress resultants. Such relationships can be used to model the small-scale 

frictional slip occurring between the layers, when a combination of values of the stress 

resultants and internal and external pressures exceed a given threshold, at the 

macroscopic level of the cross section.  To this end, an ‘equivalent yield function’ is 

defined, which depends on the current values of the stress resultants, on a set of internal 

history variables, but also on the values of the external and internal pressures acting on 

or within the pipe. This last functional relationship simulates the effect that the pressure 

values have on the inter-layer normal stress, which in turn affects the inter-layer 

frictional sliding and the overall dissipation. The zero level set of the yield function 

represents the boundary of a ‘no-slip domain’, that is the onset of slipping (Alfano et 

al., 2008; Bahtui et al., 2008c).  

 

In formulating this model a linear kinematic hardening law has been employed. For the 

case of monotonic loading, the assumptions of linear hardening and of linear elastic 

behaviour within the ‘no-slip domain’ result in a bilinear response, which can provide 

sufficient approximation of the structural response in many cases of interest. This 

simplified model entails that the single cross section of the riser can be either in a state 

in which ‘no slip’ is found, or in a state in which ‘full slip’ occurs.  

 

The bridging between the beam model, suitable for large-scale analysis of the entire 

riser, and the small-scale detailed finite element model relies on the identification of the 

parameters of the beam model which is achieved through a combination of reasonable 

engineering assumptions and careful curve fitting, using the small-scale detailed finite 

element model as a virtual testing rig. It is worth observing that the numerical data, on 

which the constitutive model is calibrated, can also directly originate from experiments 

if such results are available. However accurate experimental testing of flexible risers 
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which correctly reproduces the in-service conditions is difficult and very expensive, 

whereas the availability of a detailed finite element model to minimize the number of 

required experiments is very important, and its use within the proposed multi-scale 

method capable of analyzing both short and long risers is expected to have a significant 

impact on the feasibility, accuracy and economy of the overall design and analysis of 

flexible pipes. 

 

 

6.2   Formulation of the constitutive model 

 

In this section the constitutive law of a flexible riser for an Euler-Bernoulli 3D beam 

model is formulated. It is assumed that locally the pipe develops along a straight line, so 

that an infinitesimal element of pipe can be represented as in Figure 6.1. A local right-

handed Cartesian system is introduced with the origin and the x and y axes located at the 

cross section and the z axis coincident with the centroid axis.  

 

 

6.2.1 Generalised stresses and strains 

 

The stress resultants, shown in Figure 6.1, are the axial force N, the torque T, and the 

bending moments around axes x and y, denoted by Mx and My, respectively.  

 

 

Figure 6.1: Stress resultants. 

 



 73 

In addition, the internal and external pressures need to be considered in the model. 

Referring to the cross-sectional view of the riser in Figure 6.2, the average radial 

strain rε  is given by 

in

in
r

t

tt −
−=ε  (6.1) 

 

where tin and t denote the initial and the current thicknesses of the whole riser, 

respectively. Notice that the negative sign is added for convenience in the above 

equation so that the work done by the pressure parameter εP , which is introduced later 

in Equation (6.5), for a positive rε  is positive. 

 

 

 

 

Figure 6.2: Cross view of the riser section. 

 

The radial displacement of the average radius, the radial displacement of the internal 

layer and the radial displacement of the external layer, indicated with int,uur  and extu , 

respectively, are related to the radial strain and to the current thickness as follows: 
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The work W done by the pressure per unit of length of the riser is then 

 

extextext RuPRuPW ππ 22 intintint −=  (6.3) 

 

where intR  and extR  are the internal and external radii, while intP  and extP  represent the 

internal and external applied pressures.  

 

By substituting Equation (6.2) into Equation (6.3) we have: 

 

rru PuPW εε+=  (6.4) 

where uP  and εP are the conjugate actions working for ur and rε , defined by: 
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 (6.5) 

 

Increasing values of εP  result in increasing compressive normal stresses between layers 

in the radial direction and, therefore, in increasing frictional stresses. Instead, the value 

of uP  controls the radial displacement and does not affect the radial stresses or the 

amount of friction. 

 

Hence, in the proposed model uyxt PMMMN ,,,,  and εP  are the generalised stresses. 

The corresponding work-conjugate generalised strains are rryxz u εχχφε ,,,,, , where 

yxz χχε ,,  and φ  are the axial strain, the curvatures about the x and y directions and the 

torsional curvature, which are in turn related to the axial displacement uz and the 

torsional rotation ψ   by the following relationships: 
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A compact notation is conveniently introduced denoting by σ  and ε  the generalised 

stresses and strains: 
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 (6.7) 

 

 

6.2.2 Constitutive law 

 

As discussed in Section 6.1, the constitutive law for the beam model is based on the 

observation that the local (small-scale) frictional slip between the different layers results 

in a macroscopic (large-scale) relationship between generalised stresses and strains 

which has many analogies with the laws of elasto-plasticity. 

  

Figure 6.3 shows the response of the flexible riser shown in Figure 3.1 under cyclic 

loading, evaluated using a detailed three-dimensional finite element analysis which 

accurately models the interaction between all layers. For the qualitative analysis in this 

section, presented to justify the assumptions of the proposed constitutive model, it is 

sufficient to state that the values of the applied loading (internal and external pressures 

included) are within a meaningful range typical of practical cases. For the first 

monotonic increase of the curvature, the bending moment increases with an almost 

linear stiffness between points (a) and (b). Then the stiffness rapidly decreases between 

points (b) and (c) to a value which remains approximately constant up to point (d). 

Upon unloading, the flexural stiffness is initially very close to the initial  
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Figure 6.3: Plot of the bending moment against the corresponding curvature 

for the unbonded flexible riser of Figure 3.1 during cyclic 

loading; the response is evaluated with a detailed finite-element 

simulation. 

 

stiffness, between points (d) and (e), and then it rapidly decreases between points (e) 

and (f) to a value which is constant between points (f) and (g) and approximately equal 

to that between points (c) and (d). Replacing the rounded parts between points (b) and 

(c) and between points (e) and (f) with two sharp elbows, a bilinear curve response is 

obtained with very good approximation. Such a bilinear curve represents the same type 

of response as that obtained using an elasto-plastic model with linear kinematic 

hardening, which is the model proposed here. 

