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Abstract: At present Deep Neural Networks (DNN) have a dominant role in the AI-driven Au-
tonomous driving approaches. This paper focuses on the potential safety risks of deploying DNN
classifiers in Advanced Driver Assistance System (ADAS) systems. In our experience, many theo-
retically sound AI-driven solutions tested and deployed in ADAS have shown serious safety flaws
in practice. A brief review of practice and theory of automotive safety standards and related body
of knowledge is presented. It is followed by a comparative analysis between DNN classifiers and
safety standards developed in the automotive industry. The output of the study provides advice and
recommendations for filling the current gaps within the complex and interrelated factors pertaining
to the safety of Autonomous Road Vehicles (ARV). This study may assist ARV’s safety, system, and
technology providers during the design, development, and implementation life cycle. The contri-
bution of this work is to highlight and link the learning rules enforced by risk factors when DNN
classifiers are expected to provide a near real-time safer Vehicle Navigation Solution (VNS).

Keywords: advanced driver assistance systems (ADAS); deep learning classifier; autonomous
driving; functional safety; hyperparameters; Safety of the Intended Functionality (SOTIF); ISO 26262;
ISO 21448; ISO PAS 8800; autonomous road vehicles (ARV); Vehicle Navigation Solution (VNS)

1. Introduction

In the automotive, marine, and aviation industries, there is a strong economic and
technological imperative to design and apply safe, clean, and sustainable autonomous
vehicles. The demand in the automotive industry which is the focus of this work is expected
to triple by 2027. Autonomous driving systems, along with the use of machine learning
and artificial intelligence in vehicle design, are changing the way which we interpret and
interact with modern transportation systems. This has resulted in the requirement and
need for robust safety standards that can address the unique challenges introduced by
these emerging technologies.

Machine learning (ML) and artificial intelligence (AI) can significantly increase road
safety and traffic flow efficiency through the adoption of advanced driver assistance systems
(ADAS). These technologies let vehicles learn from volumes of data and make decisions
in real time. Hence, this helps them to predict and respond to a wide range of driving
scenarios more appropriately. However, with the integration of ML and AI, new safety
concerns and challenges arise that have to be considered with due diligence. Standards for
safety have to be followed stringently for the proper functioning-reliability and safety-of
such systems.

Researchers and practitioners are working on new safety standards that specifically
address how ML and AI will be utilized in the automotive industry to overcome these
challenges. Our purpose is to establish a framework for analysis and matching the design,
engineering, and validation of autonomous driving systems with the help of these emerging
standards, as well as providing instructions for making sure they are used objectively to
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reduce safety risks. The introduction of such standards is crucial in fostering confidence
in the safety and reliability of autonomous vehicles and accelerating their widespread
adoption. The different aspects of safety within the connection of AI-based autonomous
driving systems, the limitations of existing standards, and the proposed solutions to these
challenges are presented in the conclusion.

The automotive industry has shifted its research, and investments into offering au-
tonomous driving experiences and applications. Autonomous vehicles are built on ADASs
which enhance driver safety, comfort, and convenience, and reduce overall accident risk.
There are numerous types of ADAS, including lane-keeping systems, blind spot detection,
adaptive cruise control, emergency braking, obstacle detection, and predictive navigation
systems [1].

ADAS systems are typically classified into different levels in accordance with guide-
lines set by the Society of Automotive Engineers (SAE) International Level of Automation
Scale [2]. These levels range from level 0, which is no automation, to level 5, which is full
autonomy. Automation levels 1 and 2 typically involve driver assistance systems such
as Adaptive Cruise Control or Lane Keeping Assist, while levels 3 and 4 are able to take
over most of the driving tasks and involve partial automation, and level 5 represents full
autonomy (Table 1).

Table 1. SAE’sAutonomous Driving Levels.

Level 0 No Automation; The driver is in complete control of the vehicle and all its functions.

Level 1 Driver Assistance; Certain functions of the vehicle are automated, such as cruise control
and lane centering.

Level 2 Partial Automation: The vehicle executes acceleration and braking, while the human
driver is responsible for steering.

Level 3 Conditional Automation; The vehicle is capable of performing all dynamic driving
tasks, but the human driver must be ready to take control at any time.

Level 4 High Automation: The vehicle performs all dynamic driving tasks without any input
from the human driver.

Level 5 Full Automation: The vehicle performs all dynamic driving tasks and monitors the
driving environment without any input from the human driver.

The automotive industry is quickly moving towards level 5 automation, and it is ex-
pected that by 2030, the automotive industry will move towards level 4 and 5 automation [3].
Table 1 shows SAE’s autonomous driving levels. The challenge is to develop ADAS tech-
nologies that are robust and reliable enough to safely handle complex driving scenarios [4].
For highly automated driving vehicles ADAS systems must integrate a large number of
intricate sensing components, from radar to optical sensors such as camera and Lidar
(Light Detection and Ranging) sensors, with sophisticated algorithms in order to detect
and respond to any potential road hazards. This makes the development of ADAS systems
challenging for OEMs (Original Equipment Manufacturers) [4]. Furthermore, the develop-
ment and deployment of ADAS systems require an additional layer of design, namely the
Operation Design Domain (ODD), which defines the operational context of the system [5]
in terms of boundaries, constraints, and features.

Autonomous vehicles are increasingly vulnerable to cybersecurity threats as they rely
more on advanced connectivity and communication technologies. Authors in [6] claim that
the most damaging cybersecurity threats originate from autonomous vehicles connecting
to the internet, providing onboard Wi-Fi services, communicating with other vehicles
and infrastructure, and supporting advanced features like over-the-air firmware updates.
Furthermore, as noted by authors in [7], attackers can manipulate the ADAS sensors of
an AV to create deceptive scenarios, leading vehicles to misinterpret their environment.
For instance, projecting fake obstacles can cause unnecessary braking, while hiding real
obstacles can result in collisions, posing serious safety risks.
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Further aspects requiring careful consideration when deploying DNN models in au-
tonomous vehicles include explainability, interpretability, and accountability. Explainability
refers to the ability of a model to provide a rationale for its outputs that can be easily
understood and trusted by humans [8]. Interpretability refers to how well a human can
comprehend a model’s prediction and decision-making solely by model’s design, without
additional information [9]. At architectural design phase of DNN models, collaborative
review and joint design between development teams become more efficient and outcome-
oriented when models are more explainable (see Section 4.1).

