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Abstract

The need to improve efficiency and reduce the total energy demand in all sectors of the

economy is widely recognised. Amongst retail stores, supermarkets have higher intensity

energy use due to refrigeration and other in-store services, giving supermarket chains a

strong incentive to reduce energy demand across their portfolio of stores, including stores

being planned. Predicting energy demand helps planning, on-going energy management,

and detecting anomalous use patterns. However, literature about predicting supermarket

energy demand is scarce. Using historical hourly electricity data of 213 UK supermarkets

(same company), annual electricity daily load profiles of new supermarkets were predicted

using regression models, including neural networks and support vector machines. Exploiting

various uses by floor area and geographic location, prediction errors varied between 3–20%

depending on method, year, supermarket type, season and temperature intervals. Profiles

computed for warm periods (cooling required) were better predicted than cold periods

(heating required). A reduced-feature method accurately represented the electricity daily

load profiles of both the supermarket data-set and a data-set of 641 non-food retail stores.

Comparing the clustering and prediction experiments with results obtained using the whole

profile, showed that the errors only slightly increased. Thus, the reduced feature set is a

concise way to represent load profiles without including small variances that do not add

useful information. Finally, the relationship of the urban heat island effect and the electricity

demand of 38 supermarkets in Greater London was analysed. In Summer, supermarkets

located closer to the city centre had higher area-normalised energy demand than those farther

from the centre, suggesting that additional cooling was responsible. The limitations of

applying machine learning methods to this real-world problem showed that human expertise

for interpretation and understanding were essential. However, performing similar analyses

using a solely engineering approach would require significantly more time and resources.

v



vi



Table of contents

List of figures xi

List of tables xv

Nomenclature xix

1 Introduction 1
1.1 Energy use in buildings and the retail sector . . . . . . . . . . . . . . . . . 1

1.2 Energy data analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem proposal and motivation . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Aim and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis outline and publications . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature review 7
2.1 Data-driven methods for predicting energy use in buildings . . . . . . . . . 7

2.2 Clustering and dimensional reduction of energy data . . . . . . . . . . . . 18

2.3 Urban heat island effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Methods and data resources 23
3.1 Data science and energy analytics . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Machine learning models . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Regression models . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Clustering algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Data resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Supermarkets data-set . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Retail data-set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



Table of contents

4 Predicting electricity profiles of new supermarkets 49
4.1 The research problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Experiments configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Partitioning the data . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Machine learning techniques and computational experiments . . . 53

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Algorithm performance and the effect of training data . . . . . . . . 58

4.3.3 Using discrete temperature intervals . . . . . . . . . . . . . . . . . 61

4.3.4 Partitioning the data by temperature and season . . . . . . . . . . . 61

4.3.5 Does it matter if a supermarket uses gas-fired heating? . . . . . . . 62

4.3.6 Comparing peak/off-peak periods . . . . . . . . . . . . . . . . . . 62

4.3.7 Are all features equally useful? . . . . . . . . . . . . . . . . . . . 63

4.3.8 Computational performance . . . . . . . . . . . . . . . . . . . . . 64

4.3.9 Error bars for KNN experiments . . . . . . . . . . . . . . . . . . . 66

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Reduced-dimension representation of EDLPs: prediction and clustering 69
5.1 Why segment supermarket EDLPs into four time intervals? . . . . . . . . . 70

5.2 Automatic feature extraction to represent the EDLPs . . . . . . . . . . . . 72

5.2.1 Heuristic approach to extract the features . . . . . . . . . . . . . . 74

5.2.2 Reconstructing the profile from the features . . . . . . . . . . . . . 75

5.2.3 Objective function to extract the features . . . . . . . . . . . . . . 76

5.2.4 Feature analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Prediction experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Clustering experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Detecting the urban heat island effect 97
6.1 Sorting the variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Relationship between temperature and electricity demand . . . . . . . . . 104

6.2.1 Electrical heating . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.2 Electrical cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

viii



Table of contents

6.2.3 Clustering the EDLPs . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusions and future work 115
7.1 Key findings and limitations . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

References 125

Appendix A Literature review summary tables 143

Appendix B Prediction results for EDLPs 149

Appendix C Prediction results for the reduced-feature representation 165

Appendix D Results for the UHI effect over supermarkets demand 171

ix



Table of contents

x



List of figures

3.1 Life-cycle of data science. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 A diagram of an artificial network. . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Histograms with the number of supermarkets divided by Total Area. . . . . 35

3.4 Energy demand of one supermarket from July 2014 to June 2015. . . . . . 36

3.5 Average EDLPs of all the supermarkets computed yearly between 2012-2017. 37

3.6 Electricity profile of all the supermarkets during 2017 divided by day of the

week. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Seasonal electricity profiles of all the supermarkets during 2017. . . . . . . 39

3.8 Location of the supermarkets in the Greater London area . . . . . . . . . . 39

3.9 Size of the stores against the average hourly consumption . . . . . . . . . . 40

3.10 Location of the LSSAT temperature stations. . . . . . . . . . . . . . . . . . 42

3.11 Location of all the retail data-set stores. . . . . . . . . . . . . . . . . . . . 44

3.12 Number of stores with valid readings and the average demand of each store. 45

3.13 Daily load profiles separated by different week days. . . . . . . . . . . . . 46

3.14 Averaged daily load profiles grouped by the outlet type. . . . . . . . . . . . 47

4.1 Number of supermarkets used for predicting 2017 EDLPs using 2015-2016

readings divided by daily average temperature intervals. . . . . . . . . . . . 53

4.2 ANN trained to compute e11 using four variables as input. . . . . . . . . . 54

4.3 Examples of the EDLPs modelled using KNN with k = 12. The EDLP with

the minimum error (the most likely prediction) is shown in red. . . . . . . . 56

4.4 The ED and NP when predicting all of the Summer 2017 EDLPs of the SEG

group using 2016 data with the KNN algorithm. . . . . . . . . . . . . . . . 57

4.5 Prediction of the Summer 2017 EDLPs with lowest and the median ED when

predicting all of the SEG group using 2016 data with the KNN algorithm. . 58

4.6 ED (kWh) computed using the four ML methods for the seasonal and tem-

perature experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xi



List of figures

4.7 Histogram with the relative frequency of features used to obtain best predic-

tion models for experiments for the SE and SEG groups. . . . . . . . . . . 64

4.8 Times of running the prediction code for different methods and experiments. 65

4.9 All the error bars for the prediction of the same store of Figure 4.5b using

KNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Example of daily profiles of six different stores for different years and seasons. 71

5.2 Example of the selection of four significant time slots t⃗ and segments s0,s1,s2

and s3 from the Winter 2017 EDLP of a supermarket. . . . . . . . . . . . . 73

5.3 Reconstructed profile based on the eight features proposed and real profile

of Figure 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 ED and NP evaluators computed between the original and the reconstructed

profile using features obtained with the heuristic method. . . . . . . . . . . 77

5.5 Reconstructed profile based on the proposed features using the objective-

function method and real profile of Figure 5.2. . . . . . . . . . . . . . . . . 78

5.6 Reconstructed profile with the objective-function method for the supermar-

kets with lowest, median and highest ED. . . . . . . . . . . . . . . . . . . 79

5.7 Real and reconstructed EDLP using the features with the lowest, median and

worst NP scores for the retail store data-set. . . . . . . . . . . . . . . . . . 81

5.8 Histograms of the time slot features (⃗t) computed over the SEG supermarkets

(Winter 2017 profiles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9 Histograms with values for mean and slope features computed over the SEG

supermarkets (Winter 2017 profiles). . . . . . . . . . . . . . . . . . . . . . 83

5.10 Logical flow of the prediction experiments using the features to represent the

profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.11 Two examples of the range of prediction achieved when predicting Winter

2017 EDLPs of the SEG group. . . . . . . . . . . . . . . . . . . . . . . . . 86

5.12 Prediction results evaluated using the ED (kWh) for the profile represented

with the reduced feature set (solid colour) and the whole profile. . . . . . . 89

5.13 Clustering results for EDLPs represented with µ(s0) and µ(s2) (only) using

data for Winter 2017 of SEG supermarkets with k-means (k=4) . . . . . . . 92

5.14 Clustering results for the supermarket data-set using the K-means. . . . . . 93

6.1 Location of the supermarkets classified by demand intensity into high and low. 99

6.2 Location of the supermarkets using electricity only, classified by demand

intensity into high and low. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xii



List of figures

6.3 Location of the supermarkets using electricity and gas classified by demand

intensity into high and low. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Hourly electricity demand intensity for the Greater London supermarkets

grouped by floor area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Distance from the centre against electricity hourly demand intensity for SE

during Winter and Summer trading times. . . . . . . . . . . . . . . . . . . 104

6.6 Daily HDD against electricity hourly demand intensity computed for one

store during different time interval and seasons. . . . . . . . . . . . . . . . 106

6.7 Slope and constant term of the regression model for HDDs during Winter

opening times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.8 Groups of supermarkets using electricity only based on the slope and constant

term of the HDD regression model. . . . . . . . . . . . . . . . . . . . . . . 108

6.9 Location of the grouped SE stores for electricity demand intensity given the

HDDs for Winter opening times. . . . . . . . . . . . . . . . . . . . . . . . 109

6.10 Daily HDD against electricity hourly demand intensity computed for Summer

trading times for two different supermarkets. . . . . . . . . . . . . . . . . . 110

6.11 Croups of supermarkets using electricity only based on the slope and constant

term of the CDD regression model. . . . . . . . . . . . . . . . . . . . . . . 110

6.12 Location of the supermarkets grouped by the slope of the regression model

that computes electricity demand intensity given CDD, over Summer trading

times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.13 Centroids obtained when applying clustering over the Summer EDLPs and

location of the stores of each of the clusters. . . . . . . . . . . . . . . . . . 112

xiii



List of figures

xiv



List of tables

2.1 Number and percentage of building type analysed in the reviewed articles. . 11

2.2 Number and percentage of the number of buildings, temporal length and

temporal resolution of the data-sets used for energy prediction in the reviewed

articles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Number and percentage of articles reviewed based on the methods used to

predict energy demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Floor features and values for the supermarket set. . . . . . . . . . . . . . . 34

3.2 Number of supermarkets with readings (ny) and number of new open super-

markets wy per year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Possible meteorological station used to approach the temperatures of the

stores using the Met Office data-set. . . . . . . . . . . . . . . . . . . . . . 41

3.4 Preprocessing statistics for the retail data-set. . . . . . . . . . . . . . . . . 43

3.5 Number and percentage of stores divided by their outlet type feature. . . . . 45

4.1 The number of supermarkets (historical years) used in testing and training of

the seasonal experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Prediction results for the SE and SEG groups using the KNN algorithm and

the historical years used. The best results for each year are in bold. . . . . . 59

4.3 Values for NP (%) during operational and non-operational times averaged

over all the methods and years. Values in brackets are the standard error. . . 63

5.1 Evaluator (ED (kWh) and NP (%)) scores between the reconstructed profile

(objective-function method) and the real profile for the supermarket set . . . 80

5.2 Prediction results using the NP (%) evaluator for the profile represented with

the key features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Relative difference of the NP evaluator (%) when predicting using the key

features with respect to predicting using the whole profile. . . . . . . . . . 95

xv



List of tables

5.4 Clustering results for the supermarket data-set for all evaluators averaged

over all the whole profile, 2-feat, and number of cluster. . . . . . . . . . . . 96

5.5 Clustering results for the retail stores data-set for all evaluators averaged over

all the whole profile and 2-feat experiments, and number of cluster . . . . . 96

6.1 Number and percentage of stores divided by floor area, average distance and

standard error with the city centre and number of stores depending on type

of fuel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Results of clustering the Summer EDLPs. DistC is the mean and standard

error of the distance from the city centre. . . . . . . . . . . . . . . . . . . . 113

A.1 Data-set and experimental features of the predicted review articles (1/4) . . 144

A.2 Data-set and experimental features of the predicted review articles (2/4) . . 145

A.3 Data-set and experimental features of the predicted review articles (3/4) . . 146

A.4 Data-set and experimental features of the predicted review articles (4/4) . . 147

A.5 Classfication of the articles that predict energy based on the algorithms used 148

B.1 Prediction results (evaluators ED (kWh) and NP (%)) for Winter over SE

using all the models and depending on the historical years. . . . . . . . . . 150

B.2 Prediction results (evaluators ED (kWh) and NP (%)) for Summer over SE

using all the models and depending on the historical years. . . . . . . . . . 151

B.3 Prediction results (evaluators ED (kWh) and NP (%)) for Spring/Autumn

over SE using all the models and depending on the historical years. . . . . . 152

B.4 Prediction results (evaluators ED (kWh) and NP (%)) for Winter over SEG

using all the models and depending on the historical years. . . . . . . . . . 153

B.5 Prediction results (evaluators ED (kWh) and NP (%)) for Summer over SEG

using all the models and depending on the historical years. . . . . . . . . . 154

B.6 Prediction results (evaluators ED (kWh) and NP (%)) for Spring/Autum over

SEG using all the models and depending on the historical years. . . . . . . 155

B.7 Prediction results using the ED (kWh) evaluator for the algorithms over

experiments during all seasons, years and store types. . . . . . . . . . . . . 156

B.8 Prediction results using the MD (kWh) evaluator for the algorithms over

experiments during all seasons, years and store types. . . . . . . . . . . . . 157

B.9 Prediction results using the DRE (kWh) evaluator for the algorithms over

experiments during all seasons, years and store types. . . . . . . . . . . . . 158

xvi



List of tables

B.10 Prediction results using the NP (%) evaluator for the algorithms over experi-

ments during all seasons, years and store types. . . . . . . . . . . . . . . . 159

B.11 Prediction results using the PDRE (%) evaluator for the algorithms over

experiments during all seasons, years and store types. . . . . . . . . . . . . 160

B.12 Prediction results for temperature intervals for SE using ED, MD and DRE

evaluators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.13 Prediction results for temperature intervals for SE using NP, and PDRE

evaluators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.14 Prediction results for temperature intervals for SEG using ED, MD and DRE

evaluators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.15 Prediction results for temperature intervals for SEG using NP, and PDRE

evaluators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.1 Prediction results using the ED (kWh) evaluator for the profile represented

with the key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

C.2 Prediction results using the MD (kWh) evaluator for the profile represented

with the key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

C.3 Prediction results using the DRE (kWh) evaluator for the profile represented

with the key features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.4 Prediction results using the PDRE (%)evaluator for the profile represented

with the key features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

D.1 Results of the analysis of the hourly electricity demand intensity of supermarket.172

D.2 Results of the analysis of the hourly electricity demand intensity of super-

markets with size between 293 and 563 m2 . . . . . . . . . . . . . . . . . 173

D.3 Results of the analysis of the hourly electricity demand intensity of super-

markets with size between 563 and 1082 m2. . . . . . . . . . . . . . . . . 174

D.4 Results of the analysis of the hourly electricity demand intensity of super-

markets with size between 1082 and 2081 m2 . . . . . . . . . . . . . . . . 175

xvii



List of tables

xviii



Nomenclature

Symbols

µ(si) mean of the energy values that are in si

Ev average of the evaluator Ev over all the predicted data points

t⃗ t0, t1, t2 and t4

D number of time intervals of the EDLP

ei electricity consumed (kWh) between the (i−1)-th and i-th time interval

F set of supermarket building characteristics used to predict the EDLP, predictors

K number of clusters of the clustering algorithm

k number of EDLPs used for the prediction

Ls EDLP of the supermarket s

m(si) slope of the line that crosses the energy values that are in si

p number of previous years used to predict the EDLP

S, S′ sets of new and existing supermarkets respectively

s0 off-peak time period in the EDLP

s1 time period of the off-peak to peak transition time in the EDLP

s2 peak time period in the EDLP

s3 time period of the peak to off-peak transition time in the EDLP

t0 first time interval of the EDLP where the slope of the off-peak/peak transition starts

xix



Nomenclature

t1 first time interval of the EDLP where the main peak stabilises

t2 first time interval of the EDLP where the peak starts to decrease

t3 first time interval of the EDLP where the non-peak behaviour stabilises after the

peak

y year used to compute the EDLP

2-feat µ(s0), µ(s2), m(s1), m(s3) and t⃗

4-feat µ(s0), µ(s2), m(s1) and m(s3)

8-feat µ(s0), µ(s2), m(s1), m(s3) and t⃗

Acronyms / Abbreviations

ANN Artificial neural network

CDD Cooling degree day

CDI Clustering dispersion indicator

DBI Davies-Bouldin index

DPMM Dirichlet process mixture model

DRE Difference real point with respect to the predicted point

ED Euclidean distance

EDLP Electricity daily load profile

EM Energy meter

GM General merchandising

HDD Heating degree day

HVAC Heating, ventilation and air conditioning

KNN k-nearest neighbour

LSSAT London Site Specific Air Temperature

xx



Nomenclature

MD Manhattan distance

MDI Modified Dunn index

MIA Mean index adequacy

ML Machine learning

NP Normalised percentage difference

OLS Ordinary least squares

PDRE Percentage difference real minus estimated points

PEB Percentage real point between error bar

SD Standard deviation

SE Supermarkets that use only electricity

SEG Supermarkets that use electricity and gas

SI Scatter index

StE Standard error

SVR Support vector regression

UHI Urban heat island

UPGMA Unweighted pair group method average algorithm

UPGMC Unweighted pair group method centroid algorithm

VRC Variance ratio criterion

WARD Ward or minimum variance algorithm

WPGMA Weighted pair group method average algorithm

WPGMC Weighted pair group method centroid algorithm

xxi



Nomenclature

xxii



Chapter 1

Introduction

While climate change is a challenge concerning the whole planet, each country establishes

its own objectives and measures (UN, 2016). The United Kingdom has the target to reduce

greenhouses gas (GHG) emissions by at least 78% compared to 1990 levels by 2035 and

net-zero by 2050 (CCC, 2023).

To achieve this, five-year carbon budgets are set stating the maximum amount of GHG

that can be emitted in the UK during each period. If these budgets are accomplished, the

UK will be more than three-quarters of the way to be net zero by 2050. In addition to trying

to substitute fossil fuels by clean energy sources such as solar and wind, energy demand

reduction measures are needed for all sectors of society that use energy either directly or

indirectly. Among the sources of demand, buildings play a key role for the strategy of energy

use reduction.

1.1 Energy use in buildings and the retail sector

Worldwide, the UN reported that 36% of the global energy demand are related to build-

ings (UN, 2021). In 2022, the emissions from energy use in buildings is approximately 40%

of the UK total (CCC, 2023; GCF, 2022) (this figure is 3% less than reported in 2015 (PIA,

2016)). This includes emissions produced by heating and cooling buildings, the energy they

consume to support operations and the operation of transport infrastructure.

Approximately, 26% of the total energy emissions are related to domestic buildings, 11%

to commercial buildings, 3% to industrial buildings (excluding industrial process) and 3%

to other non-domestic buildings (PIA, 2016). Therefore, non-domestic buildings produce

17% of the total CO2 emissions, so reducing energy use in non-domestic buildings (ECCC,
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2009) is an essential objective to meet the UK energy budgets. One of the measures the UK

government proposed was that all new non-domestic buildings should be ‘zero carbon’ from

2019 (DCLG, 2010), but progress towards this target is slow. A framework defining net

zero carbon buildings was established by 2019 (UKGBC Advancing Net Zero programme

partners, 2019) stating that the amount of carbon emissions over the building’s lifetime

should be zero or negative. Commercial buildings account for approximately 65% of the

emissions of the non-domestic buildings. The building stock includes large offices and small

retail stores from a wide range of business types.

The food retail sector accounts for 3–5% of total electricity demand in UK and 1%

of the global CO2 emissions (Tassou et al., 2010). Food retail stores (e.g. supermarkets)

are responsible of a significant part of these emissions, estimated to be 3–4 % of the total

electricity production in industrialised economies (Kauko et al., 2017) as they are energy

intensive buildings. For example, they have the highest energy yearly use by floor area

among all type of commercial buildings in the USA (Energy Star, 2016)) because they

include refrigeration, heating, ventilation and air conditioning (HVAC) of public areas, and

some have other utilities such as extensive cold storage, bakeries, and hot food preparation.

Given the scale of food retail energy use, understanding the detail of the energy demand

is important for developing methods, standards, and policies aimed at reducing the demand.

Applying data science to understand energy demand by food retailers is one of the most

promising possibilities to help develop mitigation strategies.

1.2 Energy data analytics

Energy data analytics (aka energy analytics) is generically understood as the data science

approach to study energy related problems. Compared with other data science disciplines

such as computational linguistics and computational biology, energy analytics only started

being developed quite recently. For instance, computational linguistics have been developing

natural language processing (NLP) applications since the 1990s (Bishop, 2006).

Nowadays, powerful NLP applications successfully emulate human language capacities

such as dialogue systems and translation applications. Computational biology is another

data science discipline in which great advances have been achieved, e.g. genome sequencing.

The main reason delaying the development of energy analytics with respect to other data

science disciplines is the lack of accessible ‘significant’ data-sets. A ‘significant’ data-set is

referenced to the concept of the three ‘V’s of Big Data (Laney, 2012) in which 1) a large

Volume of data exist, 2) the data shows high Variety (or variability) over their content and
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format, and 3) data are generated or processed at high Velocity. Modern methods such as

machine learning (ML) algorithms (Bishop, 2006; Witten et al., 2017) have become much

more flexible and usable as the power of hardware systems increased. However, data is

the real fuel needed to obtain important advances in any data science discipline and its

availability is the main constraint.

The implementation of (smart) energy meters (EMs) in developed countries such as EU

member states (EU, 2015) to measure the energy use in buildings and zones of buildings, has

generated more and larger data-sets from a wider range of customers. However, most of the

existing data-sets are not freely available, and the ones that are lack of transparency due to

privacy and confidentiality concerns. This lack of transparency implies that the meta-data—

the basic information about the customers that is not the energy use data, e.g. exact location,

floor area—that is crucial to contextualise the energy use, is not available. In addition, larger

energy data-sets are still small compared with largest data-sets in linguistics e.g. the whole

Wikipedia (Wikipedia contributors, 2004) is freely available to perform NLP experiments,

or in medicine e.g. anonymous COVID-19 clinical information about millions of patients is

shared among the scientific community (FAIRsharing Team, 2023).

There is common agreement that the analysis over these energy data-sets using advanced

data mining techniques could offer insights (Wang et al., 2019). Perhaps the most important

data-science problems that can be investigated using EM data are prediction and clustering.

Generally speaking, prediction is trying to foresee future values for any variable. Clustering

techniques divide data-sets into groups (clusters) without a priori information (Bishop, 2006).

1.3 Problem proposal and motivation

Recently, energy managers of a supermarket chain proposed the question of how is it possible

to estimate the expected electricity demand of a new supermarket site in the following years

(investigating retail energy management was the aim on the WICKED project (Janda et al.,

2015)). Every year their company opens new supermarkets around the United Kingdom and

abroad (they also close others). Their reasons to predict the next year energy demand of new

supermarkets are:

• estimating the energy costs that a new establishment will have. The company needs to

plan the energy expenses to create budget for the following year. Thus, an estimation

of the electricity consumption of the supermarkets can be very helpful as costs can

be computed in advanced. Supermarkets that have existed in previous years are

3



Introduction

likely to use a similar energy of previous years. However, the energy demand of the

supermarkets that are new and do not have historical data are more challenging to be

accurately estimated.

• identifying unexpected or abnormal demand patterns. First, if the prediction method

works with high accuracy, a supermarket that shows an important discrepancy between

the real and the predicted demand can be considered interesting to be analysed by

the energy manager. Second, supermarkets that are very similar in features such as

location and building characteristics showing distinct predicted demand patterns may

need also to be investigated. Both prediction and clustering are automatic tools that

can help to detect these uncommon behaviours. However, energy managers would

need to discover the causes of the behaviour analysing specific store circumstances.

Their final objective is to reduce buildings energy demand.

This proposed long-term prediction is more challenging and less common in the research

literature than short-term prediction. In addition the analysis of energy demand in retail

buildings is under-represented compared with residential buildings. Having access to a

significant data-set with the electricity demand by their supermarkets portfolio allows to

investigate this problem using ML techniques. Additionally, analysis over this data-set give

the opportunity to investigate other energy problems.

1.4 Aim and objectives

The aim is to show how ML techniques can help the development of energy analytics for

large data-sets relating to energy use in retail buildings.

The objectives are to:

1. Obtain and statistically characterise a suitable large dataset with extensive meta-data;

2. investigate to what extent the energy demand of a retail store is impacted by the urban

environment;

3. predict the electricity daily load profile of a new store using the historical demand of

similar stores;

4. discover a reduced dimensional representation of electricity daily load profiles;

5. use the reduced set of features to predict and cluster electricity daily load profiles and

to compare with the whole-profile method.
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From a wider perspective, this work expects to contribute to the so-called “data science”

or “big-data” revolution that it is currently shaping so many aspects of modern society.

1.5 Thesis outline and publications

This document is structured in the following way. A critical literature review of previous

works related to the proposed energy analytics problems is carried out in Chapter 2. Chapter 3

explains the methods and data-sets that are used for the experimental sections. The problem

of prediction of electricity demand for new supermarkets is the topic of Chapter 4. This

prediction problem is also investigated in Chapter 5 but using a small set of key features

to represent the electricity profile. In that chapter, clustering experiments with this data

representation are also performed. Chapter 6 explores the urban island effect impact on the

electricity demand for small supermarkets in the London area. Finally, conclusions are drawn

in Chapter 7, in which future lines of research are also suggested.

The following journal and conference papers have been published from this research:

1. R. Granell, C. J. Axon, M. Kolokotroni, and D. Wallom. Predicting electricity demand

profiles of new supermarkets using machine learning. Energy and Buildings, 234

110635–110635, 2021. https://doi.org/10.1016/j.enbuild.2020.110635.

2. R. Granell, C. J. Axon, M. Kolokotroni, and D. C. Wallom. A reduced-dimension

feature extraction method to represent retail store electricity profiles. Energy and

Buildings, 276:112508, 2022. https://doi.org/10.1016/j.enbuild.2022.112508.

3. R. Granell, C. J. Axon, M. Kolokotroni, and D. C. Wallom. A data-driven approach

for electricity load profile prediction of new supermarkets. Energy Procedia, 161:242

– 250, 2019. https://doi.org/10.1016/j.egypro.2019.02.087. Proceedings of the 2nd

International Conference on Sustainable Energy and Resource Use in Food Chains

including Workshop on Energy Recovery Conversion and Management; ICSEF 2018,

Paphos, Cyprus.

4. R. Granell, C. J. Axon, K. B. Janda, and D. C. Wallom. Does the London urban

heat island affect electricity consumption of small supermarkets? Energy Systems

Conference, London, 2016.

5. R. Granell, C. J. Axon, M. Kolokotroni, and D. C. Wallom. Using existing building

stock to predict the electricity load profiles of new supermarkets. Energy Systems

Conference, London, 2018.
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6. R. Granell, C. J. Axon, K. B. Janda, and D. C. Wallom. Does the London urban heat

island affect electricity consumption of small supermarkets? IEEE PES and MEEPS

’Big Data Applications in Power Systems’ Workshop, Manchester, 2016. Best Poster
Exhibition Prize

First, third and fifth publications refer to results presented in Chapter 4. Second publication

refers to results from Chapter 5, and fourth and sixth publications refer to results from

Chapter 6.
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Chapter 2

Literature review

This review is divided into three sections. Studies predicting electricity demand in build-

ings, using data-driven methods, are the focus of Section 2.1. This is the largest section

as electricity demand is the main topic of both Chapter 4 and Chapter 5. Studies using

clustering or dimensional reduction techniques to investigate electricity demand are reviewed

in Section 2.2. Investigations analysing the relation of the urban heat island (UHI) effect with

the electricity demand from buildings are examined in Section 2.3. In all sections, studies

dealing with retail shops or supermarkets are highlighted as they are the focus of this thesis.

2.1 Data-driven methods for predicting energy use in build-
ings

Before analysing individual energy prediction studies, it is worth understanding how previous

review articles have classified the literature. There have been regular reviews of studies that

predict, model and benchmark energy use in buildings in recent years showing that this topic

is evolving and that it remains important (Ahmad et al., 2018; Amasyali and El-Gohary,

2018; Bourdeau et al., 2019; Chung, 2011; Deb et al., 2017; Li et al., 2020, 2014; Lu et al.,

2022; Yildiz et al., 2017; Zhang et al., 2021; Zhao and Magoulès, 2012). However, there are

older reviews that had commented on methods to predict energy demand in buildings such

as Krarti (2003) and Dounis (2010). Although there is considerable overlap in the studies

used in the review articles, each has a unique approach and some share common features.

Broadly, the areas of focus for these reviews can be grouped by benchmarking methods,

energy demand prediction and the forecasting of (specifically) electricity load, specific ML

algorithms, and data properties and data-driven models.
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The review by Chung (2011) of building energy-use performance benchmarking method-

ologies examined references from 1982 to 2010, classifying them by method, type of building,

sample size, and location. Benchmarking is a way to predict the energy efficiency of the

building by comparing its past performance with other buildings. Chung defined two types

of benchmarking systems: public and internal systems. For public systems, anyone can

access the original model and use it to benchmark energy demand of a building. For internal

systems, the model is only accessible to its owner. The review by Li et al. (2014) also

focused on methods for benchmarking building energy demand, classifying the methods into

three categories: white-box, black-box, and grey-box. White-box methods were defined as

engineering simulation methods based on the physical design of the building, and black-box

methods were defined as data-driven methods. Grey-box methods were a hybrid approach be-

tween the other two type of methods. The black-box methods were divided into bin methods,

multiple linear regression, support vector regression (SVR), Gaussian process regression,

artificial neural networks (ANNs) and decision trees. For each method, the requirements

with respect to the quantity of input and training data, modeller experience and calibration

effort were assessed. Interestingly, they also classified the studies based on real applications,

input data, and time resolution. A review of solely energy prediction methods by Zhao and

Magoulès (2012) classified them as: engineering, statistical, ANN, SVR, and grey models.

The engineering methods were further divided into elaborate and simplified methods.

The forecasting of electricity loads has been reviewed (Deb et al., 2017; Yildiz et al.,

2017). Yildiz et al. (2017) examined about 30 regression models for commercial buildings,

finding that the dry bulb temperature the most frequent climate variable used. They also

performed a 1-h prediction of demand for an Australian university building using SVR and

ANN. They claimed that regression models performed fairly well in comparison to more

advanced ML models, however, the later usually having greater accuracy. Lu et al. (2022) is

a specific review of studies using ANN. They classified articles in one of 12 neural network

architectures. The most popular architectures were long short-term memory models and

the most effective architecture was claim to be combining recurrent neural network and

convulational neural networks. The large study by Deb et al. (2017) focussed on nine ML

techniques: ANN, autoregressive integrated moving average, SVR, case-based reasoning,

fuzzy time-series, grey prediction model, moving average and exponential smoothing, k-

nearest neighbour, and hybrid models.

Data properties used in energy prediction reviewed by Amasyali and El-Gohary (2018)

include the type of building (residential and non-residential), data temporal granularity,

data size, data preprocessing and types of energy demand (heating, cooling, lighting, and
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overall energy demand). The limitations of the data-driven approaches for this problems

were analysed based on these algorithms and the data used for the prediction experiments.

Six articles reviewed by Deb et al. (2017) compared the input data resolution, length of data

training, accuracy, and time consumed to perform the experiments. Data-driven techniques for

modelling and forecasting building energy demand is the specific topic to review by Bourdeau

et al. (2019). They analysed the methods, software, data-base characteristics, data pre-

processing methods, building types and evaluators used in articles from 2007 to 2019. The

ML methods reviewed were: autoregressive models, statistical regression, KNN, decision

trees, SVR, ANN, deep learning models1, and combined methods that use more than one

data-driven model.

Papers studying the prediction of building energy demand using data-driven techniques

since 2010 were reviewed by Li et al. (2020). First, they categorised the papers based on

four data properties: energy scale (e.g. national, regional, building scale), energy type, time

scale and input data (e.g. energy readings, meteorological data). Second, they analysed the

prediction algorithms: regression models, ANN, SVR, fuzzy, and hybrid models. Large-scale

and data-driven energy prediction models were reviewed by Ahmad et al. (2018), investigating

articles about both clustering and prediction methods. The data-driven prediction methods

were classified into statistical regression models e.g. linear regression, ANN and SVR.

Large-scale based energy prediction approaches were classified into white-, grey- and black-

box data depending on the technique used. For each one of these categories, articles,

software, advantages, and applications were described in detail, concluding that ANN are

SVR are appropriate to forecasting energy in the building environment, but SVR gave better

performance than ANN.

Many of these review studies made simple conclusions such as all models have strengths

and weaknesses and perform differently under different circumstances, and that it was

difficult to say which one is better without comparing them under the same circumstances.

More usefully Amasyali and El-Gohary (2018) and Li et al. (2014) directly recognised the

need to develop specific solutions for each application considering the data properties and

ML algorithms, with Li et al. (2020) and Deb et al. (2017) noting that hybrid models have the

potentially to improve the robustness and accuracy of load forecasting over single ML models.

However, Bourdeau et al. (2019) observed that hybrid (grey) models still require attention.