 

In analogy with the elasto-plastic case, the generalised strains are additively 

decomposed into an elastic-like, i.e. ‘no-slip’, part eε , and a plastic-like, i.e. ‘full-slip’, 

part sε .  

 

se εεε +=  (6.8) 
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The generalised stress is obtained from the no-slip components of the generalised 

strains via a linear-elastic relationship: 

 

eD εσ ˆ=  (6.9) 

 

where D̂  indicates the stiffness during the no-slip phase. The full-slip strains evolve in 

accordance with a law which is analogous to the plastic flow rule of elasto-plasticity, 

and which can be expressed as follows: 

 

σ
λε

∂

∂
=

g
s
��   , (6.10) 

 

 

where g represents a suitable defined real-valued ‘slip potential’. The multiplier 

λ� evolves in accordance with the Khun-Tucker conditions: 

 

0≥λ�         ( ) 0≤− βσf         ( ) 0=− βσλ f�  (6.11) 

 

where β  represents the ‘back-stress’ associated with kinematic hardening.  

 

The real-valued function  f  represents the equivalent of the yield function in elasto-

plasticity and will be indicated as ‘slip-onset’ function in view of its mechanical 

meaning in the current context. When the stress resultant σ  is such that ( ) 0<− βσf , 

then no slip occurs, i.e. the stress resultants are inside the ‘no-slip’ domain. Instead, 

when ( ) 0=− βσf , slip can occur because it is possible to have 0>λ� .  

 

Notice that it is not possible to have ( ) 0>− βσf . However, the back-stress follows 

the evolution of the full-slip component sε  in accordance with a hardening relationship 

which, in this case, is assumed to be linear: 

 

        sH εβ ˆ=          (6.12) 



 78 

 

where Ĥ  is a matrix of hardening coefficients. Therefore, although the value of the 

slip-onset function remains constantly zero during the frictional slipping phase, the 

value of the stress components increase because of the hardening, in accordance with 

the expected response shown in Figure 6.3.  

 

The slip-onset function f and the potential g have to incorporate the dependency of the 

response of the flexible pipe cross section on the current state of internal stress. In 

particular, the values of the pressure component εP  has a great influence on the normal 

interaction between layers and then on the onset of friction.  

 

It should be noted that the slip potential g and the slip-onset function f are different 

because of the frictional nature of the constitutive law. The mechanical meaning of this 

assumption will be discussed later in more detail. 

 

 

6.2.3 Finite-step equations 

 

From a computational point of view, the time domain needs to be subdivided into a 

number of finite steps. Adopting a fully implicit backward-Euler time-integration 

scheme, the equations to solve in each step are as follows: 
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In a conventional displacement-based finite-element analysis the constitutive law is 

‘strain driven’, whereby the generalised strainε  at the end of the step and the history 

variables at the beginning of the step, that is 0sε  in this case, are given, and the 

remaining variables at the end of the step, that is the stress σ , the back-stress β  and the 

full-slip generalised strain sε  have to be computed. The solution is found iteratively, 
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using the same well-established return-map algorithms used in elasto-plasticity in which 

the Newton-Raphson method, presented in Appendix A, is used to solve the non-linear 

Equation (6.13). 

 

The above equations provide a general formulation which is the basis for the current and 

future developments of this research work. As will be discussed later in more detail, the 

main difficulty lies in the identification of the coefficients of the stiffness and hardening 

matrices D̂  and Ĥ , and of both the expression and the related coefficients of functions f 

and g. Addressing the most general case is not convenient in this phase of the research 

work in which the main aim is to demonstrate the validity and the potential of the 

proposed method. Hence, in the following sections some reasonable assumptions will be 

made to study some cases of significant interest. 

 

 

6.3 Specialization to the case of cyclic flexural loading 

 

In this section, the very important case of cyclic flexural loading will be considered. To 

simplify the treatment and better focus on the factors which have a major influence on 

the structural response, the assumption is made that the axial force N and the torque Mt 

are constant throughout the deformation process. Hence, their influence on the 

determination of functions f and g can be incorporated within the coefficients and then 

ignored. Furthermore, a pure elastic relationship can be assumed between N and Mt and 

the conjugated variables zε  and φ , so that the hypothesis made that  N and Mt are 

constant allows us to completely ignore these terms. 

 

A further simplifying assumption made is that 0=uP . This seems reasonable in this 

phase of the work because the main influence on the response of the flexible pipe at the 

onset of and during frictional slipping is given by the other term εP . The latter 

simplification further reduces the number of degrees of freedom of the model and, 

because of Equation (6.5)1, it results in the following relationship to be satisfied by the 

pressure values applied to the (small-scale) detailed finite element model: 
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extext RPRP =intint  (6.14) 

 

Symmetry of the cross section rules out coupling terms in the elastic relationship 

between the remaining components of the generalised stresses and strains, and also 

results in the same flexural response about the x and y axes, whereby the initial stiffness 

is represented by a diagonal matrix: 
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The components of the back-stress vector β  which correspond to the generalised-stress 

components xM , yM  and εP are denoted by xβ , yβ  and εβ , so that the argument of 

the onset-slip function is given by: 
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To determine functions f and g and the coefficients of the kinematic hardening matrix, 

many results of several numerical simulations made with the detailed finite element 

model have been reviewed and the following expression has been found to be 

sufficiently valid:  

 

( ) ( ) ( )[ ] aPMMbf yyxx −−−−+−=− )(
22

εε ββββσ  (6.17) 

 

where a and b are material parameters to be identified, and again symmetry of the cross 

section has been exploited.  

 

The slip potential g has to account for the finding that frictional slipping in bending is 

not accompanied by any significant relative opening between layers. At the small-scale 

level this means that no significant dilatancy is observed in the frictional slipping 
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between layers. A suitable expression for the potential g which meets this requirement 

is as follows: 

 

( ) ( ) ( )[ ]22
yyxx MMbg βββσ −+−=−  (6.18) 

 

which results in the following slip rule: 
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where sysx χχ �� , and srε� denote the full-slip components of the bending curvatures 

about the x and y axes and of the radial strain. Overlapping the generalised stresses and 

strains spaces, Figure 6.4 describes the above equation and shows that the inequality 

between functions f and g results in the full-slip strain rate sε� being not normal to the 

slip-onset surface, i.e. not parallel to the normal n . This is in analogy with the non-

associative plasticity models used for many materials exhibiting internal friction for 

which the normality rule is not satisfied. 