Interpretability in DNN models is extremely valuable during the verification and
validation (V&V) phase. Test engineers can assess a model’s behavior, ensuring that
it operates as expected under various driving conditions. On the other hand, a lack
of interpretability can lead to insufficient V&V test coverage, leaving residual risks of
untested software that could compromise safety and reliability in real-world scenarios (see
Section 4.4).

Accountability (i.e., explaining the wrongdoing of AVs) is another challenge in de-
veloping and deploying DNN solutions for autonomous driving. Nordhoff, in his paper
Resistance towards Autonomous Vehicles (AVs) [10], argues that resistance to AV deploy-
ment can be attributed to unresolved legal accountability. To address this challenge and
reduce opposition, he suggests governance and regulation with clear legislation and de-
fined stakeholder roles, particularly in accidents, along with greater transparency in data
collection. In a different approach, researchers in [11] proposed a decision-table-based tool
for legal accountability for automated decision-making.

Similarly, there are important ethical considerations to note. Decision-making in
autonomous driving is increasingly being shifted, either partially or entirely, from humans
to AI in areas that historically required human interpretation and ethical judgment [12].
Determining clear moral responsibility for harm or injury caused by system behavior is
crucial to gaining public trust in autonomous systems [12].

Human oversight and intervention throughout all phases of machine learning devel-
opment for autonomous driving systems can be an effective way to address the grey zone
created by issues such as explainability, accountability, and ethical concerns. However, it
is important to note that human oversight can be costly and is not completely free from
biases and the risk of error.

Researchers at OpenAI [13] found scalable oversight techniques can allow humans
to supervise models in an efficient way. For example, humans ask models to critically
evaluate the outputs of other models [14]. However, they also introduced a method called
“WEAK-TO-STRONG GENERALIZATION” which takes a different approach by focusing
on generalizing beyond human supervision such that models perform well even if human
supervision is not reliable.

Autonomous driving is a highly complex topic with multiple facets, each presenting
different perspectives and challenges that must be addressed. Beyond security, explainabil-
ity, accountability, and human oversight, other critical topics include but are not limited to
real-time data processing and latency in AI systems, continuous learning and model up-
dates, and collaborative AI for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication. A more complex machine learning model might offer better generalization
and accuracy, but improvements in latency and run-time processing performance are essen-
tial to meet safety requirements [15]. Updating models after deployment is crucial to ensure
the system adapts itself to new unseen driving scenarios. By using self-evaluating and
self-learning algorithms, incorporating Reinforcement and meta-learning techniques, mod-
els can be continuously refined through Flash Over The Air (FOTA) updates, to maintain
the AV’s ability to respond to evolving conditions [16,17]. Collaborative AI for Vehicle-
to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication provides machine
learning models with more reliable information about the vehicle’s surroundings [18],
enhancing safety by enabling more coordinated decision-making.
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Lane Keeping Assistant (LKA) is a critical ADAS function for highly autonomous
driving which uses a complex network of radar sensors, cameras, and algorithms to monitor
the vehicle’s lane position that proactively maintains proper lane alignment, considering
road markings. Therefore, accurate object classification is necessary for the system to
respond and effectively to potential risks and hazards, providing timely warnings and
taking corrective actions. If the autonomous system inaccurately classifies the drivability of
an object or fails to recognize road markings, it can lead to serious safety risks or injuries.

The importance of accurate classification in LKA systems is illustrated in Figure 1.
The ego vehicle is situated in lane 1, several hundred meters ahead lies a stationary road
closure obstacle. Lane 2 is currently unoccupied, while in lane 3, there is an approaching
vehicle. If the system misclassifies the drivability of these objects or fails to recognize the
road markings, it could result in incorrect lane-keeping decisions, such as unnecessary
lane changes or abrupt braking, potentially leading to hazardous situations. Hence, in this
particular driving context, the precision of object classification, coupled with road marking
identification, remains essential for the Lane Keeping Assistance (LKA) system to operate
safely and efficiently in the presence of both stationary and moving obstacles.

Figure 1. The significance of accurate object classification for ADAS Lane-Keeping Assistant systems.

Car manufacturers struggle with the enormous challenge of designing systems that
are feasible both economically and from the point of safety, constantly detecting and
responding to potential roadside hazards in real-time and under changing conditions-a
task that involves a fast and robust computer vision system, sensor fusion methodology,
and machine learning innovations. In addition, risk evaluation, mitigation mapping, and
effective response strategies are used to achieve a safe and reliable situation awareness and
action life cycle. These works complement the increasing awareness in the industry for
the integration of advanced technologies like artificial intelligence and machine learning
into ADAS systems. Regardless of these challenges, the importance of ADAS systems has
grown in the automotive sector and is a significant step toward full autonomy. While the
industry is working on more sophisticated systems, it expects advanced technologies to be
integrated. On top of the technological developments, however, automakers also have to
clear the regulatory and safety hurdles which ADAS systems have to meet before they can
be deployed in production vehicles.

In this paper, we attempt to make a contribution to the literature by performing a
systematic and comprehensive comparative analysis between DNN classifiers and estab-
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lished automotive safety standards perspective, which, to the best of our knowledge, is
still largely underrepresented in the existing literature. The novelty in our approach lies in
fully dislodging the interrelation and complexity of the many factors involved in deploying
DNN classifiers in ADAS systems, which provides insight into the emergence and practi-
cal implications that are instrumental in refining safety protocols in autonomous driving
technologies. We not only consolidate existing knowledge on safety risks but also high-
light unaddressed gaps and then provide actionable and specific recommendations which,
besides aiming at the standardization of safety methodologies, contribute to informed
decision-making in the development and deployment of ADAS systems. The emphasis is
on providing a comprehensive guide that is practical and relevant for safety, system, and
technology providers of autonomous vehicles throughout the lifecycle of design, develop-
ment, and implementation. In this work, we emphasize the inclusion of risk factors into
learning rules, thus enabling us to develop near real-time safer vehicle navigation solutions
by refining DNN techniques.