These ideas have been most clearly discussed by Zhang et al. (2021), one of the most recent,

complete, and systematic reviews, concluding that combining ML prediction algorithms, and

1Deep learning models are ANNs with multiple hidden layers and more complex architectures. Large
data-sets are required to train these models.
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with other techniques such as clustering has the potential to increase the prediction accuracy.

Perhaps the three most important conclusions made in these reviews is that 1) a universal

protocol that can tackle the variety of problems faced in all the energy-prediction studies

is still lacking (Bourdeau et al., 2019); 2) there is a lack of high-quality and real-world

datasets to evaluate the algorithms performance of algorithms (Zhang et al., 2021; Zhao

and Magoulès, 2012); and 3) all of the information about the data and algorithms should be

described in articles.

Based on these review articles, a systematic classification of energy prediction studies

using data-driven techniques is carried out considering three different criteria: data-set

characteristics, the prediction set-up and the prediction algorithm. For this exercise, a total of

80 papers were selected and reviewed, and can be found chronologically sorted in Table A.1,

Table A.2, Table A.3 and Table A.4 of the Appendix A.

The first criterion used to analyse and classify articles that predict energy demand in

buildings is data-set characteristics. The nature and features of the data-set are essential

to define the energy prediction experiments and the interpretation of the results. From a

data-science point of view, the data-set properties limit the ML algorithm, and the type of

application (e.g. classification, clustering, predictions) able to be performed. Six data-set

features are considered:

• Type of energy data: the nature of the energy data predicted, e.g. electricity, gas,

cooling/heating/HVAC loads.

• Meta-data: all the data features that are not the energy data. Three categories are

considered: weather features, building features and occupancy.

• Type of building: residential, industrial, offices, retail and others such as institutional

or education buildings.

• Data-set size: number of buildings and temporal length of the energy data series.

• Time-resolution: the sampling rate at which the energy data has gathered (and stored).

• Modelling style: using simulated or real data.

The first seven columns of Table A.1, Table A.2, Table A.3 and Table A.4 show these

feature values for each of the reviewed papers. Overall, based on the type of energy predicted,

63% of the studies predict total electricity demand of the building. A total of 34% of the

articles predict HVAC, heating or cooling demand, 8% predict a sub-meter/socket electricity
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demand, 4% predict gas, and 3% (two articles) predict refrigeration load. The percentage

sums to more than 100% as some papers predict more than one type of energy. These values

are similar to those reported in the review studies. Independently of the predicted energy

source, studies usually directly compute the building energy demand (kWh) and sometimes

the energy intensity (kWh/m2), but peak demand (kWh) is very rarely predicted.

The meta-data is helpful for interpreting the prediction results. They are usually the input

of the data-driven algorithms, or used to separate the data for the computational experiments.

The most common available meta-data features are related to weather conditions (73% of

the reviewed studies). The external and internal temperature of the building are the most

frequent features, however, humidity and wind speed are also common, but solar irradiance

is infrequently given. Building features such as floor area, isolation materials, and specific

building type are the second most frequent meta-data-features (23% of the studies). Building

occupancy is the third most common meta-data feature (11% of the reviews studies). Again,

these values are similar to those reported in the review studies.

Type Number Percentage
Residential 18 23%

Office 18 23%
Academic 18 23%

Retail 13 16%
Other 5 6%

Mixed-use 8 10%

Table 2.1 Number and percentage of building type analysed in the reviewed articles.

The type of building that the energy predicted is made for is crucial to understand the

analysis. Table 2.1 shows the different type of buildings in the reviewed papers. There are

equal number of articles that predict energy for residential, office and academic buildings

(23%). Retail buildings are 16% of the total, and the ’other’ category of buildings is hospitals,

swimming pools (6%). Studies that predict energy for mixed use buildings (e.g. retail

and commercial) are 10%. Retail buildings are under-represented in the literature. For

example, according to Chung (2011) and Li et al. (2020) only 22% and 33%, respectively,

of investigations were about energy use in commercial buildings, and fewer still in other

studies (Li et al., 2014; Zhao and Magoulès, 2012). Particularly notable is the lack of work

in the literature on predicting energy use by supermarkets using data-driven methods (Braun

et al., 2014; Chung et al., 2006; Datta et al., 1997; Rasmussen et al., 2016; Schrock and

Clarige, 1989; Spyrou et al., 2014).
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Number of buildings Temporal length Temporal resolution
1 41 (51%) < 1 month 1 (1%) <15 min 6 (8%)
2–5 15 (19%) 1 month-3 months 10 (13%) 15 min 6 (8%)
6–10 2 (3%) 4 months-6 months 8 (10%) 30 min 5 (6%)
11–50 4 (5%) 7 months-12 months 34 (43%) 1h 41 (51%)
50–100 2 (3%) 13 months-24 months 8 (10%) 1 day 4 (5%)
101–500 5 (6%) 25 months-5 years 11 (14%) 1 week 1 (1%)
501–1,000 5 (6%) > 5 years 4 (5%) 1 month 5 (6%)
1,001–10,000 1 (1%) 1 year 10 (13%)
>10,001 4 (5%)

Table 2.2 Number and percentage of the number of buildings, temporal length and temporal
resolution of the data-sets used for energy prediction in the reviewed articles. Some of the
data-sets of 500 or more buildings use simulated data only.

The number of buildings, the temporal length and resolution of the time-series of the data-

sets used for prediction experiments in the literature are given in Table 2.2. Around half of

the studies only predict demand for one building and 19% for less than five buildings. There

is a range of data-set sizes used, but some of the larger data-sets (more than 500 buildings)

use simulated data. The most frequent temporal length of time-series is 7–12 months (43%)

where one year is the most common value. However, 19% of studies have more than two

years of data. It is not surprising that more recent studies use longer time-series because

the improvements in (and decreasing costs of) metering technologies. The most common

temporal resolution is one hour appearing in 51% of the data-sets. Resolutions that are higher

(e.g. 15-min) and lower than one hour appear in 22% and 26% of studies, respectively. One

year resolution data usually appears in studies in which electricity demand is predicted for a

large number of buildings, e.g. the study by Jin et al. (2022) that used 28,000 buildings.

Most studies use real data-sets, however, a small number analyse artificial energy demand

generated by software engineering tools: Energy-Plus (Ascione et al., 2017; Sholahudin

and Han, 2016; Yun et al., 2012; Zhang et al., 2023), MATLAB-Simulink model, Autodesk

Ecotect Analysis (Chou and Bui, 2014; Kumar et al., 2018; Lu et al., 2023; Tahmassebi and

Gandomi, 2018; Yuce et al., 2014), eQUEST (Mottahedi et al., 2015) and TRNsys (Paudel

et al., 2017). It is interesting to remark that the Ecotect generated data-set is the same used

for all the cited studies, which does not happen with any other studies using simulated data.

In this approach, the simulated data is normally used to train and evaluate the ML model. For

example, eight years of the cooling system load were simulated for a real hospital in Beijing
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and later used predict the daily and hourly demand using a long short-term memory neural

network (Song et al., 2023).

The second criterion relates to the prediction experimental set-up (last three columns

of Table A.1, Table A.2, Table A.3 and Table A.4). The forecasting horizon is the time in

advance that the energy demand is predicted (Mocanu et al., 2016a; Zhang et al., 2016). It

is considered a short-term prediction if this forecasting horizon is less than a week. This is

the most common approach (42 articles, 53%) with one day (next day prediction) the most

frequent horizon. Medium-term prediction (11 articles, 14%) is between a week and several

months, and long-term prediction (eight articles, 10%) if energy is predicted a year or more

in advance. A number of studies do not compute this feature because either it is not defined

in the article, or they use random- or cross-validation partition over the time readings, or

they compute the energy prediction over the same time for different buildings. The longer

the time horizon, the more challenging the prediction as there is an increased probability of

uncertain factors (e.g. refurbishing, weather events) impacting the energy demand.

The second experimental feature is the temporal window within which the energy demand

is predicted e.g. electricity is predicted for a whole day with a resolution of 30-min or 1-

h. The potentially smaller temporal window is given by the data-set sampling resolution

(Table 2.2). This resolution value is also the most typical temporal window (45 reviewed

articles, 65%). For the rest of studies the most common temporal window is a day, and

usually with one-hour resolution (daily profile). There are a small number of studies analysing

various temporal windows e.g. electricity for daily and weekly load profiles of Norwegian

schools are predicted (Ding et al., 2021).

The last experiment set-up feature that is considered is if the energy demand prediction

is performed over the same building (Same) or a different building (Other). In the Same

experimental set-up, energy data of the same building is used to train and test (evaluate)

the ML model. In the Other set-up the ML model is trained with energy demand data

from a building different to the building. The Other prediction is more complicated and

unusual than Same prediction because of the need of larger data-sets. Only 12 studies (15%)

perform an Other prediction. Some Other studies generate artificial data using the software

tools previously described e.g. the cooling/heating annual demand is simulated for 500

Italian (Ascione et al., 2017) and 77,000 Chilean office buildings (Pino-Mejías et al., 2017).

By changing some architectural details (e.g. walls, orientation, materials) of 12 basic types of

simulated residential buildings, the heating and cooling loads for 768 different buildings were

generated (Chou and Bui, 2014; Kumar et al., 2018; Tahmassebi and Gandomi, 2018). These

768 buildings were then combined to predict demand to train and test different buildings.
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A similar set-up was used by Mottahedi et al. (2015) in which seven office buildings with

different parameters (i.e. shape and climate) were combined to generate 10,000 simulations

to predict annual energy demand. However, they predict the demand for the same building

using linear regression. A few studies perform experiments over a small number of buildings

over long time periods. Mocanu et al. (2016b) used seven years of 1-h resolution readings

from five buildings (each a different type) to predict the demand of a different building than

the one used to train the prediction model. A hybrid of the Same and Other approaches is

transfer learning, in which the data of different buildings is used to improve the prediction

of a new one when there is insufficient data. For example, the peak and total demand of a

large shopping mall were predicted by exploring different sized sub-sets of historical data

available for the mall (Yuan et al., 2023). They combined data from other malls to train the

models and improve the prediction.

The third criterion for classifying the studies, is the main method and algorithm used to

predict the building energy demand. Methods for predicting electricity demand of buildings

(regardless of type) can be divided into three basic approaches: model-driven, data-driven

and hybrid (also know as white, black and grey models) (Li et al., 2014). The model-driven

approach uses sophisticated high-resolution engineering methods based on the thermal,

energy, and architectural features of the building to simulate its energy demand. For data-

driven approaches, the energy performance of the building is directly modelled with numerical

and statistical methods. Hybrid models combine both methods.

Although data-driven prediction methods are the focus, some common engineering

prediction tool-kits used for food/retail are discussed. A possible classification of the data-

driven techniques used to predict energy demand Bourdeau et al. (2019); Li et al. (2020)

is: 1) conventional statistical techniques, 2) classification-based models, 3) support vector

regression models, 4) artificial neural networks, 5) genetic algorithms, 6) ensemble models,

7) fuzzy models, and 8) other models e.g. Gaussian process regression models. The classes of

the main prediction algorithms used in each review article are shown in Table A.5. The more

frequently used methods are sorted by the number of citing articles in Table 2.3. Although

both are neural networks, ANNs are classified separately in Table 2.3 from deep learning

models because of the level of complexity (architecture and number of parameters) and the

amount of data required.

A total of 40 (50%) of studies reviewed used ANN to predict the energy demand. Chae

et al. (2016) predicted short-term electricity demand of a commercial building complex using

15-min resolution data. Daily diurnal cooling load is forecasted for three university buildings

by Deb et al. (2016) using data recorded over two years with a forecast window 1 to 20 days.
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Both ANN and SVR were compared when predicting hourly cooling load in an office building

in China (Li et al., 2009) and hourly energy demand of an office building in Shanghai (Zhao

et al., 2016), with the cooling data is simulated using a model-driven toolkit (Yan et al., 2008).

Monthly electricity demand of one UK supermarket is predicted using ANN (Datta et al.,

1997) with the results compared with linear regression. ANN, Gaussian process regression,

linear regression and dynamic mode decomposition are compared in the prediction of 1-h

weekday profiles of a commercial building (Revati et al., 2021) using simulated data. Lastly,

deep learning models (large neural-networks) have been explored for this problem (18 studies,

16%), however, they need large data-sets to estimate the model parameters. A deep learning

network and a genetic algorithm were combined to predict the 1-h daily profile in an office

building over one year (Luo et al., 2020). This work applies the clustering of daily weather

profile before predicting the demand.

Method Number Percentage
Artificial neural networks 40 50%

Linear regression 31 39%
Support vector regression 21 26%
Deep learning methods 18 16%

Decision trees 14 18%
Ensemble methods 6 8%
Genetic algorithms 5 6%

Fuzzy methods 4 5%
k-nearest neighbour regression 4 5%

Reinforcement learning 3 4%
Gaussian process regression 2 3%

Table 2.3 Number and percentage of articles reviewed based on the methods used to predict
energy demand.

Conventional statistical techniques include change-point algorithms and linear regression

models (31 studies, 39%) such as autoregressive models and ordinary least squares (OLS).

Autoregressive models have been used to predict short-term heat load for a single build-

ing (Yun et al., 2012) and, in combination with ANN, used to predict the monthly electricity

consumption of 787 education facilities in South Korea over a period of seven years (Jeong

et al., 2014). Schrock and Clarige (1989) used a change-point algorithm and a year of

15-min electricity readings of one grocery store to predict hourly and daily consumption.

Linear regression has been applied to the prediction of 1-h heat load profiles of 116 buildings

(health, education, business, and hotels) over three years (Lindberg et al., 2019). The same
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linear models have also been used on data from 215 UK large supermarkets to estimate

the total annual electricity demand (Spyrou et al., 2014), and by Chung et al. (2006) to

estimate annual energy-use intensity for 30 UK supermarkets using building features such

as floor area, building age and the number of customers. In the context of climate change

adaptation Braun et al. (2014) exploited temperature and humidity values to predict weekly

electricity and gas demand for a single supermarket for the period 2030-2059 using multiple

linear regression analysis. When comparing different refrigeration systems for supermarkets,

the daily mean refrigeration load for various refrigeration technologies has predicted (Mit-

sopoulos et al., 2019). They used a linear regression model trained with one year of data

of a Greek supermarket, using the average ambient temperature as an input. Supermarket

refrigeration energy demand has been predicted using adaptive linear time series modelling

techniques (Rasmussen et al., 2016). Hourly demand has been predicted for up to 42h in

advance for a Danish supermarket using three months of data.

SVR, regression method based on the support vector machine classification model, has

been used to predict the energy demand in 21 studies (26%). For example, SVR models were

used by Dong et al. (2005) to predict the monthly energy consumption of four commercial

buildings in Singapore. Models based on SVR have also been used to predict the energy

load (hours to days) of a French residential building (Paudel et al., 2017). SVR and six

other techniques were investigated by Edwards et al. (2012) to predict next-hour residential

building electricity consumption of three houses. Jain et al. (2014) examine the impact of

temporal (e.g. daily, hourly, 10 min intervals) and spatial (e.g. , whole building, by floor, by

unit) granularity on short-term prediction. Experiments were performed using SVR over data

from a multi-family residential building in the USA.

Classification-based models include algorithms that were extended to perform regres-

sion. They included decision trees (14 studies, 18%), KNN regression algorithm (4 studies,

5%). The KNN algorithm was used to forecast next-day consumption for 100 simulated

buildings (residential and small businesses) — the model was trained using 6,000 Irish

buildings (Valgaev and Kupzog, 2016). A weighted KNN model was used to predict the

hourly air conditioning load of an office building in China (Ma et al., 2017). It combines

similar days in terms of weather and day of the week to predict the new one. Random forest

(a set of decision trees) and ANN (separately) were used to predict the hourly HVAC loads

of a Spanish hotel (Ahmad et al., 2017) over a period of 15 months. Similarly, decision

trees, ANN and linear regression were compared when predicting the weekly electricity

consumption of 1166 dwellings during the winter and summer of one year (Tso and Yau,

2007).
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Ensemble models (6 studies, 8%) combine different data-driven models to predict build-

ing energy demand. For example, SVR and ANN are combined with optimization algorithms

for short-time prediction of two different US buildings (Li et al., 2021) and symbiotic organ-

isms search were combined with SVR and ANN to predict monthly demand of residential

buildings (Tran et al., 2020). Previously, ensemble models that combine several data-driven

models (SVR, ANN, KNN, linear regression among others) had been investigated for predict-

ing the daily and peak demand of one office (Fan et al., 2014). Tian et al. (2021) designed an

ensemble model combing five data-driven models (ANN, SVR, extreme learning machine,

random forests, linear regression) and applied it to four cases studies at different scales

(building, region and country). Ensemble models were also used after applying clustering to

a data-set (Li et al., 2021). The hourly demand of a New York office building was predicted

using ensemble models that include ANN, SVR, decision trees and linear regression mod-

els (Dong et al., 2021). In all these studies, it was claimed that the ensemble models were

more accurate than applying the models individually.

From this range of studies (techniques and data-sets) it is possible to conclude that there

is no consensus about the superiority of a specific technique. Studies that compare several

techniques usually report marginally differences in the prediction results e.g. Edwards

et al. (2012); Ma et al. (2017); Tso and Yau (2007), or contradictory results e.g. ANN

out-performing SVR (Zhao et al., 2016) and vice-versa (Li et al., 2009).

Despite not being the research focus, engineering methods that can predict and model

energy demand of buildings need to be mentioned due to their importance. There are

several software suites for simulating and modelling energy demand of generic buildings (In-

ternational Building Performance Simulation Association, 2023), and the application to

supermarkets is described by Lundqvist (2012). Some of the model-driven simulation tool-

kits that are designed to be deployed for modelling retail stores are Supersim (Arias and

Lundqvist, 2005), EnergyPlus (US Department of Energy Building Technologies Office,

2023) and CyberMart (Ge and Tassou, 2000). Mylona et al. (2017) is a recent example of

exploiting EnergyPlus to model the electricity use of HVAC and refrigeration of a frozen

food supermarket in London. A model-driven approach to disaggregate store-level energy

into weather-dependent and weather-independent components has been proposed (Iyer et al.,

2015). They performed computational experiments of 94 stores from a supermarket chain in

different countries with cold winters.
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2.2 Clustering and dimensional reduction of energy data

Reviews of clustering methods applied to electricity data have been conducted by Bogin

et al. (2021); Chicco (2012); Dahunsi et al. (2021); Yilmaz et al. (2019). Most studies have

used residential data-sets, but some work clustering electricity profiles of commercial and

industrial customers has been completed. For example, 292 Greek industrial and service

customers were clustered using a two-stage ML algorithm Tsekouras et al. (2007). Wavelet

decomposition was used by Nystrup et al. (2021) to select significant features describing

the hourly load profiles of 9,092 Danish industrial and commercial loads using two-week

data. Later, they applied clustering using the k-means algorithms over these features. Chicco

et al. (2006) investigates several clustering techniques such as k-means and hierarchical

algorithms to cluster 234 non-residential customers, and a data-set of 1,877 UK business

from the entertainment sector was used to perform clustering with a Dirichlet process mixture

model (Granell et al., 2015a).

Some studies cluster the electricity data to discover similar demand patterns and then

apply a predictor to each group created. Jetcheva et al. (2014) clusters the electrical demand

of six industrial and commercial customers using the k-means algorithm, then uses ANN

to predict the demand for each cluster. Li et al. (2022) uses a similar approach for HVAC

electrical data by first clustering (k-means) and classifying (KNN), before performing the

prediction process (ensemble method). A fuzzy clustering algorithm is applied to HVAC

daily profiles of a Chinese office, then the profile is predicted using SVR (Chen et al., 2020).

Decision trees have been used to divide daily profiles, with specific ensemble models used

to predict the demand (Dong et al., 2021). Two-step clustering has been performed using

daily profiles of three Chinese non-residential buildings (Liu et al., 2021). The first clustering

step detects outliers using the DBSCAN technique, and the second groups the electricity

daily profiles using the k-means algorithm. Clustering and predicting load profiles using

two years of electricity data of 6,000 Belgian commercial customers has been conducted

by Vercamer et al. (2016). They used a spectral clustering algorithm and combined the

profiles with commercial and cartographic data to achieve the highest accuracy. Most of these

studies conclude that applying clustering and prediction improves the prediction accuracy

with respect to using only prediction.

A review of dimensional reduction techniques for smart meter readings appears has

been conducted by Dahunsi et al. (2021). Dimensional reduction has been attempted for

electricity demand modelling and clustering (Nystrup et al., 2021), and for symbolic aggregate

approximation with hierarchical clustering (Notaristefano et al., 2013). Representing the data
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using principal component analysis, curvilinear component analysis, and the Sammon map

were investigated by Chicco et al. (2006). The effect of the time resolution when clustering

domestic electricity daily profiles Granell et al. (2015b) was investigated by averaging over

regular intervals instead of extracting key features based on the specific shape of the retail

electricity daily profiles. Residential electricity demand profiles have been characterised and

clustered with a set of five points that match the peaks Roberts and Thunim (2013).

In addition, there are other research areas that exploit retail energy data-sets. Empirical

studies using energy time-series data-sets from retail stores have been conducted to under-

stand tariffs. Real-time pricing tariffs were analysed using a sample of 636 industrial and

commercial customers in California (USA) (Borenstein, 2007). They compare the mandatory

use of a dynamic tariff, in which the price changes hourly depending on the wholesale

market, with a static tariff with constant price and determine which customers have cost

reduction or increase. Similar analysis is performed (Granell et al., 2016) where three types

of tariffs (static, time of use and dynamic) were compared using a data-set of half-hourly

electricity readings from more than 7,500 British companies from different business sectors:

entertainment, industry, retail and social. Daily load profiles of the businesses that obtain

benefit, and the businesses that do not, are compared independently for each sector.

2.3 Urban heat island effect

The urban heat island is the effect of an urban area being warmer than the surrounding (rural)

region (Oke et al., 2017) and has been observed in many cities around the world. The effect

decays away from the centre of the city (Kolokotroni et al., 2009a). The UHI overheats the

city during the Summer months so increasing the demand for cooling (Sanchez-Guevara

et al., 2019), but in Winter it stops the external temperature from dropping as low as the

surrounding region so reducing the demand for heating (Davies et al., 2008; Kolokotroni

et al., 2006). In addition to energy demand (Salvati and Kolokotroni, 2023), the importance

of studying the UHI has been considered in the context of climate change and the impact

on future cities (Kleerekoper et al., 2012; Manoli et al., 2019) city planning (Al-Nadabi

and Sulaiman, 2023; MacLachlan et al., 2021), and human health (Iungman et al., 2023;

Macintyre et al., 2021; Taylor et al., 2015; Wong et al., 2013). One of the contributors to the

UHI is anthropogenic heat (Wang et al., 2023)-human-produced heat- that includes waste

heat from traffic (Liang et al., 2018) and buildings (Boehme et al., 2015; Chen et al., 2022),

and specifically HVAC systems of buildings (Golden et al., 2006; Magli et al., 2016).
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The UHI can be measured using official weather stations, but as there are few of these

for any city the granularity of the data is low (Chapman et al., 2017). A detailed research

study can be designed to deploy temperature (and other) sensors to improve the data granular-

ity e.g. Mavrogianni et al. (2011), but inevitably such studies are time and funding-limited.

Crowdsourcing of mobile phone battery temperature has been proposed as a proxy for urban

air temperature (Droste et al., 2017; Overeem et al., 2013). Although this may yield larger

and more widespread data-sets, the disadvantages are the lack of systematic coverage and

data quality control. Benjamin et al. (2021) used crowdsourced data from ‘Net-atmo’ home

weather stations in London to estimate the UHI effect. Although quantitative results were

obtained, they noted the quality of the metadata as a significant limiting factor. Modelling

naturally ventilated office buildings (Demanuele et al., 2012) demonstrated that using single

weather files was inadequate in accounting for the effect of the UHI on energy use and

therefore the need for a more sophisticated approach.

The UHI effect in London has been well-documented. The spatial spread and intensity

has been observed using satellite imaging (dos Santos, 2020; Mullerova and Williams, 2019;

Sun et al., 2020; Zhou et al., 2016), and surface air temperatures have been measured by (Ben-

jamin et al., 2021; Kolokotroni et al., 2012). A generalized additive model was devised to

reconstruct London’s UHI intensity for 70 years using only 10 years of data (Bassett et al.,

2021). Regression analysis using six variables was used by Giridharan and Kolokotroni

(2009) to demonstrate the importance of considering the Winter (heating season). At the

buildings-level, studies of the UHI effect have been performed on the thermal character-

istics of dwellings (Oikonomou et al., 2012), of office buildings (Demanuele et al., 2012;

Kolokotroni et al., 2012), of street canyon effects on the need for mechanical cooling in

residences (Gunawardena and Steemers, 2019), of air conditioning loads for office build-

ings (Gunawardena and Steemers, 2019), and of energy poverty from increased Summer

cooling requirements (Sanchez-Guevara et al., 2019).

However, not all of the suggested effects are negative. For example, in their study of

heat-related deaths in London Milojevic et al. (2016) showed that the population had likely

acclimatised to the Summer UHI effect. However, the evidence was less clear for a reduction

in Winter cold-related deaths. Furthermore, a study by Villalobos-Jiménez and Hassall (2017)

showed no noticeable effect of the UHI on dragonflies and damselflies breeding patterns.

The application of ML techniques to the UHI effect is very limited with a small number

of papers attempting to cope with the sparsity of surface temperature data e.g. (dos Santos,

2020). Examples of applying ML to the UHI are: using ANN and regression to predict indoor

air temperature (Ashtiani et al., 2014), deep-learning techniques to predict the characteristics

20



2.4 Summary

of the UHI (Oh et al., 2020), ANN to predict HDD and CDD (Kolokotroni et al., 2009b), and

auto-regressive models to improve forecasting for heat-health warning systems (Gustin et al.,

2020).

2.4 Summary

The focus of this review is on energy demand prediction using data-driven models for

buildings. There has been a review article about this topic annually for the last decade,

indicating the current relevance of the topic. The approach, classification criteria and main

conclusions of the reviews are examined and quantified. A detailed review of 80 articles,

focusing on prediction for retail and supermarket buildings, was carried out. For each article,

seven features of the data-set, three features of the experimental set-up and the prediction

method are extracted and classified. Most of the studies (71%) perform prediction for five

or fewer buildings, and only 15% predict energy demand for buildings other than the one

used to train the predictor. The most frequently used methods are ANN, linear regression

and SVR. Particularly notable is the lack of work on predicting energy use by supermarkets

using data-driven methods.

The literature about clustering energy demand data focused on retail buildings. Studies

of clustering energy demand for retail buildings are not common and none specifically about

the clustering of supermarket energy demand.

Despite a detailed search, it appears that there is no literature specifically discussing retail

stores or supermarkets and the UHI.
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Chapter 3

Methods and data resources

This chapter describes the methods and the data resources that are used for the computational

experiments. First, the data science methodology and its components adapted to this research

is explained. Second, it is defined the machine learning techniques and evaluators for

regression and clustering. Finally, data resources are described and characterised.

All parts of the implementation including data-set pre-processing and data management

tasks were coded using C++ combined with Linux bash. Most of the software to perform the

analysis experiments was coded in C++ for efficiency reasons. Standard libraries were used

for some of the methods: OLS uses the C++ Mlpack library (Curtin et al., 2018), the ANN

and SVR methods use R programming libraries (Fritsch and Guenther, 2016; Meyer et al.,

2017), but these scripts were invoked from the generic C++ code. The remaining methods

(KNN and clustering algorithms) were implemented in C++. The software is not currently

available in any open repository (it would require sorting, cleaning and documenting it), but

the code is available under requirement. All the experiments were performed using a Dell

Precision Tower 5820 with an Intel Xeon processor W-2145, 4.5GHz Turbo, 11 Mb cache

and 16GB 2666MHz DDR4 memory.

3.1 Data science and energy analytics

Data science, nowadays considered an academic discipline, uses statistics, scientific methods,

computing techniques and domain knowledge to obtain new insights from analysing data.

Detailed description of data science approaches and components can be found in the extended

literature, e.g. (Donoho, 2017; Mike and Hazzan, 2023; Shah, 2020). A possible version of

the data-science life-cycle is displayed in Figure 3.1.
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Fig. 3.1 Life-cycle of data science.

In this work, the data science methodology is used with energy as the domain knowledge

(aka energy analytics). This research adapts the life-cycle components that appear in the

Figure 3.1 in the following way.

1. Problem specification and understanding: In this research, one of the research questions

was firstly vaguely described by the energy manager that provided the data (Section 1.3).

However, deep understanding for each problem and new ones appeared once the data

was explored and characterised.

2. Data collection: In this case, data was provided by research project partner (Janda

et al., 2015). More details about the data are given in Section 3.3.

3. Data pre-processing: this is the process to transform the raw data into useful data that

are in a format ready to be analysed. For this work, the data-set pre-processing is

described in Section 3.3.

4. Data modelling/analysis: once models and their parameters are selected, computational

experiments can start to analyse the input training data-set. Most current common

models are based on ML algorithms as shown in Chapter 2. ML techniques are
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explained in this chapter and particular experiment details for each problem are given

in the Chapter 4, Chapter 5 and Chapter 6.

5. Model evaluation: the experiment results need to be assessed using evaluation metrics.

The evaluators selected for both regression and clustering experiments are explained in

the Section 3.2.

6. Results interpretation and exploitation: applying the domain knowledge to the results

allow to make interpretation and check the validity of the hypothesis previously

formulated. Result analysis for the different problems of this work is performed in the

Chapter 4, Chapter 5 and Chapter 6.

7. Knowledge and model development and maintenance: common knowledge about

the specific problem is achieved and shared. In a real application, the model can be

developed, if results are satisfactory. In this case, the knowledge acquired from tackling

each data-science problem is discussed in each one of the Chapter 4, Chapter 5 and

Chapter 6, and disseminated via articles and conference presentations (Section 1.5). In

addition, key general insights and conclusions are discussed in the Chapter 7, in which

the possibility of real application of the models is also contemplated.

3.2 Machine learning models

3.2.1 Regression models

Regression analysis are supervised statistical and ML processes in which a variable with

continuous value (outcome), y, is mathematically predicted combining some input variables

(predictors), F = fi, . . . , f|F |, (Bishop, 2006). In the literature review„ several techniques to

perform this task are shown in Table A.5. In this work, there are four different regression

techniques to perform experiments: ordinary least of square (OLS), k-nearest neighbours

(KNN), artificial neural networks (ANN), and support vector regression (SVR). The reasons

to select these four techniques are the following: 1) they are models of different mathematical

nature (e.g. OLS is a linear model, and KNN, ANN and SVR -with a non-linear kernel- can

capture non-linear relationships between input and output variables), 2) they have different

level of complexity (e.g. number of model parameters) and algorithm nature, 3) they are

some of the most popular techniques in the literature (Table A.5) and 4) they are usually

reported to have good results when comparing with other models (Section 2.1). A basic
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explanation of these techniques is depicted here, however, deeper details can be found in ML

books such as Bishop (2006) and particular referred articles for each technique.

OLS it is a linear regression model that estimates the unknown parameters minimising the

sum of squares of residuals (Hayashi, 2011). Under the assumptions that the model

parameters must be linear and that the residuals are normally distributed, output value

is modelled using Equation 3.1.

y′ = β1 f1 +β2 f2 + . . .+β|F | f|F |+ ε (3.1)

where y′ is the predicted outcome, βi are the predicted coefficients that multiplies the

i-th predictor and ε is the estimated intercept. The OLS parameters, (β1, . . . ,β|F |, ε),

are estimated with the Maximum Likelihood approach by searching the parameter

combination that reduces the sum of square of residuals over the training data points.

The data-set can formally be defined as S = (Y,φ) where Y = y1, . . . ,yn, and φ =

F1, . . . ,Fn are the outcome and independent variables respectively. Additionally, for

each generic data point, si = (yi,Fi), the independent variable is F-dimensional: Fi =

f1,i, f2,i, . . . , f|F |,i as used for Equation 3.1. For supervised ML problems, the data-set

(S) is also usually divided into a training (St) and test sub-set (Se) using some rational

criteria.

KNN regression method (Altman, 1992) is considered as one of the simplest ML algorithms

where the predicted value is locally approximated. It is based on the local principle:

similar‘recipes’ yield similar outcomes (Bishop, 2006). The KNN can be described as

follows:

1. Compute the distance of the predictors of the new data point to estimate (Fi) with

respect to all the known data points: d(Fi,Fj) where Fj is the set of predictors of

each training data point si = (yi,Fi) ∈ St .

2. Order the training data points by increasing distance.

3. Calculate the outcome value of the new data point (y′i) combining mathematically

the k-nearest data points (neighbours).

There are different ways to combine the k-nearest data points:

KNN outcome is directly computed by averaging the nearest neighbours:

y′i =
∑s j∈Si,k

y j

k
,∀si∈St (3.2)
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where y′i is the predicted outcome of the i-th test data-point, y j is the real outcome

of j-th data point, and Si,k is the set with the k most similar data points to the one

to predict (distance computed in step 1 of the algorithm).