 

 

 

Figure 6.4: Non-associative behaviour of the proposed model. 

n

εε β−P  

σ∂

∂g
 

xxM β−
 



 82 

The following proportional hardening law is used: 
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It is worth observing that because of the slip law in Equation (6.19), the radial full-slip 

strain srε results to be constantly zero, so that εβ also becomes zero and the above 

equation further changes to: 
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It should be noted that when the model is symmetric about the x and y axes, a simple 

plane model can be used to study the structural response and to identify the model 

parameters as will be shown in Sections 6.3.1 to 6.3.3. The above equations were, 

nonetheless, derived in their full three dimensional sense in order to demonstrate its 

applicability for the general case when all the moments and curvatures about both axes 

are present.  

 

 

6.3.1   Finite element simulation 

 

Several finite element simulations for a typical 1.7m long unbonded flexible riser have 

been conducted using the finite element code ABAQUS. The model includes a complex 

make up of seven-layers of internal and external plastic sheaths, helical armours, carcass 

and anti-wear layers and is described in the cross-sectional view of Figure 6.5. It has 

been created by adding one additional layer to the model considered in Chapter 3 and 

replacing thin shell type element by linear brick type element for carcass layer. Figure 

6.6 shows the finite element mesh of the riser and indicates the number of nodes and 

elements used. All boundary conditions are the same as those in Section 3.9. Other 

details of the riser are also the same as those in Chapter 3. 
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For the identification of the parameters, it was sufficient to consider the planar case in 

which moments are applied about the x axis in Figure 6.5. Accordingly, the only non-

zero flexural curvature is also about the same axis. 

 

The analysis starts with an initial ‘pressure load step’ which accounts for the internal 

fluid pressure and the external hydrostatic pressure. Four different input pressures are 

analysed and referred to as cases 1, 2, 3, and 4, respectively. The values of the applied 

internal and external pressures are given in Table 6.1 and satisfy Equation (6.14). 

 

 

 

 

Figure 6.5: Detailed geometry of riser (cross-sectional view). 

 

 

The pressure step is then followed by a ‘bending step’, in which a 16 kNm bending 

moment is cyclically applied to the free end of the pipe. In each loading or unloading 

part of the cycles the moment is applied linearly with time.  
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Figure 6.6: Finite-element mesh. 

 

For each case analysed, an average curvature of the riser has been computed at each 

increment by dividing the rotation of the free end of the riser about the x axis by the 

length of the riser. In Figure 6.7 the applied bending moment is plotted against the 

computed average curvature for the four different load cases. It should be noted that the 

initial pressure load step does not result in any curvature. As expected, results are 

similar to those in Figure 6.3.  

 

Table 6.1: Load cases – steps and magnitudes. 

 

Loads applied to riser 

Load 

Case 
Pressure Loading 

(MPa) 
εP ( kN) 

Max. bending 

moment  (kNm) 

Min. bending 

moment  (kNm) 

1 
Internal = 0 

External = 0 
0  16  -16  

2 
Internal = 10 

External = 7.804 
145.6  16  -16  

3 
Internal = 30 

External = 23.41 
436.9  16  -16  

4 
Internal = 50 

External = 39.02 
728.2  16  -16  
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Case 3

Pε = 436.9 kN
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Case 4

Pε = 728.2 kN
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Figure 6.7: Bending moment-curvature curves for the four different load cases (a) Pε  

= 0, (b) Pε  = 145.6 kN, (c) Pε = 436.9 kN and (d) Pε  = 728.2 kN. 

 

All results of Figure 6.7, except for the case Pε = 0, illustrate a hysteretic behaviour of 

the riser subjected to cyclic bending moment. The response tends towards a stabilised 

cyclic response gradually as the number of cycles increase. The first cycle represents the 
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installation phase, whereas the stabilised results are more suitable to be used for the 

calibration procedure, which will be discussed in the next section. Figure 6.7 also shows 

that the higher the pressure, the more cycles are needed to reach a stabilised hysteresis 

loop, and the greater the energy dissipated during the hysteresis loop. 

 

 

6.3.2   Calibration of the constitutive model  

 

Several finite element simulations have been used to calibrate the constitutive model. 

Each bending moment-curvature result from the numerical simulations was curve fitted 

using a bilinear curve, using the stabilised cycle. This bilinear curve can give three 

specific parameters for the constitutive model: the initial no-slip slope, a slip-initiation 

point, and a full-slip slope. In Figure 6.8 two representative results from the finite 

element simulations are shown together with the fitted bi-linear curves. 
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Pε = 436.9 kN
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Figure 6.8:  Two representative results from the finite element simulations and 

related fitted bilinear curves. 

 

For all cases except those with zero or very small applied pressure, an initial linear 

response can be identified. Therefore, an initial ‘no-slip slope’ can be determined and is 

found to be the same for each of the analysed cases. This validates the hypothesis that 

an initial linear part of the moment-curvature diagram, in which frictional slip between 

layers is absent or negligible, does exist. This slope directly provides the flexural 

stiffness D11 = D22.  

 

After this initial linear response, a non-linear part of the curve follows, which relatively 

rapidly tends to join a final full-slip slope. Upon repeated loading and unloading cycles, 

this final slope changes and stabilizes on a straight line which is that used in the 

identification procedure. This final full-slip slope is not equal to the hardening 

parameter h, but it is related to it and therefore its determination allows to estimate h.  

 

The intersection point between the initial slope and the final slope provides a ‘slip-

initiation’ point, which is also a point of the boundary of the no-slip domain, i.e. a point 

of the zero level set of the slip-onset function. The slip-initiation points identified have 

been fitted with the quadratic expression of Equation (6.17) and the resulting curve is 

shown in Figure 6.9.  
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Figure 6.9: Curve-fitting of the slip-initiation points. 

 

Finally, the last parameter of the model to be identified is the stiffness value D33. This 

has been done by analyzing the pressure steps in the above described analyses for 

different values of the pressure, and identifying the initial no-slip, nearly linear 

response. Table 6.2 reports the parameters of the model determined with the proposed 

procedure: 

 

Table 6.2: Identified parameters. 