The organization of the paper is outlined as follows: Section 2 deals with the cur-
rent and most relevant studies related to secure AI-driven methodology, describing the
key findings and contributions of each. Section 3 provides a close review of the main
automotive safety standards, focusing on the limitations of ISO 26262 [19] and SOTIF
related to AI-driven and automated driving technologies and presenting ISO PAS 8800 [20].
Section 4 is the core of this manuscript, discussing in detail the safety issues related to
the architectural setting, training phases, deployment strategies, and validation of deep
learning systems for automated driving. This section presents a thorough safety framework
that provides efficient countermeasures and alternatives to mitigate these risks, as well
as examines several critical validation techniques necessary for the implementation of
AI-driven automated driving systems. Section 5 serves as the conclusion, outlining final
observations and prospective future avenues in this domain.

2. Related Work

Authors in [21] represent how crucial it is to develop methods for quantifying the
risks related to deep neural networks, especially as they become more prevalent in safety-
critical applications, such as medical diagnosis systems and autonomous vehicles. They
defined a new class of risk metric called “uncertainty example” based on a probabilistic
modeling approach and developed a framework that allows quantification of both the
likelihood and severity of safety-critical metrics in a computationally effective algorithm.
They evaluated the framework on several image classification tasks and demonstrated its
effectiveness in identifying safety risks associated with specific neural network architectures
and training procedures. They also demonstrate how the framework can be used to
guide the design of more robust and reliable neural network systems. Their work has
made a significant contribution to quantifying safety risk metrics such as robustness,
reachability, and uncertainty metrics in DNNs. However, we believe that Quantitative risk
assessment techniques are often difficult to apply to deep neural networks (DNNs) due to
their complex architectures and a large variety of implementation algorithms. Therefore, a
quantitative computation of safety risk metrics of such DNN networks with a high number
of layers seems to be practically not feasible. Estimating the safety risks of these networks
can be done more effectively by analyzing the performance of the classifier through the
metrics of false positives, true positives, false negatives, and true negatives. Performance
measurement can give a repetitive way of examining the exactness of a classifier and
spotting likely hazards in an economical and immediate fashion.

The DDE process, proposed in the paper [22] offers a systematic V-Model development
process solution to ensure the quality and composition of data sets used for ML. This process
is compliant with the System Processes in Automotive Engineering (ASPICE) standards,
making it easy to integrate into existing development processes and gain acceptance in
automotive engineering. The motivation of the authors to propose the DDE process is to
address the challenges of developing high-quality machine learning (ML)-based systems
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in the industry. The authors recognize that the quality of ML-based systems depends on
the quality of the data used for training, verification and validation tests. They proposed
the DDE process as a systematic and structured approach to ensure that the generated
data sets are of high quality and meet the requirements of the operational design domain
(ODD). Despite its advantages, the DDE process does not cover other aspects of ML such
as model selection or hyperparameter tuning and does not offer a comprehensive approach
to functional safety.

The paper [23] provides an overview of available methods for supporting the safety
argumentation of machine learning solutions in safety-critical systems in accordance with
the ISO 26262 safety standard. It identifies open challenges in this area and argues that the
development and certification of safety-critical software using machine learning (ML) is
different from traditional approaches. Since ML models are data-driven and automated
their design, verification, and validation require new methods. To address this, the authors
suggest that ISO 26262-part 6 processes for software development can be applied, and the
main focus must be placed on the requirement engineering, development, verification,
and validation parts. Regarding requirement engineering, the authors emphasize that
the incorporation of available expert knowledge and experience into the formulation
of use-case, system, and function requirements should be expressed in specialized key
performance indicators (KPIs). To provide a proper safety argumentation for the design
and development part, they recommend that domain experts should reason all general
design choices -which are not specified in the requirements- related to NN’s model design
and the training objectives. To enhance the robustness of the design, authors believe that
measures such as regularization and training data preparation might be particularly useful.

The authors cited in [24] note that most traditional neural network models are usually
designed based on the assumption of minimizing the training error while without consid-
ering the impacts of outliers or mislabeled examples, which is critical. Such an oversight
may cause great risk in real-world applications since the loss caused by misclassification
may be substantial and informative. With regard to this problem, the authors propose a
novel training algorithm that takes into account not only the training error but also the risk
associated with every single sample. The proposed algorithm consists of two stages: first,
the neural network is trained by using any conventional method which tends to minimize
the training error. Then, the risk of misclassification for every sample is calculated and
used to update the weights of the neural network. The above mentioned measures help
in lowering the chances of the network misclassifying samples that are related to higher
risk values. The authors evaluate the proposed algorithm on various datasets, showing it
outperforms state-of-the-art neural networks in terms of risk. The algorithm also proved
to be resistant against various types of noise and other anomalies in the dataset. This is
indeed a new kind of methodology that underlines the possible risks of neural network
classifiers and may have far-reaching implications for practical applications where the
misclassification costs are high.

Researchers at Bosch [25] highlight the critical importance of safety implications of
DNNs in automated driving perception systems. They propose a systematic approach to
safety engineering, with a particular focus on the safety of intended functionality (SOTIF)
as per the ISO 21448 standard [26]. The authors introduce a structured method to categorize
safety concerns into four key areas: operational design domain, data preparation, DNN
characteristics, and analysis/evaluation. Additionally, they present a list of fourteen safety
concerns specific to the application of Deep Learning in automated driving perception.
This categorization aids in identifying relevant stakeholders and clarifying responsibilities
among the various engineering teams involved in addressing safety issues within AD
systems. According to the paper, a “safety concern” refers to functional insufficiencies in
DNNs, such as misclassifying traffic signs due to adversarial inputs, which can lead to
hazardous behavior at the vehicle level if not properly addressed. The proposed safety
concept focuses on demonstrating the absence of unreasonable risk in these four areas.
Some of the key safety concerns and challenges they addressed include:
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Distributional Shift Over Time—DNNs assume a stationary data distribution, but in
real-world operations, this distribution naturally changes over time (e.g., seasonal weather
changes, sensor aging). This shift between training and operational data can degrade model
performance, posing a safety concern.

Insufficient Labeling Quality - Poor-quality labels in supervised learning can introduce
errors into DNNs, reducing performance and generalization. Inaccurate labeling also risks
unreliable evaluation and can result in misjudging the model’s capabilities, leading to
performance issues during real-world use.