KNN-dist a weighted average based on the distance of the k neighbours is computed

in this approach. Smaller weight is assigned to points farther from the point to

compute. Instead of using directly the distance, the proportion over the total sum

of distances can be used:

y′i = ∑
s∈Si,k

wsys (3.3)

where

ws =
1/d(si,s)

∑s′∈Sk
1/d(si,s′)

(3.4)

The data point with the closest distance to the one to predict (lowest d(si,s′)) has

the highest weight and so on. In the previous approach, this weight was constant

for all the k data points: ws =
1
k .

KNN-EQk the contribution of each observation is calculated using a kernel weighted

function K(t). The predicted energy value e′i is computed with the weighted

average but using the Epanechnikov Quadratic equation as Kernel function (Wand

and Jones, 1994).

KNN-3ck the same as KNN-EQk but using as Kernel function the Tri-cube func-

tion (Wand and Jones, 1994).

Confidence interval can be computed to model the uncertainty of the prediction using

KNN. Confidence interval complements the prediction given a broader estimation of

the predicted point. Inspired in the local principle, they can be represented as error bars

calculated using the variability of the selected data points use to compute prediction

model (k nearest neighbours):

Bars1: first the standard deviation (SD) among the training points is computed and,

later, the error bars are the predicted value plus/minus the SD.

Bars2: it is the same as Bars1 but using the standard error (StE).

Bars3: it is the same as Bars1 but using twice the standard error (StE) over the EDLPs.

The motivation of these bars is that sometimes the StE (Bars2) is to have a

intermediate variability between Bars1 and Bars2 approaches.

27



Methods and data resources

ANN it is a parametric model (Bishop, 2006) based on the linear combination of a fixed

number of non-linear functions as Equation 3.5 indicates for one neuron.

g(b+
|F |

∑
i=1

fiwi) (3.5)

where wi is the weight for i-th input variable fi, b is the bias and g() is the non-linear

function that can be the logistic function (Equation 3.6).

g(x) =
1

1+ y−x (3.6)

Neurons are combined into layers and the morphology of the network (number of layers

and neurons per layer) is designed based on the number of input/output variables and

available data. Figure 3.2 shows the schema of a neural network with four variables as

input layer and one hidden layer with five neurons. Then the parameters of the network

(weights) were computed using the backpropagation algorithm (Werbos, 1994). It

iteratively minimises the loss function adjusting the weights backwards in the network.

Neural networks with large numbers of hidden layers and neurons in each layer are

called deep learning networks (Schmidhuber, 2014) and they require large quantity of

data to train them. Some deep learning models such as transformers (Vaswani et al.,

2017) and long short-term memory recurrent networks (Hochreiter and Schmidhuber,

1997) have high performance for computational linguistic and vision tasks, for which

large data-sets exist.

SVR it is a non-probabilistic supervised algorithm, that is a modification of the support

vector machine classification method (Cortes and Vapnik, 1995). New point estimation

depends on the evaluation of kernel function trained with data points (support vectors)

that divides the domain space. The generic function to predict a new value is in

Equation 3.7.

g(X) =
N

∑
i=1

(αi −α
∗
i )K(Xi,X)+b (3.7)

where X are the observations (input variables), N is the number of data points, αi,

αi∗ and b are estimated model parameters and K() is the kernel function e.g. linear,

polynomial, sigmoid, Radial Basis functions (RBF). When using non-linear kernel

functions such as RBF, SVR can capture non-linear relations between the input data

features and the value to predict.
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Fig. 3.2 A diagram of an artificial network.

Independently of the regression model used, evaluators asses the quality of the prediction.

Given a D-dimensional variable L = e1 . . .eD and its predicted value L′ = e′1 . . .e
′
D, where

e′i ≥ 0, ei ≥ 0 for 1 ≤ i ≤ D, the following evaluators are used to compute the prediction

error:

Euclidean distance (ED): in which discrepancies between the real and predicted values are

accumulated not cancelling between positive and negative values.√
D

∑
i=1

(ei − e′i)2 (3.8)

Manhattan distance (MD): similar as before but it is just the addition of differences in

absolute value.
D

∑
i=1

(|ei − e′i|) (3.9)

Difference real point with respect to the predicted point (DRE): it is such as MD but us-

ing the real difference.
D

∑
i=1

(ei − e′i) (3.10)

Normalised percentage difference (NP): difference with respect to the original data point

(NP) computes the relative distance considering the proportion of the error with respect
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to the total original data point.

100∗∑
D
i=1 |ei − e′i|

∑
D
i=1 ei

(3.11)

The evaluator unit for ED, MD, DRE is the same unit as the data points. As the errors are

added for all the dimension, if DRE and PDRE is greater than zero means that the predicted

data point is an overestimation of the real data point and vice-versa.

Independently of the evaluator, there should be a way to extend it to summarize the

predicted error over all the data points in the data-set. The mean over all the predicted data

points for all the evaluators previously described and express them as X̄ , e.g. ED is the

average ED for all the stores and is computed as:

∑s∈S EDs

|S|
(3.12)

where EDs is the ED computed over the real and predicted data point s. The rest of average

evaluators are computed in an equivalent way using the corresponding evaluator instead of

ED. For evaluators DRE and PDRE negative and positive errors can be compensated each

other.

The Manhattan distance is equivalent to mean absolute error when the number of di-

mensions is constant, as is the case in this study. Using Manhattan distance enables the

computation of the error of the whole profile. Furthermore, comparisons of the errors with

other studies that predict daily electricity profiles using different dimensions (e.g. 1-min) can

be made because computing the error MD is normalised over the total number of predicted

profiles. The mean absolute percentage error (MAPE) is a common evaluator to predict

the percentage error over each point, however, the total demand of the whole profile is not

considered as a single entity. The NP, a relative error considering the total demand of the

profile as a unique entity, is easily interpretable by energy managers e.g. an X% of error

predicted over the whole profile is with respect to the total daily demand of this profile as a

whole, not the proportion for each one of the dimensions. As NP does not normalise each

error (|ei−e′i|) independently by its real value (ei) for each dimension i (unlike MAPE), more

weight is given to dimensions with greater value, making it difficult to compare the relative

error over different parts of an individual profile when the number of dimensions is not the

same. The proposed evaluators consider the nature of the profile as a whole entity.
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3.2.2 Clustering algorithms

The results of clustering depend on both the algorithm and the resolution of the data. The

main aim of this work is not to compare the performance of the algorithms, but to analyse

the resulting clusters and compare the clustering results when the data resolution is varied.

Thus, three popular types of algorithm were selected:

• A partitioning algorithm, k-means is one of the most common methods (Bogin et al.,

2021; Chicco, 2012; Chicco and Ilie, 2009; Chicco et al., 2006; Dahunsi et al., 2021;

Figueiredo et al., 2005; Flath et al., 2012; Marques et al., 2004; Räsänen et al., 2010;

Tsekouras et al., 2007; Williams, 2013; Yilmaz et al., 2019). From an initial partition-

ing, a converging process in which data elements are moved from one group to another

is carried out until stable partitions are achieved. The convergence of the algorithm

depends on the initial partitioning. Therefore such algorithms must be run several

times with different initializations.

• Agglomerative hierarchical algorithms (Bogin et al., 2021; Chicco, 2012; Chicco and

Ilie, 2009; Chicco et al., 2006; Dahunsi et al., 2021; Ramos et al., 2007; Räsänen et al.,

2010; Tsekouras et al., 2007; Williams, 2013; Yilmaz et al., 2019). These bottom-up

algorithms create a new cluster for each one of the data elements then successively

merge the closest subgroups until the specified number of clusters is achieved. There

are different variations depending on the criterion used to compute the distance to

merge cluster. If two clusters Ci and C j are merged to form a new cluster Cq, then

the distance of this new cluster Cq from any other existing cluster Cl, l ̸= i∧ l ̸= j,

d(Cq,Cl), can be computed in several ways:

– Single link algorithm:

d(Cq,Cl) = min{d(Cl,Ci),d(Cl,C j)} (3.13)

– Complete link algorithm:

d(Cq,Cl) = max{d(Cl,Ci),d(Cl,C j)} (3.14)

– Unweighted pair group method average algorithm (UPGMA):

d(Cq,Cl) =
|Ci| ∗d(Cl,Ci)+ |C j| ∗d(Cl,C j)

|Ci|+ |C j|
(3.15)
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where |Ca| is the number of elements of cluster Ca.

– Weighted pair group method average algorithm (WPGMA):

d(Cq,Cl) = (d(Cl,Ci)+d(Cl,C j))∗0.5 (3.16)

– Unweighted pair group method centroid algorithm (UPGMC):

d(Cq,Cl) =
|Ci| ∗d(cl,ci)+ |C j| ∗d(cl,c j)

|Ci|+ |C j|
− |Ci| ∗ |C j| ∗

d(ci,c j)

(|Ci|+ |C j|)2 (3.17)

where d(ca,cb) is the Euclidean distance between the centroids of the clusters Ca

and Cb

– Weighted pair group method centroid algorithm (WPGMC):

d(Cq,Cl) =
d(cl,ci)+d(cl,c j)

2
−

d(ci,c j)

4
(3.18)

– Ward or minimum variance algorithm (WARD):

d(Cq,Cl) = ((|Cl|+ |Ci|)∗d′(Cl,Ci)+(|Cl|+ |C j|)∗d′(Cl,C j)

−|Cl| ∗d′(Ci,C j))∗ (|Cl|+ |Ci|+ |C j|)−1 (3.19)

where d′(ca,cb) = |Ca| ∗ |Cb| ∗d(ca,cb)∗ (|Ca|+ |Cb|)−1

• Bayesian non-parametric statistics: the Dirichlet process mixture model (DPMM) (Granell

et al., 2015a; Teh et al., 2005). The DPMM algorithm creates a separation that best

adapts to the nature of the data with a hierarchical model of Dirichlet and Multinomial

distributions. Profiles are represented as draws from a multinomial distribution whose

parameters are obtained from a Dirichlet distribution of dimension D (number of read-

ings per 24 hour demand profile). Clusters are computed with the Chinese restaurant

process (Teh et al., 2005). Contrary to what happens with the two previous types of

algorithms, the number of clusters is not an input parameter for the DPMM. A Gibbs

sampling process is used to estimate the concentration parameter β of the Dirichlet

distribution.

In this work, some of the most popular clustering indicators (Chicco, 2012; Halkidi et al.,

2001) are chosen to measure the quality of the clusters obtained with the proposed algorithms:

clustering dispersion indicator (CDI), Davies-Bouldin index (DBI), modified Dunn index
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(MDI), mean index adequacy (MIA), scatter index (SI) and variance ratio criterion (VRC).

These evaluators are called internal evaluators (Halkidi et al., 2001) as they do not use an

external reference. For all of these evaluators but not the VRC, lower values suggest better

clustering result; it is the opposite for the VRC. To perform a valid comparison between two

clustering results, these evaluators should be employed over results obtained with the same

set of data points as input. This condition is due to the fact that they use distances among

points. Therefore, independently of the resolution of the input data, results will be evaluated

employing profiles with the same resolution.

3.3 Data resources

Two data-sets of retailers are used to perform computational experiments.

3.3.1 Supermarkets data-set

The data-set comprises 1-h resolution electricity meter readings (kWh) from 213 UK su-

permarkets of the same chain for the period 2012–17. However, the data was provided

in two batches at different time: 1) electricity readings from July 2014 to June 2015 and

few meta-data store information, and 2) electricity readings from 2012–2017, temperature

readings and detailed store meta-data.

The meta-data features available of each supermarket are:

Floor area: subdivided into 8 use-categories (m2): General merchandising (GM), Food,

Cafeteria, Office, Storage, Chilled, Frozen, and Produce. The Total Area is also given,

and the Sales Area is the sum of the GM, Food and Cafeteria areas. Data on the

Chilled, Frozen and Produce areas was available for only five supermarkets. For the

other supermarkets, these three categories were estimated with a linear regression

model, using the other areas as predictors.

Geographical location. longitude and latitude obtained from their complete postcode.

Temperature readings: daily average external temperature values (°C) provided by the

company are available for all days of 2015–17.

Fuels types: there are 129 supermarkets that use electricity and gas (SEG) and 84 supermar-

kets that use only electricity (SE).
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Table 3.1 shows the minimum, maximum, average and standard deviation of all the floor

areas for the supermarkets. Not all the supermarkets have values for some floor areas such

as Office, Storage or Cafeteria area. There are 0.9%, 0.9% and 64.3% of stores without

Office, Storage or Cafeteria areas1 respectively. The Total Area of the supermarkets varies

significantly, however there are group of stores that have similar area. The histograms of

Figure 3.3 show the distribution of the Total Area for SE and SEG. Supermarkets with

electricity (Figure 3.3a) are usually smaller than supermarkets with electricity and gas

(Figure 3.3b). The former also shows more variability than the latter, where more of the SEG

have a Total floor area between 1220 and 1520 m2.

Area Min (m2) Max (m2) Avg (m2) SD (m2)
Total 324.6 3279.3 1242.7 471.6
GM 1.4 572.8 47.9 78.5
Food 162.1 1590.3 700.8 248.2

Cafeteria 0.0 269.4 39.0 58.5
Sales 164.0 1925.7 787.6 312.9
Office 0.0 540.7 157.5 88.2

Storage 0.0 973.5 297.7 136.1
Chilled 22.2 38.9 28.5 2.9
Frozen 0.3 4.8 2.0 0.8

Produce 0.0 12.3 3.1 2.3

Table 3.1 Floor features and values for the supermarket set.

Pre-processing is performed to remove anomalous electricity readings (zero value and

negative values), accounting less than 0.6% of the data. However, not all the supermarkets

have valid values during all the years as new stores are created and some sites close or

some meters may not be sending data. The number of stores per year and the stores open

each year are in Table 3.2. In this table, ny and wy are the of number of supermarkets that

have electricity readings and the number of new supermarkets for the year y, respectively.

The number of new supermarkets opened each year, wy, is quite small and in addition each

supermarket can be opened/closed on different time during y year, e.g. a supermarket can be

opened in December.

1Considering only the supermarkets with cafeteria, the average and SD is 110.2 m2 and 25.7 m2 respectively.
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(a) Supermarkets with electricity only (b) Supermarkets with electricity and gas

Fig. 3.3 Histograms with the number of supermarkets divided by Total Area.

2012 2013 2014 2015 2016 2017
ny 84 83 85 86 100 107

SE
wy 2 0 2 1 15 8
ny 86 95 108 128 142 141

SEG
wy 11 9 13 20 14 0

Table 3.2 Number of supermarkets with readings (ny) and number of new open supermarkets
wy per year.

Demand characterisation

There are different ways to summarise, represent and compute the electricity demand of a

building. In Section 2.1, various variables are used to summarise this demand, such as the

average values during a week or month (Table 2.2). The first step performed to characterise

the supermarket demand was a graphical visualization of hourly and accumulative daily

demand. Figure 3.4 shows demand values for one supermarket from July 2014 to June 2015.

The top graph displays the heat-map that shows all the 1-h energy readings values of the store

during the sampling period. The bottom graph shows the accumulative daily energy (i.e. sum

of the 24 energy readings of the day) and the average daily temperature. In the top graph, the

demand pattern indicates when the demand is greater (operational times) and lower energy

(closing times). There are days in which the demand is very low as the store seems to be

closed (Christmas day or Eastern Sunday)). Sundays lower demand is also possible to be

detected in the lower plot. In that chart, the relationship between lower average temperature

and greater demand is seen, e.g. Dec 2014. That should be related to heat system.
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(a) Stores just with electricity (b) Stores with electricity and gas

Fig. 3.5 Average EDLPs of all the supermarkets computed yearly between 2012-2017.

Instead of display all the readings or daily demand as it is done in Figure 3.4, a concise,

informative, and intuitive way to represent, analyse and visualise the electricity demand

of any source to summarise the demand for a particular period of time is using electricity

daily load profiles (EDLP). EDLPs are data representations for which the electricity demand

during a day is computed with a temporal granularity, D. This temporal resolution indicates

the number of points (demand values) that formed the profile, e.g. if D = 24 each demand

value is the hourly demand as it happened with this data-set. EDLP can show the average

daily electrify demand during a specific longer period of time such as a week, a month, a

season or a year. To compute them, all the readings during the selected period are averaged

for each time slot.

An example of the utility of the EDLP is in Figure 3.3 in which the averaged EDLPs

computed for all the SE and SEG during different years are displayed. Comparing these

averaged EDLP by fuel type, SEG seem to consume similar than SE, but not for all the years.

In the most recent years (2017-2015) the SEG demand is greater than the SE demand. One

of the possible reasons for this can be that may be more data larger size of SEG supermarkets

for this recent years. Interestingly, the demand by year seems to be greater per year.

Another analysis to perform is to check the demand by weekday. Figure 3.6 shows the

EDLPs averaged for all the supermarkets during 2017 divided by day of the week. Sunday’s

EDLP is quite different than the rest of the days as the opening times of the supermarket is

shorter this day. For the rest of the days the differences do not seem significant. Based on

these patterns, the EDLP will be computed using Monday-Saturdays date if another thing is

not said.
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Fig. 3.6 Electricity profile of all the supermarkets during 2017 divided by day of the week.

Three seasonal EDLPs are independently computed over all available readings of the

selected year: Winter (December, January and February), Summer (June, July and August)

and Spring/Autumn (March, April, May, September, October, November). Figure 3.7 shows

the profiles for the SE and SEG groups computed over the Winter, Summer, Spring/Autumn

2017 readings. The seasonal differences are more important for SE group as electricity is

used for heating. As Y-axis scale is the same for both Figure 3.7a and Figure 3.7b, the

difference in the demand between SE and SEG can be clearly seen.

Greater London supermarkets

The sub-set of the supermarkets located in the Greater London area are investigated in

Chapter 6. These supermarkets are selected by having their postcode of the Greater London

administrative division (Postcode-info, 2016). A minimum of 90% of readings during the

sampling period 2012-2015 was also required to exist for each supermarket, giving a final

number of 38: 23 supermarkets (60.5%) use just electricity and 15 supermarkets (39.5%)

use both gas and electricity. Figure 3.8 shows the store locations separated by the energy

used in the store. The black point in this figure is what it is considered in this work the centre

point of London. There is not an official centre of London, so it is used one established by a

38



3.3 Data resources

(a) Supermarkets with electricity only (b) Supermarkets with electricity and gas

Fig. 3.7 Seasonal electricity profiles of all the supermarkets during 2017.

residential research estate agent (Knight Frank, 2016): 51°30’37.6”N, 0°6’56.3”W (Victoria

Embankment in front of King’s College London).

Fig. 3.8 Location of the supermarkets in the Greater London area. The black diamond is the
city centre.

An analysis that is performed over this sub-set is trying understanding the relationship

between the demand and the supermarket total floor area. Figure 3.9 shows the total floor
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area against the average hourly electricity demand for each supermarket. The demand of

stores increases with the size but not at the same rate (Figure 3.9). The linear regression

model that fits the demand given the floor area (red points) is equation y = 0.05x+24.07.

The intercept (24.07 kWh) indicates that there is this common baseline demand independent

of the store. This slowly increases with increasing floor area (slope of 0.05 kWh/m2). This is

because all the stores have in common some number of basic appliances and devices that

are the base demand drivers (e.g. freezers, fridges) independently of the store size. Later,

there are other demand drivers that clearly depend on the size such as the lighting and air

conditioning, but their increase with the store size is not as important as the base demand.

Fig. 3.9 Size of the stores against the average hourly consumption

The first batch of the data-set provided by the supermarket chain (electricity readings for

years 2012–2015) did not have any temperature information. In addition, hourly temperature

is required to perform analysis using degree days (Day, 2006). For this reasons, two

approaches were investigated to estimate the hourly temperature of the stores in the Greater

London area for this period using external temperature sources. First, the supermarket

external temperature was estimated by directly using the temperature recorded by the closest

meteorological station provided in the MIDAS data-set (UK Meteorological Office, 2016).

Table 3.3 shows the meteorological stations used, the number of stores assigned to each

meteorological station and the mean and standard deviation of the distance of the stores with
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the station. In this case, the majority of the stores use as reference the temperature measured

at St. James’ Park meteorological station.

Meteorological Station #Stores Avg. dist. (km) Stand. dev. (km)
Gravesend: Broadness 2 5.68 1.93
Heathrow 3 6.80 1.58
Kenley Airfield 3 6.22 1.50
London: St. James’ Park 27 4.17 2.48
Northolt 3 4.61 3.45
Total 38 4.65 2.48

Table 3.3 Possible meteorological station used to approach the temperatures of the stores
using the Met Office data-set.

A second approach was investigated using the MIDAS data-set and the London Site

Specific Air Temperature (LSSAT) data-set (Kolokotroni et al., 2009a). The LSSAT data-set

correspond to hourly temperature series for 79 temperature stations located in the Greater

London area from 30/05/1999 to 30/10/2000. Figure 3.10 shows the location of the LSSAT

stations. Then, hourly temperature for the 2012–2015 period were estimated for the LSSAT

station. A model that explains the temperature of each LSSAT station given the MIDAS data

of the London stations (Table 3.3) is created for the overlapping time period (1999–2000).

Cross-validation experiments are performed to evaluate the approximation using OLS and

SVR models. In addition specific models based on the dates and hours were investigated:

a unique all-year model, monthly models, seasonal models, day/night models, day/night

monthly models and day/night seasonal models. Night time is considered from 21:00 to

8:00am and day time the rest of hours. The model that best results brought were day/night

monthly models, i.e. for each station there is a specific model using data during each month

and day or night data. Later, these regression models were used with the MIDAS 2012–2015

temperature data to obtain approximation for the LSSAT stations during that period.

An accurate calculation of the heating degree day (HDD) with the hourly temperature

series is computed (Day, 2006):

HDD =

24
∑

i=1
(tb − ti)

24
if (tb − ti)> 0 (3.20)
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Fig. 3.10 Location of the LSSAT temperature stations.

where ti is the temperature at i time and tb is the base temperature. Cooling degree day (CDD)

computation is equivalent just substituting tb − ti by ti − tb in both places of Equation 3.20.

The base temperature that is used for both cases is 15.5C°.

After all this process, the temperature of each supermarket is assigned to the closest

LSSAT station: 29 stations are used with a mean of 2.43 Km of distance between the stations

and supermarkets (standard deviation is 2.06 Km). This second approximation is the one

used to estimate the temperature of the Grater London supermarket.

3.3.2 Retail data-set

The retail data-set comprises 663 UK retail stores (from a single company) with electricity

meter readings at 0.5-h resolution acquired between April 2013 and October 2014. A filtering

process has been performed to remove anomalous and erroneous data automatically and to

assure that there is a minimal amount of valid readings for each store. Three basic filters

have been applied to the original data in the following order:
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Filter 1 Removing readings with value less or equal to zero. About 0.8 per cent of the

readings are removed with this filer (second column in Table 3.4).

Filter 2 For each store, readings that have repeated time stamp are removed (it does not

happen with the supermarket data-set). If there are two or more readings with the same

time stamp, the mean of these readings as approximation of the real value. There is a

total of 2.8% of repeated readings (third column in Table 3.4).

Filter 3 Stores without a minimum number of readings τ are also removed to guarantee

that there exist enough representative data. Threshold τ is equal to 730 readings (it is

the equivalent of having at least half of month of readings, but they do not need to be

consecutive readings). A total of 20 shops are removed after applying this filter (fourth

column in Table 3.4).

After applying these three filters, there is a total of 643 stores in the data set with an

average number of readings per shops of 25803.3, that it is the equivalent of approximately a

year and half of data (it is 93% over the maximum number of readings during the sampling

period). The standard deviation of the number of readings per store is 4607.35, that is not

very high compared with the mean.

#InitVal Filt1Read Filt2Read Filt3Sto #FinVal #FSto
25951.7 200.3 (0.8%) 725.2 (2.8%) 20 (3.0%) 25803.3 643

Table 3.4 Preprocessing statistics for the retail data-set. #InitVal is the average number
readings for store before applying any filter. Filter1Read is the average and percentage of
the number of readings removed when applying Filter 1. Filter2Read is the average and
percentage of the number of readings removed when applying Filter 2. Filt3Sto indicates
the number and percentage of stores removed after applying Filter 3. #FinVal indicates the
average number of readings by store after applying all filters. #FSto is the final number of
shops.

Additionally to the energy demand of each one of the shops, the following meta-data

features are available:

Address: it is the exact location of each store, including the postcode. The postcode is

used to obtain the latitude and longitude coordinates. Figure 3.11 shows all the stores

location.

Outlet type: it is a classification based on the store location. The categories and their store

number and frequency are in Table 3.5.
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Fig. 3.11 Location of all the retail data-set stores.

As it is indicated before, not all the shops present valid values for all the intervals,

Figure. 3.12 shows the number of stores that have values for each one of the intervals during

the sampling period (blue points). It is possible to see a small increasing of this number with

the time (it starts having 566 shops to finish with 617). There is also the presence of some

small discontinuities: the biggest one occurs in November 2013. It is ignored the reason of

this small gaps. Instead of these discontinuities, all the intervals present always a number of

readings of at least 500 stores.

Demand characterisation

The average demand of the stores for each one of the time 30-minute intervals are in

Figure 3.12 (red points). The bottom points correspond with the periods of time when the

stores are usually closed (e.g. nights). Considering the periods of time that the stores are

open (top red points), it is possible to appreciate that there exist several peaks (February

2013, July-August 2013, Dec 2013 to Feb 2014 and August 2014). From the peaks in the
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Outlet type #Store
Arterial route 75 (11.6%)
High street 271 (42.1%)

Regional shop 8 (1.2%)
Retail park 128 (19.9%)

Shopping centre 151 (23.5%)
Other 10 (1.6%)

Table 3.5 Number and percentage of stores divided by their outlet type feature.

Fig. 3.12 Number of stores with valid readings and the average demand of each store.

Winter and Summer months, the season seems to be important to characterising the electricity

demand variability. This variability may be due to the use of electrical HVAC systems in the

coldest and hottest months.

Differences among days of the week are analysed using EDLPs. Figure 3.13 shows the

EDLPs computed for all the stores during the specific week days: all days of the week, only

weekdays, Saturdays and Sunday. The shapes of the four curves are very similar, but the

Sunday profile starts later and ends before than the other profiles. It also presents lower

energy values. The time variability should be due to the difference of working times of the

shops on Sundays, where they open later and close sooner than in the rest of the days of the

week. The difference in the energy can be consequence that some shops can be closed on

Sundays decreasing the average profile for all the shops. As the curve for all days is similar

enough for the weekdays and Saturday, readings from Monday to Saturday to are used to

compute the representative EDLP of each store.
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Fig. 3.13 Daily load profiles separated by different week days.

Considering the outlet type feature (Table 3.5), the average EDLPs of the stores of each

type is computed and displayed in Figure 3.14. The EDLPs of all the types stores have

similar behaviour (a unique peak starting around 7 and ending at night), however there are

some differences in the intensity of the demand during the peak and its end time. EDLPs for

regional stores (there are only eight stores) and retail park stores have the highest demand

during the peak. Their peaks also end later than the peaks of other stores types. The other

four types are very similar, being the shopping centre stores the ones with the highest demand

values and the arterial route the ones with lowest values. There is not specific features of

each type that help to explain of the reasons of these differences.
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Fig. 3.14 Averaged daily load profiles grouped by the outlet type.
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Chapter 4

Predicting electricity profiles of new
supermarkets

This chapter has the following structure. The motivation and establishment of the problem

for predicting the EDLPs of new supermarkets are in Section 4.1. The techniques, data

partitioning, and experiments used for solving this problem are described in Section 4.2. The

results and discussion are presented in Section 4.3. Finally, a summary of main conclusions

is in Section 4.4.

4.1 The research problem

The target is predicting the profile of a new supermarket given the profiles of different

supermarkets computed over previous years. Using data-driven models to predict electricity

demand of a new asset is different to predicting the energy profile of a current asset using its

historical data. A review of previous studies of each case is given in Section 2.1.

Formally, the research problem is defined as predicting the daily profile Ls = e1,e2 . . . ,eD

of a new supermarket s ∈ S for a year y based on historical profiles of existing supermarkets

S′ and the supermarket set of features F (predictors). The EDLP (Ls) of the new supermarket

s, ei is the electricity consumed (kWh) between the (i− 1)-th and i-th time interval, D is

the number of intervals, S and S′ are the set of new and existing historical supermarkets,

respectively (S∩S′ = /0). The feature set F of available information about the supermarket

building includes the floor area divided by usage and the supermarket geographical loca-

tion. Independently of the particular prediction method, the experimental framework is the

following:
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1. Select the set of features (F) as predictors and number of supermarkets used to train

the model (k).

2. Predict the EDLP Ls using historical EDLPs of existing k similar supermarkets.

3. Compute the error between the real and predicted EDLPs.

4. Repeat steps 2 and 3 for each new supermarket s ∈ S.

5. Repeat steps 1–4 for each combination of (k,F) to find the best combination (k̂, F̂).

The selection of the features (F) and number of EDLPs (k) to be used for the prediction

(step one) are the global parameters of the model. The search of the best combination of

(k,F) (step 5) can formally expressed as

(k̂, F̂) = argmin
k,F

∑
s∈S

Ev(Ls,Ls(k,F))) (4.1)

where S is the set of new supermarkets, Ls is the real EDLP of supermarket s, Ls(k,F) is the

predicted energy profile when using parameters (k,F) and Ev(Ls,L′
s(k,F)) is the evaluator

that measures the error between the predicted and real profile (step three of the algorithm).

There are 2|F |−1 possible combinations of features (there should be at least one feature) and

k can vary between 1 and |S′|.
Step two of the algorithm depends on the prediction method. Comparing the results

obtained by different algorithms provides a reference of the difficulty of the stated problem.

It should be noted that the error estimates for the prediction experiments are biased. The

exploration over the possible combinations of the hyper-parameter k and features F ideally

would be performed over a separate validation data-set i.e. not using these points for training

the final prediction model. However, this ideal procedure would require a data-set larger than

is available to produce reliable error estimates.

4.2 Experiments configuration

The generic features about the prediction methods and implementations are in Section 3.2.1,

but there are details of the experimentation set-up that need to be described. Firstly, the

criteria to perform the data-set partitioning is explained. Secondly, the specific configuration

and details about how the methods are adapted and used for these experiments.
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4.2.1 Partitioning the data

The main data-set comprises (at 1-h resolution) data for 213 UK supermarkets for 2012–17

(Section 3.3). In addition, supermarket meta-data features used for this study are: 1) 10 types

of floor area (Table 3.1), 2) geographical location, 3) temperature readings, and 4) fuel types.

The electricity readings are divided temporally to compute the EDLPs based on various

criteria. First, they are divided by years as the goal is to predict the electricity demand of

new supermarkets for the coming year. As readings are available from 2012–2017, daily

profiles of new supermarkets of each individual year from 2013 to 2017 are predicted using

historical data. Generically, if an EDLP of year y is predicted for one supermarket, profiles

of other supermarkets computed with readings from previous years: from years y− p to

y− 1, can be used. This window width p is also a parameter for the experiments as it is

not known how many years of historical data to use to predict the future profiles of new

supermarkets more accurately. Secondly, only the Monday to Saturday readings are selected,

because Sunday opening and closing times vary widely (Figure 3.6). In addition to these two

temporal divisions, two sets of experiments based on weather conditions are investigated as

UK seasonal meteorological conditions vary widely, affecting energy demand (Figure 3.7):

Seasons Independently three seasonal EDLPs are computed over all available readings of

the selected year: Winter (December, January and February), Summer (June, July and

August) and Spring/Autumn (March, April, May, September, October, November).

Experiments predicting EDLPs computed over all the available years (y ∈ [2013,2017])

and possible values for parameter p (p = 1, . . . ,5 when y− p ≥ 2012) were performed.

An independent prediction experiment is performed for each year y, window width

p and season. Table 4.1 shows the number of supermarkets for testing (number of

supermarkets with readings in year y) and training (number of supermarkets with

enough readings in years y− p to y− 1) the ML algorithms. Over time new stores

open (and occasionally some close), hence the number of stores used in the differing

training horizons changes. For example, when predicting the 2017 SE group (first row

of Table 4.1), there are 84 stores used for training when using two years of historical

electricity readings (2015-2016) to compute their EDLPs. However, when predicting

2016 SE (second row of Table 4.1), there are only 83 stores for training when using

one year of historical data (2015). This is because an additional store with enough

data existed (when considering the 2015 and 2016 readings) to compute the training

EDLPs. This is confirmed as there are 84 stores for test when predicting 2016 SE.
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Temperature The external temperature data allows splitting of the days during 2015–17

based on the average daily temperature. Days are divided using temperature intervals

of 1 °C, but larger intervals are allowed in the extremes as there are insufficient super-

markets with readings during days with extreme temperatures. For each temperature

interval, the EDLP of each supermarket is computed using only the days that have the

temperature in the interval, i.e. it is treated as an independent prediction problem. For

these experiments, only the 2017 EDLPs are predicted using EDLPs computed with

2015–16 readings. This is done because a sufficient number of days with readings for

each temperature interval exist, though not all supermarkets have days with readings

for all intervals (at the low/high extremes). For the coolest and hottest temperatures,

all days are grouped as ≤−3°C and > 23°C intervals respectively. There is a total of

28 different temperature intervals. For the 21 temperature intervals between [−1,0]

to [19,20] °C there are available data in more than 95% of the supermarkets for both

the SE and SEG groups (84 and 129, respectively). In the extreme intervals, there are

fewer supermarkets with available readings of days with these temperatures. Intervals

with days ≤ −3°C and [−3,2]°C contain less than 30% of the total supermarkets.