Stiffness Slip-onset function Hardening 

D11 (kNm
2
) D33 (kN) a b (N

-1
 m

-2
) h (Nm

2
) 

608 26707 0 0.023 2.5 · 10
5
 

 

 

 

6.3.3   Validation of the constitutive model 

 

To demonstrate the validity of the proposed method, the same cyclic analyses 

performed using the detailed finite-element model in ABAQUS have been reproduced 

using the simplified proposed constitutive model adopting the parameters of Table 6.2  
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Case 3

Pε = 436.9 kN
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Case 4

Pε = 728.2 kN
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Figure 6.10: Comparison of the results obtained from the constitutive model (solid 

line) and from the detailed finite element model (dashed line). 
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which were identified as described in the previous section, and using the solution 

scheme described in Section 6.2.3.  

 

Results of this validation are reported in Figure 6.10 for four cases corresponding to 

four values of the applied pressure load Pε . For each case a graph is reported in which 

the moment-curvature curve obtained with the proposed constitutive model is plotted 

with a solid line and is compared with the dashed-line curve obtained using the detailed 

finite-element model.  

 

In Case 1 (Pε = 0), no friction occurs in both cases, which results in no hysteresis, i.e. no 

energy dissipation. The two curves overlap and cannot really be distinguished. Such 

perfect agreement is not obtained for the other cases, because the proposed model 

immediately provides the final stabilised cycle, whereas in the finite-element results 

one, two and three cycles are required to reach the nearly stabilised response, 

respectively. The difference between the stabilised response and that in the first one or 

two cycles increases with increasing values of Pε , and could be an issue of concern only 

in the analysis of the installation phase, while in the other cases it can be considered not 

important for the accuracy of the analysis. 

 

 

6.4 Specialization to the case of cyclic loading without torsion 

 

In this section, the constitutive law is significantly enhanced by considering the very 

important case of cyclic axial loading and its coupling effect on the slip-onset function. 

The number of degrees of freedom of the constitutive model is increased to five by 

incorporating axial strain, curvatures, radial displacement and the average radial 

strain rε  as generalised strains.  

 

The same reasonable assumption made by the authors (Alfano et al., 2008) that the 

torque Mt  is constant throughout the deformation process is retained here to better focus 

on the factors which have a major influence on the structural response. Hence, its 

influence on the determination of functions f and g can be incorporated within the 

coefficients and then ignored. As in Section 6.3, a linear elastic relationship is assumed 
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between Mt  and the conjugated variable φ , so that using the hypothesis that Mt  is 

constant allows us to completely ignore this term. 

 

A linear elastic relationship is also assumed between uP  and the conjugate variable ru . 

On the other hand, the main influence on the response of the flexible pipe at the onset 

and during frictional slip is given by the other term εP . By including its corresponding 

work-conjugate generalised strains rε  as a degree of freedom in the constitutive model, 

it allows better modelling of the coupling effects between εP  and N. This improvement 

to the constitutive model presented in Section 6.3 (Alfano et al., 2008) allows us to 

consider the coupling terms between the axial and radial strains. As for the coupling 

effects between the axial strain and the curvature, they are due to the changes in the 

radial contact stresses between layers caused by changes in the axial force because of 

Poisson effects, which in turn affects friction. Hence, these effects are embedded into 

the slip-onset function, and thus are not considered in the stiffness matrix. Instead, no 

elastic coupling exists between these variables and between radial displacement and the 

curvature, which results in zero values of the corresponding terms in the stiffness 

matrix. Finally, symmetry of the cross section results in the same flexural response 

about the x and y axes, with no elastic coupling between the two curvatures as well as 

between the curvatures and the axial strain. Hence, the initial stiffness is represented by: 
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Note that coupling exists between axial generalised strain and radial strain and 

displacement terms.  

The components of the back-stress vector β  which correspond to the generalised-stress 

components N , xM , yM , uP  and εP  are denoted by zβ , xβ , yβ , rβ  and εβ , so that 

the argument of the slip-onset function is given by: 
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To determine functions f and g and the coefficients of the kinematic hardening matrix, 

many results from several numerical simulations made with the detailed finite element 

model have been reviewed and the following expression has been found to be 

sufficiently valid:  
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where a, b and c are material parameters to be identified, and symmetry of the cross 

section has been exploited. The slip-onset surface in this case has two surfaces. This is 

due to the fact that the riser is not assumed to be capable of tolerating axial 

compression. This indicates that axial force is non-negative. 

A suitable expression for the potential g is as follows: 
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which results in the following slip rule: 
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(6.26) 

 

 

where szε� , sysx χχ �� , , sru�  and srε� denote the full-slip components of the axial tension, 

the bending curvatures about the x and y axes, the radial deformation and of the radial 

strain. Overlapping the generalised stresses and strains spaces, Figure 6.11 describes 

two cross-sectional views (a,b) as well as a 3D view (c) of the above 3D equation and 

shows that the difference between functions f and g results in the full-slip strain rate 

sε� being not normal to the slip-onset surface (a,b), i.e. not parallel to the normal n .  
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(a)      (b) 

 

(c) 

Figure 6.11: Non-associative behaviour of the proposed model. 

 

The following proportional hardening law is used: 
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It is worth observing that because of the slip law in Equation (6.26), the radial full-slip 

strains sru  and srε result to be constantly zero, so that rβ  and εβ also remain as zero. 
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6.4.1 Finite element simulation 

 

Several finite element simulations for a typical 1.7 m long unbonded flexible riser, 

presented in Section 6.3.1, have been conducted using the finite element code ABAQUS 

to estimate the parameters of the constitutive law for the beam model. The finite 

element model and all boundary conditions are the same as those presented in Section 

6.3.1. 

 

For the identification of the parameters and constructing the constitutive model, six sets 

of analyses are performed. These are summarised in Table 6.3. The first column shows 

the number of each sets of analysis. 

 

The second column indicates whether the analysis is performed for several different 

values of input pressures εP , referring to each one as an individual ‘load case’. In these 

analyses (5 and 6) the simulation initiates with an initial ‘pressure load step’ which 

accounts for the average pressures εP . The pressure step is then followed by the load(s) 

from column three. The different considered values of εP for each axial load case are 

reported in Table 6.4.   