DNN Characteristics—The authors note that Deep Neural Networks (DNNs) are
universal function approximators, meaning they can learn and fit any function through
training. However, their complexity often prevents human experts from fully predicting or
interpreting their behavior, which raises safety concerns.

Brittleness—DNNs can exhibit brittleness, meaning small, non-meaningful changes in
input can lead to significant changes in output, like misclassifying an object with added
noise or contextual changes. This brittleness can affect predictions over time (e.g., video
sequences), leading to inconsistent or unstable results, and creating issues for downstream
systems like tracking or fusion in autonomous driving.

3. Automative Safety

In the automotive industry, the safety of passengers, other vehicles, and pedestri-
ans, with respect to safe flow is of utmost importance. To ensure the safety of road users
and pedestrians, the International Organization for Standardization (ISO) and the Spe-
cial Interest Group for Automotive Safety have released safety standards ISO 26262 and
ISO 21448-SOTIF- [19]. These standards have been in place for a while now, but they are
evolving over time based on the ever-changing consumer, and legislative demands of the
automotive industry.

3.1. ISO 26262

ISO 26262 is a normative guideline that provides a framework for the entire develop-
ment process of electrical and/or electronic systems in road vehicles. It outlines specific
approaches to identify and assess hazards related to systematic failures as well as random
Hardware (HW) malfunctions, and how to mitigate the impact of the risks within the
framework of the product lifecycle. This includes the design, implementation, validation,
and verification of safety-related systems. ISO 26262 offers a comprehensive approach to
the development of safety-related systems, helping engineers to identify and reduce risks
throughout the entire development process.

3.2. ISO 21448-SOTIF

The ISO 21448—Road Vehicles—Safety of the Intended Functionality (SOTIF) stan-
dard is a newer automotive safety standard and was released in 2019 as an extension of
ISO 26262, aiming to address risks that are not covered by the original standard. It provides
guidance on how to ensure the safety of road vehicles when they perform their intended
functions without faults [26]. The standard focuses on preventing unforeseeable risks that
may arise from functional limitations of the intended functions or performance insufficiency
of the system or from predictable misuse by people or any environmental influences [27].
Some key aspects of the SOTIF standard are:

• The definition of intended function and malfunction.
• The identification and assessment of SOTIF scenarios and risks.
• The establishment of requirements and validation strategies for SOTIF.
• The documentation and traceability of the SOTIF process.

SOTIF validation strategy considers two types of hazards: known area hazards and
unknown area hazards. Known area refers to the set of scenarios where the system’s
behavior is well-defined and predictable. Unknown hazard area refers to the set of scenarios
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where the system’s behavior is uncertain or unexpected due to unforeseen situations or
limitations [28].

For example, a lane keep assist function may work well in a known area where the
road markings are clear and visible, but it may fail in an unknown hazard area where the
road markings are faded or covered by snow [28] SOTIF validation aims to identify and
mitigate potential hazards in both known and unknown areas by applying various methods
such as functional specification, functional hazard analysis, risk assessment, verification
and validation [29].

3.3. Inadequacy of ISO 26262 and SOTIF Standards for Automated Driving

In recent years, the automotive industry has seen a tremendous increase in the use of
advanced technologies such as machine learning (ML) and artificial intelligence (AI) [30].
However, with this increase in technology comes the need to address safety concerns.

The ISO 26262 and 21448 (SOTIF) standards have been widely adopted in the au-
tomotive industry for developing safety-critical systems. However, when it comes to
the development of Machine Learning (ML) solutions and autonomous driving, these
standards are inadequate.

This inadequacy is due to the fact that these standards are designed for deterministic
systems and not for stochastic behavior [31]. Furthermore, due to the unpredictable
and complex nature of road-driver-vehicle-pedestrian dynamics (state space) vis-à-vis
autonomous driving, it is difficult to ensure safety in these systems using the existing safety
standards [32]. Thus, it is important to develop safety standards that are specific to ML and
autonomous driving.

3.4. ISO PAS 8800

ISO PAS 8800 Road Vehicles—Safety and Artificial Intelligence [20]-drafted in 2022- is
a publicly available specification for the safety assurance of automated driving systems, pro-
viding compliance guidance on various aspects of safety assurance for automated driving
systems. These include safety requirements, safety management, validation, and verifica-
tion methods. It is intended to be used in combination with existing safety standards, such
as ISO 26262 and SOTIF, to ensure the safety and reliability of automated driving systems.

Overall, the combination of these safety standards is essential to ensure the safety
and reliability of ML solutions in the automotive industry. They provide a common
framework for the development process of ML solutions, as well as guidance on how to
ensure safety and reliability in the development of autonomous driving systems. ISO PAS
8800 is a proposed standard for road vehicles that define safety-related properties and risk
factors impacting the insufficient performance and malfunctioning behavior of artificial
intelligence (AI) within a road vehicle context [20,33].

The motivation for developing ISO PAS 8800 is to address the challenges and gaps
that arise from applying AI systems in road vehicles, such as perception, decision-making,
learning, adaptation, etc. ISO PAS 8800 aims to establish a common approach for developing
and testing AI systems that are used in road vehicles [34]. It will cover topics such as:

• Derivation of Safety requirements for AI systems
• Conducting Safety analysis methods for AI systems
• Verification and validation methods for AI systems
• Safety assurance cases for AI systems
• Safety management processes for AI systems

4. Identifying Safety Risks in Using Machine Learning Solutions

The development of DNN classifiers is associated with potential risks, as depicted in
Figure 2. Immediate risk factors and risks due to design variations are marked. It is crucial
to emphasize that the careful selection of these design variations is essential to minimize
the risk of frequent misclassifications in real-world applications. We will elaborate on these



World Electr. Veh. J. 2024, 15, 438 9 of 19

risks in the following sections and propose methods and solutions to mitigate the risk and
comply with mandatory requirements of safety standards.

Figure 2. Variations and Risk Factors across Key Steps in DNN Classifier Development.

4.1. Architectural Model Design of Deep Neural Network Classifier

Deep neural networks (DNNs) are a type of machine learning model that can be used
to solve a variety of tasks, including object recognition and classification. There are many
different types of DNNs, each with its own strengths and weaknesses.