The number of supermarkets used in each of the experiments using the temperature

partition are shown in Figure 4.1.

Prediction year Previous years used to train (p)
Year (y) #Test One Two Three Four Five

2017 84 84 84 84 84 85
2016 84 83 83 83 84 -
2015 83 81 81 82 - -
2014 81 81 82 - - -

SE

2013 81 81 - - - -
2017 129 129 129 129 129 129
2016 129 111 111 111 111 -
2015 111 98 98 98 - -
2014 98 87 87 - - -

SE
G

2013 87 78 - - - -

Table 4.1 The number of supermarkets (historical years) used in testing and training of the
seasonal experiments.
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Fig. 4.1 Number of supermarkets used for predicting 2017 EDLPs using 2015-2016 readings
divided by daily average temperature intervals.

4.2.2 Machine learning techniques and computational experiments

The four different approaches based on the ML techniques introduced in Section 3.2.1 (KNN,

OLS, ANN and SVR) are exploited as follows. For the OLS, ANN and SVR methods, each

point of the EDLPs is individually predicted (i.e. different model parameters need to be

estimated for each dimension), but the whole EDLP is directly estimated using the KNN

algorithm.

The portfolio of stores changes regularly with new stores created and some sites closed.

For this case study, an average of 16 new supermarkets are opened each year, with a maximum

of 29 (Table 3.2). To give robust and significant results, it is assumed that each supermarket

is considered a new one and the others |S|−1 are used to predict the EDLPs of the new one

(all stores in Table 4.1). This ’leaving-one-out’ technique is a common method (Bishop,

2006) for small data-sets in which all the data points except the one being estimated are used

as predictors. Then the same experiment is repeated |S| times selecting each time a different

point to predict. The EDLPs computed over historical data (years y− p, . . . ,y−1) are used

to compute the EDLP of the new one for year y.

In addition of this ’leaving-one-out’ technique, the data-set used to estimate the ML

model ought to be divided into validation and final training data-sets. The validation data-set

should be used only to obtain the best hyper-parameter combination and feature engineering

(Equation 4.1), with the final training data-set used to estimate the ML model parameters

using the hyper-parameter combinations. However, as there are only 85 and 129 supermarkets
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in the SE and SEG data-sets respectively, partitioning these data-set not possible. There

are two implications for dividing the data-set into separate validation and final training data.

First, only an insufficient validation data-set (10-15 supermarkets) would be available for

this hyper-parameter estimation, and secondly a sizeable proportion of data points would

not be used to estimate the final ML model parameters (training the model). These two

factors make it infeasible to use this partition for this task and data-set. This practice of

only using the ’leaving-one-out’ technique is unorthodox, however is shows the importance

of understanding the detail and the nature of real-world data-sets and not simply applying

techniques systematically.

Error bars are computed to model the uncertainty of the prediction using the KNN

algorithm i.e. predicting an interval instead of a single line of the EDLP is helpful to have a

broader estimation of the possible EDLP. They are calculated by adding/subtracting twice

the value of the standard error computed over the k EDLPs to the predicted value.
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For the seasonal and temperature data, each algorithm has parameters and functions

to configure. For the KNN algorithm, in addition to the averaged model (Equation 3.2),

three more sophisticated kernel-weighted functions (Epanechnikov Quadratic and Tri-cube

functions) were explored but no improvement was found. For the ANN, a logistic function

(g() (Equation 3.5)) is used over a two internal layers net, i.e. the configuration of the network

is |F |-4-2-1, where |F | is the number of features. The algorithm used to train the network is

the resilient back-propagation with the learning rate vof 0.7, and 105 maximum of training

steps. An example of a neural network to predict the electricity demand at time 10-11am

(e11) using four features is shown in Figure 4.2. In that example, four features are used as

input for the network. The black lines show the connections between the layers and the blue

lines are the bias added in each step. Other simple possible architectures were explored, but

did not give a significant change in the results. More complex networks with more layers

and more neurons per layers are not feasible as they require a greater quantity of training

data. In addition, it would not make a significant difference to the results due to the lack of

training points for a larger number of parameters of a more complex model. This is a notable

limitation of this technique. For the SVR, a RBF kernel function (K() in Equation 3.7) was

used as it models non-linearly the input data features to predict.

Independent of the prediction algorithm, the brute-force approach (Equation 4.1) search-

ing all combinations of parameters (k̂, F̂) was also tested. The maximum number of combina-

tions, for each set of season- and temperature-divided experiments, is (2|F |−1)∗ (|S|−1) =

(2|11|−1)∗(129−1) = 262,016 (there are 11 features and 129 is the number of supermarkets

in the largest set), and multiplied by |S| for the leaving-one-out approach. For the temporally

more complex methods (ANN and SVR) stepwise regression (Bishop, 2006) is used with the

whole feature set F (using all the supermarkets, k = |S|). This reduces the combinations to

∑
11
i=1 i = 66. For the OLS, stepwise regression is used but scanned over all the values of k:

∑
11
i=1 i∗ (129−1) = 8,448 combinations.

4.3 Results and discussion

A large number of computational experiments have been performed. First, some over-

arching results are presented, then the aggregated results for the performance of different

algorithms and the effect of partitioning the temperature data by discrete intervals are

discussed. Secondly, the prediction scores by season and temperature and stores with

different fuel are compared. Thirdly, the size of errors depending on the operational status
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Fig. 4.3 Examples of the EDLPs modelled using KNN with k = 12. The EDLP with the
minimum error (the most likely prediction) is shown in red.

(peak/off-peak) are analysed. Fourthly, the relative importance of individual features is

discussed. Finally, error bars and computational performance are compared.

4.3.1 Results

Looking at a single supermarket, Figure 4.3 shows the predicted and real 2017 Summer

EDLPs of a SEG supermarket. This prediction was computed using the KNN averaging

algorithm and 2016 EDLPs. For this season and year, the best combination of features

and number of supermarkets to predict the whole of the SEG group are F = {GM, Food,

Cafeteria} and k = 12 respectively. The blue curves in Figure 4.3 are the EDLPs of the k

most similar supermarkets based on F , the black and the red curves are the real and predicted

EDLP, respectively. The errors for this prediction are Euclidean distance (ED) equal to

14.0 kWh and normalised percentage (NP) equal to 3.6 %. This is the predicted EDLP with

lowest ED for all the SEG supermarkets when predicting 2017 Summer EDLPs with the

KNN algorithm. The ED (kWh) and NP (%) for all of the SEG group and algorithm are

shown in Figure 4.4.
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Fig. 4.4 The ED and NP when predicting all of the Summer 2017 EDLPs of the SEG group
using 2016 data with the KNN algorithm. The supermarkets are sorted by ED.

The variability between supermarkets is displayed in Figure 4.4, with the leftmost being

the supermarket with the lowest ED. The median (the 50% position) represents the typical

prediction, that being supermarkets with a ED of 33.5 kWh. Figure 4.5 shows the real and

predicted EDLPs for the best and median-error prediction. In the case of the median-error

prediction (Figure 4.5b) the predicted EDLPs is an underestimation of the real EDLP. There

is only a weak relationship between NP and ED as there are supermarkets sorted by ED and

not sorted by NP. The average ED and NP for all 126 SEG supermarkets is ED=43.5 kWh

and NP 13.0 %, summarizing the prediction performance over the SEG group.

The scores of all the evaluators (Section 3.2.1) for all years, algorithms, store types

(SE/SEG), and data partitions (seasons/temperature) are given in Appendix B. As the results

for the more sophisticated kernel-weighted functions (KNN-dist, KNN-EQk and KNN-3ck)

do not improve the basic KNN, only this KNN version is discussed in the following sections.

All the evaluators scores for all the kernel-weighted functions are reported in the Appendix B.

However, the evaluators focused on the analysis in the following sections are ED and NP as

they are able to express an absolute and relative error respectively.
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(a) Supermarket with lowest ED (b) Supermarket with median ED

Fig. 4.5 Prediction of the Summer 2017 EDLPs with lowest and the median ED when
predicting all of the SEG group using 2016 data with the KNN algorithm.

4.3.2 Algorithm performance and the effect of training data

Considering the range of prediction algorithms, differences among the evaluator scores are

not significant for most experiments (Figure 4.6). For instance, comparing the prediction

of Summer 2017 SEG profiles the ED score varies from 41.0 kWh obtained with OLS to

45.8 kWh obtained with the KNN algorithm. The best results are not always obtained with

the same method, but OLS, KNN and SVR usually obtain lowest errors. Usually, the OLS

algorithm obtains the best scores when predicting profiles separated by season, whilst the

KNN method is the best predictor when computing profiles separated by temperature.

The good performance of the KNN algorithm compared with more complex algorithms is

notable which may be due to the modest size of the data-set. This partially supports the basis

of the KNN i.e. similar supermarkets consume energy in similar way. The more complex ML

algorithms scale better and may perform better with very large data-sets. On the other hand,

the KNN method is fast and can be used to search larger parameter spaces (k,F).

Table 4.2 shows the results for SE and SEG using the KNN algorithm for predicting

Summer EDLPs, including the experiments computing the EDLPs of the training set with

different numbers of historical years (number of supermarkets are in Table 4.1). From

Table 4.2, it is possible to see that the best prediction of each year (bold values) is usually

obtained using just the previous year as historical data. There are a few exceptions such as

for the 2014 SEG group which show that using 2012-2013 profiles for training results are

slightly better than using just 2013 data alone. All the supermarkets of Figure 4.4 are used to

compute the evaluators of the cell located in the first row and column of the SEG sub-table
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in Table 4.2. This error decreases when predicting the EDLP using training data computed

over the most recent years. This may indicate that the company has sought to harmonise

the installed equipment across the portfolio of stores as part of an efficiency improvement

programme.

Previous years in Training set, ED (kWh) and NP (%))
Alg Year One Two Three Four Five

2017 49.6/17.0 50.0/16.9 51.9/18.1 53.7/20.0 55.0/19.7
2016 55.1/18.0 57.8/19.6 59.8/20.3 60.7/21.1 -
2015 57.4/19.9 59.0/20.7 59.4/20.9 - -
2014 59.0/18.9 59.2/19.4 - - -

SE

2013 61.6/19.2 - - - -
2017 43.5/13.0 44.0/13.0 44.9/13.4 46.3/13.7 46.9/13.9
2016 48.2/13.3 49.6/13.9 51.6/14.6 52.2/14.9 -
2015 47.6/14.6 49.7/15.4 49.8/15.6 - -
2014 53.3/15.3 51.6/14.8 - - -

SE
G

2013 54.4/14.4 - - - -

Table 4.2 Prediction results for the SE and SEG groups using the KNN algorithm and the
historical years used. The best results for each year are in bold.

For each method, season and predicted year, the best results obtained with the best

combination of historical years (p) are selected (4.2). The ED for all the methods, seasons

and years are shown in Figure 4.6, where Figure 4.6a with Figure 4.6b showing the scores

for seasonal and temperature experiments, respectively. In comparing the seasonal results

for different years, the error usually decreases when predicting EDLPs of more recent years

(Figure 4.6a). The reason is that the error scales with demand that decreases with the time for

some of the stores. The relative error NP also decreases, further supporting the suggestion

that stores have installed more efficient and similar equipment in recent years.
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4.3.3 Using discrete temperature intervals

The temperature data needs to be discretised because of the need to group days with similar

temperature conditions (Section 4.1). The error varies depending on the temperature interval

in which the profile to predict is computed (Figure 4.6b). The error value for the intervals with

average temperatures lower than -1 °C and higher than 21 °C is due to the lower number of

supermarkets in these intervals. For the intervals from 0 °C to 20 °C, in which the distribution

of supermarkets is approximately even and accounts for most supermarkets, the error for the

SE and SEG groups show similar behaviour. From left to right in Figure 4.6b, it can be seen

that the error starts high for cold temperatures, reducing slowly until it reaches a minimum

value for the intervals at approximately 17 °C. After that it increases again showing the

influence of the HVAC system.

For very cold (external) temperature, heating systems are used intensively, making

predictions more complicated as each supermarket has different thermal conditions and

perhaps heating system. For hot temperature intervals (more than 19 °C), the cooling system

and the refrigeration appliances can produce the same effect, increasing demand and the

error. Although not surprising, the higher the demand, the greater the number of appliances,

and the greater the variability, the more complicated it is to predict the demand.

4.3.4 Partitioning the data by temperature and season

Seasonal and temperature experiments show errors of the same order of magnitude. For

instance, the minimum error for the SE group by season (Figure 4.6a) is obtained when

predicting the Summer 2017 profiles (ED= 48.7 kWh, using SVR). Meanwhile the minimum

error for temperature separation (Figure 4.6b) is ED= 48.5 kWh (using KNN). There is a

similar behaviour of the error for both approaches with respect to the temperature variation.

Profiles corresponding to the coldest periods (Winter and for intervals < 5 °C) are predicted

less well than for warmest periods (Summer and for intervals > 15 °C). However, the effect of

hot temperatures (intervals > 19 °C) which give greater prediction errors, cannot be captured

with the seasonal approach. External temperature is a crucial factor in the way supermarkets

consume energy and it has been already commented that the seasonal separation is a proxy

of the temperature separation. Therefore, despite of having sometimes a greater error with

the temperature-intervals approach, predicting the EDLPs for new supermarkets with this

separation is more useful that using a seasonal profile. However, using temperature intervals

depends on the availability of daily temperature data.
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Comparing the evaluator scores that were obtained for each season, Summer profiles

were predicted best followed by Spring/Autumn and lastly Winter (Figure 4.6a). This

pattern constant for all years and independent of SE/SEG (Figure 4.6a). The reasons for this

behaviour may be related to the electricity demand of the heating system as it is used less

often in Summer. A fact that supports this assumption is that, in these supermarkets where

electrical heating is less important (SEG), the difference of the error between Winter profiles

and the other seasonal profiles are smaller as happens with the SE group. It also explains the

higher error when predicting the Spring/Autumn profiles compared with Summer. Analysis

of the temperature results supports this hypothesis.

4.3.5 Does it matter if a supermarket uses gas-fired heating?

Generally, for the same type of experiments, the errors for the SE group are greater than for

the SEG group (Figure 4.6a and Figure 4.6b). For seasonal experiments and using a relative

evaluator such as NP the prediction of 2017 Summer profiles using OLS are some of the

most accurate predictions with NP = 17.9% and NP = 11.9% for the SE and SEG groups

respectively. Likewise for the NP evaluator computed over temperature experiments. The

reason for this is that variations in heating demand are excluded in SEG and only appliances

and lighting electricity consumption is computed. Furthermore, the SEG group is larger

than the SE set (Table 4.1) which helps improve the ML prediction. It is expected that most

supermarkets will become SE because of the drive for the decarbonisation of heating (CCC,

2023).

4.3.6 Comparing peak/off-peak periods

For peak/off-peak use the errors during operational times (5am to 10pm) and non-operational

times (11pm to 4am) are analysed by computing evaluators separately over the two time

intervals. For example, the errors to predict the Summer 2017 EDLPs (electricity only) using

SVR are ED=44.4 kWh and NP=17.4% for the operational periods and ED=16.4 kWh and

NP=19.7% for the non-operational periods. Considering all the seasonal experiments for all

the methods, the average errors are ED=56.4 kWh and NP=17.1% for the operational times

and ED=20.2 kWh and NP=22.5% for the non-operational times.

As the demand during operational times is higher than for non-operational times (noting

the unequal number of hours in the intervals) the relative error, NP is a better indicator with

which to compare errors than the accumulative real error of ED. However, the NP evaluator

may become biased when comparing segments of the profiles with differing numbers of

62



4.3 Results and discussion

dimensions. Table 4.3 shows NP the values for operational and non-operational periods

averaged over all methods and years. The errors for the non-operational periods are always

greater than for the operational periods because the proposed parameter search (Equation 4.1)

minimises the ED between the real and predicted EDLP. Therefore, the method selects

the prediction with smaller relative errors in hours with greater demand. As during non-

operational times the electricity demand is shorter than during operational times, reduction

of relative error of the latter is prioritised over reduction of relative error of the former.

Trying to predict better the operational times is more difficult, but more useful. En-

ergy use in the non-operational periods is easier to predict since there are fewer human

behavioural components contributing to the EDLP. It is possible to minimise NP instead of

ED (Equation 4.1) if the relative error is the objective.

SE group SEG group
Operational Non-Operational Operational Non-Operational

Winter 21.9 (0.5) 30.9 (1.1) 16.6 (0.4) 20.2 (0.7)
Summer 18.1 (0.2) 23.4 (0.5) 13.1 (0.2) 17.4 (0.4)

Spring/Aut 18.9 (0.3) 25.3 (0.6) 13.8 (0.2) 17.3 (0.4)

Table 4.3 Values for NP (%) during operational and non-operational times averaged over all
the methods and years. Values in brackets are the standard error.

4.3.7 Are all features equally useful?

From all the possible features used as predictors (Section 3.3.1) some are selected more often

than others during the feature search process (Equation 4.1) when considering the whole set of

prediction experiments. This means that some features are globally more relevant than others

in the prediction process. To understand this feature-weighting only the experiments giving

the best results for each combination of algorithm, fuel and temperature/season partition (344

different prediction experiments) are analysed.

The three features most frequently appearing are Cafeteria Area (55.5% of the experi-

ments), Food Area (48.2%) and Chilled Area (39.8%). Only 52% of the supermarket set

have a Cafeteria Area, however it is the predictor most frequently selected as the increase of

demand is significant. The Food and Chilled areas are indicator of the number of refrigeration

appliances that are responsible of an important part of the electricity demand.

Interestingly, if analysed separately, the experiments for the SE and SEG groups (177

experiments for each) the frequencies are different for some features. Figure 4.7 shows the
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Fig. 4.7 Histogram with the relative frequency of features used to obtain best prediction
models for experiments for the SE and SEG groups.

relative frequency of features used to obtain the best model for all the algorithms and years.

The Cafeteria feature appears in 80.2% of experiments for the SEG group, but just 30.8%

for the SE group. The Food and Sales areas also appear more often in experiments for the

SEG group than for the SE group. The Location feature appears in 39.0% of the experiments

for the SE group, but in only 5.2% for the SEG group. Most of the experiments to predict

demand for the SE group when daily average temperature was lower than 13 °C has location

in the best feature combination. The average number of features used for prediction is 2.9

and 3.4 for SE and SEG, respectively. Seasonal and temperature experiments do not have

significant differences in the features frequencies.

4.3.8 Computational performance

Executing such a volume of computational experiments is time-consuming. Therefore, it

is interesting to compare the computational performance of the different methods and data

partitions. The computed times include the whole process: loading all the data-set readings,

computing the required EDLPs, performing the prediction and computing the error. First,

the time performance over only one prediction experiment (i.e. predicting using a unique

configuration of parameters (k,F)) is computed. In particular, k equal to all the stores with

electricity and gas (128 supermarkets) over Winter 2017 and F all the possible 11 features

is selected. The leftmost points of Figure 4.8 are the times of this experiment for KNN,
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OLS, SVR and ANN. There are no important differences between the KNN, OLS and SVR

algorithms. ANN times are significantly higher than the other three techniques. The points

in the center of Figure 4.8 are the times for the experiments that search over the parameters

space (k,F) (Section 4.2.2) for one season and year (Winter 2017 for SEG). The time using

the KNN method is very similar than when using just one specific (k,F) configuration. The

reason for this is the way it is implemented in which distances among all the stores using

a specific f are firstly computed as first step and later the search over the k parameter is

performed. These steps are very fast as they are just computing distances and then sorting

them. Computing the prediction is also very fast as it is just calculating a mean over the

profiles, there is no function to optimise for each dimension as with the other methods. ANN

is consistently slower than the other methods. The rightmost points of Figure 4.8 are the times

when computing the whole temperature experiments described in Section 4.1. Differences

between ANN and SVR with OLS and KNN are significant, being KNN the fastest method.

The reasons for these differences are: 1) ANN and SVR are more complex methods (more

internal variables and algorithm complexity), and 2) ANN and SVR invoked R methods

(Section 3.2.1).

Fig. 4.8 Times of running the prediction code for different methods and experiments. The
symbols are offset horizontally from each other for clarity only.
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4.3.9 Error bars for KNN experiments

Error bars to model the uncertainty of the prediction using KNN were computed (Sec-

tion 3.2.1). An example of using confidence intervals for prediction for the supermarket in

Figure 4.5b, is shown in Figure 4.9. Confidence intervals help model prediction uncertainty,

but there are three limitations in the current implementation. First, in using techniques for

predicting the mean i.e. KKN, it is not possible to use these error bars for the other ML

techniques. The second limitation is the use of symmetric upper and lower intervals; using

different values will be more informative. Thirdly, this implementation of error bars yields a

large standard deviation when k is large.

Fig. 4.9 All the error bars for the prediction of the same store of Figure 4.5b using KNN.

4.4 Summary

Data-driven methods using four ML algorithms to predict the EDLPs of new supermarkets

exploiting only historic electricity readings and supermarket features have been investigated.

The data-set comprised six years of hourly electricity readings from 213 UK supermarkets

(of one chain), which was partitioned by season and temperature.

The algorithms showed similar prediction scores, where the simplest methods (KNN and

OLS) sometimes out-perform ANN and SVR. In general, the average errors ranged between

66



4.4 Summary

12–20% depending on the fuel consumed by supermarkets and season/temperature partition

of the readings. However, some EDLPs were accurately predicted (approximately 3% error).

The warm periods usually were predicted better than cold periods, but the prediction error

also increased for hot intervals (24-hour average > 17 °C). Supermarkets using electricity

and gas are better predicted than supermarkets solely using electricity. This may be due to

the greater variation in the management of HVAC systems when used for heating, compared

with using gas.

The features with the strongest effect on the accuracy of the EDLP predictions were the

floor areas for Food, Chilled, and Cafeteria. For the SE group the geographical location was

also important. As moving to electrical heating is being targeted in the UK (CCC, 2023),

the relevance of this feature will become increasingly important. Separation between the

validation and the training data-sets is not performed due to the small data-size (less than

130 data points).
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Chapter 5

Reduced-dimension representation of
EDLPs: prediction and clustering

In Chapter 3 and Chapter 4, hourly EDLPs (with 24 dimensions) were used to represent the

electricity demand of the supermarkets. But is it possible to use just a small number key

features (dimensions) to represent the profiles instead? The advantage would be reduced

computational complexity and processing time, if similar accuracy could be achieved. The

first step is to determine what are they key features and if this representation is as informative

as the complete EDLP using the regular granularity (Section 5.2). The second step is to use

this reduced-feature representation to both predict and cluster the EDLPs (Section 5.3 and

Section 5.4, respectively) and compare with the scores obtained using the high-dimensional

EDLP. Using this representation, there are four questions that need to be addressed:

• How accurately can D-dimensional EDLPs be represented using a small set of features?

• Using only this set of features, is it possible to predict future EDLPs of new stores

using different ML methods as accurately as when using the whole EDLP?

• Using only this set of features is it possible to cluster the electricity demand as

accurately as when using the whole EDLP?

• Is it possible to extend and generalise this representation over other commercial data-

sets that have different temporal resolutions?
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5.1 Why segment supermarket EDLPs into four time inter-
vals?

In Chapter 3, the advantages and motivation to use daily profiles to characterise the electricity

behaviour of commercial premises such as supermarkets are explained. EDLPs are a concise,

informative and intuitive way to represent and visualise the daily electricity demand pattern

of a consumer, supermarkets in this case. However, there can be other ways to represent

EDLPs for some specific premises.

Like most retailers, the supermarkets have a fixed daily schedule: they usually open in

the morning to close later in the evening (Mylona et al., 2017). Based on these schedules,

the electricity demand patterns are quite similar to each other with a typical inverted-U

shape. Figure 5.1 shows the hourly daily profiles of six different supermarkets (four that

use electricity and two that use both electricity and gas) during different seasons and years.

These six profiles have in common this inverted-U shape in which inside each one of the peak

and off-peak periods the electricity demand show similar values. However, demand values

are not completely constant during these periods, as it is possible to see small variations in

the EDLPs of Figure 5.1. The profiles in this figure also show that these patterns seem to be

true for almost all the supermarkets independently of the fuel used, season and year in which

the profiles are computed.

The EDLPs show this particular shape for two reasons. First, the peak/off-peak differences

is due to the regular opening/closing times: when they are open (peak period during daily

hours) the building consumes more energy than when the store is closed (off-peak period).

During opening times the supermarket needs to maintain thermal comfort (HVAC is a large

electricity demand in supermarkets) and provide lighting. There is also opening/closing of

refrigeration cabinets and use of other possible services e.g. cafeteria or bakery. Supermarkets

in other countries may have a different demand pattern e.g. in some hot countries stores may

close during the middle of the day, but stay open later into the evening. Second, the similar

demand values during each peak and off-peak period is due to the main demand drivers of the

supermarket (HVAC, refrigeration and lighting) consuming energy constantly once the store

is completely open or closed. Appliances can have different consumption phases (warming

up or cooling down at start-up) but modern appliances have almost constant average demand

by hour when they reach a stable operating point. Additionally, the electricity profile is the

result of averaging the supermarket demand during a time period (e.g. Winter) that smoothes

the profile shape.
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Fig. 5.1 Example of daily profiles of six different stores for different years and seasons.

Based on the pattern of the EDLPs in Figure 5.1, four different time intervals can be

defined:

Off-peak: the time period in which the supermarket is closed and the demand is a stable

base-load of refrigeration, as HVAC and lighting should be switched-off or to minimum

power.

Off-peak to peak transition: a short period occurring a little before the store is opened to

customers when the HVAC, lighting, and other services ramp to their peak values.

Peak: the period in which the demand is constantly high as the supermarket is open. The

appliance power consumption is usually stable, but short-term variability may occur.

Peak to off-peak transition: a short period following the closure of the store to customers,

but staff may still be present. Modern appliances should not have a very long temporal

lag for reducing their demand when they are switched-off.
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Using these segments, it is possible to treat demand values inside the peak and off-peak

periods as unique constant average values. This simplification of the reality is a more concise

way to represent the EDLP than using the hourly values. For some type of analysis, small

variances of the demand inside the period can be considered superfluous information. For

example, the repeated demand values at night of the EDLPs in Figure 5.1 do not add new

information to the analysis of the behaviour. Therefore, having an average value can be

considered good enough to summarise and represent the demand during this period.

5.2 Automatic feature extraction to represent the EDLPs

Now the segments have been identified, methods to automatically obtain them are needed.

The key step to determine these segments is to establish the time slots in which the peak

and off-peak periods begin and end. Later the transition periods can be easily calculated as

existing between these periods. Therefore, the first step is to formally describe the four time

slots:

t0 indicates the first period where the slope of the off-peak/peak transition starts,

t1 is the first period where the main peak stabilises,

t2 is the first period where the peak starts to decrease,

t3 is the first period where the non-peak behaviour stabilises after the peak.

These periods follow the conditions that ti ∈ [0,D−1],0 ≤ i ≤ 3 and ti < ti+1,0 ≤ i ≤ 2.

In the example given in Figure 5.2 their values are: t0 = 6, t1 = 9, t2 = 15 and t3 = 21,

corresponding to 6.00am, 9.00am, 3.00pm and 9.00pm, respectively. By defining the vector

grouping the four time features as t⃗ = {t0, t1, t2, t3}, the EDLP can be formally divided into

four intervals using:

• Off-peak interval: s0 = [0, t0 −1]∪ [t3,D−1] (the horizontal green line in Figure 5.2).

• Increasing transition interval: s1 = [t0 −1, t1] (the horizontal yellow line in Figure 5.2).

• Peak interval: s2 = [t1, t2 −1] (It is the horizontal pink line of Figure 5.2).

• Decreasing transition interval: s3 = [t2 −1, t3] (the horizontal grey line in Figure 5.2).
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Fig. 5.2 Example of the selection of four significant time slots t⃗ and segments s0,s1,s2 and
s3 from the Winter 2017 EDLP of a supermarket.

Given any interval of time s = [t, t ′] with t ′ > t, two generic operators are defined: 1) µ(s) as

the mean of the energy values from time t to t ′, i.e. µ(s) = ∑
t ′
i=t ei/(t ′− t +1) and 2) m(s) is

the slope of the line that crosses the points (t,et) and (t ′,et ′), i.e. m(s) = (et ′ − et)/(t ′− t).

The profile can be described using eight features: the four time periods of the events (⃗t),

demand of the off-peak and peak periods (µ(s0) and µ(s2)), and the slopes of the transitions

(m(s1) and m(s3)). The demand values of µ(s0) and µ(s2) are the average during all the

values of the off-peak and peak respectively, and they are a linear approximation of the

demand during these time intervals. Values of m(s1) is the rate of demand increasing by

hour when moving from off-peak to peak period (this value is always positive as demand

increases during this period.). The value of m(s3) is always negative as the demand decreases

during the peak/off-peak transition interval. Different approaches to compute these features

are proposed.
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5.2.1 Heuristic approach to extract the features

A simple way to determine the key features is to select fixed times for all the profiles, e.g. the

peak interval of all the EDLPs begins at 8:00am and ends at 8:00pm. However, this assumes

that all the EDLPs start and end the peak exactly at the same time and Figure 5.1 shows that

it is not always true. For this reason, an automatic heuristic approach is proposed to obtain

the intervals for each period based on observing when the EDLP events happen:

1. The value of the slope between each pair of consecutive data points (electricity demand

values) of the profile is computed: ∆i = ei+1 − ei, 0 ≤ i ≤ D− 1. In this case ∆i

indicates the hourly variation of demand, but a greater temporal window to compute

the slope can be used. The mean of all these slopes, ∆̂, is also computed: ∆̂ = ∆i/D.

2. t0 is computed as the first time slot that goes after 2:00am and its previous hour has a

slope value (∆i) greater than α∆̂: t0 = {t : ∆t−1 > α∆̂ ∧ (∀i,3 ≤ i < t−1 : ∆i ≤ α∆̂)}
where α is a parameter to increase the mean that has manually selected α = 1.2. It is

the first hour in which there is a significant increase of the slope in the morning.

3. t1 is computed as the first time slot after the first slope value that is greater than α∆̂ when

going backward from 11:00am: t1 = {t : ∆t−1 > α∆̂ ∧ (∀i, t ≤ i < 11 : ∆i ≤ α∆̂)}. It

is the first hour in the morning in which the slope is not longer importantly increasing,

i.e. the demand is stabilised.

4. t2 is computed as the time slot after the first slope value that is smaller than −α∆̂

increasing from 2.00pm: t3 = {t : ∆t−1 < −α∆̂ ∧ (∀i,14 ≤ i < t − 1 : ∆i ≥ −α∆̂)}.

This is the hour previous to the slope starting to decline significantly.

5. t3 is selected as the first time slot after the first slope value that is smaller than −α∆̂

going backwards from 10:00pm: t3 = {t : ∆t−1 <−α∆̂ ∧ (∀i, t < i < 23 : ∆i ≥−α∆̂}.

This is the first hour that the off-peak demand is stabilised.

For the running example of Figure 5.2, the features have the following values: t⃗ =

(6,9,17,20), µ(s0)=32.8 kWh, µ(s2)=98.4 kWh, m(s1)=16.2 kWh/h and m(s3)=-13.1 kWh/h.

This first approach to compute the time slots is an ad-hoc solution that can be refined in

future work using, for example, a greater window between the points to compute the slope,

modifying threshold hours and α value. However, a system to evaluate the quality of the

representation obtained with these extracted features with respect to the real profile needs to

be addressed before refining the model.
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5.2.2 Reconstructing the profile from the features

Given the set of key features that summarise the EDLP, the approximated profile can

be (imperfectly) reconstructed using Euclidean geometry. The reconstructed profile e⃗′ =

{e′0, . . . ,e
′
D−1} is computed in the following way:

• Off-peak values are equal to µ(s0):, e′i = µ(s0),0 ≤ i < t0 and t3 ≤ i < D.

• Values of the off-peak/peak transition are computed with the linear equation y =

x∗m(s1)+b where independent term b is computed by substituting the equation with

the data point (t0 −1,µ(s0)): e′i = i∗m(s1)+b, t0 ≤ i < t1.

• Peak values are equal to µ(s2): e′i = µ(s2), t1 ≤ i < t2.

• Values of the peak/off-peak transition are calculated with the linear equation y =

x∗m(s3)+b′ where term b’ is computed by substituting equation with the data point

(t2 −1,µ(s2): e′i = i∗m(s3)+b′, t2 ≤ i < t3.

There is more than one way to reconstruct this profile from the set of features. For example,

extreme values of the segments such as e′t2 and e′t3 are currently computed with the mean

values µ(s) but they can also be calculated with the equations obtained from the slope. In

addition, the linear equations obtained with the slope operator are currently computed using

the slope and the leftmost point of the segment, but they can be also computed using the

slope and the rightmost point of the segment.

Figure 5.3 shows the reconstructed profile (red line) obtained from the eight selected

features using the heuristic approach with the real profile from Figure 5.2 (black line). For

this example, the off-peak demand is estimated well, meanwhile the peak demand is estimated

in the middle. At the beginning of the peak, the demand is underestimated (red line under

black line) but at the end of the peak the demand is overestimated (red line over the black

line). A simple way to quantify the discrepancy (error) between the reconstructed profile

and the real values of the profile is using the evaluators introduced in Section 3.2.1. This

assesses the quality of the approximation (distance between the points of red and black line

of Figure 5.3).