 

The third column, ‘Loadings’, shows the type of load which is applied at each analysis. 

The fourth column determines the additional boundary conditions required for 

derivation of a target parameter, applied at TRP. The fifth column shows Equation 

(6.22) specialised to the case once the boundary condition has been applied. The sixth 

column shows the unknown target parameters which are to be found through each 

analysis.  

In cases 1 to 3, 5 and 6, the cyclic loading response is considered whilst case 4 deals 

with the monotonic loading response of the riser. The details of the maximum and 

minimum values of the loads in column 3 of Table 6.3 are reported in Table 6.5. 
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Table 6.3: Detailed information about individual analyses. 

No. 

Dependency 

on εP  
Loadings

*
 

BC at 

the TRP 
Equation to be solved 

Target 

Parameter(s) 

1 --- Only εP  
0

,0

=

=

r

z

u

ε
 NDPD rr == εε ε 5155 ,  5155 , DD  

2 --- Only εP  Free zrr DDPuD εεε 155545 −−=  45D  

3 --- Only εP  0=zε  rr DNuD ε5141 −=  
41D  

4 No Only uP  Free rzur DDPuD εε 541444 −−=  
44D  

5 Yes
**

  N Free rrz uDDND 415111 −−= εε  
11D , 11H , cba ,,  

6 Yes xM  Free xx MD =χ22  
22D , 22H , cba ,,  

(*) Maximum and minimum values are given in Table 6.5. 

(**) Values of εP  considered are given in Table 6.4. 

 

 

 

Table 6.4: Load cases – steps and magnitudes. 

Loads applied to riser 

Load 

Case 
Pressure Loading 

(MPa) 
εP ( kN) 

Max. axial tension  

(kN) 

Min. axial tension  

(kN) 

1 
Internal = 0 

External = 0 
0  100  -100  

2 
Internal = 10 

External = 7.80 
145.6 100  -100  

3 
Internal = 20 

External = 15.61 
291.3 100  -100  

4 
Internal = 30 

External = 23.412 
436.9  100  -100  
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Table 6.5: Maximum values or semi-amplitudes of the applied loads. 

Analysis 1 2 3 4 5 6 

Loading 
εP  εP  εP  uP  N 

xM  

Units kN kN kN MN/m kN kNm 

Minimum 0 0 0 0 0 -16 

Maximum 873.9 873.9 873.9 10 100 16 

Amplitude 873.9 873.9 873.9 10 100  32 

 

 

In analysis 1, the average radius of the riser is restricted to move in the radial direction 

by fixing the inner surface of the outer anti-wear layer, in the radial direction. This is 

because the inner radius of the outer anti-wear layer coincides with the average radius of 

the riser excluding the carcass layer. Meanwhile fixing the outer anti-wear layer allows 

the two adjacent helical armour layers to move freely, so that all layers can be 

compressed radially.  Figure 6.12 shows the applied εP  against the computed radial 

strain. 

 

In the second analysis the load is the same as in the first one except the boundary 

conditions at the TRP, which is not free. Figure 6.13 shows the applied εP  against the 

radial displacement. 
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Figure 6.12: Result of analysis 1. 
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Figure 6.13: Result of analysis 2. 

 

Analysis 3 is again the same as the first two ones except the boundary conditions at the 

TRP, where displacement is restrained in the axial direction. Figure 6.14 shows the 

applied εP  against the computed radial displacement. 
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Figure 6.14: Result of analysis 3. 
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Analysis 4
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Figure 6.15: Result of analysis 4. 

 

In the fourth analysis the riser is subject to pure monotonic increase in uP  linearly with 

time. The TRP is free to move in all directions. Figure 6.15 shows the applied uP  

against the computed radial displacement. 

 

The fifth analysis corresponds to a cyclic axial tensile load simulation preceded by an 

initial ‘pressure load step’. The analysis starts with an initial ‘pressure load step’ which 

accounts for the internal fluid pressure and the external hydrostatic pressure. Four 

different input pressures are analysed and referred to as cases 1, 2, 3, and 4, 

respectively. The values of the applied internal and external pressures are given in Table 

6.4. The pressure step is then followed by a ‘tensile step’, in which a 100 kN axial 

tension is cyclically applied to the free end of the pipe. In each loading or unloading 

phase of the cycles the load is applied linearly with time.  

 

In Figure 6.16.a-d the applied axial force is plotted against the computed axial strain for 

the four different load cases defined in Table 6.4. Notice that the initial pressure load 

step results in an initial axial strain, radial strain and radial displacement offset which 

are not shown in the figures.  
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Analysis 5 - Case 1: Pε = 0
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Analysis 5 - Case 2: Pε = 145.6 kN
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Analysis 5 - Case 3: Pε = 291.3 kN
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Analysis 5 - Case 4: Pε = 436.9 kN
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(d) 

 

Figure 6.16: Axial force-axial strain curves for the four different load cases of analysis 6 

reported in Table 6.4. Cases are 1 (a), 2 (b), 3 (c) and 4 (d).  

 

The sixth analysis case corresponds to a cyclic bending moment simulation preceded by 

an initial ‘pressure load step’, which is the same as those presented in Section 6.3.1. 
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Discussion - Figure 6.12 shows the radial strain for analysis 1. The initial jump 

corresponds to the first time step where all gaps between layers close. These gaps 

develop between the adjacent layers of the riser during meshing due to the limited 

number of elements in the circumferential direction of each layer. As the simulation 

goes through cyclic internal and external pressure loading, the behaviour becomes more 

stabilised where a linear curve can be fitted to represent the overall behaviour. 

 

Figure 6.13 shows the radial displacement resulted from case 2. The cyclic response of 

radial displacement due to cyclic internal and external loading is unlikely due to 

frictional dissipation between adjacent layers but potentially due to the gaps closure and 

opening at the initiation of each cycle. Therefore a linear curve fitting assumption for 

this case is made.. 

 

Radial displacements resulting from analysis 3 are shown in Figure 6.14. The 

magnitudes of these displacements are far less than those for case 2 and can be ignored, 

but are curve fitted linearly and considered in the constitutive model. 

 

Figure 6.15 shows the radial displacement of analysis 4. This figure illustrates the 

characteristics of the variable uP . An increase in this variable makes an inward or 

outward overall radial movement of all layers and does not create any compression.  