Some of the most common types of DNNs include:

• Convolutional Neural Networks (ConvNets): ConvNets are well-suited for image
recognition tasks, such as object classification for autonomous driving. They work by
extracting features from images [35] using a series of convolution and pooling layers.
Advancements like ResNet [36] have contributed to deeper architectures, enhancing
accuracy, while architectures like MobileNet [37] have improved efficiency.

• MLPs (Multi-Layer Perceptrons): MLPs are the most basic form of neural networks.
They consist of input layers, one or more hidden layers with densely connected
neurons, and an output layer. MLPs are used for a wide range of tasks, including
regression and classification, and have been enhanced with innovations in training
techniques like Batch Normalization [38] and ReLU activations [39] but they don’t
have built-in mechanisms for handling grid-like data like images.

• Transformers: Transformers, originally designed for natural language processing [40],
have been adapted for image recognition tasks through advancements such as Vision
Transformers [41], enabling them to excel in image tasks.

The network design and architecture should be carefully chosen so that the model
does not overfit or underfit the data. It is critical to note that, as none of the approaches
offers an ideal solution, DNN architects have to trade-off between the robustness and
accuracy of their model and the implementation overheads. Therefore, the selection of the
most appropriate design and architecture largely depends on the specific application and
the resources available.

In the context of autonomous driving, ConvNets, with their established success in
image classification, remain a robust choice. An example of a ConvNets classifier consists
of five functional layers: the input, the hidden layer, the activation function, and the output
layer as shown in Figure 3.

An example of a neural network classifier consists of five functional layers: the input,
the hidden layer, the activation function, and the output layer is shown in Figure 3. A DNN
classifier may also utilize a size reduction layer, max pooling, and other elements.
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Figure 3. Architectural components of a Deep Neural Network Classifiers.

In a practical implementation for ADAS ECUs, such as Radar ECU or Video ECUs, the
data acquisition process gathers image data from a camera or extracts object information
(distance, azimuth angle, and radial velocity) from a radar ECU. After processing raw
data and conducting related digital signal processing, the software’s perception algorithms
further refine the acquired information, preparing it for the subsequent classification task.

The network design and architecture should be carefully chosen so that the model does
not overfit or underfit the data. It is critical to note that, as none of the approaches offers
an ideal solution, DNN architects have to tradeoff between the robustness and accuracy
of their model and the implementation overheads. Therefore, the selection of the most
appropriate design and architecture largely depends on the specific application and the
resources available. An example of a neural network classifier consists of five functional
layers: the input, the hidden layer, the activation function, and the output layer. A DNN
classifier may also utilize a size reduction layer, max pooling, and other elements.

The input layer in an ADAS system is responsible for taking in sensory data from
cameras, Lidar, or radar subsystems [42]. In the case of a camera image, the input layer
consists of pixels that are converted into grayscale values. The input layer can also be used
to process radar objects, such as obstacles or other vehicles. In this case, the input layer
takes the raw data from the radar and performs normalization and feature extraction (the
pre-processing steps).

The design decisions of DNN architect at this stage include choosing an appropriate
image resolution, color space, and data format. For radar data, the design decisions include
choosing the appropriate data format and pre-processing techniques. If the input layer is
too small, the model may not be able to feed sufficient information to succeeding layers
leading to misclassification. On the other hand, if the input layer is too large, the model
may overfit the training data, resulting in poor classification of new data.

The general components of the size reduction layer are: compression, resizing, crop-
ping, and scaling. Compression, in turn, is aimed at reducing the file size by means of
removing all extra and unnecessary data, whereas resizing means changing the dimensions
of the picture, and the aspect ratio can be changed. Cropping reduces the image’s size by
means of removing a part of it, and scaling modifies the size of the picture without touching
the aspect ratio. While compression techniques can decrease the size of a file, they also
degrade accuracy and resolution of the image at the same time. Compression specifically
tends to reduce the level of detail and sharpness of an image. Further, resampling and
cropping distort or actually blur the resulting image. On the other hand, scaling offers the
opportunity to increase the size of an image without sacrificing its accuracy. It is important
to consider the accuracy and computational requirements carefully when selecting a size
reduction layer.

The hidden layers are responsible for transforming the input data into a more meaning-
ful representation. The neurons in the hidden layers are connected with weights and biases,
which determine the strength of the connections between the neurons. Fully connected
(FC) and convolutional neural networks (CNN) are among few others the most common
types of hidden layers used in deep neural networks. The FC layers are the most basic
layers in DNN models and each neuron in the layer is connected to every other neuron
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in the previous layer. The FC layers are very easy to implement and understand but they
can also be used to model complex relationships between input and output. FC layers
are prone to overfitting, as they can easily learn redundant features. Additionally, they
often require a lot of parameters to model the data, which can lead to longer training
times. Convolutional layers, also known as convolutional neural networks (CNNs), are
comprised of a series of filters that are applied to an input image or feature map to extract
features. Convolutional layers are effective for image processing (also video) tasks, as they
can easily extract features from images. They are also much more efficient than FC layers,
as they share weights across the input, reducing the number of parameters that need to
be tuned. However, convolutional layers are not efficient enough to model relationships
between input and output when they are highly complex. This would be a weakness for
safety-critical tasks. Additionally, they can require significant amounts of training data to
learn useful features.

Activation functions are an essential component of the neural network architecture
and allow the neural network to map non-linear input-output relations. There are a variety
of activation functions available for use in neural networks, each with its own strengths
and weaknesses. ReLU, Leaky ReLU, sigmoid, tanh and softmax are the most widely used
activation functions.

ReLU (Rectified Linear Unit) is one of the most widely used activation functions in
deep learning. It is a piecewise linear function with a threshold of 0, and a maximum of
1 and can be used in both hidden and output layers of a neural network. ReLU has the
advantage of being non-saturating and has a non-zero gradient, which allows for faster
training of the network. However, it can suffer from the “dying ReLU” problem where the
neuron’s output is 0 and can no longer be trained [39].

Leaky ReLU (LReLU) is an extension of ReLU that introduces a negative slope on
the left side of the activation function. This helps to alleviate the dying ReLU problem
by allowing for a small positive gradient for negative inputs. However, it can suffer from
noisy gradients and can be difficult to tune [43].