The Euclidean distance (ED) and normalised percentage (NP) between the reconstructed

and real EDLPs of Figure 5.3 are 15.8 kWh and 3.9% respectively. Figure 5.4 shows the

values for the ED and NP evaluators for all the supermarkets of the SEG set for Winter 2017.

The NP error for most of the supermarkets (96.9%) is lower than 10% with an averaged

evaluator NP equal to 5.9%. The averaged ED is 24.4 kWh but there are few supermarkets

with a very high ED that will be analysed in next section.
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Fig. 5.3 Reconstructed profile based on the eight features proposed (red line) and real profile
of Figure 5.2 (black line). The approximation was obtained using the heuristic approach.

5.2.3 Objective function to extract the features

Instead of using a heuristic method to compute the selected time slots, a method based on

an objective criterion can be defined. The idea is to find the set of features that minimise

the error between the reconstructed and the real profile. As the whole set of features can

be directly obtained with the vector of time slots t⃗, the automatic method uses an objective

function to minimise the error in a restricted search space over t⃗:

ˆ⃗t = argmin
t⃗

(Ev(⃗e, e⃗′⃗t)) (5.1)

where e⃗′⃗t is the reconstructed profile using t⃗ as it was explained in Section 4 and Ev is an

evaluator that computes the discrepancy between real and estimated EDLPs. ED was used as

the evaluator as it was used for the parameter search of the prediction methods of Section 4

(Equation 4.1). A brute-force search method in which all possible values of t⃗ was explored
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Fig. 5.4 ED and NP evaluators computed between the original and the reconstructed profile
using features obtained with the heuristic method. Results are calculated over Winter 2017
data of SEG.

to find the optimal solution ˆ⃗t is the easiest way to implement it, but not the most efficient

one. However, both the profile dimension (D = 24) and the number of stores (N < 300) of

the data-set are not very large. Additionally, the values of t⃗ are subject to some restrictions

previously defined making the search quicker.

The set of features obtained for the EDLP of Figure 5.2 using this objective-function

method is t⃗ = (6,9,15,21), µ(s0)=32.0 kWh, µ(s2)=100.0 kWh, m(s1)=16.2 kWh/h and

m(s3)=-9.2 kWh/h. This set is slightly different that the set of features obtained using the

heuristic method. Figure 5.5 shows the real profile and the reconstructed profile using the

features obtained with the objective-function method. Comparing this reconstructed profile

with the reconstructed profile obtained with the heuristic method (red line of Figure 5.3),

the two main differences are: 1) the peak of the objective-function EDLP ends before the

peak of the heuristic-method EDLP, and 2) the s3 segment (period from peak to off-peak) of

the objective-function EDLP is longer than s3 of the heuristic-method EDLP. The second
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difference implies that the s3 segment fits better the real EDLP for the objective-function

EDLP than for the heuristic-method EDLP. Comparing the errors, the evaluators using with

objective-function method, NP=3.7% and ED=15.8 kWh, are lower than the errors obtained

with heuristic method (NP=3.9% and ED=15.9 kWh).

Fig. 5.5 Reconstructed profile based on the proposed features (red line) and real profile of
Figure 5.2 (black line). The features were obtained using the objective-function method.

Computing the error for all the supermarkets of the SEG set for Winter 2017, are

NP = 4.3% and ED=17.4 kWh. This supposes an improvement of 27.1% and 28.7% for the

NP and ED respectively with respect to the evaluators obtained when using the heuristic

method. The objective-function method outperforms the heuristic approach so was the

method used to compute the features.

For this case, the averaged evaluators are not very high but there are supermarkets whose

reconstructed EDLPs are estimated worse than others. Figure 5.6 shows the real profile

and the rebuilt profiles using the objective-function method with the lowest, median and

highest scores for the NP evaluator over the SEG set using Winter 2017 data. The NP scores
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are 1.7%, 4.2% and 10.0% for the lowest, median and highest cases, respectively. For the

approximated profiles of Figure 5.6a and Figure 5.6b there are transition periods that have

just one point (the slope is computed using two points but only one is used to rebuild the

profile). In the case of the approximation with the worst error (Figure 5.6c), there is a small

peak in the transition period peak/off-peak that produces a large error. Also this supermarket

had greater demand than the other two, increasing the values of the ED.

(a) Lowest ED (b) Median ED

(c) Highest ED

Fig. 5.6 Reconstructed profile with the objective-function method (red line) of the real EDLP
(black line) for the supermarkets with lowest, median and highest ED.

Table 5.1 displays the values for the ED and NP evaluators between the real and the

reconstructed profiles computed over all years, seasons and set of stores. There is a tendency

for the error to increase when the profiles are computed over older years. The worst NP score

is 7.2% computed over stores with just electricity over the Winter 2014 profiles. Comparing

seasons, errors over Winter profiles are always greater than for Spring/Autumn profiles which
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are greater than for Summer profiles. The error for stores that consume electricity and gas

is lower than stores than consume only electricity. This indicates that the heating system

increases the complexity of estimating the EDLPs using the proposed features. Demand

fluctuations during the main peak are more common in Winter EDLPs than in Summer

profiles, e.g. the 10am peak in Figure 5.2, or the afternoon in Figure 5.1. These fluctuations

increase the error when modelling the demand by averaging the demand over long periods,

as is done with the reconstructed profile.

ED (kWh) / NP (%))
Set Year Wint Sum Spr/Aut

2017 22.9/5.8 14.6/4.5 18.4/5.3
2016 22.8/6.0 14.7/4.5 18.3/5.2
2015 28.9/6.5 17.8/5.3 21.7/6.1
2014 32.1/7.2 19.1/5.3 24.3/6.4

SE

2013 33.7/7.0 21.4/5.7 28.1/6.8
2017 17.4/4.3 16.7/4.1 16.6/4.1
2016 17.3/4.2 16.8/4.1 16.7/4.2
2015 22.4/5.1 17.4/4.3 18.4/4.5
2014 25.0/5.6 19.2/4.5 20.7/4.9

SE
G

2013 25.9/5.4 22.7/5.1 23.3/5.5

Table 5.1 Evaluator (ED (kWh) and NP (%)) scores between the reconstructed profile
(objective-function method) and the real profile for the supermarket set divided by fuel, year
and season.

Computing the key features from the stores of the retail data-set (Section 3.3.2) gives

ED=1.0 kWh and NP=3.8% between the real and reconstructed profiles. Errors for this

data-set are lower than the errors obtained with the supermarkets because the retail stores

have lower demand and a more regular U-inverted shape. Figure 5.7 displays the real and

re-computed EDLPs for the case with the lowest NP (0.5%), median NP (3.5%) and worst

NP (11.7%). The reconstructed EDLP in Figure 5.7a and Figure 5.7b match quite well the

respective real EDLP. In the case of Figure 5.7c, the error is greater as there is additional

variation in the peak and off-peak periods. The model does not represent properly such

unusual events. Similar scores can be seen in the Summer, Winter and Spring/Autumn

profiles.
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(a) Lowest NP. (b) Median NP.

(c) Greatest NP

Fig. 5.7 Real and reconstructed EDLP using the features with the lowest, median and worst
NP scores for the retail store data-set.

5.2.4 Feature analysis

Analysing the range of values of the proposed features helps in understanding the validity

and feasibility of the feature selection, extraction method, and to detect outliers. The outlier

supermarkets show anomalous values for some features. As a proof of concept, an analysis of

the feature distribution over the supermarkets of the running example (Winter 2017 profiles

for the SEG set) is carried out.

Figure 5.8 shows four histograms with the frequencies (hours) for the time slots t⃗. For the

periods t0 (Figure 5.8a) and t1 (Figure 5.8b), there are only four different hours, and one of the

hours is much more frequent than the others: 6am (70.5% of supermarkets) and 8am (50.4%

of supermarkets) for t0 and t1 respectively. The period t3 also has one value more frequent

than the others (9pm, 55.0%), however there are eight different values for the t2 (Figure 5.8c).
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The histograms exhibit some variability of values and the distribution is Gaussian. However,

the most important insight is the variability in which the peak and off-peak begins and ends.

This shows that using a fixed time for these time slots is an over-simplification that does not

properly represent the real pattern of the demand. In addition, the range of values for these

time slots is restricted, indicating common patterns for the supermarkets.

(a) Time slot t0. (b) Time slot t1.

(c) Time slot t2. (d) Time slot t3.

Fig. 5.8 Histograms of the time slot features (⃗t) computed over the SEG supermarkets (Winter
2017 profiles).

Figure 5.9 contains the histograms for the other four features: µ(s0), µ(s2), m(s1) and

m(s3). In these cases, intervals for the values (kWh for the means in Figure 5.9a and

Figure 5.9b and kWh/h for the slopes in Figure 5.9c and Figure 5.9d) need to be employed

as there are continuous variables. Nine different intervals were created for the histograms

and an additional bucket with the extreme greatest values for µ(s0), µ(s2) and m(s1) and

lowest values for m(s2). The average demand values for the peak and off-peak periods
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show an important variability in their respective values. The most populated interval for

µ(s0) and µ(s2) are [32.2, 36.1] kWh and [73.7, 81.4] kWh respectively (less than 20% of

the supermarkets in both cases). Slope values are more concentrated in specific intervals,

e.g. more than 30% of the supermarkets have a m(s3) value between -11.9 and -8.6 kWh/h.

One reason for this large range of demand values is the large variability of the floor area.

These histograms are not normally distributed.

(a) Values for µ(s0) feature. (b) Values for µ(s2) feature.

(c) Values for m(s1) (d) Values for m(s3)

Fig. 5.9 Histograms with values for mean and slope features computed over the SEG super-
markets (Winter 2017 profiles).
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5.3 Prediction experiments

Experiments to predict profiles using the proposed features were performed in a similar way

to the whole-profile prediction experiments (Section 4). Figure 5.10 illustrates the steps of

the experimental set-up:

1. The eight features of each supermarket (⃗t, µ(s0), µ(s2), m(s1) and m(s3)) are com-

puted.

2. These features are predicted independently for each supermarket s′ using the regression

model using as input the store features (F ′
s ). That is, for each supermarket s, the eight

features of the EDLP of year y are predicted with the regression algorithm. This ML

model is trained with the features extracted from the EDLP computed in previous

years y− t of the stores of the set S−{s′}. The configuration and parameters of the

algorithms, such as supermarket number to train the model, k and the store features

(F) to use as predictors, are the same as those described in Chapter 4.

3. The profile of the predicted store is reconstructed with the eight features of the store

(⃗t ′, µ ′(s0), µ ′(s2), m′(s1) and m′(s3)). The evaluators are computed between this

reconstructed profile and the original profile of the test supermarket (s′).

4. A parameter search (k,F) is performed and the final error is computed over the best

combination (k̂, F̂) that minimizes Equation 4.1.

The two essential points of this experimental set-up are 1) the ML algorithm predicts the

summarised features of the profile (i.e. the output is the approximation for t⃗, µ(s0), µ(s2),

m(s1) and m(s3)), and 2) the evaluation is performed by comparing the reconstructed profile

(using the predicted features) with the real profile (that is the object to predict). Due to the

second point, it was feasible to compare the results obtained from these experiments with the

results obtained when predicting the whole profile. As the values of t⃗ are integers numbers,

the closest integer is selected to the value returned by the regression model.

Experiments were performed over seasons using stepwise regression for the four predic-

tion algorithms: KNN, OLS, ANN and SVR. For the KNN and OLS methods, the k parameter

goes from 2 to the total number of supermarkets in the data-set |S|−1. For the ANN and SVR

methods, all of the data-set is used for prediction directly (k = |S|−1). Also, only the EDLP

computed over the year y−1 are used to predict the EDLP of year y. The selection of these

parameters and experimental configuration were based on the results obtained in Section 4.
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5.3 Prediction experiments

Fig. 5.10 Logical flow of the prediction experiments using the features to represent the
profiles.

As with the case of those experiments, this data-set was not divided into a validation and

final training data-sets when estimating the ML hyper-parameters (Section 4.2.2).

The time slots t⃗ are non-continuous variables with numeric restrictions (Section 5.2). As

the prediction algorithms estimate continuous values, these predicted values for the time slots

are simply transformed to discrete values approximating to the closest integer (x.5 value is

computed as x). After this process, it is still possible that some of the restrictions for these

times slots are not fulfilled e.g. t2 should be always smaller than t1 and t3 should be smaller

than D. In these cases, a sequence of default values for these time slots (t0 = 6, t1 = 8, t2 =

19, t3 = 22) were assigned. It is important to remark that this ‘safeguard’ condition occurred

very rarely: 0%, 0.22%, 0.01% and 0.60% for the KNN, OLS, ANN and SVR experiments,

respectively.

5.3.1 Results and discussion

Prediction experiments were performed independently for all supermarket EDLPs computed

during each year (2013-2017), season (Winter, Summer and Spring/Autumn) and store type

(SE and SEG), giving a total of 5*3*2=30 different sets. An example of prediction for a

particular supermarket (the example in Figure 5.2) is shown in Figure 5.11. The black profile
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Reduced-dimension representation of EDLPs: prediction and clustering

is the real demand, the red and green profiles are predicted using the feature representation.

These were the best predictions (considering the parameter search that minimises ED over all

the set of stores) and they were obtained using OLS with features={GM Area, Cafeteria Area,

Sales Area, Office Area, Chilled Area} and k=98 for the whole-profile representation and

features={GM Area, Cafeteria Area, Sales Area, Storage Area, Chilled Area, Location} and

k=75 for the key feature representation. The values for the evaluators were ED=64.0 kWh

and NP=16.6% when predicting the features, and ED=59.5 kWh and 15.6% when predicting

the whole profile. In this case, using the features implies a relative increase of the error

of 7.5% and 6.4% with respect to the whole-profile prediction for ED and NP evaluators,

respectively.

(a) Best prediction. (b) Prediction for example of Figure 5.2.

Fig. 5.11 Two examples of the range of prediction achieved when predicting Winter 2017
EDLPs of the SEG group.

Table 5.2 shows the results for the NP evaluator obtained when averaging the evaluator

over all the supermarkets in the set. Results for the other evaluators are in Appendix C.

The lowest error for the NP evaluator is 12.5% (Summer 2017) using the OLS regression

method for SEG supermarkets. This result is in line with those for the whole profile

(Section 4) and can be summarised as:

• Errors computed over cold seasons are greater than errors obtained during warm

seasons i.e. Summer profiles are better predicted than Spring/Autumn profiles, which

are better than Winter profiles. The most likely cause is the uncertainty and variability

of the heating system demand:
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5.3 Prediction experiments

• Errors obtained during most recent years are usually smaller than for older data,

suggesting that stores tend to become more homogeneous as older appliances are

routinely replaced.

• There were only small differences when comparing algorithms. However, the OLS

usually outperformed the other three regression methods which is due to the modest

size of the data-sets.

• Stores with electricity and gas are better predicted than stores using electricity only.

This too relates to the level of complexity added by the need to also predict the heating

demand.

The possible causes for these behaviours are the same that when using the whole-profile

representation (Section 4.3).

Comparing the results obtained using the feature set and those using the whole-profile

representations shows the feasibility of exploiting reduced dimensionality to predict EDLPs.

Figure 5.12 shows the ED values using both representations. Although the scores when

using the full dimensional set (the whole profile) to predict the EDLP were better than using

the reduced feature set, in many cases the difference is insignificant especially for the most

recent years. Using the ED evaluator the absolute difference is an average of 4.0 kWh (6.0%)

and 4.4 kWh (8.3%) for SE and SEG, respectively, when comparing the two methods. For

both SE and SEG, NP using the feature set is 0.9 percentage points worse than using the

whole profile. The relative differences for this evaluator are 4.6% and 5.9% for SE and SEG

respectively.
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Reduced-dimension representation of EDLPs: prediction and clustering

TypSt Year Season KNN OLS SVR ANN
Wint 23.5 22.0 21.2 22.5
Sum 20.8 18.9 19.4 19.620

13
Spr/Aut 22.1 19.3 19.4 20.3

Wint 23.2 21.9 22.6 23.2
Sum 20.6 19.2 20.2 20.520

14

Spr/Aut 24.9 21.4 22.9 22.4
Wint 25.1 22.7 23.9 23.3
Sum 23.0 20.2 20.9 21.520

15

Spr/Aut 21.8 20.6 20.9 21.4
Wint 25.2 26.3 27.9 27.4
Sum 19.7 18.6 18.8 19.620

16

Spr/Aut 19.0 19.0 19.6 20.3
Wint 22.9 21.9 22.8 23.0
Sum 17.7 18.1 17.6 19.2
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Spr/Aut 21.2 19.6 19.9 20.2
Wint 21.5 18.5 18.9 19.3
Sum 16.3 13.9 13.9 14.320

13

Spr/Aut 17.9 15.2 15.8 15.5
Wint 19.9 17.1 17.9 18.6
Sum 16.3 14.9 14.9 14.920

14

Spr/Aut 17.3 15.6 15.9 15.8
Wint 18.7 17.4 17.9 17.9
Sum 16.1 15.0 15.5 15.120

15

Spr/Aut 16.2 14.7 15.6 15.3
Wint 17.2 17.7 18.1 18.6
Sum 13.6 13.1 14.9 13.720

16

Spr/Aut 14.3 13.5 14.4 14.1
Wint 17.5 14.6 15.6 16.2
Sum 15.3 12.5 13.1 13.2
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Spr/Aut 16.0 13.1 13.7 13.9

Table 5.2 Prediction results using the NP (%) evaluator for the profile represented with the
key features. Results are separated by algorithms, seasons, years and store type.
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Reduced-dimension representation of EDLPs: prediction and clustering

Table 5.3 displays the relative difference of the NP evaluator (%) when predicting EDLPs

using the key features with respect to predictions using the whole profile. Positive values in

this table indicate that predicting using the whole profile outperforms predicting the EDLP

using the key features for this particular data-set and method. Negative values indicate the

opposite fact. All the values of the Table 5.3 are positive except for five of 120 different

experiments. For example, predicting the 2016 Winter EDLP for SE with the KNN and

representing the profile with key features improves the results by 1.2% (NP evaluator) when

predicting the same data using the same method but representing the whole profile. There are

no clear patterns of the difference of errors when considering methods, season or store type.

To understand the reasons for the greater error when using reduced dimensionality it is

necessary to re-think the sequence of processes performed in the prediction experiments

(Figure 5.10). In this sequence, both modelling and prediction errors can occur throughout

the process chain. First, the profile to be predicted is modelled using the features with

non-trivial error (Table 5.1). Secondly, like any prediction process the features of the EDLP

are not estimated perfectly using the regression model. Thirdly, when reconstructing the

profile using these predicted features it is again approximated to the whole profile, adding a

new error.

As the evaluation is performed against the (full dimensional) real profile it seems logical

to have greater error than predicting the whole profiles directly. On the other hand, it has

been shown that the features are able to explain and capture the main patterns of the load

profile with fewer parameters than using the whole profile. Interestingly, as the difference

in the results were small, the positive factors compensate the negative ones indicating the

feasibility of using reduced dimensionality.

5.4 Clustering experiments

Clustering experiments group all of the available EDLPs computed during a specific year for

each data-set independently. The result depends on both the algorithm and the way the data is

represented. The point is to compare clustering results—not algorithm performance—using

the two data representations. Clustering is performed over non-normalised profiles as the

intention is to separate the EDLPs by their real demand values, not by their specific shape

(all have a similar shape) or relative demand. Neither the original EDLPs nor the extracted

features are normalised to be in equal conditions when comparing the clustering results.

The partitioning and agglomerative algorithms to perform the experiments are explained in

Section 3.2.2.
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5.4 Clustering experiments

The experimental set-up to perform the clustering experiments is similar to the one used

for the prediction experiments (Figure 5.10). The clustering is performed using three sets of

features:

8 features (8-feat): µ(s0), µ(s2), m(s1), m(s3) and t⃗.

4 features (4-feat): µ(s0), µ(s2), m(s1) and m(s3).

2 features (2-feat): µ(s0) and µ(s2).

Evaluation using the whole profiles was also performed because the output of clustering

is the grouping in which all the data-points (in this case the EDLPs) are separated based

on the ML algorithm. As all the evaluators use the inter-point distance, the fairest way to

compare the quality of the obtained grouping is to compare over the same set of points.

Clustering results using the eight features are compared to the those obtained using the whole

EDLP. For the k-means algorithm, 100 repetitions with different random initialisation were

performed and the evaluations are averaged. The number of clusters (input parameter of the

k-means algorithm) was 2–10, ensuring that all the likely outcomes were explored.

5.4.1 Results and discussion

Clustering experiments were performed independently for all supermarket EDLPs computed

during each year, season, and store type (SE/SEG separately, and together) giving a total of

5*3*3=45 experiments. Figure 5.13 shows the results obtained when clustering the 2-feat

EDLPs with Winter 2017 data from SEG supermarkets using the k-means algorithm (k=4).

The clusters show a clear separation (Figure 5.13a), especially in the µ(s2) feature because

the value of µ(s2) is greater than µ(s0), giving more weight when computing distances

among clusters. This occurs because the demand values are non-normalised. The real EDLPs

of each cluster are used to compute the evaluators. The profile of each cluster centroid

(Figure 5.13b) are distinct for both peak and off-peak periods.

To enable comparison, the median with error bars using 95% confidence intervals were

computed using bootstrapping over all 45 experiments. Figure 5.14 shows these results over

the supermarket data-set using the k-means algorithm for each of the four representations

(whole profile, 8-feat, 4-feat and 2-feat). The results show only small differences between

2-feat clustering compared with using the whole profile. Interestingly, for the CDI (Fig-

ure 5.14a) and SI (Figure 5.14b) evaluators the clustering 2-feat results outperform those

obtained with the whole profile when the number of clusters is greater than three. Generally,

2-feat scores are better than scores obtained with 4-feat and 8-feat.
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Reduced-dimension representation of EDLPs: prediction and clustering

(a) Clusters (b) Centroids using the EDLPs

Fig. 5.13 Clustering results for EDLPs represented with µ(s0) and µ(s2) (only) using data
for Winter 2017 of SEG supermarkets with k-means (k=4). Clusters 1, 2, 3 and 4 have 15,
26, 57 and 31 points, respectively.

The 8-feat results (which includes t⃗) were worse than the others because of two factors:

1) t⃗ are numeric variables but they represent time intervals that are not well modelled by

clustering algorithms that use Euclidean distances, and 2) the time intervals may add noise

when creating the clusters as they are evaluated only using the demand differences of the

whole profile.

Clustering results are given in Table 5.4 for all the evaluators averaged over the whole-

profile and 2-feat experiments, and the number of cluster separated by algorithm. The

differences between the values are small, meaning that the results using both representations

are similar. It might be expected that the whole-profile clustering evaluator would be better

than the 2-feat results, however, for some algorithms and evaluators e.g. k-means and SI, or

single link and SI, this is not the case.

For the retail store data-set, clustering experiments were performed independently for all

the EDLPs computed during each season and for the whole year (Figure 5.7) with similar

outcomes to the supermarket results. When the number of clusters is small (less than four

or five) the differences between the scores obtained with the whole profile and the reduced

feature representation is greater than when using more clusters. Results obtained with 8-feat

are consistently worse than those obtained with the other representations. The clustering

results are given in Table 5.5 for all the evaluators averaged over all the whole-profile and

2-feat experiments (and number of clusters separated by the algorithm). The results obtained

with the whole profile marginally outperform those obtained with the 2-feat, with exceptions

such a UPGM algorithm and SI evaluator.

92



5.4 Clustering experiments

(a) CDI (b) MDI

(c) SI (d) DBI

(e) MIA (f) VRC

Fig. 5.14 Clustering results for the supermarket data-set using the K-means. N.B. the Y-axis
is log scale.
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As a final remark about the clustering results, the evaluation scores for the 2-feat clustering

results are slightly worse than those obtained when using the whole profile (for <4 clusters).

However, evaluation scores for these two representations are very close for more than four, or

averaged over the total number of clusters. The 2-feat works well for clustering the profiles

because these two features (µ(s0) and µ(s2)) are the main behavioural drivers accounting

for most of the EDLP.

5.5 Summary

The aim was to investigate whether dimensional reduction could generate a statistically

reasonable representation the EDLP of a retail store such that it could be used to predict

the demand (supermarket data-set) and cluster profiles (supermarket and retail data-sets).

The proposed features exploit the inverted U-shape of the EDLP that both the retail stores

and supermarkets usually show. The reduced dimensional representation summarises the

demand patterns using the peak/off-peak average demands and the times where peak happens.

Heuristic and an objective-function methods to automatically obtain these features, and a

technique to reconstruct the whole profile, are proposed. The objective-function method

out-performed the heuristic method.

Prediction results using the reduce-feature representation are slightly worse than using

the whole profile, however, there are cases that are very similar. Clustering results are very

similar for both profile representations suggest its utility as dimensional reduction technique

to cope with the ‘curse of dimensionality’.

More generally, it has been demonstrated that a simpler way to represent data can work

as well for some specific energy problems as complex and high-resolution representation.

As modern (networked) sensors increase the volume, availability, and immediacy of data,

transforming such high-resolution data streams in a ‘smart‘ way based on observed behaviours

may be helpful.
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5.5 Summary

TypSt Year Season KNN OLS SVR ANN
Wint 7.8 5.3 1.9 2.7
Sum 8.3 0.5 1.6 3.720

13
Spr/Aut 16.3 6.6 4.9 6.8

Wint 3.1 3.3 4.6 5.5
Sum 9.0 0.5 0.0 2.520

14

Spr/Aut 25.1 7.0 9.6 7.2
Wint 4.1 2.7 3.5 3.6
Sum 15.6 0.0 4.0 2.420

15

Spr/Aut 3.3 4.0 4.5 4.9
Wint -1.2 -0.4 4.1 3.0
Sum 9.4 1.1 2.7 2.120

16

Spr/Aut -1.0 0.5 -1.0 6.8
Wint 6.5 3.3 4.1 3.1
Sum 4.1 1.1 3.5 7.9
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Spr/Aut 6.5 4.3 2.1 5.2
Wint 6.4 1.1 2.7 3.2
Sum 13.2 5.3 1.5 4.420

13

Spr/Aut 11.2 7.0 5.3 4.0
Wint 12.4 3.0 8.5 8.8
Sum 10.1 5.7 4.9 4.920

14

Spr/Aut 13.8 9.1 8.9 7.5
Wint 8.1 4.2 4.7 5.3
Sum 10.3 2.7 5.4 3.420

15

Spr/Aut 11.7 3.5 7.6 7.7
Wint 0.6 3.5 8.4 5.7
Sum 1.5 0.8 8.0 2.220

16

Spr/Aut 2.1 0.7 3.6 -0.7
Wint 11.5 0.7 2.6 4.5
Sum 17.7 5.0 2.3 7.3
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Spr/Aut 15.4 4.8 6.2 4.5

Table 5.3 Relative difference of the NP evaluator (%) when predicting using the key features
with respect to predicting using the whole profile. Results are separated by algorithms,
seasons, years and store types.
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Alg/Eval CDI MDI SI DBI MIA VRC
Kmeans 0.4 / 0.4 1.3 / 1.3 25.0 / 24.0 1.1 / 1.1 10.6 / 10.8 134.3 / 126.2
Single 0.3 / 0.3 1.1 / 1.2 6.8 / 6.6 0.5 / 0.6 8.9 / 9.2 10.9 / 14.5

Complete 0.3 / 0.4 0.8 / 0.9 14.9 /15.8 0.9 / 1.0 10.1 / 10.4 116.6 / 107.8
UPGMA 0.3 / 0.3 0.6 / 0.7 9.3 / 9.4 0.7 / 0.8 9.3 / 9.8 90.4 / 91.0
WPGMA 0.3 / 0.3 0.6 / 0.8 13.6 / 12.8 0.8 / 0.9 9.5 / 10.0 96.5 / 94.2
UPGMC 0.3 / 0.3 0.6 / 0.7 9.0 / 8.8 0.6 / 0.8 8.9 / 9.6 84.6 / 87.2
WPGMC 0.3 / 0.3 0.6 / 0.7 9.8 / 10.1 0.6 / 0.8 9.0 / 9.6 80.4 / 90.7
WARD 0.5 / 0.5 1.4 / 1.5 29.0 / 29.4 1.1 / 1.2 10.6 / 11.0 126.5 / 118.0

Table 5.4 Clustering results for the supermarket data-set for all evaluators averaged over all
the whole profile (left value), 2-feat (right value), and number of cluster separated by the
algorithm.

Alg/Eval CDI MDI SI DBI MIA VRC
Kmeans 0.2 / 0.2 2.9 / 2.6 13.7 / 17.1 0.9 / 0.9 1.7 / 1.8 750.7 / 734.9
Single 0.1 / 0.1 0.5 / 0.7 2.9 / 2.9 0.2 / 0.3 0.8 / 0.9 141.5 / 145.9

Complete 0.1 / 0.2 0.7 / 0.8 4.0 / 4.7 0.6 / 0.7 1.3 / 1.4 497.6 / 507.8
UPGMA 0.1 / 0.1 0.4 / 0.5 3.3 / 3.4 0.4 / 0.5 1.2 / 1.2 278.3 / 342.6
WPGMA 0.1 / 0.1 0.5 / 0.7 3.5 / 3.5 0.5 / 0.5 1.2 / 1.2 370.9 / 381.4
UPGMC 0.1 / 0.1 0.4 / 0.5 3.4 / 3.1 0.4 / 0.5 1.2 / 1.2 308.1 / 333.4
WPGMC 0.1 / 0.1 0.5 / 0.5 3.6 / 3.6 0.5 / 0.5 1.2 / 1.2 270.9 / 352.7
WARD 0.7 / 0.8 5.1 /7.8 14.5 / 14.4 1.2 / 1.3 2.0 / 2.5 484.1 / 388.3

Table 5.5 Clustering results for the retail stores data-set for all evaluators averaged over all
the whole profile (left value) and 2-feat (right value) experiments, and number of cluster
separated by algorithm..

96



Chapter 6

Detecting the urban heat island effect

The urban warming in large cities—the urban heat island (UHI) effect (Kolokotroni et al.,

2012)—is observed as a temperature gradient decreasing away from the centre to the suburbs

and the surrounding countryside. As 38 of the supermarkets in the data-set are located in the

Greater London area (Section 3.3.1) it is possible to interrogate this sub-set to understand if it

may be possible to observe the UHI effect on electricity demand. The difficulty of quantifying

the UHI effect on the electricity consumption of retail premises is the requirement to compare

consumers with similar features. For this reason, the relationship among the supermarket

energy use, the location and external temperature for similar supermarkets was studied.

The chapter is structured in the following way. First, the relationship between the

electricity demand, the floor area and location is analysed. Analysis of the temperature using

degree days and the electricity demand is studied in Section 6.2. Then clustering of the

EDLPs is performed relating to the store location in Section 6.2.3.

6.1 Sorting the variables

It is possible that stores located closer to the centre of London (Section 3.3.1) are smaller

than stores farther out because property (or rent) closer to the centre the more expensive.

However, the simple correlation between floor area and the distance from the centre is weak

(R2 of both models is <0.06).

Instead of performing an individual analysis over each store, groups based on the store

size (floor area) were created and then the distance relationship of the group to the city

centre checked. It was not appropriate to partition the supermarkets by size using the food

retail shops classification Kolokotroni et al. (2015) because 36 of the 38 stores are in the
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Supermarket category (280-1400 m2) and just two in the Superstore category (1400-5000 m2).

The unbalanced distribution of the floor area can be seen in x-axis of Figure 3.9, therefore it

was convenient to divide the stores using three intervals on a logarithmic scale (Table 6.1).

In Table 6.1, it can be seen that the floor area of the groups increases with increasing

average distance from the centre. However, supermarkets located both close and far from the

city centre can be found in all three groups, and there is no statistically significant differences

between distances to the centre when considering standard error (StE). Stores using gas are

usually bigger than stores using only electricity.

Interval (m2) #Stores (%) Avg. dist and StE. (km) #StoJustElec #StoElecAndGas
[293,563] 14 (36.8) 9.3 (1.9) 13 1
[563,1082] 10 (26.3) 10.5 (2.8) 5 5
[1082,2081] 14 (36.8) 11.3 (1.3) 5 9

Table 6.1 Number and percentage of stores divided by floor area, average distance and
standard error with the city centre and number of stores depending on type of fuel.

The next analysis performed was to analyse the correlation between the demand intensity

and the supermarket location. The hourly average demand normalised by floor area was

computed for each supermarket. Then the supermarkets were divided into two groups

(Figure 6.1): stores with demand intensity below the mean (the blue group), and those above

the mean (the red group). After that, the average and StE distance of the supermarkets of

each group with respect to the city centre were computed (Table D.1 (Appendix D). The

analysis was performed using the readings for different seasons and trading hours. In general,

the stores with the highest demand (red stores) are closer to the centre than stores with

lowest demand (blue stores). This fact seems stronger for the demand computed in Summer.

However, there is an overlap of the distances of the groups when considering the standard

errors.