Furthermore, there is not frictional dissipation, no gap opening and closure between 

layers. Therefore the response is clearly linear and a linear curve fitting is well suited to 

this curve. 

 

All results of Figure 6.16, except for the case Pε = 0, illustrate a hysteretic behaviour of 

the riser subjected to cyclic axial tension (Analysis 5), the response tending towards a 

stabilised cyclic response gradually as the number of cycles increases. The first cycle 

represents the installation phase, whereas the stabilised results are more suitable to be 

used for the calibration procedure, which will be discussed in the next section. This 

figure also shows that the higher the pressure, the greater the energy dissipated during 

the hysteresis loop. 
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6.4.2 Calibration of the constitutive model 

 

Several finite element simulations, presented in Section 6.4.1, have been used to 

calibrate the constitutive model. Each result from the numerical simulations was curve 

fitted either using a linear or bilinear curve, based on the stabilised cycle. The linear 

curve yields a constant slope (Analysis 1 to 4). The bilinear curve can give three 

specific parameters for the constitutive model (Analysis 5 and 6): the initial no-slip 

slope, a slip-initiation point, and a full-slip slope.  

 

In Figures 6.17 to 6.20, five representative results from the finite element simulations, 

Analyses 1 to 4, are shown together with the fitted linear curves on their stabilised part. 

All figures, except Figure 6.20, show an initial jump which is due to gap closure at the 

early stage of each cycle and should be ignored while calculating the parameters. 
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   (a)      (b) 

Figure 6.17: Representative results from the finite element simulations, Analysis 1, 

and related fitted linear curves. 
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Figure 6.18: Representative result from the finite element simulations, Analysis 2, 

and related fitted linear curve. 
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Figure 6.19: Representative result from the finite element simulations, Analysis 3, 

and related fitted linear curve. 
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Figure 6.20: Representative result from the finite element simulations, Analysis 4, 

and related fitted linear curve. 

 

For Analyses 1 to 4 a linear response can be identified. These slopes directly provides 

the flexural stiffnesses 511555 , DDD =  and 5445 DD =  by using appropriate equations 

from the fifth column of Table 6.3. For example 55D  is the slope of linear curve in 

Figure 6.17 because εε PD r =55 . 

 

Figure 6.21 shows two representative results from the finite element simulations, 

Analysis 5, together with the fitted bilinear curves on their stabilised part. Negative 

offset of the radial strain is due to the compression as a result of the initial pressure 

loading step. 

 

For all cases except those with zero or very small applied pressure, an initial linear 

response can be identified. Therefore, an initial ‘no-slip slope’ can be determined and is 

found to be the same for each of the analysed cases. This validates the hypothesis that 

an initial linear part of the force-displacement diagram, in which frictional slip between 

layers is absent or negligible, does exist. This slope directly provides the flexural 

stiffness 11D . 
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Analysis 5 - Pε=436.9 kN
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Figure 6.21: Two representative results from the finite element simulations, Analysis 

5, and related fitted bilinear curves. 
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Figure 6.22: Curve-fitting of the slip-initiation points. 

 

After this initial linear response, a non-linear part of the curve follows, which relatively 

rapidly tends to join a final full-slip slope. Upon repeated loading and unloading cycles, 

this final slope changes and stabilizes on a straight line which is that used in the 

identification procedure. This final full-slip slope is not equal to the hardening 

parameter 11H , but it is related to it and therefore its determination allows to 

estimate 11H .  

 

The intersection point between the initial slope and the final slope provides a ‘slip-

initiation’ point, which is also a point of the boundary of the no-slip domain, i.e. a point 

of the zero level set of the slip-onset function in the εPN −  plane. 

 

The slip-initiation points identified have been fitted with the quadratic expression of 

Equation (6.24) and the resulting surfaces are shown in Figure 6.22. Table 6.6 reports 

the parameters of the model determined by the proposed procedure. 
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Table 6.6: Identified parameters. 

Stiffness Slip-onset function Hardening 

D11(N) 2.5 · 10
8
 a 0 H11 (N) 7.3 · 10

7
 

D41(Nm
-1

) 1.28 · 10
8
 b (N

-1
) 1.2 · 10

-4
 H22 (Nm

2
) 2.5 · 10

5
 

D51(N) -5.88 · 10
6
 c (N

-1
 m

-2
) 2.3 · 10

-2
   

D22 (Nm
2
) 6.08 · 10

5
     

D44(Nm
-2

) 4.38 · 10
9
     

D54 (Nm
-1

) -1.36 · 10
8
     

D55(N) 1.52 · 10
7
     

 

 

6.4.3 Validation of the constitutive model 

 

To evaluate the proposed method, the same tensile cyclic analyses performed in Section 

6.4.1 using the detailed finite-element model in ABAQUS have been reproduced using 

the proposed constitutive model adopting the parameters of Table 6.6 and using the 

solution scheme described in Section 6.2.3.  

 

Results of this verification are reported in Figure 6.23 for four cases corresponding to 

four values of the applied pressure load Pε . For each case a graph is reported in which 

the load-displacement curve obtained with the proposed constitutive model is plotted 

with a solid line and is compared with the dotted-line curve obtained using the detailed 

finite-element model. These results exclude the initial pressure loading step. 

 

In case 1 (Pε = 0), no friction occurs in both cases, which means no energy dissipation. 

For cases 2,3 and 4, the constitutive model simulates an almost same hysteresis 

response as the finite element results in terms of overall behaviour, which indicates the 

amount of energy dissipated due to friction between individual layers. 
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Case 3: Pε = 291.3 kN
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Case 4: Pε = 436.9 kN

0

20

40

60

80

100

120

-0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001

εz

N
 (

k
N

)

ABAQUS

Constitutive model

 

(d) 

 

Figure 6.23: Comparison of the results obtained from the constitutive model (solid 

line) and from the detailed finite element model (dotted-line). 
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6.4.4 Consistent tangent operator 

 