Sigmoid is another popular activation function and is often used in below binary
classification problems. It is a smooth, non-linear, and differentiable function that produces
values between 0 and 1. It has the advantage of introducing non-linearity into the network
and can be used to approximate an arbitrary function. However, it can suffer from the
“vanishing gradient problem” where the gradients become very small, and the network is
unable to learn [44].

Tanh (Hyperbolic Tangent) is similar to the sigmoid function with a single difference in
that its output ranges between (−1,1). It is smooth and non-linear and has the advantage of
allowing for faster training compared to the sigmoid due to its centered output. However,
it can suffer from the same vanishing gradient problem as the sigmoid [43].

Architectural Design Solutions

Plausibility checks, Degradation strategy, Fusion:

Architects of DNNs can reduce the risk of wrong classifications in their architecture
design by incorporating plausibility checks, degradation, and fusion strategies. Plausibility
checks can help detect outliers and false positives, while degradation strategies are needed
to ensure that the model still performs safely in the face of various levels of data corruption
or perturbations. Fusion of radar and camera sensors, i.e., associating radar and camera
information [45] in an Advanced Driver Assistance System (ADAS) decomposes the safety
load between available perception sensors and hence can drastically reduce the risk of
misclassification. A comprehensive guideline for data processing and fusion methodologies
for autonomous driving has been proposed in [46]. By combining the data provided by
redundant sensors, the system can take advantage of the complementary information
provided by each to reduce the uncertainty of any given classification and better identify
objects in the environment.
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Software safety analysis, Review, Comprehensive documentation of detailed design decisions:

DNN models are highly complex algorithms, not intuitive for humans, and their
output may not be readily interpretable. Software safety analysis ISO 26262 is the recom-
mended method and aims to identify and mitigate potential hazards and risks in software
systems. These methods can be applied in a Hazard and Operability (HAZOP) based
cause-effect relationship by identifying the root causes of potential safety-critical issues
arising from these algorithms and implementing measures to prevent or mitigate their
effects. By analyzing the potential causes of software failures and their consequences, safety
analysts can develop strategies to improve the safety and reliability of software systems.

Comprehensive documentation of detailed design decisions is a crucial step when
designing DNN models for autonomous driving to ensure that the model is reproducible
and that its performance can be accurately assessed and tracked. This documentation
should include all decisions made during the design process of the model architecture, the
dataset used, the hyperparameters, and the training procedure.

4.2. Training of DNN Classifiers

Training of Deep Neural Network classifiers involves a process known as supervised
learning, where labeled data are used to train the model. The data is divided into three
primary sets: the training set, the validation set, and the test set. This data helps the model
learn the relationship between the input features and the target output. The validation set
is used during the training process to tune the model’s hyperparameters and prevent over-
fitting. This set provides a “reality check” during training to ensure the model generalises
well. The final part of the data is the test set which used only once after the model has
been trained and validated. This set provides an unbiased evaluation of the final model,
giving us an estimate of how the model would perform on unseen, real-world data. The
exact proportions for splitting the data can vary depending on the specific problem and
data availability.

Figure 4 shows the two-phase process of training Deep Neural Network (DNN)
classifiers. The first phase is the training phase, where a forward and a backward pass
are implemented. During the forward pass, input data is fed into the model to generate
predictions, while the backward pass involves the backpropagation of errors, which adjusts
the weights in the neural network to minimize the difference between the predicted and
actual output. Key hyperparameters, such as learning rates, optimizers, and loss functions,
need to be specified during this phase. Optimizers help to modify neural network attributes,
such as weights and learning rates, to reduce losses. Loss functions measure the discrepancy
between the actual and predicted outputs, and learning rates control how much to change
the model in response to the estimated error each time the model weights are updated. The
second phase involves testing the model on unseen data and evaluating its performance
based on the accuracy of its predictions. Here, we provide a summary explanation of the
hyperparameters of the DNN learning algorithm.

The Learning rate:

The learning rate is one of the most important indicators of the performance and
stability of DNN. It is directly related to the ability of the neural network to learn from the
data and converge to an optimal solution. Learning rates determine the size of the steps
taken during the optimization process as the model iteratively updates its weights in order
to minimize the loss function. A well-chosen learning rate ensures that the model converges
efficiently and effectively without overshooting the optimal solution or becoming stuck at
local minima [47].

The selection of an appropriate learning rate is essential to achieve the right balance
between the speed of convergence and the accuracy of the model. A high learning rate may
result in unstable training and potentially poor performance if the model oscillates wildly
around the optimal solution. A low learning rate may, in contrast, cause the model to
converge very slowly, which consumes considerable computational resources and increases
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the risk of over-fitting as the model spends more time training on the same data. Therefore,
DNN architects must carefully choose and tune the learning rate based on the specific
application and available resources. They often employ techniques such as learning rate
annealing or adaptive learning rate algorithms to optimize its value throughout the training
process [48].

Step 1

Step 2

Training 
Dataset

Forward Pass

Computation of DNN output

Max Pooling, Hidden Layer, 

Activation Function

Backward Pass

Calculation of Gradients and 

Updating the Weights

Learning rate, Loss function and 

Optimizer

Test 
Dataset

Batch Size, Training iterations 

DNN Classifier
(Trained)

Accuracy Metric 
for each Class

Figure 4. The training process of a DNN network.

The Optimizer:

Optimizers are responsible for adjusting the weights and biases of the network during
the training process and they try to minimize the loss function. Optimizers are capable
of fine-tuning these parameters in order to help the DNN learn the best representation
for the given data, thereby enabling it to make accurate predictions. Different types of
optimizers exist, each with its own strengths and weaknesses. The most commonly used
optimizers include Gradient Descent, Stochastic Gradient Descent (SGD), Momentum,
AdaGrad, RMSprop, and Adam [49].

Gradient Descent is an optimization algorithm in which the network parameters are
adjusted in line with the steepest gradient of the loss function. In spite of its ability to
converge to the global minimum, this method is computationally expensive and slow,
especially when dealing with large datasets.

Such solutions create long time lags, making them inefficient in autonomous vehicle
applications. On the other side, Unlike Gradient Descent, the Stochastic Gradient Descent
(SGD) optimization approach is based on a subset of the dataset randomly selected, which
speeds up the training process. However, it can be less stable and converge to the global
minimum with more fluctuations.