The same analysis was performed separately for SE and SEG groups (Figure 6.2 and

Figure 6.3). Distances and number of supermarkets in each group are given in Table D.1 of

the Appendix D. For the stores using electricity only (Figure 6.2), the distances of the two

groups are very similar, in Winter the stores with lower demand intensity are slightly closer

to the centre. In Summer, the opposite occurs. This observation is in line with the UHI effect.

Interestingly, stores with electricity and gas that have higher demand intensity are farther

from the centre the centre than stores with lower intensity, for all the analysed seasons and
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6.1 Sorting the variables

(a) Store location based on the demand by area during
all daily hours and sampling period

(b) Store location based on the demand by area during
trading hours and sampling period

(c) Store location based on the demand by area during
all daily hours and Winter seasons

(d) Store location based on the demand by area during
trading hours and Winter seasons

(e) Store location based on the demand by area during
all daily hours and Summer seasons

(f) Store location based on the demand by area during
trading hours and Summer seasons

Fig. 6.1 Location of the supermarkets classified by demand intensity into high (red) and low
(blue). The bright circles are the average, plus/minus the standard error (pale circles) of the
distances of the stores of each group with respect to the city centre.
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periods (Figure 6.3. In all cases, there is a degree of overlap of the distance intervals once

the standard error is taken into consideration.

The previous analysis was performed without considering the different floor areas of the

supermarkets. Smaller supermarkets have greater demand intensity that larger supermarkets

(Section 3.3.1), and is clearly seen when analysing the demand intensity separately for the

stores of the three (floor area) groups (Table 6.1). Figure 6.4 displays a box-and-whisker plot

with the hourly demand intensity of the stores of each group during all sampling periods. The

trend is decreasing average demand intensity with increasing store size. Separate analysis for

each store group (Table 6.1) was performed to understand the relationship between demand

intensity and distance from the city centre independent of the floor area. The distances for

each group when splitting the stores by high/low demand intensity are shown in Table D.2,

Table D.3 and Table D.4 of the Appendix D.

Most of the smaller supermarkets (13 of 14 stores, top row in Table 6.1) use electricity

only. Comparing just these supermarkets (Table D.2), it can be seen that they have similar

demand intensity: 12 of the 13 stores consume between 0.09 and 0.125 kWh/m2 per hour.

However, the Winter values divide into two intervals with nine and four stores in the lowest

and highest intervals, respectively. Distances to the centre of London for these stores in these

two intervals are similar. For this sub-set of electricity-only stores in Winter, considering

just trading hours, the stores with the highest demand intensity (seven stores) are closer to

the centre than the stores with lower demand intensity (six stores): a 36.7% difference in the

average distance. This may be because the stores closer to the centre use less heating than

stores farther away from centre due to the UHI effect. Interestingly, these differences do not

occur during non-trading times, when the heating system would be off. In these non-trading

periods, a total of 10 of 13 consume between 0.05 and 0.075 kWh/m2 per hour, and the

other three with the highest consumption are close to the centre. For these stores, demand

intensity during Spring/Autumn and Summer seasons, in which the heating system is not so

intensively use, do not show these differences.

Half of the medium-sized supermarkets (middle row in Table 6.1) use electricity only

and the other half use both electricity and gas. Comparing the stores with electricity only

(Table D.3), supermarkets with lower Winter demand intensity during trading hours are closer

to the centre than those with higher demand intensity (contrary to the case of the smaller

stores). In the Summer period, stores with higher demand intensity are closer to the centre

during trading hours, most likely due to an increased demand for cooling, in line with the

UHI effect. For the stores using electricity and gas, for both Summer and Winter demand

during trading times, the stores with higher demand intensity are farther from the centre.
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(a) SE location based on the demand by area during
all daily hours and sampling period

(b) SE location based on the demand by area during
trading hours and sampling period

(c) SE location based on the demand by area during
all daily hours and Winter seasons

(d) SE location based on the demand by area during
trading hours and Winter seasons

(e) SE location based on the demand by area during
all daily hours and Summer seasons

(f) SE location based on the demand by area during
trading hours and Summer seasons

Fig. 6.2 Location of the supermarkets using electricity only, classified by demand intensity
into high (red) and low (blue). The bright circles are the average, plus/minus the standard
error (pale circles) of the distances of the stores of each group with respect to the city centre.
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(a) SEG location based on the demand by area during
all daily hours and sampling period

(b) SEG location based on the demand by area during
trading hours and sampling period

(c) SEG location based on the demand by area during
all daily hours and Winter seasons

(d) SEG location based on the demand by area during
trading hours and Winter seasons

(e) SEG location based on the demand by area during
all daily hours and Summer seasons

(f) SEG location based on the demand by area during
trading hours and Summer seasons

Fig. 6.3 Location of the supermarkets using electricity and gas classified by demand intensity
into high (red) and low (blue). The bright circles are the average, plus/minus the standard
error (pale circles) of the distances of the stores of each group with respect to the city centre.
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Fig. 6.4 Hourly electricity demand intensity for the Greater London supermarkets grouped
by floor area. Each point is a store with its floor area in m2.

However, it is important to remark that only five stores are compared in each sub-set (SEG

and SE), so the difference is not statistically meaningful.

Considering the larger supermarkets (bottom row in Table 6.1), there are more stores

using gas and electricity than stores using electricity only (nine and five respectively). In

Table D.4, the stores using only electricity that have a higher demand intensity during Winter

trading times are located closer to the centre, as is the case of smaller and medium-size stores.

For these stores, there is almost no difference for the Summer and Spring/Autumn demand

intensity. For the stores with electricity and gas, those with higher Summer demand intensity

during trading times are closer to the centre. Again, this lines-up with the UHI effect, but the

number of stores is small.

In general, the following conclusions can be drawn when analysing the three sub-sets

independently:

• Stores using electricity only that show higher demand intensity during trading hours in

Winter are generally closer to the centre that the stores with lower demand intensity.

This can be clearly seen in Figure 6.5a. Differences are not statistically meaningful in

all cases.
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• Summer demand of stores using electricity only do not show a clear trend among the

three different groups (Figure 6.5b).

• Electricity consumption of stores using gas and electricity do not show a clear trend

among the two different groups (smaller stores are not considered as there is only one).

(a) Winter (b) Summer

Fig. 6.5 Distance from the centre against electricity hourly demand intensity for SE during
Winter and Summer trading times. Supermarkets are split by floor area groups

6.2 Relationship between temperature and electricity de-
mand

The relationship between external temperature (Section 3.3.1) and supermarket electricity

demand was analysed using ‘degree days’. The demand for electrical heating and cooling

were studied separately with heating degree days (HDD) and cooling degree days (CDD),

respectively. The base temperature for both cases is 15.5C°. Three separate analyses were

carried out for 1) all hours, 2) trading hours, and 3) non-trading hours, because supermarkets

do not use heating/cooling system at the same intensity during trading and not-trading times.

Therefore, HDD or CDD are only computed during the hours of each time interval. Analysis

for seasons (Winter, Summer and Spring/Autumn) was performed.
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6.2.1 Electrical heating

For each supermarket, the linear regression model for the HDD of each day against the

hourly averaged demand intensity during the hours of this day is computed. Figure 6.6 shows

this relationship for one supermarket, computed during different time intervals (trading/non-

trading) and seasons. Each data point is the HDD value of one particular day against the

average hourly during this day. The blue line is the regression model for the hourly demand

intensity given the HDD. Figure 6.6a shows the demand for the trading times of all days of

the year. Considering only the Winter days (Figure 6.6c), the regression model has a lower

slope than the regression model for all days of the year. However, the constant term is higher

as all days have some non-zero value of HDD during Winter trading times. Interestingly,

non-trading times models (Figure 6.6b and Figure 6.6d) have very low constant and slope

values.

To understand the consumption due to electric heating, the analysis focuses on trading

times for Winter days. Figure 6.7 shows the values of the constant and slope terms of the

regression models for each supermarket computed over Winter trading times grouped by fuel

type. Although there are supermarkets with zero or negative slopes, in general, supermarkets

that use gas have smaller slope and constant terms than supermarkets using electricity only.

Independent analysis is performed for SE and SEG.

For the SE stores, Figure 6.8 displays the values of the slope and constant terms of the

regression model for the supermarkets, grouped in three categories:

• Group 1: supermarkets with a negative or almost zero slope (red points in Figure 6.8).

These supermarkets do not consume more electricity when it is colder during the

Winter period, but have a constant demand independently of the external temperature.

There are only four stores in this group and only one of them has a high constant term.

These stores show robust demand when it is cold, which can be considered unusual

for the stores. There are different explanations for this behaviour. One of the four

stores is in a shopping centre. It is possible that gas was used in previous years, but or

maybe there was problem with the readings. The one with highest constant term may

indicate that they have by default the heating system on independently of the outside

temperature.

• Group 2: supermarkets with a positive slope and a constant term lower than 0.12 kWh/m2

(blue points in Figure 6.8). These stores consume a modest amount of energy when it

is not cold, but increase their demand with HDDs. Some of them have a high slope

value. There are six stores in this group.
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(a) Consumption during trading times for all days of
the year.

(b) Consumption during non-trading times for all
days of the year.

(c) Consumption during Winter trading times. (d) Consumption during Winter non-trading times.

Fig. 6.6 Daily HDD against electricity hourly demand intensity computed for one store
during different time interval and seasons.
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• Group 3: supermarkets with a positive slope and a constant term greater than 0.12 kWh/m2

(green points in Figure 6.8). These stores have a high base-load and their energy de-

mand increases with HDDs. The rate of this increase varies from 0.001 to 0.004 (kWh/m2)/HDD.

There are 13 supermarkets in this group.

Fig. 6.7 Slope and constant term of the regression model for HDDs during Winter opening
times.

The distance from the city centre for the supermarkets of each group was computed.

Figure 6.9 shows the location of these stores and the mean distance from the centre plus/minus

the standard error for each group. The distance from the centre of the Group 1 supermarkets

is greater than the other two groups, including standard errors. Group 1 is the smallest group

and contains the stores with unusual electricity usage independent of external temperature

during Winter. The average distance from the centre of Group 3 is greater than the distance

for the Group 2 supermarkets. As the main difference between them is the constant term of

the regression models, it implies supermarkets of Group 3 consume more than supermarkets

of Group 2 when they have the same HDD.

The SEG supermarkets can be divided into two groups: those with a negative or positive

slope (Figure 6.7). There are five supermarkets with a negative slope and 10 with positive
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Fig. 6.8 Groups of supermarkets using electricity only based on the slope and constant term
of the regression model that computes the electricity consumption given the HDD for Winter
opening times.

slope. The mean and StE of the distance from the centre are 10.9 (1.5) km and 13.7 (2.3) km

for supermarkets with negative an positive slope respectively.

6.2.2 Electrical cooling

For analysing the effect of the cooling system, SE and SEG are analysed together as cooling

depends only on electrical appliances. The analysis uses electricity demand intensity during

Summer and CDD with a base temperature of 15.5C°. The linear regression model that

computes the CDD during trading times against the average hourly demand intensity is

computed for each supermarket and Summer day. Figure 6.10 shows these regression models

for two supermarkets: one with positive relationship (Figure 6.10a) and the other with

negative relationship (Figure 6.10b). Figure 6.11 shows the slope and constant term for the

regression models of each supermarket. They can be grouped by the slope value into three

groups:
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6.2 Relationship between temperature and electricity demand

Fig. 6.9 Location of the grouped SE stores for electricity demand intensity given the HDDs
for Winter opening times. The circles are: the average (bright lines), plus/minus the StE
(pale lines) of the distances of the stores of each group from the city centre.

• Group 1: contains the 10 supermarkets with a negative slope (red points in Figure 6.11).

These stores usually have a greater constant term, implying a higher demand indepen-

dently of CDDs.

• Group 2: contains 15 supermarkets (blue points in Figure 6.11) whose slope is not

negative, but is lower than 0.0015 kWh/m2 (half of the greatest value).

• Group 3: contains 13 supermarkets whose slope is greater than or equal to 0.0015 kWh/m2

(green points in Figure 6.11).

Figure 6.12 shows the average and StE of the distances of each group to the city centre.

The average is 11.7, 10.8, and 8.8 km for the stores of Group 1, 2, and 3, respectively.

However, the StE shows some overlap, but in general the greater the slope the closer to the

centre the stores are located. This is consistent with the UHI effect.
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(a) (b)

Fig. 6.10 Daily HDD against electricity hourly demand intensity computed for Summer
trading times for two different supermarkets.

Fig. 6.11 Groups of supermarkets based on the slope and constant term of the regression
model that computes the electricity consumption given the CDD for Summer trading times.
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Fig. 6.12 Location of the supermarkets grouped by the slope of the regression model that
computes electricity demand intensity given CDD, over Summer trading times. The circles
are: the average (bright lines), plus/minus StE (pale lines) of the distances of each group
from the city centre.

6.2.3 Clustering the EDLPs

The EDLP averaged by floor area of each supermarket for Monday-Saturday Summer days

was computed. These EDLPs were clustered using two algorithms with very different ways of

operating: 1) the K-means and 2) the DPMM (Section 3.2.2). The K-means is a partitioning

algorithm grouping profiles based on Euclidean distance, while the DPMM represents the

profiles as drawn from a Multinomial distribution. For the K-means algorithm, each profile’s

data-set has been clustered 100 times for each number of clusters (K), then the result that

maximises the evaluators was selected. For the DPMM, different values of the concentration
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parameter were tested and the result with less than five clusters that is most frequent was

selected.

(a) Centroids (K-means, K = 2) (b) Store location and distances (K-means, K = 2)

(c) Centroids, (DPMM, K = 3) (d) Store location and distances (DPMM, K = 3)

Fig. 6.13 Centroids obtained when applying clustering over the Summer EDLPs and location
of the stores of each of the clusters.

Centroids for two clusters obtained with the K-means and three clusters obtained with

the DPMM are shown in Figure 6.13a and Figure 6.13c. Due to the distinct nature of the

algorithms, the K-means algorithm tends to better separate the profiles based on their global

distances, and the DPMM algorithm groups these profiles with similar shape but different

scale. For this reason, in Figure 6.13a the difference in scale of the profiles is greater than for

the profiles of Figure 6.13c. Table 6.2 shows the store number of the resulting clusters for the

K-means and the DPMM algorithms, and the average distance of the stores of each cluster
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from the city centre. For the K-means (K=2) the stores of cluster 1, whose centroid has

higher demand intensity than centroid of cluster 2, are closer to the city centre (Figure 6.13b).

For the DPMM algorithm and three clusters, the stores of cluster 2 whose demand intensity

is in the middle compared with the other two clusters, are closer to the centre than the stores

of the other two clusters (Figure 6.13d). Table 6.2 shows the number of supermarkets and the

distance from the centre for the clusters obtained with K-means (K=2) and DPMM (K=3).

K-means DPMM
Clust No. Stores DistC (km) No. Stores DistC (km)

1 15 8.3 (1.8) 20 10.1 (1.3)
2 23 9.1 (1.1) 10 13.4 (2.8)
3 8 7.0 (1.6)

Table 6.2 Results of clustering the Summer EDLPs. DistC is the mean and standard error of
the distance from the city centre.

6.3 Summary

The relationship of the electricity demand of small supermarkets located in the Greater

London area with the UHI effect was analysed. There are several factors influencing energy

demand.

Supermarkets located closer to the centre were generally smaller than the supermarkets

located farther from the centre and have a higher area-normalised energy demand. These

demand differences are higher during Summer, suggesting that the demand for cooling is

responsible. This is consistent with the UHI effect. Considering the supermarkets using

only electricity, those closer to the centre have approximately the same demand intensity

than those farther from the centre during Winter trading periods. However, it is important to

remark that the differences are not always statistically significant.

Analysis of the correlation between electricity demand and degree days (HDD and

CDD) was carried out using linear regression models computed using the daily data of each

supermarket. When analysing the demand increase and HDD during Winter trading periods,

supermarkets located closer to the centre had a lower demand intensity that increased quicker

with HDDs large slope value) than for stores farther from the centre, that have a larger HDD

independent term.

The K-means and DPMM clustering algorithms were used to group the supermarkets’

Summer EDLPs computed using demand intensity. Supermarkets located closer to the centre
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were in clusters whose EDLPs had greater demand intensity than the other clusters. This is

more clear for K-means and two clusters than DPMM and three clusters, but is consistent

with the UHI effect.
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Chapter 7

Conclusions and future work

Characterising, predicting and clustering automatically the electricity demand of retail stores

from two significant data-sets has shown how ML techniques can help the development of

energy analytics for large data-sets relating to energy use in retail buildings. The first data-set

comprised six years of 1-h-resolution electricity readings from 213 UK supermarkets (of one

company) and the second comprised 1.5 years of 30-min-resolution electricity readings from

663 UK retail stores of a single company. The second data-set was not used for prediction due

to the lack of data and meta-data. Exploring and adapting ML models and data representation

to the specific data characteristics, robust results were obtained for complex research energy

analytic problems. The literature review showed significant gaps in the areas of both generic

energy analytics literature and specific investigations for electricity demand prediction for

supermarkets.

In the literature, analysis of electricity demand in retail stores (food and non-food) is

under-represented with respect to other building types. Despite being high energy users,

there are few academic studies analysing supermarkets demand using real-world data-sets.

Predicting the energy demand of a new store using historical demand of other stores is

under-investigated as most of previous studies attempt to forecast energy demand for the

same building. The reasons for this are related to data (quantitative and qualitative) and the

nature of the problem. When considering the data, a lack of enough data in both number of

buildings and temporal length, and that buildings need to have some degree of homogeneity

(e.g. similar location, company, business) to use them to predict different buildings. With

respect to the problem itself, same-building demand prediction is easier and more intuitive

than predicting energy demand for a different building. This is usually true for prediction

problems in most scientific disciplines. In addition to different-building prediction, long-term

prediction is also less common than short-term. Energy prediction for days or weeks is
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the most common approach since the uncertainty level is lower than for long-term, and

short-term prediction models need less training data. Although EDLPs are commonly used

by both energy managers and researchers, this is not the common way most of the energy

prediction studies represent energy demand. Predicting EDLPs is more challenging than

predicting a unique value to represent the demand, but EDLPs are more useful. The gaps

identified were addressed by the objectives established in Section 1.3.

For the first objective, the two data-sets were statistically characterised and analysed

discovering patterns in the electricity demand. Anomalous readings and stores without

enough data are removed in the pre-processing. Then, EDLPs were computed for different

time periods (years, weekday, season) and stores grouped by fuel use. Visualisation and

analysis of the energy demand for both data-sets allow for trends to be detected.

For the second objective, to what extent the energy demand of a retail store is impacted

by the urban environment, the impact of the urban heat island effect was analysed in 38

supermarket located in the Greater London area. The correlation between electricity demand

and distance from the city centre was analysed whilst mitigating other factors influencing the

demand such as floor area, fuel used in the store, and temperature. Regression and clustering

analysis based on demand automatically grouped the stores by demand, then each group was

studied with respect to its location to the city centre.

For the third objective, the design and implementation of a data-driven method to predict

the future EDLP of new supermarkets using historical EDLPs of existing supermarkets was

carried out. Prediction computational experiments were performed over the supermarket

data-set by using temperature and season to partition the data. Four data-driven regression

models and three approaches for confidence intervals to model the prediction uncertainty

(only for KNN) were investigated.

For the final objective, an alternative way to represent the EDLP using a reduced set

of features was discovered by decomposing the shape of the EDLP into self-consistent

components. The method automatically extracts the features from each EDLP and later

rebuilds an approximated EDLP from them. Then, this representation is tested to see if it is

sufficiently accurate to predict and cluster the measured patterns of demand compared with

the ’whole profile’ method. Prediction experiments were carried out using the supermarket

data-set and clustering experiments using both supermarket and retail store data-sets.

A limitation facing all researchers in this area is the use of non-disclosure agreements

imposed by companies, which limit the ability to share data openly with the research

community. Chapter 2, the literature review, highlighted the fact that each one of the

studies used a different data-set to perform prediction experiments. This lack of data sharing
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presents a barrier to comparing techniques, data representations or other details that would

significantly improve knowledge in this area. This is a common problem in energy analytics,

which is adapting only very slowly to data-science proposals that promote openness and

experimental reproducibility such as the FAIR (Findable, Accessible, Indexable and Reusable)

principles (Wilkinson et al., 2016).

7.1 Key findings and limitations

The supermarket data-set used in this study is considerably bigger in both number of stores

and number of years of data collection than most data-sets used in previous energy prediction

studies. Another important factor is that the data-set includes interesting meta-data fields

such as exact location, and floor area by use that they are not usually made available by

companies for confidentiality reasons. The retail data-set is large by number of stores but not

in temporal length. The dimension and features of both data-sets add weight and significance

to the computational experiments. Therefore the prediction and clustering experiments using

the whole supermarket chain portfolio give insights to the energy analysis of this building

type. This work systematically predicts electricity demand of 213 supermarket buildings for

six years in which each building’s demand is predicted using other buildings’ historical data.

This approach adds insights to a challenging and complex problem. The supermarkets are

located in the UK and from the same chain sharing many of them similar appliances, floor

distributions and energy plan strategies.

The range of results shows that it is important to understand both the nature of the specific

prediction problem, and detail of the available data. It has been shown that assuming that

all ML techniques will deliver results equally useful in the real-world context or that more

complex algorithms are better, is not reasonable. It was possible to predict EDLPs accurately

with only a 3% error (approximately). However, in general, the average errors ranged

between 12–20% depending on the fuel consumed by supermarkets and season/temperature

partition of the readings. Some of the limitations were understood at the outset but quantified

during the research, others were discovered, giving insights into the nature of attempting to

apply ML techniques to real-world data-sets. One of the hyper-parameters (K) was estimated

using the whole training data-set due to the reduced number of data-points to estimate the

ML models (Section 4.2.2). This hyper-parameter estimation was conducted for the OLS and

KNN techniques. The feature engineering also used the whole training data-set. Although

this is considered an unorthodox ML practice it demonstrates the importance for adapting
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established techniques and modes of working for the variations and limitations presented by

real-world data.

Despite the wide range of prediction algorithms, differences among the evaluators are

not significant for most of the computational experiments. The simplest methods such as

KNN and OLS sometimes out-performed more sophisticated ML methods such as ANN and

SVR. This may be due to insufficient data to train methods with large number of parameters

such as ANN, even though a significantly-sized data-set was used. The results also suggest

that accuracy increases with the store sample size. Achieving consistency of data collection

is difficult in practice even for a committed company with resources to support the activity.

Together, these suggest that some ML algorithms may never to be suitable for real-world

applications. It may be better to trade-off a sophisticated analysis with readily deliverable

more reliable analyses that enable a company to make reason more quickly. This may lead to

carbon savings soon, rather than constantly pursuing a bigger saving sometime in the future.

When comparing computational efficiency of the methods ANN and SVR are less efficient

than OLS and KNN because of algorithm complexity and software implementation.

Confidence intervals to help model the prediction uncertainty are used only for KNN.

This is a limitation as it cannot be extended to the other ML techniques. Furthermore, this

implementation yields large bars when k is large for the KNN algorithm, and the bars have

symmetric upper and lower intervals.

Having performed experiments over a large number of stores, it has been determined that

the energy use in the non-operational periods is easier to predict than operational periods.

This is because there are fewer human behavioural components contributing to the EDLP.

This can be very useful as it gives indications of base line energy use and the efficiency of

the systems used. However, the information for operational periods is also quite useful for

energy managers because of the greater demand and variability. One of the features governed

by customers is the Cafeteria Area, and together with the Food and Chilled areas are the three

most important features appearing in the prediction models. The Food and Chilled areas

are indicators of the number of refrigeration appliances that are responsible of an important

part of the electricity demand. The geographical location is also a relevant feature when

predicting supermarkets using only electricity. This can be extrapolated to predict EDLPs for

supermarkets in countries with hot climates where the cooling system has greater significance

in the electricity demand than the UK. In comparing the seasonal results for different years,

the error usually decreases when predicting EDLPs of a more recent year. The relative error

decrease suggests that the company has sought to harmonise installed equipment in recent

years.
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Comparing the prediction results by fuel used in the building, the errors for the SE group

are generally greater than for the SEG group. The reason for this is that variations in heating

demand are excluded in the SEG set, and the electricity consumption is computed only for

appliances, lighting, and cooling. Furthermore, the SEG set is larger that SE set which

helps improve the ML prediction. Meanwhile, seasonal and temperature experiments show

errors of the same order of magnitude. In both cases, Profiles corresponding to the coldest

periods (Winter and for intervals < 5 °C) are predicted less well than for warmest periods

(Summer and for intervals > 15 °C). However, the effect of hot temperatures (intervals > 19

°C) which give greater prediction errors, cannot be captured with the seasonal approach. In

seasonal experiments, Summer profiles were predicted best followed by Spring/Autumn and

lastly Winter. The difference of the error between Winter profiles and the other profiles are

smaller for the SEG group than the SE group. This implies that periods of time in which

electrical heating systems dominate are more difficult to predict. The temperature partition

also indicates a minimum amount of data needed to perform a prediction without a very

significant error: this is a minimum of approximately 80 stores. This minimum implies

that companies with a smaller portfolio of stores must used the proposed techniques with

caution. That may be a limitation for small- and medium-size companies, but sharing energy

information among small companies of the same retail sector is not realistic.

When representing the EDLP with a dimensional-reduced set of features, they are a good

approximation for the original EDLP of stores of both data-sets. The original EDLP can be

re-constructed with only a small error for most of the stores. Interestingly, errors for the retail

data-set are lower than errors obtained with the supermarkets as they have lower demand

and a more regular inverted-U shape. Comparing the results obtained using the reduced

feature set and those using whole profile representations shows the feasibility of exploiting

reduced dimensionality to predict EDLPs. There is a relatively small increase of error of

5-6% when using the reduced feature set (the error is greater for the SEG group than for SE).

As the error is evaluated against the real full dimensional EDLP, it is logical that the error is

greater. The proposed reduced feature set to represent the EDLP may have limitations for

applications such as investigating and predicting demand shifting and demand variability for

energy management purposes. This is due to the lack of granularity which will not allow

detection of demand changes at specific times (e.g. hourly).

Experiments relating the UHI effect to supermarket energy demand were not completely

conclusive, however some trends were found. Supermarkets located closer to the centre were

generally smaller than the supermarkets located farther from the centre and have a higher

area-normalised energy demand. These demand differences are higher during Summer,

119



Conclusions and future work

suggesting that the demand for cooling is responsible. This is consistent with the UHI effect.

This is also evident in the clustering analysis of the Summer EDLPs using demand intensity.

The size of the errors is variable, but not generally very low for many of the prediction

algorithms and experiments, underlining that fact that the complexity of the problem is

related to the data. This is due to four factors:

1. Supermarkets vary considerably in total energy demand Each is an independent electric-

ity consumer with its own peculiarities e.g. location, building features, human factors,

and weather conditions, that cannot be completely captured in a model. Moreover,

there were no clear criteria to remove any outliers. Error analysis indicates that the

greatest error is produced in a supermarket with an usual large GM area (278 m2

compared with the average of 48 m2).

2. Energy demand varies over time. Even recent historical data may not be a good guide

to future demand, since changes may arise year-to-year due to weather conditions or

refurbishment for example.

3. The supermarket-set size is not large enough. The accuracy of the predictions was

related to the quantity of supermarkets (l< 130 in the separate SE and SEG groups), and

not the quantity of the time-series data. Compared with state-of-the-art ML problems,

the data-sets used in this study are relatively small despite being large for the energy

analytics domain.

4. Limited availability of meta-data. Studies such as this are limited by what the su-

permarket owners are willing to collect or disclose. Accessing more (meta-)data is

desirable e.g. the number of customers, technologies used for HVAC and refrigeration,

building age, construction type and materials, and insulation levels. However, data

collection has a financial cost which must always borne in mind.

Despite this, some individual supermarkets are estimated well. It is possible that the selected

features provide good prediction for some supermarkets, but the focus was on the feature

combination to reduce the average error.

When analysing and predicting the full EDLP for a new building, it is important to

partition the data such that it follows the ’local’ principle by trying to use similar buildings

and data, for example by fuel used in the building and ambient conditions. The separation

by season and temperatures are proxies for using the same ambient temperature. Data

partitioning should keep a minimum quantity of data points (stores) to not have a high
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prediction error. The independent analysis performed using stores separated by fuel provides a

more nuanced view for decision making when considering the phasing of store refurbishment

or portfolio expansion in the light of carbon reduction targets. It is expected that buildings

both commercial and residential will be gradually transformed into only electricity consumers

because of the drive for the decarbonisation of heating (CCC, 2023). This transformation

pace depends on technological, economical and political factors.

For the clustering experiments, three different subsets of features were compared with

respect to using the whole EDLPs. Evaluation scores for the 2-feat (µ(s0) and µ(s2))

clustering results are slightly worse than those obtained when using the whole profile when

using less than four clusters. However, evaluation scores for these two representations are

very close when the number of clusters is greater than four or averaged over the total number

of clusters. These trends are supported by the clustering results in both data-sets.

As the difference in the results for prediction and clustering are small, the positive factors

compensate the negative ones, indicating the feasibility of using reduced dimensionality.

These results are robust as the two tasks are different in nature: prediction is supervised

learning meanwhile clustering is unsupervised. The clustering results suggest its utility

as dimensional reduction technique to cope with the ‘curse of dimensionality’, following

the line research in EDLP clustering (Granell et al., 2015b). More generally, it has been

demonstrated that a simpler way to represent data can work as well for some specific energy

problems as a complex and high-resolution representation. As modern (networked) sensors

increase the volume, availability, and immediacy, transforming such high-resolution data

streams in a ‘smart‘ way based on observed behaviours may be helpful.

The UHI-demand analysis has two main limitations. First, it is complicated to analyse

the correlation between the supermarket location and the demand independently, as there are

several factors that influence the energy demand of a store. For this reason, grouping similar

stores by size and fuel type was performed with each group independently analysed. The

second limitation is that the number of supermarkets of each group is too small to obtain

statistically significant results.

7.2 Impact

The main contributions to the understanding of retail energy use and management can be

summarised by the following points.

For researchers that do not know which ML algorithm to use, this study emphasises the

importance of starting by exploring basic methods to have a baseline performance to later
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compare them with more complex models. This is especially important in a shortage data

situations that are quite common in energy analytics.

The main implication for using dimensional-reduced feature sets is that they are easier to

interpret and visualise compared with a high resolution EDLP. This simplified feature set is a

concise way to represent profiles without using small variances (signal noise) of the demand

that do not add useful information to the overall picture.

From a wider perspective, this study has demonstrated that the data-science methodology

of using ML methods allows for automatic analysis of significant data-set in a short period of

time using modest equipment. Performing similar analyses over the supermarket portfolio

using an engineering approach would have required a large amount of resources (time,

technical expertise and measurement equipment). It is not clear that if an engineering

approach is used, that it would be better that exploiting ML for this type of problem.

Another advantage of the ML approach is that the methods can be applied to other types

of retailers’ data-sets. However, the ML methods produce the black-box effect i.e. there is not

real knowledge of the relationship between input and output variables. This can be mitigated

by using stepwise regression, searching the input-feature space, and feature analyses of the

best results.

This study highlights that combining modern computational tools with expert under-

standing of the data and the nature of the problem can give interesting insights to a real and

complex engineering problem. In this case, the observation of the EDLP behaviour, allowed

investigation of the possibility of representing data in a different way. As large range of

computational tools are commonly available, it is crucial not to apply them just because it

is possible or fashionable to do so. Access to large data-sets remains the key bottleneck for

advancing energy analytics.

7.3 Future work

There are several lines of research and development that could follow from this real-world

study.

The origin and motivation of the prediction problem were explained in Section 1.3. It

would be interesting to implement the proposed prediction methods for the supermarket chain

that provided the data. This requires either a new piece of dedicated software (at commercial

standards) to be developed, or for the methods to be incorporated into existing (commercially

available) energy management tools. But neither of these routes are a research problem.
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As reducing the prediction error for this problem is essential, other ML methods can be

tested. Although, the lack of data does not allow the use of more complex ML algorithms, and

it is noted in the literature that other ML algorithms are not expected to improve significantly.

Hybrid methods, that combine various prediction models, can be an interesting approach

as commented in Section 2.1. However, another possibility is to investigate different ways

of partitioning the data. Wider temperature intervals can be investigated, e.g. 2 °C intervals

or an interval width depending on the demand variation. In addition, there may be merit to

developing independent models for the operational and non-operational periods to account

for the different behaviour. Combining both clustering and prediction may be an interesting

approach to separately predict the demand of existing buildings that are in each cluster. This

is different to predicting the demand of new buildings, but large data-sets in both temporal

dimensional and number of stores would be required for such analysis. Comparing the

proposed EDLP representations for clustering normalised profiles (by independent feature or

by profile) could be investigated. There are different approaches such as normalising directly

the ELDP and then extract the features, or normalised the features extracted from the real

EDLP.

Exploring hyper-parameters of the ML models can be performed in different way. A

separated partition for validation to estimate hyper-parameters and final training data-set

can be explored. However, this is really problematic due to the small size of the data-sets.

Exploring the hyper-parameters of the ML models can be performed in different ways. A

separated partition for validation to estimate hyper-parameters and final training data-set

can be explored. However, this is really problematic due to the small size of the data-sets.