The constitutive model, developed in Section 6.4, is now formulated in a consistent 

tangent operator which can then be implemented into a generalised finite element 

formulation. Alfano et al. (1999) presented a general approach to the evaluation of this 

operator for associated rate-independent elasto plasticity materials. The procedure is to 

follow the method developed by Alfano et al. (1999) for the case of associated plasticity 

extending it to the non-associated case of interest here. Re-writing Equations (6.13) 

when a fully implicit backward-Euler time-integration scheme is adopted yields: 
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Differentiating Equation (6.28)1 with respect to 1+nε , we get 
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From Equation (6.28)2 we get the expression 
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The assumed definition Equation (6.24) implies that 
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Substituting Equation (6.31) into Equation (6.30), and then substituting the result into 

Equation (6.29) and the derivative of Equation (6.28)3 provides the following system of 

equations: 
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From which we obtain 
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The fulfilment of Prager’s consistency condition 0== ff �  implies (Han and Reddy, 

1999) 
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Substituting Equations (6.33) into Equation (6.35) results in λ∆  as below 

 

( )[ ]
( ) ( ) ( )[ ] nmHDFQHDHD

ndDFQHDD
n

•++∆−+

•+∆−
=∆

−

+
−

ˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆ

1

1

1

λ

ελ
λ  (6.36) 

 

By substituting Equation (6.36) into Equation (6.28)1 we obtain 
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where 

1ˆˆˆ −= FQZ  (6.38) 

 

Substituting matrices and performing cross and dot products yields to the final equation 

which is given in Appendix B. This operator can now be implemented into a generalised 

finite element beam model to study a large-scale analysis while considering the small-

scale frictional slip occurring between the layers in an unbonded flexible riser. 

 

 

6.5 Discussion  

 

The comparison between the curves provided by the constitutive model and the 

stabilised cycles obtained using the finite element numerical simulations indicate a 

reasonable agreement in terms of the overall response. The model accurately captures 

the minimum and maximum magnitudes of all cases of different input pressures. The 

initial stiffnesses of all cases compare well with the stabilised initial slopes of the finite 

element numerical simulations. The hardening stiffnesses of all cases also perfectly 

capture the all final full-slip slopes of the finite element simulations.  

 

It is worth noting that for all cases the same stiffness and hardening parameters have 

been used, that these parameters have been determined by interpolating the finite 

element results with a bilinear curve only assuming a monotonic case, and that very 

good agreement is reached for cases with significantly different values of the pressure 

and for the entire stabilised cycles.  

 

The constitutive model is robust enough to capture many practical loadings and has the 

capability to be easily improved, enhanced and extended. One possible way would be to 

change its response from linear to non-linear, which then would be able to match finite 

element simulation or experimental results much more accurately in terms of gradual 

change of stiffness between no-slip and full-slip criteria. 
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7 Conclusions and recommendations for future work 

 

 

7.1 Conclusions 

7.1.1 Numerical modelling 

 

In Chapter 3 a three-dimensional finite element model incorporating contact interaction, 

geometric non-linearity and friction has been developed to accurately simulate the 

structural response of a six-layer unbonded flexible riser.  The model is used to generate 

load-displacement relationships for various load cases.  

 

Almost all the weaknesses of analytical methods can be overcome using detailed, three-

dimensional finite-element (FE) analyses, as is shown in recent work by the authors 

(Bahtui et al., 2008b). However, the downside of this type of analysis is the high 

computational cost so that, to make the analysis feasible, the riser model length is 

restricted to only few meters in the best case scenario for which top-end computational 

facilities and a large solution time are available. 

 

 

7.1.2 Analytical modelling 

 

In Chapter 4 an analytical formulation has been derived by combining together three 

different analytical approaches (Lanteigne 1985; Kraincanic and Kebadze 2001; 

McNamara and Harte 1989) proposed in the literature. This model includes the slip 

effects in the three dimensional sense as well as layer separation and bird-caging 

phenomena. A switch scheme is also incorporated to prevent layer penetration. The 

analysis considers the main modes of flexible riser loading consisting of tension, 

torsion, bending moment and internal and external pressure. 
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7.1.3 Validation and verification of the numerical and the analytical 

modelling 

 

In Chapter 5 the results from the detailed three-dimensional numerical model, 

developed in Chapter 3, and analytical models, derived in Chapter 4, are compared in all 

the load cases considered. It is shown that there is a good correlation between the finite 

element and the analytical models. Results show that friction has significant damping 

effect in bending moment analysis. Results from cyclic loading analysis show that 

friction has potential effect in cyclic tensile and torsional loadings at higher load levels. 

 

Experimental data are not widely available in the literature. There is very limited 

reference in the literature to any realistic flexible pipe structure with its construction 

details and material properties, or to any experimental data. Experimental investigation 

is also too expensive which limits researchers for validating their analytical results.  

 

It has been demonstrated in this work that the detailed three-dimensional finite element 

model can be used as a virtual testing machine to efficiently conduct parametric studies 

on the unbonded flexible riser and to predict its behaviour under various loading 

conditions. Using the numerical approach, physical experimental tests will only be 

required as ‘one-off’ checks to validate the virtual model. A numerical model carefully 

created and validated against test data enables cost-effective parametric investigations, 

which can in turn lead to improved riser design. 

 

 

7.1.4 The constitutive model 

 

In Chapter 6 a new method has been proposed for the formulation of constitutive 

models for flexible risers, suitable for large-scale analyses, and for the identification of 

the related input parameters. The approach used is multi-scale and entirely numerical. 

At the small scale, a detailed finite-element model of a riser of small-length has been 

used to conduct several numerical simulations for different values of the applied loads 

and internal/external pressure. This model accurately takes into account the detailed 
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geometry of the riser and the frictional contact between various layers. At the large 

scale, an Euler-Bernoulli beam model has been developed with the addition of suitable 

pressure terms in the generalised stresses to account for the internal and external 

pressures. The constitutive law for the beam model has been derived based on a set of 

assumptions which are motivated by the analogy between the structural response 

obtained in the numerical simulations and that of an elasto-plastic model with non-

associative type of flow rule, the frictional slipping between the different layers of the 

riser producing a similar type of response as the frictional slipping of micro-planes in a 

continuum medium. The parameters of the beam constitutive law are identified by 

ensuring that the analyses performed at different scales provide as close as possible 

results for a number of representative cases. 

 

In this proposed model, the non-linear transitional regime between the initial no-slip 

response and the final full-slip response is replaced with a bilinear response and a sharp 

elbow at the slip-initiation point. During the transition phase one part of the layers in 

contact (particularly the armour tendons) slip with respect to each other, and another 

part of them do not. Although the results of the proposed simplified model can be 

accurate enough in many cases, it is important to underline that the method can be 

further refined, as discussed in Section 7.2.2. 