The Momentum optimizer incorporates momentum to accelerate convergence, reduce
oscillations, and overcome local minima. It combines the current step’s gradient with
a fraction of the previous step’s gradient to make weight updates smoother and more
consistent. The AdaGrad is an adaptive learning rate optimizer that assigns individual
learning rates to each parameter. It accelerates convergence in cases where the data is sparse
or has varying scales, but it can lead to premature convergence due to its aggressive learning
rate decay. The RMSprop addresses the limitations of AdaGrad. It utilizes a moving average
of squared gradients to adjust the learning rate, which prevents the aggressive decay of the
learning rate and leads to better convergence properties. The Adam optimizer combines
elements from both Momentum and RMSprop that maintains separate moving averages
for the gradients and squared gradients and it allows for adaptive learning rates and
momentum. Adam is known for its fast convergence and robustness to different types of
datasets and architectures. The choice of an optimizer is essential for the performance and
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efficiency of a DNN. Each optimizer has its own set of advantages and disadvantages, and
the choice depends on the specific application, dataset, and resources available. If we select
an appropriate optimizer, DNN architects can achieve a balance between model accuracy,
robustness, and implementation overheads.

The Loss function:

The loss function is the measure of a performance to be optimized within the model
training phase. It assigns a number representing how far apart the predicted and true
outcomes are. Such measures help in determining the best design and architecture. In
addition, it allows DNN architects to fine-tune the models and make good trade-offs among
robustness, accuracy, and various implementation overheads.

A loss function can take many forms when it is used in DNNs to address a wide
variety of problems and objectives. Some common ones are MSE for regression tasks,
Cross-Entropy Loss for classification tasks, and Hinge Loss for support vector machines,
and many more. Therefore, careful choice of the appropriate loss function should be made
for an application, since it directly influences the learning process of the model and the
behavior of the optimization algorithm [50].

The role of the loss function goes beyond simply calculating a model’s performance.
During the training phase, it acts as a guide for the optimization algorithm, helping it
adjust the model’s parameters to minimize error. In essence, the optimization process
seeks to reduce the loss function’s value by locating the model’s optimal configuration in
the parameter space. This is typically done using gradient-based methods like Stochastic
Gradient Descent (SGD) or advanced variants such as Adam and RMSprop [51].

Moreover, the loss function contributes to the prevention of overfitting or underfitting,
which are common challenges in DNNs. By incorporating regularization terms, the loss
function can penalize complex models that overfit the data or prevent models that are
too simplistic and underfit the data. This enables the model to achieve a balance between
fitting the training data and generalizing it to new, unseen data.

4.3. Implementation and Integration of DNN Classifiers

Figure 5 illustrates how deep neural network (DNN) models are typically implemented
and deployed. Machine-learning developers use open-source machine-learning libraries
such as TensorFlow and PyTorch in their code to implement DNN models. Whilst C and C++
are considered to be industry-standard, Python has become increasingly popular for the
development of DNN models in automotive applications. To manage the coding complexity,
ISO 26262 has several normative orders such as having a specific coding guideline, avoiding
dynamic memory allocation, using static analysis tools, and following a consistent coding
style. Coding complexity can be measured by metrics such as: cyclomatic complexity,
nesting depth, and the number of parameters [52]. Finally, the higher-level aspects of
programming are: data structures, concurrency, polymorphism, global variables, and
exception handling need to be controlled so that quality code will be delivered. Accordingly,
with these sets of rules of coding, a developer will be able to tell if the code is reliable,
robust, and efficient. Although machine-learning libraries are used extensively within
automotive engineering, one point to be made is that this library is general-purpose and
not designed to meet the ISO 26262 criteria.
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Figure 5. Training phase of a DNN network.

4.4. Verification and Validation Methods for ML-Based Automated Driving Systems

Verification and validation (V&V) are among the most essential approaches in building
deep neural networks for autonomous driving applications. It is highly critical in finding
inaccuracies in DNN models, flaws in their implementation, or significant performance
gaps. Verification ensures the DNN model implemented is correct and meets the design
specifications. In contrast, validation establishes confidence in the accuracy and reliability
of the predictions from the DNN model. There are many such V&V techniques to deter-
mine whether the implementation of DNNs is correct and performing as intended. Such
techniques include unit testing, endurance run tests, scenario-based testing, fault injection
with white noise on sensor data, adversarial attacks, and benchmarking of False Positive
(FP), False Negative (FN), True Positive (TP), and True Negative (TN) metrics.

Unit Testing:

The unit design testing forms a critical stage for the verification of the functional
capability of different units that constitute a DNN model. Through the disintegration of the
system into more manageable units, an engineer is then able to carefully test each unit in
isolation and verify its functionality against specified requirements. Hardware-in-the-loop
simulation provides one efficient approach toward conducting automated, low-cost tests
that are reproducible and can highlight possible issues well before the deployed system is
used in the real world.

Endurance Run Testing:

This is one of the most common V&V techniques applied to automotive systems. In
this type of testing, a DNN model is tested for its ability to process sensor data in a wide
range of conditions over a long period of time. Endurance run tests help to validate the
robustness of the model and its performance under various conditions.

Scenario-based Testing:

Scenario-based testing focuses on exploring the behavior and functionality of a DNN
model when presented with specific scenarios that an autonomous vehicle may encounter
in the real world. The model response under these scenarios is analyzed to assess its
ability to detect overridable and non-overridable obstacles and take appropriate decisions.
This helps to guarantee that the model is able to handle unforeseen circumstances in a
safe manner, by accurately detecting and responding to obstacles and other objects in the
operational environment (driving state space).



World Electr. Veh. J. 2024, 15, 438 16 of 19

Fault Injection with White Noise (FIWN) on Sensor Data:

FIWN is used to evaluate the performance of a DNN model when it receives noisy
or corrupted sensor data. In this type of testing, noise is imposed onto the system and the
model robustness is tested to see how sensitive it is to its sensor data quality. This kind of
testing helps to identify any weaknesses in the model’s ability to accurately process and
interpret the data.