Error bars can be recomputed in different way to be used independently of the ML algorithm

used, calculating the mean and standard deviation of the residuals, which is the standard

method. Another possibility to obtain these intervals is using bootstrap techniques (Efron

and Tibshirani, 1993).

It would also interesting to see how the reduced-feature representation can be applied

to other electricity data-sets of retail facilities with a diurnal opening schedule. Moreover,

this feature-reduction technique can be applied to investigate other energy analytic problem

such as classification e.g. winner or loser stores when changing from static to dynamic

tariff (Granell et al., 2014).

There are other promising time-series representations such as symbolic aggregate approx-

imation (SAX) that automatically group continuous values to discrete characters (Lin et al.,

2007). They have already used SAX to cluster EDLPs (Fang et al., 2021; Notaristefano et al.,
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2013; Rajabi et al., 2019; Wang et al., 2016). However, a possibility to explore is combining

SAX using the features extracted with the proposed reduced-feature representation.

More generally, insights obtained when exploring different EDLP data representations

can be extended to other engineering research areas that use time-series with repetitive daily

patterns. For example water demand, traffic density, building occupancy, temperature, sun

radiance can be also represented using daily profiles.
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R. Z̆. Jovanovic̆, A. A. Sretenović, and B. D. Z̆ivković. Ensemble of various neural networks
for prediction of heating energy consumption. Energy and Buildings, 94:189–199, 2015.
https://doi.org/10.1016/j.enbuild.2015.02.052.

O. Valgaev and F. Kupzog. Building power demand forecasting using k-nearest neighbors
model - initial approach. In 2016 IEEE PES Asia-Pacific Power and Energy Engineering
Conference (APPEEC), pages 1055–1060, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc., 2017. https://proceedings.neurips.cc/
paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

D. Vercamer, B. Steurtewagen, D. V. den Poel, and F. Vermeulen. Predicting consumer load
profiles using commercial and open data. IEEE Transactions on Power Systems, 31(5):
3693–3701, 2016. https://doi.org/10.1109/TPWRS.2015.2493083.

G. Villalobos-Jiménez and C. Hassall. Effects of the urban heat island on the phenology
of Odonata in London, UK. International Journal of Biometeorology, 61(7):1337–1346,
2017. https://doi.org/10.1007/s00484-017-1311-7.

M. Wand and M. Jones. Kernel smoothing. Chapman & Hall/CRC Monographs on Statistics
& Applied Probability. Taylor & Francis, 1994. https://books.google.co.uk/books?id=
GTOOi5yE008C.

Q. Wang, X. Wang, Y. Meng, Y. Zhou, and H. Wang. Exploring the impact of urban features
on the spatial variation of land surface temperature within the diurnal cycle. Sustainable
Cities and Society, 91:104432, 2023. https://doi.org/10.1016/j.scs.2023.104432.

139

https://doi.org/10.1016/j.energy.2006.11.010
https://ukgbc.org/wp-content/uploads/2020/07/190705-NZCB-Consultation-Summary.pdf
https://ukgbc.org/wp-content/uploads/2020/07/190705-NZCB-Consultation-Summary.pdf
https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf
https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf
https://globalabc.org/sites/default/files/2021-10/2021%20Buildings-GSR%20-%20Executive%20Summary%20ENG.pdf
https://globalabc.org/sites/default/files/2021-10/2021%20Buildings-GSR%20-%20Executive%20Summary%20ENG.pdf
https://energyplus.net/
https://doi.org/10.1016/j.enbuild.2015.02.052
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/TPWRS.2015.2493083
https://doi.org/10.1007/s00484-017-1311-7
https://books.google.co.uk/books?id=GTOOi5yE008C
https://books.google.co.uk/books?id=GTOOi5yE008C
https://doi.org/10.1016/j.scs.2023.104432


References

Y. Wang, Q. Chen, C. Kang, and Q. Xia. Clustering of electricity consumption behavior
dynamics toward big data applications. IEEE Transactions on Smart Grid, 7(5):2437–2447,
2016. https://doi.org/10.1109/TSG.2016.2548565.

Y. Wang, Q. Chen, T. Hong, and C. Kang. Review of smart meter data analytics: Applications,
methodologies, and challenges. IEEE Transactions on Smart Grid, 10(3):3125–3148,
2019. https://doi.org/10.1109/TSG.2018.2818167.

P. J. Werbos. The roots of backpropagation: From ordered derivatives to neural networks
and political forecasting. Wiley-Interscience, USA, 1994.

Wikipedia contributors. Wikipedia, the free encyclopedia, 2004. https://www.wikipedia.org/.
Accessed: 24-04-2023.

M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J.
Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers,
A. Gonzalez-Beltran, A. J. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. ’t
Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L.
Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes,
T. Sengstag, T. Slater, G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van
Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and
B. Mons. The FAIR Guiding Principles for scientific data management and stewardship.
Scientific Data, 3:160018, 2016. http://dx.doi.org/10.1038/sdata.2016.18.

J. Williams. Clustering household electricity use profiles. In Proceedings of MLSDA, pages
19–26. ACM, 2013.

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data mining: Practical machine learning
tools and techniques. Morgan Kaufmann, Amsterdam, 4 edition, 2017.

K. V. Wong, A. Paddon, and A. Jimenez. Review of World urban heat islands: Many linked
to increased mortality. Journal of Energy Resources Technology, 135(022101), 2013.
https://doi.org/10.1115/1.4023176.

J.-W. Xiao, M. Cao, H. Fang, J. Wang, and Y.-W. Wang. Joint load prediction of multiple
buildings using multi-task learning with selected-shared-private mechanism. Energy and
Buildings, 293, 2023. https://doi.org/10.1016/j.enbuild.2023.113178.

D. Yan, J. Xia, W. Tang, F. Song, X. Zhang, and Y. Jiang. Dest-an integrated building
simulation toolkit part i: Fundamentals. Building Simulation, 1:95–110, 2008. https:
//doi.org/10.1007/s12273-008-8118-8.

B. Yildiz, J. Bilbao, and A. Sproul. A review and analysis of regression and machine learning
models on commercial building electricity load forecasting. Renewable and Sustainable
Energy Reviews, 73:1104–1122, 2017. https://doi.org/10.1016/j.rser.2017.02.023.

S. Yilmaz, J. Chambers, and M. Patel. Comparison of clustering approaches for domestic
electricity load profile characterisation - implications for demand side management. Energy,
180:665–677, 2019. https://doi.org/10.1016/j.energy.2019.05.124.

140

https://doi.org/10.1109/TSG.2016.2548565
https://doi.org/10.1109/TSG.2018.2818167
https://www.wikipedia.org/
http://dx.doi.org/10.1038/sdata.2016.18
https://doi.org/10.1115/1.4023176
https://doi.org/10.1016/j.enbuild.2023.113178
https://doi.org/10.1007/s12273-008-8118-8
https://doi.org/10.1007/s12273-008-8118-8
https://doi.org/10.1016/j.rser.2017.02.023
https://doi.org/10.1016/j.energy.2019.05.124


References

Z. Yu, F. Haghighat, B. C. Fung, and H. Yoshino. A decision tree method for building
energy demand modeling. Energy and Buildings, 42(10):1637–1646, 2010. https://doi.org/
10.1016/j.enbuild.2010.04.006.

Y. Yuan, Z. Chen, Z. Wang, Y. Sun, and Y. Chen. Attention mechanism-based transfer
learning model for day-ahead energy demand forecasting of shopping mall buildings.
Energy, 270, 2023. https://doi.org/10.1016/j.energy.2023.126878.

B. Yuce, H. Li, Y. Rezgui, I. Petri, B. Jayan, and C. Yang. Utilizing artificial neural
network to predict energy consumption and thermal comfort level: An indoor swim-
ming pool case study. Energy and Buildings, 80:45–56, 2014. https://doi.org/10.1016/
j.enbuild.2014.04.052.

K. Yun, R. Luck, P. J. Mago, and H. Cho. Building hourly thermal load prediction using an
indexed arx model. Energy and Buildings, 54:225–233, 2012. https://doi.org/10.1016/
j.enbuild.2012.08.007.

F. Zhang, C. Deb, S. E. Lee, J. Yang, and K. W. Shah. Time series forecasting for building
energy consumption using weighted support vector regression with differential evolution
optimization technique. Energy and Buildings, 126:94–103, 2016. https://doi.org/10.1016/
j.enbuild.2016.05.028.

L. Zhang, J. Wen, Y. Li, J. Chen, Y. Ye, Y. Fu, and W. Livingood. A review of machine
learning in building load prediction. Applied Energy, 285:116452, 2021. https://doi.org/
10.1016/j.apenergy.2021.116452.

X. Zhang, X. Kong, R. Yan, Y. Liu, P. Xia, X. Sun, R. Zeng, and H. Li. Data-driven
cooling, heating and electrical load prediction for building integrated with electric vehi-
cles considering occupant travel behavior. Energy, 264, 2023. https://doi.org/10.1016/
j.energy.2022.126274.

D. Zhao, M. Zhong, X. Zhang, and X. Su. Energy consumption predicting model of vrv
(variable refrigerant volume) system in office buildings based on data mining. Energy,
102:660 – 668, 2016. https://doi.org/10.1016/j.energy.2016.02.134.

H. Zhao and F. Magoulès. A review on the prediction of building energy consumption.
Renewable and Sustainable Energy Reviews, 16(6):3586 – 3592, 2012. https://doi.org/
10.1016/j.rser.2012.02.049.

B. Zhou, D. Lauwaet, H. Hooyberghs, K. D. Ridder, J. P. Kropp, and D. Rybski. Assessing
seasonality in the surface urban heat island of London. Journal of Applied Meteorology and
Climatology, 55(3):493–505, 2016. https://journals.ametsoc.org/view/journals/apme/55/3/
jamc-d-15-0041.1.xml. Publisher: American Meteorological Society Section: Journal of
Applied Meteorology and Climatology.

X. Zhou, W. Lin, R. Kumar, P. Cui, and Z. Ma. A data-driven strategy using long short term
memory models and reinforcement learning to predict building electricity consumption.
Applied Energy, 306(B), 2022. https://doi.org/10.1016/j.apenergy.2021.118078.

141

https://doi.org/10.1016/j.enbuild.2010.04.006
https://doi.org/10.1016/j.enbuild.2010.04.006
https://doi.org/10.1016/j.energy.2023.126878
https://doi.org/10.1016/j.enbuild.2014.04.052
https://doi.org/10.1016/j.enbuild.2014.04.052
https://doi.org/10.1016/j.enbuild.2012.08.007
https://doi.org/10.1016/j.enbuild.2012.08.007
https://doi.org/10.1016/j.enbuild.2016.05.028
https://doi.org/10.1016/j.enbuild.2016.05.028
https://doi.org/10.1016/j.apenergy.2021.116452
https://doi.org/10.1016/j.apenergy.2021.116452
https://doi.org/10.1016/j.energy.2022.126274
https://doi.org/10.1016/j.energy.2022.126274
https://doi.org/10.1016/j.energy.2016.02.134
https://doi.org/10.1016/j.rser.2012.02.049
https://doi.org/10.1016/j.rser.2012.02.049
https://journals.ametsoc.org/view/journals/apme/55/3/jamc-d-15-0041.1.xml
https://journals.ametsoc.org/view/journals/apme/55/3/jamc-d-15-0041.1.xml
https://doi.org/10.1016/j.apenergy.2021.118078


References

142



Appendix A

Literature review summary tables

143



Literature review summary tables
W

or
k

Pr
ed

_d
at

a
M

et
ad

at
a

B
ui

ld
_t

yp
e

D
at

a-
se

t_
si

ze
Ti

m
e_

re
s

Fo
re

_h
or

W
in

do
w

_p
re

d
Pr

ed
_s

et
_u

p
Sc

hr
oc

k
an

d
C

la
rig

e
(1

98
9)

E
le

ct
ri

ci
ty

Te
m

pe
ra

tu
re

Su
pe

rm
ar

ke
t

1
/1

ye
ar

15
m

in
-

1-
h,

1
da

y
Sa

m
e

D
at

ta
et

al
.(

19
97

)
E

le
ct

ri
ci

ty
W

ea
th

er
,d

at
e

Su
pe

rm
ar

ke
t

1
/1

m
on

th
1 m

on
th

-
1

m
on

th
Sa

m
e

D
on

g
et

al
.(

20
05

)
E

le
ct

ri
ct

y
W

ea
th

er
M

al
l

4
/4

y
1m

on
th

1
ye

ar
1

m
on

th
Sa

m
e

C
hu

ng
et

al
.(

20
06

)
E

ne
rg

y
in

te
n-

si
ty

W
ea

th
er

,
bu

ild
in

g
fe

at
ur

es
,

oc
cu

pa
nc

y
Su

pe
rm

ar
ke

t
30

/1
ye

ar
1

ye
ar

-
1

ye
ar

Sa
m

e

T
so

an
d

Y
au

(2
00

7)
E

le
ct

ri
ci

ty
-

R
es

id
en

tia
l

11
66

/6
m

on
th

s
1

w
ee

k
-

1
w

ee
k

Sa
m

e
L

ie
ta

l.
(2

00
9)

C
oo

lin
g

lo
ad

W
ea

th
er

O
ffi

ce
1

/5
m

on
th

s
1-

h
-

1-
h

Sa
m

e
L

ie
ta

l.
(2

01
1)

E
le

c.
W

ea
th

er
H

ot
el

1
/7

m
on

th
s

1
da

y
-

1
da

y
Sa

m
e

Y
u

et
al

.(
20

10
)

E
le

c
&

ga
s

in
-

te
ns

ity
B

ui
ld

ty
pe

,
te

m
pe

ra
tu

re
,

ar
ea

R
es

id
en

tia
l

80
/1

ye
ar

-
1

ye
ar

O
th

er

B
ek

ta
s

E
ki

ci
an

d
A

ks
oy

(2
01

1)
H

ea
tin

g
&

co
ol

-
in

g
el

ec
.

B
ui

ld
in

g
fo

rm
fa

ct
or

,
or

i-
en

ta
tio

n,
in

su
la

tio
n,

tr
an

s-
pa

re
nc

y,
te

m
p

N
o

in
fo

3
/1

0
da

ys
1-

h
N

on
e

1-
h

Sa
m

e

E
sc

riv
á-

E
sc

riv
á

et
al

.(
20

11
)

E
le

c.
W

ea
th

er
co

nd
iti

on
s,

ca
le

n-
da

rd
ay

,d
ay

ty
pe

A
ca

de
m

ic
1

/1
ye

ar
15

-m
in

1
da

y
15

-m
in

Sa
m

e

K
w

ok
an

d
L

ee
(2

01
1)

C
oo

lin
g

el
ec

.
Te

m
p,

oc
cu

pa
nc

y
O

ffi
ce

1
/3

m
on

th
s

1-
h

w
ee

ks
1-

h
Sa

m
e

E
dw

ar
ds

et
al

.
(2

01
2)

E
le

c.
Se

ns
or

m
ea

su
re

m
en

ts
R

es
id

en
tia

l
3

/1
ye

ar
15

-m
in

1-
h

1-
h

Sa
m

e

Y
un

et
al

.(
20

12
)

H
ea

tin
g/

co
ol

in
g

de
m

an
d

W
ea

th
er

R
es

id
en

tia
l/O

ffi
ce

s4
/4

m
on

th
s

1-
h

1-
h

1-
h

Sa
m

e

B
ra

un
et

al
.(

20
14

)
E

le
c.

&
ga

s
Te

m
p.

hu
m

id
ity

Su
pe

rm
ar

ke
t

1
/1

ye
ar

1-
h

1
da

y,
1

ye
ar

1
da

y,
1

w
ee

k
Sa

m
e

C
ho

u
an

d
B

ui
(2

01
4)

H
ea

tin
g/

co
ol

in
g

de
m

an
d

B
ui

ld
fe

at
ur

es
R

es
id

en
tia

l
76

8
/1

ye
ar

1
ye

ar
-

1
ye

ar
O

th
er

Fa
n

et
al

.(
20

14
)

E
le

c.
&

po
w

er
pe

ak
Te

m
p.

hu
m

id
ity

,o
th

er
m

et
.

vb
le

s
O

ffi
ce

s
1

/1
ye

ar
15

-m
in

1-
da

y
1-

da
y

Sa
m

e

Ja
in

et
al

.(
20

14
)

E
le

c.
su

b-
m

et
er

in
g

Te
m

p.
R

es
id

en
tia

l
1

/4
m

on
th

s
10

-m
in

10
-m

in
,1

-
h,

1
da

y
10

-m
in

,1
-h

,1
da

y
Sa

m
e

Je
on

g
et

al
.(

20
14

)
E

le
ct

ri
ci

ty
Sc

ho
ol

s
78

7
/7

y
1 m

on
th

1
ye

ar
1

m
on

th
Sa

m
e

Je
tc

he
va

et
al

.
(2

01
4)

E
le

c.
W

ea
th

er
C

om
m

er
ci

al
&

In
du

st
ry

6
/1

0
m

on
th

s
30

-m
in

1-
5

da
ys

1
da

y
Sa

m
e

Po
w

el
le

ta
l.

(2
01

4)
C

oo
lin

g,
he

at
-

in
g&

el
ec

lo
ad

s
Te

m
p,

da
y,

m
on

th
C

am
pu

s
1

/1
ye

ar
1-

h
1

da
y

1
da

y
Sa

m
e

Sp
yr

ou
et

al
.(

20
14

)
E

le
ct

ri
ct

y,
ga

s
W

ea
th

er
,b

ui
ld

in
g

fe
at

ur
es

Su
pe

rm
ar

ke
t

21
5

/1
ye

ar
1

w
ee

k
-

1
ye

ar
Sa

m
e

Y
uc

e
et

al
.(

20
14

)
E

le
c.

W
ea

th
er

,o
cc

up
an

cy
Sw

im
m

in
g

po
ol

1
/1

ye
ar

15
-m

in
-

15
-m

in
Sa

m
e

C
hi

ts
az

et
al

.(
20

15
)

E
le

c.
W

ea
th

er
,d

at
e

A
ca

de
m

ic
2

/1
ye

ar
1-

h
1

w
ee

k
1

da
y

Sa
m

e
Fu

et
al

.(
20

15
)

E
le

c.
&

Su
b-

m
et

er
in

g
W

ea
th

er
,d

at
e

O
ffi

ce
1

/1
ye

ar
1-

h
2

da
ys

1-
h

Sa
m

e

Ta
bl

e
A

.1
D

at
a-

se
ta

nd
ex

pe
ri

m
en

ta
lf

ea
tu

re
s

of
th

e
pr

ed
ic

te
d

re
vi

ew
ar

tic
le

s
(1

/4
)

144



W
or

k
Pr

ed
_d

at
a

M
et

ad
at

a
B

ui
ld

_t
yp

e
D

at
a-

se
t_

si
ze

Ti
m

e_
re

s
Fo

re
_h

or
W

in
do

w
_p

re
d

Pr
ed

_s
et

_u
p

Fu
et

al
.(

20
15

)
E

le
c.

&
Su

b-
m

et
er

in
g

W
ea

th
er

,d
at

e
O

ffi
ce

1
/1

ye
ar

1-
h

2
da

ys
1-

h
Sa

m
e

Fu
m

o
an

d
R

af
e

B
is

w
as

(2
01

5)
E

le
c.

Te
m

p,
ir

ra
di

at
io

n
R

es
id

en
tia

l
1

/1
m

on
th

5-
m

in
-

1-
h,

1
da

y
Sa

m
e

Z̆
.

Jo
va

no
vi

c̆
et

al
.

(2
01

5)
H

ea
tin

g
el

ec
.

Te
m

p,
w

in
d

sp
ee

d,
hu

m
id

ity
A

ca
de

m
ic

1
/4

ye
ar

s
1

da
y

1
da

y
1

da
y

Sa
m

e

M
as

sa
na

et
al

.
(2

01
5)

E
le

c.
W

ea
th

er
,o

cc
up

an
cy

A
ca

de
m

ic
1

/1
1

m
on

th
s

1-
h

-
1-

h
Sa

m
e

M
ot

ta
he

di
et

al
.

(2
01

5)
E

le
ct

ri
ci

ty
B

ui
ld

fe
at

ur
es

an
d

w
ea

th
er

O
ffi

ce
10

,0
00

/1
ye

ar
1

ye
ar

-
1

ye
ar

O
th

er

C
ha

e
et

al
.(

20
16

)
E

le
c.

Te
m

p,
w

in
d,

da
y/

tim
e

st
am

p
O

ffi
ce

1/
2

m
on

th
s

15
-m

in
1-

h
1-

h
Sa

m
e

D
eb

et
al

.(
20

16
)

C
oo

lin
g

lo
ad

U
ni

ve
rs

tiy
3

/2
ye

ar
s

30
m

in
2

to
20

da
ys

1
da

y
Sa

m
e

M
oc

an
u

et
al

.
(2

01
6b

)
E

le
ct

ri
ci

ty
B

ui
ld

ty
pe

R
es

id
en

tia
l

/
C

om
m

er
ci

al
5

/7
ye

ar
s

1-
h

1-
m

in
,

1
da

y,
1

w
ee

k,
1y

ea
r

1-
m

in
,

1
da

y,
1

w
ee

k,
1y

ea
r

O
th

er

M
oc

an
u

et
al

.
(2

01
6a

)
E

le
ct

ri
ci

ty
su

b-
m

et
er

in
g

R
es

id
en

tia
l

1
/4

ye
ar

s
1-

m
in

15
-m

in
,

1
da

y,
1

w
ee

k,
1

ye
ar

15
-m

in
,1

da
y,

1
w

ee
k,

1
ye

ar
Sa

m
e

R
as

m
us

se
n

et
al

.
(2

01
6)

R
ef

ri
ge

ra
tio

n
lo

ad
W

ea
th

er
Su

pe
rm

ar
ke

t
1

/3
m

on
th

s
1h

42
ho

ur
s

1-
h

Sa
m

e

Sh
ol

ah
ud

in
an

d
H

an
(2

01
6)

H
ea

tin
g

el
ec

.
Te

m
p,

ir
ra

di
at

io
n,

w
in

d
sp

ee
d

R
es

id
en

tia
l

1
/3

m
on

th
s

1-
h

N
on

e
1

m
on

th
Sa

m
e

V
al

ga
ev

an
d

K
up

-
zo

g
(2

01
6)

E
le

ct
ri

ci
ty

B
ui

di
ng

ty
pe

R
es

id
en

tia
l,

no
-

re
si

de
nt

ia
l

6,
00

0
/

12
m

on
th

s
1-

h
1

da
y

1
da

y
O

th
er

Z
ha

ng
et

al
.(

20
16

)
E

le
c.

D
ay

/ti
m

e
A

ca
de

m
ic

1
/1

ye
ar

30
-m

in
-

30
-m

in
/1

da
y

Sa
m

e
Z

ha
o

et
al

.(
20

16
)

C
oo

lin
g

in
te

n-
si

ty
W

ea
th

er
,d

ay
O

ffi
ce

1
/4

m
on

th
s

1-
h

-
1-

h
Sa

m
e

A
hm

ad
et

al
.(

20
17

)
H

VA
C

el
ec

.
Te

m
p,

w
in

d
sp

ee
d,

oc
cu

-
pa

nc
y

H
ot

el
1

/1
4

m
on

th
s

5-
m

in
1

da
y

1
da

y
Sa

m
e

A
sc

io
ne

et
al

.
(2

01
7)

H
ea

tin
g/

co
ol

in
g

de
m

an
d

B
ui

ld
fe

at
ur

es
,r

et
ro

fit
m

ea
-

su
re

s
O

ffi
ce

50
0

/1
ye

ar
1

ye
ar

-
1

ye
ar

O
th

er

Fa
n

et
al

.(
20

17
)

C
oo

lin
g

el
ec

-
tr

ic
ity

Te
m

p,
hu

m
id

ity
,w

at
er

te
m

p
O

ffi
ce

1
/1

ye
ar

30
-m

in
1

da
y

1
da

y
Sa

m
e

L
us

is
et

al
.(

20
17

)
E

le
ct

ri
ci

ty
W

ea
th

er
,c

al
en

da
r

R
es

id
en

tia
l

27
/3

ye
ar

s
30

-m
in

,
1-

h,
2-

h
1

da
y

1
da

y
Sa

m
e

M
a

et
al

.(
20

17
)

C
oo

lin
g

lo
ad

W
ea

th
er

,c
al

en
da

r
O

ffi
ce

1
/2

m
on

th
s

1-
h

1
da

y
1d

ay
Sa

m
e

Pa
ud

el
et

al
.(

20
17

)
E

le
ct

ri
ci

ty
W

ea
th

er
R

es
id

en
tia

l
1

/3
ye

ar
s

1-
h

1
da

y
1-

h
Sa

m
e

Pi
no

-M
ej

ía
s

et
al

.
(2

01
7)

H
ea

tin
g/

co
ol

in
g

de
m

an
d

B
ui

ld
fe

at
ur

es
O

ffi
ce

77
,0

00
/1

ye
ar

1
ye

ar
-

1
ye

ar
O

th
er

Po
m

be
ir

o
et

al
.

(2
01

7)
E

le
c.

W
ea

th
er

,o
cc

up
an

cy
A

ca
de

m
ic

1
/1

m
on

th
15

-m
in

-
15

-m
in

Sa
m

e

Ta
bl

e
A

.2
D

at
a-

se
ta

nd
ex

pe
ri

m
en

ta
lf

ea
tu

re
s

of
th

e
pr

ed
ic

te
d

re
vi

ew
ar

tic
le

s
(2

/4
)

145



Literature review summary tables
W

or
k

Pr
ed

_d
at

a
M

et
ad

at
a

B
ui

ld
_t

yp
e

D
at

a-
se

t_
si

ze
Ti

m
e_

re
s

Fo
re

_h
or

W
in

do
w

_p
re

d
Pr

ed
_s

et
_u

p
Y

ild
iz

et
al

.(
20

17
)

E
le

ct
ic

ity
an

d
pe

ak
W

ea
th

er
,h

ol
id

ay
U

ni
ve

rs
ity

1
/2

ye
ar

s
1-

h
1

da
y

1
da

y
Sa

m
e

A
hm

ad
an

d
C

he
n

(2
01

8)
H

ea
tin

g/
co

ol
in

g
lo

ad
Si

x
w

ea
th

er
pa

ra
m

,
w

ee
k-

da
y

O
ffi

ce
1

/1
m

on
th

5-
m

in
1

da
y,

14
da

ys
,

1
m

on
th

3
m

on
th

s
Sa

m
e

K
um

ar
et

al
.(

20
18

)
H

ea
tin

g/
co

ol
in

g
de

m
an

d
B

ui
ld

fe
at

ur
es

R
es

id
en

tia
l

76
8

/1
ye

ar
1

ye
ar

-
1

ye
ar

O
th

er

M
oh

am
m

ad
i

et
al

.
(2

01
8)

E
le

c.
-

B
us

in
es

s
ce

nt
re

3
/1

ye
ar

1-
h

1
da

y,
2

da
ys

,
1

w
ee

k

1
da

y
Sa

m
e

Sa
la

-C
ar

do
so

et
al

.
(2

01
8)

H
VA

C
Te

m
p,

oc
cu

pa
nc

y,
ir

ra
di

a-
tio

n
A

ca
de

m
ic

bu
ild

.
1

/4
m

on
th

s
4-

m
in

1-
h

1
w

ee
k

Sa
m

e

Ta
hm

as
se

bi
an

d
G

an
do

m
i(

20
18

)
H

ea
tin

g/
co

ol
in

g
de

m
an

d
B

ui
ld

fe
at

ur
es

R
es

id
en

tia
l

76
8

/1
ye

ar
1

ye
ar

-
1

ye
ar

O
th

er

L
in

db
er

g
et

al
.

(2
01

9)
El

ec
tri

ci
ty

,h
ea

t-
in

g
lo

ad
Te

m
pe

ra
tu

re
,fl

oo
ra

re
a

N
on

-r
es

id
en

tia
l

11
6

/3
ye

ar
s

1-
h

1
da

y
1

da
y

Sa
m

e

M
its

op
ou

lo
s

et
al

.
(2

01
9)

R
ef

ri
ge

ra
tio

n
lo

ad
W

ea
th

er
Su

pe
rm

ar
tk

et
1

/1
ye

ar
s

1
da

y
-

1
da

y
Sa

m
e

C
he

n
et

al
.(

20
20

)
H

VA
C

an
d

so
ck

et
lo

ad
W

ea
th

er
O

ffi
ce

1
/1

ye
ar

s
1

ho
ur

1
da

y
1

da
y

Sa
m

e

L
uo

et
al

.(
20

20
)

E
le

ct
ri

ci
ty

Te
m

pe
ra

tu
re

O
ffi

ce
1

/1
ye

ar
s

1-
h

-
1-

h
Sa

m
e

Tr
an

et
al

.(
20

20
)

E
le

ct
ri

ci
ty

B
ui

ld
in

g
fe

at
ur

es
,

ap
pl

i-
an

ce
s,

oc
up

pa
nc

y
R

es
id

en
tia

l
20

0
/1

ye
ar

1 m
on

th
-

1
m

on
th

O
th

er

D
on

g
et

al
.(

20
21

)
E

le
ct

ri
ci

ty
W

ea
th

er
,d

at
es

O
ffi

ce
1

/1
ye

ar
s

1-
h

1
da

y
1d

ay
Sa

m
e

H
u

et
al

.(
20

21
)

H
VA

C
sy

st
em

W
ea

th
er

,o
cc

up
an

cy
O

ffi
ce

1
/3

ye
ar

s
1-

h
1

ye
ar

1-
h

Sa
m

e
L

ie
ta

l.
(2

02
1)

E
le

ct
ri

ci
ty

W
ea

th
er

A
ca

de
m

ic
2

/4
m

on
th

s
1-

h
1-

h
1-

h
Sa

m
e

L
ei

et
al

.(
20

21
)

E
le

ct
ri

ci
ty

W
ea

th
er

,p
re

vi
os

de
m

an
d

U
ni

ve
rs

ity
1

/1
ye

ar
1-

h
1

da
y,

30
da

ys
1-

h,
1

da
y

Sa
m

e

R
ev

at
ie

ta
l.

(2
02

1)
E

le
ct

ri
ci

ty
Te

m
pe

ra
tu

re
,o

cc
up

an
cy

C
om

m
er

ci
al

1
/-

1-
h

1
da

y
Sa

m
e

R
os

en
fe

ld
er

et
al

.
(2

02
1)

E
le

ct
ri

ci
ty

A
er

ia
l

an
d

st
re

et
vi

ew
im

-
ag

es
,b

ui
ld

in
g

fe
at

ur
es

R
es

id
en

tia
l

22
,8

03
/8

ye
ar

s
1 m

on
th

-
1

m
on

th
O

th
er

Ti
an

et
al

.(
20

21
)

E
le

ct
ri

ci
ty

W
ea

th
er

A
ca

de
m

ic
1

/3
ye

ar
s

1
da

y
1

da
y

1
da

y
Sa

m
e

D
in

g
et

al
.(

20
21

)
E

le
ct

ri
ci

ty
in

te
ns

ity
W

ea
th

er
,b

ui
ld

in
g

fe
at

ur
es

Sc
ho

ol
40

/4
ye

ar
s

1-
h

1
ye

ar
1

da
y,

1
w

ee
k,

1
ye

ar
Sa

m
e

L
ie

ta
l.