 

The model has been developed specifically for the important cases of cyclic bending 

loading and cyclic tensile loading of a riser subject to different values of internal and 

external pressures. In these developments of the method, linear kinematic hardening has 

been assumed. Satisfactory agreement has been obtained between the overall response 

provided by the proposed (large-scale) model and that of the detailed (small-scale) finite 

element simulations. This makes this constitutive model already suitable to study many 

problems, such as hysteretic damping in vibration analysis.  

 

 

7.1.5 Validation of the constitutive model 

 

The validations, presented in Sections 6.3.3 and 6.4.3, indicate a reasonable agreement 

in terms of the overall response of the riser. This demonstrates that the assumptions on 
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which the constitutive model is based are well justified and that the proposed approach 

can represent an excellent method of analysis for long flexible risers. 

 

 

7.1.6 Main contributions to the knowledge 

 

The original contributions of the present work to the knowledge are outlined below: 

 

• The constitutive model, developed in Chapter 6, describes a very detailed 

behaviour of the unbonded flexible risers in terms of highly non-linear 

geometric behaviour, the inter-layer contact and stick-slip effects. The beam 

model supplemented with the proposed constitutive law is suitable for large-

scale analysis, unlike the detailed finite element model used to formulate it and 

to determine its parameters. A typical model which requires several days of 

computational solution time takes less than a second to be simulated by the 

constitutive model.  The constitutive model, on the other hand, is able to capture 

all the important aspects of the structural response of the riser. 

 

• Existing commercial packages uses "Composite" riser modelling scheme, while 

this work presents a fully multi-layer modelling scheme which accurately 

captures all the geometric non-linearities, due to the helical configuration of the 

tendons within a helical layer, the material nonlinearities due to the polymeric 

layers, and non-linearity introduced by layer interaction and the changing 

contact conditions under load. 

 

• Using the small-scale detailed finite element model, presented in Chapter 3, it is 

possible to conduct parametric studies on the factors that influence the strength 

and stiffness of risers.  Such studies are difficult to conduct under laboratory test 

conditions due to the physical size of the risers and also due to the special 

experimental equipment required, and are therefore usually considered to be too 

expensive and time consuming. The three-dimensional model, as a virtual 

experimental rig, offers advantages at each stage of the process. At the design 

stage, it allows operators to compare various riser designs. Until now, 
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comparing different designs has been difficult because of the extent to which 

risers can differ. More accurate modelling also can result in targeted changes to 

technical specifications during design. This helps to optimize performance and 

minimize manufacturing cost. During installation, the numerical modelling 

increases the confidence with which a project can proceed to riser laying. 

Modelling can also reduce installation costs and time because more precise 

assessments can be made of installation equipment and procedures. 

• The analytical model, presented in Chapter 4, brings the capability to validate 

finite element model of different types of unbonded flexible risers. The method 

developed for the analytical model makes it feasible to study different types of 

risers consisting of various numbers of layers each one having a different type 

such as helical armour layer, carcass, pressure armour and sheath layer. The 

model allows separation and compression between individual layers of the riser 

through the development of the switch algorithm. 

 

 

7.2 Recommendations for future work 

 

The following suggestions are put forward for future investigations. 

 

 

7.2.1 The numerical model 

 

The numerical model can be enhanced and improved by  

 

• Reducing the amount of gap between individual layers by 

a. Replacing linear elements by elements of quadratic interpolation 

b. Increasing the number of elements in the circumferential direction. 

• Further investigation of the boundary conditions to be applied to the local model 

to ensure full consistency in the transfer of the related results to the constitutive 

model for the global flexible riser. 
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• Development of a robust and efficient automated procedure to identify the input 

parameters for the riser model which results in an optimal fit of the flexible pipe 

results. 

• To replace the existing carcass layer by a more detailed layer. 

• To add more layers to the riser such as interlocked pressure armour layers. 

 

 

7.2.2 The constitutive model 

 

• The constitutive model can be significantly improved by including non-linear 

hardening as well as more refined hardening models capable of simulating the 

stabilization of the response during cyclic loading. This would be through 

replacing the current mathematical theory by non-linear theory of plasticity. The 

new non-linear model would better fit finite element or experimental results and 

thus would be more suited for further cyclic analysis. 

• Further improvements can be made by accounting for the presence of the shear 

force (switching to a Timoshenko beam model) and by incorporating the 

influence of variable axial force and torque on the non-linear response.  

• Clearly, more sophisticated models will also imply more parameters to be 

identified and therefore call on the development of more refined identification 

procedures. 

• The constitutive model for bending moment-curvature, presented in Chapter 6, 

can be extended to simulate the hysteresis behaviour in torsional loading by 

extending the slip onset criterion to a four-dimensional space.  

• The sensitivity of the parameters of the constitutive model can be analysed to 

study their effect on the results from the constitutive model. A suitable domain 

for each parameter may be derived.  

 

 

7.2.3 Development of constitutive models for global analysis 

 

• To undertake a global non-linear riser large displacement dynamic analysis to 

determine the maximum loads for strength and cyclic loads for fatigue damage 



 122 

of the steel layers by implementing the proposed stick-slip hysteretic 

constitutive model into the finite element code to analyze the highly non-linear 

behaviour of long unbonded flexible riser structures. 

• To implement the resulting hysteretic constitutive model into a marine riser 

analysis code to perform vortex induced vibration VIV computational 

calculations and study its response. 

• All existing riser technology packages, which uses the “composite” modelling 

scheme, can be potentially improved by replacing the stiffness behaviour by the 

proposed non-linear constitutive model. 
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Appendix A - Newton-Raphson method 

 

Many algorithms exist for solving nonlinear Equations. The Newton-Raphson method 

that has been widely used in finite element analysis will be presented in this section. 

 

Assume that )(xf  and its derivative )(xf ′
 is defined and continuous on an interval 

about px = , where 0)( =pf . Then there exist a 0>δ  such that the sequence 
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will converge to p for any initial approximation
[ ]δδ +−∈ ppp ,0 . This equation is 

called the iteration scheme of the Newton-Raphson algorithm. 
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Appendix B – Consistent tangent operator 
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