Adversarial Attacks:

Adversarial attacks are a type of attack that can be used to fool DNN models and cause
them to misclassify data or produce incorrect results. Some examples of Adversarial attacks
are: (a) Adversarial Patch Attack involves adding a small patch to an image that causes the
DNN model to misclassify the image, (b) Adversarial Perturbation Attack involves adding
small perturbations to an image that are not visible to the human eye but cause the DNN
model to misclassify the image.

False Positive, False Negative, True Positive, and True Negative benchmarking:

These metrics are used to evaluate the performance of a DNN model when it is tested
on known testing data. FP and FN metrics measure the number of incorrect predictions
made by the model, while TP and TN metrics measure the number of correct predictions. A
confusion matrix is one of the several benchmarking methods that summarize the model’s
predictions by listing the counts of TPs, TNs, FPs, and FNs. This matrix provides a clear
and detailed breakdown of the model’s performance. The result must exceed a certain level
to ensure safety in autonomous driving systems. In 2019, some car manufacturers and Tier
I suppliers released the white paper, SAFETY FIRST FOR AUTOMATED DRIVING [53],
which inputs an in-depth analysis of the verification and validation techniques for SAE L3
and L4 automated driving from a practical perspective. They demonstrate the positive risk
balance of automated driving solutions compared to the average human driving perfor-
mance and also provide guidance for potential methods and considerations in the V&V of
Level 3 and 4 automated driving systems. However, it is not intended to serve as a final
statement or minimum or maximum guideline or standard for automated driving systems.

5. Conclusions and Future Work

An analysis of the safety risks associated with deploying DNN classifiers as the
dominant method for guiding autonomous road vehicles was conducted. A range of
risks observed in experiments within one of the world’s most advanced research centers
for autonomous vehicle solution provision revealed a range of safety risks in the design,
training, implementation, and deployment of DNN classifiers. Addressing these risks is
essential to ensure the safety of AI solutions. To mitigate these risks, we proposed a number
of AI measures and their mapping with safety standards, summarized in Table A1. In the
near future, we will deploy, test, and validate the improvements we have made in the DNN
models and report those findings in a follow-up paper. We hope that autonomous road
vehicle solution providers and vehicle manufacturers be able to re-evaluate and upgrade
the design process and the existing software applications to meet the ISO 8800 Standard
based on the highlighted shortcomings and the future, suggestions we will provide for the
DNN adjustment.
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Appendix A

Table A1. Mapping of Proposed Methods to Automotive Safety Standards ISO 26262 and PAS 8800
Normative Demands.

III.A ARCHITECTURAL MODEL DESIGN

Selecting suitable AI technology DNN model,
Activation function, etc.

ISO/AWI PAS 8800:2023
General requirements 7.4.1–7.4.10

Function degradation Plausibility checks
ISO/AWI PAS 8800:2023
12.5 Measures to ensure the safety of the AI
system during operation

System redundancy and fusion strategies ISO/AWI PAS 8800:2023
7.6.1 Measures for Architectural Redundancy

Safety Analysis ISO/AWI PAS 8800:2023
10.4 Safety analysis of the AI system

Comprehensive Review
ISO/AWI PAS 8800:2023
11.5 Structuring Assurance Arguments for AI
Systems

III.B TRAINING OF DNN CLASSIFIERS

Hyperparameter tuning ISO/AWI PAS 8800:2023
7.6.4 Training Safety Measures

Dataset Safety Analysis ISO/AWI PAS 8800:2023
8.4.3 Dataset Safety Analysis

Adversarial attack testing ISO/AWI PAS 8800:2023
7.6.4.2 Robust Learning

III.C IMPLEMENTATION AND INTEGRATION
OF DNN ALGORITHM CLASSIFIERS

Qualification of ML libraries ISO 26262-8:2018
Software tool qualification report

Reinforcement of low complexity Coding
guideline

ISO 26262-6:2018
Table 1—modeling and coding guidelines

III.D. VERIFICATION AND VALIDATION
METHODS FOR ML-BASED AUTOMATED
DRIVING SYSTEMS

Static code analysis Fault injection test Unit/
scenario-based/endurance testing

ISO 26262-6:2018
Table 10—Methods for verification of software
integration

False Negative/Positive benchmarking ISO/AWI PAS 8800:2023
9.5.5.1 Performance Evaluation Methods

References
1. Shaout, A.; Colella, D.; Awad, S. Advanced Driver Assistance Systems—Past, present and future. In Proceedings of the Seventh

International Computer Engineering Conference (ICENCO’2011), Cairo, Egypt, 27–28 December 2011; pp. 72–82. [CrossRef]
2. Society of Automotive Engineers. Taxonomy and definitions for terms related to driving automation systems for on-road motor

vehicles. Sae Int. 2018, 4970, 1–5.
3. Research Insights Automotive. 2030. IBM. Available online: https://www.ibm.com/downloads/cas/NWDQPK5B (accessed on

23 September 2024).
4. Belmonte, F.J.; Martín, S.; Sancristobal, E.; Ruipérez-Valiente, J.A.; Castro, M. Overview of Embedded Systems to Build Reliable

and Safe ADAS and AD Systems. IEEE Intell. Transp. Syst. Mag. 2021, 13, 239–250. [CrossRef]
5. Lee, C.W.; Nayeer, N.; Garcia, D.E.; Agrawal, A.; Liu, B. Identifying the Operational Design Domain for an Automated

Driving System through Assessed Risk. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA,
19 October–13 November 2020; pp. 1317–1322. [CrossRef]

6. Aurangzeb, S.; Aleem, M.; Khan, M.T.; Anwar, H.; Siddique, M.S. Cybersecurity for autonomous vehicles against malware attacks
in smart-cities. Clust. Comput. 2024, 27, 3363–3378. [CrossRef]

http://doi.org/10.1109/ICENCO.2011.6153935
https://www.ibm.com/downloads/cas/NWDQPK5B
http://dx.doi.org/10.1109/MITS.2019.2953543
http://dx.doi.org/10.1109/IV47402.2020.9304552
http://dx.doi.org/10.1007/s10586-023-04114-7


World Electr. Veh. J. 2024, 15, 438 18 of 19

7. Durlik, I.; Miller, T.; Kostecka, E.; Zwierzewicz, Z.; Łobodzińska, A. Cybersecurity in Autonomous Vehicles—Are We Ready for
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