(2
02

2)
E

le
ct

ri
ci

ty
W

ea
th

er
A

ca
de

m
ic

2
/4

m
on

th
s

1-
h

1-
h

1-
h

Sa
m

e
M

al
ta

is
an

d
G

os
-

se
lin

(2
02

2)
Su

b-
m

et
er

el
ec

-
tr

ic
ity

W
ea

th
er

R
es

id
en

tia
l

8
/3

ye
ar

s
10

m
in

10
m

in
,

24
-

h
10

m
in

,1
h

Sa
m

e

Ji
n

et
al

.(
20

22
)

E
le

ct
ri

ci
ty

B
ui

ld
y

ty
pe

,
bu

ild
in

g
fe

a-
tu

re
s

an
d

va
lu

e
A

ll
ty

pe
s

of
bu

ild
in

gs
28

,0
00

/2
ye

ar
s

1
ye

ar
-

1
ye

ar
O

th
er

Ta
bl

e
A

.3
D

at
a-

se
ta

nd
ex

pe
ri

m
en

ta
lf

ea
tu

re
s

of
th

e
pr

ed
ic

te
d

re
vi

ew
ar

tic
le

s
(3

/4
)

146



W
or

k
Pr

ed
_d

at
a

M
et

ad
at

a
B

ui
ld

_t
yp

e
D

at
a-

se
t_

si
ze

Ti
m

e_
re

s
Fo

re
_h

or
W

in
do

w
_p

re
d

Pr
ed

_s
et

_u
p

Z
ho

u
et

al
.(

20
22

)
E

le
ct

ri
ci

ty
W

ea
th

er
A

ca
de

m
ic

2
/1

5
m

on
th

s
1-

h
1

da
y

1
da

y
Sa

m
e

Se
kh

ar
an

d
D

ah
iy

a
(2

02
3)

E
le

ct
ri

ci
ty

-
V

ar
io

us
4

/4
ye

ar
s

1-
h

1
da

y,
2

da
ys

,
1

w
ee

k

1
da

y,
2

da
ys

,1
w

ee
k

Sa
m

e

L
iu

et
al

.(
20

23
a)

E
le

ct
ri

ci
ty

W
ea

th
er

R
et

ai
l

1
/2

ye
ar

s
1-

h
1

da
y

3-
h,

6-
h

Sa
m

e
L

u
et

al
.(

20
23

)
H

ea
tin

g/
co

ol
in

g
lo

ad
B

ui
ld

fe
at

ur
es

R
es

id
en

tia
l

76
8

/1
ye

ar
1

ye
ar

-
1

ye
ar

O
th

er

G
ra

nd
er

so
n

et
al

.
(2

02
3)

E
le

ct
ri

ci
ty

Te
m

pe
ra

tu
re

R
et

ai
l

12
0

/2
ye

ar
s

1-
h

7-
h,

1
da

y,
1

w
ee

k
1-

h,
1

da
y

Sa
m

e

X
ia

o
et

al
.(

20
23

)
E

le
ct

ri
ci

ty
W

ea
th

er
,

bu
ld

in
g

fe
at

ur
es

,
pr

ev
io

us
de

m
an

d
R

es
id

en
tia

l
14

/3
ye

ar
s

1-
h

1-
h

1-
h

Sa
m

e

M
or

te
za

et
al

.
(2

02
3)

H
ea

tin
g

an
d

co
ol

in
g

lo
ad

W
ea

th
er

R
es

id
en

tia
l

1
/8

ye
ar

s
1-

h
10

m
on

th
s

1-
h

Sa
m

e

So
ng

et
al

.(
20

23
)

C
oo

lin
g

lo
ad

W
ea

th
er

H
os

pi
ta

l
1

/8
ye

ar
s

1-
h

1
ye

ar
1-

h,
1

da
y

Sa
m

e
Z

ha
ng

et
al

.(
20

23
)

E
le

c.
,

he
at

-
in

g/
co

ol
in

g,
E

V
ch

ar
ge

O
cc

up
an

cy
,w

ea
th

er
M

ix
ed

-u
se

3
/1

ye
ar

1-
h

1-
h

1-
h

Sa
m

e

L
iu

et
al

.(
20

23
b)

C
oo

lin
g

lo
ad

Te
m

pe
ra

tu
re

M
al

l
1

/1
m

on
th

1-
h

2-
h

1-
h

Sa
m

e
Ji

ao
et

al
.(

20
23

)
E

le
ct

ri
ci

ty
-

A
ca

de
m

ic
5

/3
m

on
th

s
1-

h
-

1-
h

Sa
m

e
Y

ua
n

et
al

.(
20

23
)

Pe
ak

,e
le

ct
ric

ity
W

ea
th

er
,b

ui
ld

in
g

fe
at

ur
es

M
al

l
4

/2
ye

ar
s

1-
h

1
da

y
1-

h
O

th
er

/S
am

e

Ta
bl

e
A

.4
D

at
a-

se
ta

nd
ex

pe
ri

m
en

ta
lf

ea
tu

re
s

of
th

e
pr

ed
ic

te
d

re
vi

ew
ar

tic
le

s
(4

/4
)

147



Literature review summary tables

M
et

ho
d

W
or

ks
A

rt
iffi

ci
al

ne
ur

al
ne

tw
or

ks
A

hm
ad

et
al

.(
20

17
);

A
hm

ad
an

d
C

he
n

(2
01

8)
;A

sc
io

ne
et

al
.(

20
17

);
B

ek
ta

s
E

ki
ci

an
d

A
ks

oy
(2

01
1)

;C
ha

e
et

al
.(

20
16

);
C

hi
ts

az
et

al
.(

20
15

);
C

ho
u

an
d

B
ui

(2
01

4)
;D

at
ta

et
al

.(
19

97
);

D
eb

et
al

.(
20

16
);

E
dw

ar
ds

et
al

.(
20

12
);

E
sc

riv
á-

E
sc

riv
á

et
al

.(
20

11
);

Fa
n

et
al

.(
20

14
);

Fu
et

al
.(

20
15

);
Je

on
g

et
al

.(
20

14
);

Je
tc

he
va

et
al

.(
20

14
);

K
w

ok
an

d
L

ee
(2

01
1)

;L
ei

et
al

.(
20

21
);

L
ie

ta
l.

(2
02

1,
20

09
);

L
us

is
et

al
.(

20
17

);
M

al
ta

is
an

d
G

os
se

lin
(2

02
2)

;M
as

sa
na

et
al

.(
20

15
);

M
oc

an
u

et
al

.
(2

01
6a

);
M

oh
am

m
ad

ie
ta

l.
(2

01
8)

;P
in

o-
M

ej
ía

s
et

al
.(

20
17

);
Po

m
be

ir
o

et
al

.(
20

17
);

Po
w

el
le

ta
l.

(2
01

4,
?)

;R
ev

at
ie

ta
l.

(2
02

1)
;R

os
en

fe
ld

er
et

al
.(

20
21

);
Sh

ol
ah

ud
in

an
d

H
an

(2
01

6)
;S

on
g

et
al

.(
20

23
);

Tr
an

et
al

.(
20

20
);

T
so

an
d

Y
au

(2
00

7)
;

Z̆.
Jo

va
no

vi
c̆

et
al

.(
20

15
);

Y
ild

iz
et

al
.(

20
17

);
Yu

ce
et

al
.(

20
14

);
Yu

n
et

al
.(

20
12

);
Zh

an
g

et
al

.(
20

23
);

Zh
ao

et
al

.(
20

16
)

D
ee

p
le

ar
ni

ng
C

hi
ts

az
et

al
.(

20
15

);
Fa

n
et

al
.(

20
17

);
Ji

ao
et

al
.(

20
23

);
L

ei
et

al
.(

20
21

);
L

iu
et

al
.(

20
23

a)
;L

u
et

al
.(

20
23

);
L

uo
et

al
.

(2
02

0)
;M

oc
an

u
et

al
.(

20
16

a,
b)

;M
or

te
za

et
al

.(
20

23
);

So
ng

et
al

.(
20

23
);

X
ia

o
et

al
.(

20
23

);
Y

ua
n

et
al

.(
20

23
)

Fu
zz

y
m

od
el

A
hm

ad
et

al
.(

20
17

);
B

ek
ta

s
E

ki
ci

an
d

A
ks

oy
(2

01
1)

;L
ie

ta
l.

(2
01

1)
;P

om
be

ir
o

et
al

.(
20

17
)

G
en

et
ic

al
go

ri
th

m
s

L
ei

et
al

.(
20

21
);

L
ie

ta
l.

(2
01

1)
;M

oh
am

m
ad

ie
ta

l.
(2

01
8)

;T
ah

m
as

se
bi

an
d

G
an

do
m

i(
20

18
);

Z
ha

ng
et

al
.(

20
16

)
G

au
ss

ia
n

pr
oc

es
s

re
gr

es
si

on
A

hm
ad

an
d

C
he

n
(2

01
8)

;R
ev

at
ie

ta
l.

(2
02

1)
K

-N
N

R
C

ha
e

et
al

.(
20

16
);

Fa
n

et
al

.(
20

14
);

M
a

et
al

.(
20

17
);

V
al

ga
ev

an
d

K
up

zo
g

(2
01

6)
E

ns
em

bl
e

m
od

el
D

on
g

et
al

.(
20

21
);

Fa
n

et
al

.(
20

14
);

L
ie

ta
l.

(2
02

1,
20

22
);

Ti
an

et
al

.(
20

21
);

Tr
an

et
al

.(
20

20
)

L
in

ea
rr

eg
re

ss
io

n
A

hm
ad

an
d

C
he

n
(2

01
8)

;B
ra

un
et

al
.(

20
14

);
C

ha
e

et
al

.(
20

16
);

C
ho

u
an

d
B

ui
(2

01
4)

;C
hu

ng
et

al
.(

20
06

);
D

at
ta

et
al

.
(1

99
7)

;D
in

g
et

al
.(

20
21

);
Ed

w
ar

ds
et

al
.(

20
12

);
Fa

n
et

al
.(

20
14

,2
01

7)
;F

um
o

an
d

R
af

e
B

is
w

as
(2

01
5)

;G
ra

nd
er

so
n

et
al

.
(2

02
3)

;H
u

et
al

.(
20

21
);

Ji
n

et
al

.(
20

22
);

Li
nd

be
rg

et
al

.(
20

19
);

Lu
et

al
.(

20
23

);
Lu

si
s

et
al

.(
20

17
);

M
al

ta
is

an
d

G
os

se
lin

(2
02

2)
;M

as
sa

na
et

al
.(

20
15

);
M

its
op

ou
lo

s
et

al
.(

20
19

);
M

oh
am

m
ad

ie
ta

l.
(2

01
8)

;M
ot

ta
he

di
et

al
.(

20
15

);
Pi

no
-M

ej
ía

s
et

al
.(

20
17

);
Po

m
be

ir
o

et
al

.(
20

17
);

R
as

m
us

se
n

et
al

.(
20

16
);

R
ev

at
ie

ta
l.

(2
02

1)
;S

ch
ro

ck
an

d
C

la
ri

ge
(1

98
9)

;S
py

ro
u

et
al

.(
20

14
);

T
so

an
d

Y
au

(2
00

7)
;Y

ua
n

et
al

.(
20

23
);

Y
un

et
al

.(
20

12
)

D
ec

is
si

on
tr

ee
s

A
hm

ad
et

al
.(

20
17

);
A

hm
ad

an
d

C
he

n
(2

01
8)

;C
ho

u
an

d
B

ui
(2

01
4)

;F
an

et
al

.(
20

14
,2

01
7)

;F
u

et
al

.(
20

15
);

G
ra

nd
er

so
n

et
al

.(
20

23
);

Ji
n

et
al

.(
20

22
);

Le
ie

ta
l.

(2
02

1)
;L

us
is

et
al

.(
20

17
);

M
al

ta
is

an
d

G
os

se
lin

(2
02

2)
;S

ek
ha

ra
nd

D
ah

iy
a

(2
02

3)
;

T
so

an
d

Y
au

(2
00

7)
;Y

u
et

al
.(

20
10

)
Su

po
rt

ve
ct

or
re

gr
es

si
on

C
ha

e
et

al
.(

20
16

);
C

he
n

et
al

.(
20

20
);

C
ho

u
an

d
B

ui
(2

01
4)

;D
on

g
et

al
.(

20
05

);
E

dw
ar

ds
et

al
.(

20
12

);
Fa

n
et

al
.(

20
14

,
20

17
);

Fu
et

al
.(

20
15

);
Ja

in
et

al
.(

20
14

);
L

ie
ta

l.
(2

02
1,

20
09

);
L

iu
et

al
.(

20
23

b)
;L

u
et

al
.(

20
23

);
L

us
is

et
al

.(
20

17
);

M
as

sa
na

et
al

.(
20

15
);

M
oc

an
u

et
al

.(
20

16
a)

;M
oh

am
m

ad
ie

ta
l.

(2
01

8)
;P

au
de

le
ta

l.
(2

01
7)

;T
ra

n
et

al
.(

20
20

);
Z

ha
ng

et
al

.(
20

16
);

Z
ha

o
et

al
.(

20
16

)
R

ei
nf

or
cm

en
tl

ea
rn

in
g

M
oc

an
u

et
al

.(
20

16
b)

;Y
ild

iz
et

al
.(

20
17

);
Z

ho
u

et
al

.(
20

22
)

Ta
bl

e
A

.5
C

la
ss

fic
at

io
n

of
th

e
ar

tic
le

s
th

at
pr

ed
ic

te
ne

rg
y

ba
se

d
on

th
e

al
go

ri
th

m
s

us
ed

148



Appendix B

Prediction results for EDLPs
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Prediction results for EDLPs

Previous years in Training set (ED (kWh)/NP (%)) )
Mod Year One Two Three Four Five

2017 73.7/21.5 75.0/22.0 76.0/22.3 77.0/23.0 78.3/23.8
2016 82.2/25.5 84.0/26.1 84.6/26.5 85.3/27.2 -
2015 82.6/23.4 83.1/24.2 82.6/24.1 - -
2014 80.7/22.5 80.8/22.2 - - -K

N
N

2013 86.6/21.8 - - - -
2017 74.3/21.4 75.1/22.1 75.7/22.2 77.2/23.0 78.3/23.8
2016 85.0/26.3 85.9/26.7 86.4/26.0 86.6/27.5 -
2015 81.7/23.1 82.3/23.5 81.6/23.6 - -
2014 79.2/22.0 79.5/22.3 - - -K

N
N

-d
is

t

2013 88.3/22.5 - - - -
2017 74.7/22.8 77.0/23.9 77.5/24.1 80.0/25.1 82.1/26.3
2016 85.9/27.3 87.7/28.0 88.9/28.5 89.9/29.3 -
2015 82.7/24.1 85.1/25.1 84.7/25.5 - -
2014 86.2/24.3 85.9/24.9 - - -K

N
N

-E
Q

k

2013 88.4/23.1 - - - -
2017 74.2/22.6 76.8/23.9 77.3/24.0 79.8/25.0 81.8/26.0
2016 85.9/27.1 87.7/28.1 88.9/28.4 89.8/29.2 -
2015 82.5/24.2 85.0/25.2 84.6/25.2 - -
2014 85.1/23.8 84.7/24.1 - - -K

N
N

-3
ck

2013 87.6/22.7 - - - -
2017 72.3/21.2 74.2/22.1 75.7/22.2 78.4/23.2 80.0/24.1
2016 83.4/26.4 85.7/27.0 87.3/27.4 87.9/28.0 -
2015 79.0/22.1 80.4/22.6 79.6/22.5 - -
2014 77.9/20.9 77.7/21.2 - - -

O
L

S

2013 81.3/20.9 - - - -
2017 77.4/21.9 77.9/22.4 78.9/22.8 80.1/23.5 81.7/24.2
2016 88.7/26.8 90.2/27.3 90.4/28.1 92.0/28.2 -
2015 84.5/23.1 85.8/23.7 85.1/23.6 - -
2014 83.1/21.9 81.5/21.6 - - -

SV
R

2013 86.9/20.8 - - - -
2017 75.8/22.2 76.0/22.6 77.6/23.0 79.7/23.9 81.8/24.8
2016 89.0/26.6 89.4/27.8 90.0/27.9 91.4/28.7 -
2015 82.5/22.5 84.8/23.5 84.7/23.8 - -
2014 81.8/22.1 81.9/22.0 - - -A

N
N

2013 87.2/21.9 - - - -

Table B.1 Prediction results (evaluators ED (kWh) and NP (%)) for Winter over SE using all
the models and depending on the historical years.
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Previous years in Training set (ED (kWh)/NP (%)) )
Mod Year One Two Three Four Five

2017 49.6/17.0 50.0/16.0 51.9/18.1 53.7/20.0 55.0/19.7
2016 55.1/18.0 57.8/19.6 59.8/20.3 60.7/21.1 -
2015 57.4/19.9 59.0/20.7 59.4/20.9 - -
2014 59.0/18.9 59.2/19.4 - - -K

N
N

2013 61.6/19.2 - - - -
2017 50.0/18.6 50.2/18.3 51.7/18.9 53.3/19.2 54.3/20.1
2016 56.5/18.9 57.7/20.2 59.1/21.0 59.5/21.5 -
2015 57.6/20.2 58.4/20.7 58.2/21.0 - -
2014 61.7/20.9 61.1/21.1 - - -K

N
N

-d
is

t

2013 62.8/20.3 - - - -
2017 55.3/20.9 55.1/20.6 56.3/21.3 58.2/22.3 59.6/23.2
2016 59.0/20.9 60.9/22.1 63.1/23.2 64.4/24.1 -
2015 60.1/22.7 62.5/23.7 63.9/24.5 - -
2014 66.5/23.8 66.6/24.3 - - -K

N
N

-E
Q

k

2013 68.7/23.5 - - - -
2017 53.4/20.0 53.4/19.7 54.8/20.5 56.9/21.5 58.3/22.3
2016 57.8/20.2 59.9/21.3 62.1/22.4 63.3/23.2 -
2015 59.4/21.7 61.7/22.8 62.7/23.5 - -
2014 64.9/23.2 64.8/23.5 - - -K

N
N

-3
ck

2013 68.0/23.1 - - - -
2017 50.6/17.5 50.0/18.0 52.9/18.7 55.6/19.1 57.2/20.3
2016 54.9/18.4 58.6/19.5 60.7/20.3 61.4/21.4 -
2015 56.3/20.2 57.7/20.3 58.5/20.7 - -
2014 57.3/19.0 57.2/19.1 - - -

O
L

S

2013 58.8/18.8 - - - -
2017 48.7/17.0 50.1/17.2 52.1/17.8 54.3/18.6 56.4/19.5
2016 56.7/18.3 58.7/19.3 60.9/20.1 62.7/20.9 -
2015 59.1/20.1 61.1/20.9 62.8/21.6 - -
2014 62.5/20.2 62.5/20.4 - - -

SV
R

2013 64.6/19.1 - - - -
2017 52.6/18.3 52.2/17.8 54.2/18.4 56.4/19.4 60.1/20.5
2016 57.2/19.2 60.7/20.5 62.6/21.2 64.8/22.0 -
2015 61.4/21.0 61.7/21.4 63.0/22.1 - -
2014 61.0/20.0 61.2/20.3 - - -A

N
N

2013 61.0/18.9 - - - -

Table B.2 Prediction results (evaluators ED (kWh) and NP (%)) for Summer over SE using
all the models and depending on the historical years.

151



Prediction results for EDLPs

Previous years in Training set (ED (kWh)/NP (%)) )
Mod Year One Two Three Four Five

2017 58.5/19.9 58.7/19.9 60.5/20.5 63.0/21.6 63.9/22.3
2016 59.1/19.2 60.5/20.0 62.6/20.9 63.5/21.4 -
2015 62.3/21.1 64.3/22.0 64.8/22.5 - -
2014 67.4/22.8 65.0/19.9 - - -K

N
N

2013 68.9/19.0 - - - -
2017 58.7/19.8 59.2/19.9 60.0/20.0 62.1/21.1 63.1/21.8
2016 59.7/19.2 60.5/19.6 62.3/20.7 62.9/21.2 -
2015 61.6/20.3 63.6/21.5 63.8/21.9 - -
2014 65.8/21.6 64.1/21.2 - - -K

N
N

-d
is

t

2013 69.4/19.5 - - - -
2017 61.1/21.7 62.0/21.7 63.2/22.2 66.4/23.6 68.5/24.6
2016 62.7/21.1 63.3/21.6 66.9/23.1 68.6/23.7 -
2015 64.1/22.3 69.2/24.6 70.5/25.3 - -
2014 72.5/24.9 71.1/24.5 - - -K

N
N

-E
Q

k

2013 72.9/21.5 - - - -
2017 60.5/21.5 61.5/21.5 62.7/21.9 66.0/23.5 67.9/23.9
2016 62.0/20.3 62.9/21.6 66.5/23.1 67.9/23.4 -
2015 63.8/22.3 69.0/24.3 70.2/24.9 - -
2014 71.8/24.1 69.7/23.6 - - -K

N
N

-3
ck

2013 72.3/21.2 - - - -
2017 56.6/18.8 57.0/19.0 59.3/19.0 62.8/20.5 64.4/21.3
2016 59.5/18.9 61.7/19.6 65.4/21.3 66.7/21.5 -
2015 61.1/19.8 65.3/21.6 65.8/22.0 - -
2014 64.9/20.4 62.9/20.0 - - -

O
L

S

2013 65.8/18.1 - - - -
2017 60.1/19.2 60.0/19.5 61.2/19.9 63.9/21.0 66.1/21.8
2016 62.4/19.8 62.7/19.9 65.4/20.9 67.1/21.5 -
2015 64.1/20.0 68.8/22.1 70.9/22.6 - -
2014 69.9/21.6 68.1/20.9 - - -

SV
R

2013 69.8/18.5 - - - -
2017 58.5/19.2 59.7/19.4 61.8/19.5 64.4/20.9 66.6/22.2
2016 61.1/19.0 64.7/21.0 66.3/21.1 68.1/21.8 -
2015 63.8/20.3 68.0/22.1 70.1/23.0 - -
2014 68.9/21.6 67.0/20.9 - - -A

N
N

2013 70.7/19.0 - - - -

Table B.3 Prediction results (evaluators ED (kWh) and NP (%)) for Spring/Autumn over SE
using all the models and depending on the historical years.
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Previous years in Training set (ED (kWh)/NP (%)) )
Mod Year One Two Three Four Five

2017 53.7/15.7 55.7/16.4 57.2/16.6 58.4/17.1 59.3/17.5
2016 60.2/17.1 61.7/17.6 61.7/17.8 62.2/18.0 -
2015 62.1/17.2 61.6/17.4 61.3/17.3 - -
2014 65.6/17.8 64.5/17.7 - - -K

N
N

2013 80.2/20.2 - - - -
2017 56.1/16.3 57.7/16.7 59.9/17.3 61.7/18.1 63.1/18.7
2016 61.5/17.6 62.9/18.1 62.9/18.3 63.3/18.6 -
2015 67.0/18.5 66.8/18.7 66.6/18.8 - -
2014 66.8/18.3 66.4/18.2 - - -K

N
N

-d
is

t

2013 86.8/22.0 - - - -
2017 53.9/15.7 55.8/16.2 57.7/16.8 59.2/17.4 60.6/17.9
2016 61.0/17.4 62.7/17.9 62.6/18.0 63.2/18.3 -
2015 62.3/17.2 62.2/17.4 61.9/17.5 - -
2014 65.8/18.0 65.4/17.9 - - -K

N
N

-E
Q

k

2013 80.2/20.3 - - - -
2017 54.0/15.7 55.8/16.2 57.8/16.8 59.3/17.4 60.6/17.9
2016 60.9/17.3 62.5/17.8 62.4/18.0 63.1/18.3 -
2015 62.4/17.2 62.2/17.4 61.9/17.5 - -
2014 65.2/17.7 64.4/17.5 - - -K

N
N

-3
ck

2013 78.8/19.6 - - - -
2017 50.1/14.5 51.9/14.9 54.2/15.7 56.2/16.4 57.8/16.8
2016 61.5/17.1 62.8/17.5 62.8/17.7 63.6/18.0 -
2015 61.0/16.7 61.5/17.0 61.6/17.2 - -
2014 61.7/16.6 63.1/16.9 - - -

O
L

S

2013 73.3/18.3 - - - -
2017 53.4/15.2 55.1/15.7 56.9/16.3 58.4/16.8 59.8/17.3
2016 59.9/16.7 61.1/17.2 60.8/17.5 62.0/18.0 -
2015 62.7/17.0 61.9/17.0 61.9/17.1 - -
2014 62.4/16.5 62.6/16.7 - - -

SV
R

2013 75.4/18.4 - - - -
2017 53.8/15.5 56.5/16.3 58.3/16.8 60.0/17.4 61.2/17.8
2016 62.9/17.6 66.0/18.4 65.3/18.6 66.5/19.0 -
2015 62.8/17.0 63.2/17.3 63.0/17.4 - -
2014 64.1/17.1 64.2/17.2 - - -A

N
N

2013 75.7/18.7 - - - -

Table B.4 Prediction results (evaluators ED (kWh) and NP (%)) for Winter over SEG using
all the models and depending on the historical years.
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Prediction results for EDLPs

Previous years in Training set (ED (kWh)/NP (%)) )
Mod Year One Two Three Four Five

2017 43.5/13.0 44.0/13.0 44.9/13.4 46.3/13.7 46.9/13.9
2016 48.2/13.3 49.7/13.9 51.6/14.6 52.2/14.8 -
2015 47.6/14.6 49.7/15.4 49.8/15.6 - -
2014 53.3/15.3 51.6/14.8 - - -K

N
N

2013 54.4/14.4 - - - -
2017 45.8/13.8 47.1/14.1 48.8/14.6 50.9/15.2 52.0/15.7
2016 48.5/13.5 50.1/14.1 52.2/14.8 52.9/15.1 -
2015 51.1/15.5 53.5/16.3 53.8/16.5 - -
2014 55.8/16.1 54.0/15.5 - - -K

N
N

-d
is

t

2013 58.0/15.1 - - - -
2017 43.1/12.7 44.0/12.8 45.3/13.3 46.8/13.8 47.6/14.1
2016 48.3/13.3 50.0/14.0 52.0/14.7 52.6/15.0 -
2015 48.1/14.6 50.5/15.4 50.5/15.6 - -
2014 53.1/15.3 51.6/14.9 - - -K

N
N

-E
Q

k

2013 53.9/14.4 - - - -
2017 43.0/12.6 44.0/12.8 45.2/1.2 46.7/13.7 47.6/13.9
2016 48.2/13.2 49.9/13.9 51.9/14.6 52.5/14.9 -
2015 48.0/14.6 50.4/15.4 50.4/15.6 - -
2014 52.1/15.0 50.4/14.6 - - -K

N
N

-3
ck

2013 53.3/14.2 - - - -
2017 41.0/12.0 42.0/12.1 44.0/12.7 45.9/13.3 46.1/13.3
2016 47.0/13.0 49.1/13.6 51.2/14.3 51.9/14.6 -
2015 47.9/14.6 50.3/15.3 50.1/15.4 - -
2014 49.6/14.5 48.1/14.1 - - -

O
L

S

2013 50.3/13.2 - - - -
2017 43.7/12.8 44.0/12.8 45.6/13.3 46.7/13.7 47.3/14.0
2016 50.4/13.8 50.9/14.2 52.3/14.7 52.2/14.8 -
2015 49.0/14.7 50.8/15.4 50.6/15.4 - -
2014 51.1/14.4 50.0/14.2 - - -

SV
R

2013 52.5/13.7 - - - -
2017 42.1/12.3 43.2/12.4 45.9/13.0 47.0/13.6 47.7/13.7
2016 48.6/13.4 50.9/14.0 53.0/14.7 53.8/15.0 -
2015 48.7/14.6 50.2/15.2 50.5/15.3 - -
2014 50.8/14.4 49.7/14.2 - - -A

N
N

2013 52.5/13.7 - - - -

Table B.5 Prediction results (evaluators ED (kWh) and NP (%)) for Summer over SEG using
all the models and depending on the historical years.
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Previous years in Training set (ED (kWh)/NP (%)) )
Mod Year One Two Three Four Five

2017 45.6/13.6 46.6/13.8 47.5/14.0 48.9/14.4 49.5/14.6
2016 50.1/14.0 51.2/14.4 53.2/15.2 54.1/15.5 -
2015 49.1/14.5 51.4/15.5 51.6/15.7 - -
2014 53.5/15.5 52.3/15.2 - - -K

N
N

2013 61.4/16.1 - - - -
2017 46.6/14.0 48.1/14.3 49.7/14.7 51.6/15.3 52.9/15.8
2016 50.6/14.2 51.7/14.7 53.7/15.5 54.5/15.8 -
2015 51.2/15.2 54.3/16.3 55.1/16.6 - -
2014 55.9/16.1 54.8/15.8 - - -K

N
N

-d
is

t

2013 66.8/17.5 - - - -
2017 45.0/13.3 46.3/13.5 47.6/13.9 49.3/14.5 50.3/14.9
2016 49.9/13.9 51.3/14.4 53.5/15.3 54.5/15.6 -
2015 49.1/14.4 51.3/15.3 51.6/15.6 - -
2014 53.1/15.3 51.9/15.0 - - -K

N
N

-E
Q

k

2013 61.1/16.2 - - - -
2017 45.1/13.3 46.3/13.5 47.6/13.9 49.3/14.5 50.3/14.8
2016 49.9/13.9 51.2/14.4 53.4/15.2 54.4/15.6 -
2015 49.2/14.4 51.4/15.4 51.6/15.6 - -
2014 52.9/15.2 51.6/14.8 - - -K

N
N

-3
ck

2013 59.6/15.7 - - - -
2017 43.0/12.5 44.3/12.7 45.9/13.2 46.8/13.6 48.2/14.0
2016 48.8/13.4 51.5/14.2 53.4/14.9 54.4/15.3 -
2015 47.9/14.2 50.3/15.1 50.8/15.3 - -
2014 51.2/14.6 50.3/14.3 - - -

O
L

S

2013 54.2/14.2 - - - -
2017 44.4/12.9 45.4/13.2 46.9/13.6 48.7/14.2 49.4/14.5
2016 50.3/13.9 53.0/14.8 54.9/15.5 55.7/15.8 -
2015 49.2/14.5 52.1/15.6 51.9/15.7 - -
2014 52.8/15.0 51.0/14.6 - - -

SV
R

2013 57.6/15.0 - - - -
2017 45.4/13.3 46.2/13.2 48.6/13.9 50.3/14.5 51.6/14.9
2016 51.0/14.2 53.2/14.6 55.0/15.6 56.5/15.9 -
2015 48.5/14.2 51.1/15.3 52.0/15.5 - -
2014 52.8/15.0 52.1/14.7 - - -A

N
N

2013 57.0/14.9 - - - -

Table B.6 Prediction results (evaluators ED (kWh) and NP (%)) for Spring/Autum over SEG
using all the models and depending on the historical years.
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Prediction results for EDLPs

TypSt Year Season KNN KNN-dist KNN-EQk KNN-3ck OLS SVR ANN
Wint 86.6 88.3 88.4 87.6 81.3 86.9 87.2
Sum 61.6 62.8 68.7 68.0 58.8 64.6 61.020

13

Spr/Aut 68.9 69.4 72.9 72.4 65.8 69.8 70.7
Wint 80.7 79.2 85.9 84.7 77.7 81.5 81.9
Sum 59.0 61.1 66.5 64.8 57.2 62.5 61.020

14

Spr/Aut 65.0 64.1 71.1 69.7 62.9 68.1 67.0
Wint 82.6 81.6 82.7 82.5 79.0 84.5 82.5
Sum 57.4 57.6 60.1 59.4 56.3 59.1 61.420

15

Spr/Aut 62.3 61.7 64.1 63.8 61.1 64.1 63.8
Wint 82.3 85.0 85.9 85.9 83.4 88.8 89.0
Sum 55.1 56.5 59.1 57.8 54.9 56.7 57.220

16

Spr/Aut 59.1 59.7 62.7 62.0 59.5 62.4 61.1
Wint 73.7 74.4 74.7 74.2 72.3 77.4 75.8
Sum 49.6 50.0 55.1 53.4 50.0 48.7 52.2

St
or

es
ju

st
w

ith
el

ec
.(

SE
)

20
17

Spr/Aut 58.5 58.8 61.1 60.5 56.6 60.0 58.5
Wint 80.2 86.8 80.2 78.8 73.3 75.4 75.7
Sum 54.4 58.0 53.9 53.3 50.3 52.5 52.520

13

Spr/Aut 61.4 66.8 61.1 59.6 54.2 57.6 57.0
Wint 64.5 66.4 65.4 64.4 61.7 62.4 64.1
Sum 51.6 54.0 51.6 50.4 48.1 50.0 49.720

14

Spr/Aut 52.3 54.8 51.9 51.6 50.3 51.0 52.2
Wint 61.3 66.6 61.9 61.9 61.0 61.9 62.8
Sum 47.6 51.1 48.1 48.0 47.9 49.0 48.720

15

Spr/Aut 49.1 51.2 49.1 49.2 47.9 49.2 48.5
Wint 60.2 61.5 61.0 60.9 61.5 59.9 62.9
Sum 48.2 48.5 48.3 48.2 47.0 50.4 48.620

16

Spr/Aut 50.1 50.6 49.9 49.9 48.8 50.3 51.0
Wint 53.7 56.1 53.9 54.0 50.1 53.4 53.8
Sum 43.5 45.8 43.1 43.0 41.0 43.7 42.1

St
or

es
w

ith
el

ec
.a

nd
ga

s
(S

E
G

)

20
17

Spr/Aut 45.6 46.6 45.0 45.1 43.0 44.4 45.4

Table B.7 Prediction results using the ED (kWh) evaluator for the algorithms over experi-
ments during all seasons, years and store types.
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TypSt Year Season KNN KNN-dist KNN-EQk KNN-3ck OLS SVR ANN
Wint 355.5 362.5 357.8 354.1 331.2 346.5 356.9
Sum 264.0 265.2 298.2 294.7 252.3 276.0 259.020

13

Spr/Aut 284.2 284.6 303.8 301.3 268.6 284.2 286.6
Wint 324.0 319.4 352.8 347.8 312.2 326.6 326.0
Sum 247.5 259.4 284.6 279.5 242.1 264.3 255.320

14

Spr/Aut 258.5 263.9 296.2 289.7 255.9 275.7 271.0
Wint 341.9 337.0 332.5 332.4 320.4 345.3 333.4
Sum 245.5 246.4 259.6 257.2 242.0 253.1 258.020

15

Spr/Aut 258.6 255.4 265.8 264.4 250.0 264.2 260.9
Wint 331.9 343.5 341.8 340.7 334.1 357.7 348.2
Sum 225.4 236.8 252.6 246.4 227.4 237.5 241.520

16

Spr/Aut 241.0 243.3 257.7 255.0 240.8 257.7 244.0
Wint 300.4 306.1 307.4 305.3 295.6 316.2 311.2
Sum 209.4 215.2 236.2 227.8 208.4 207.0 217.4

St
or

es
ju

st
w

ith
el

ec
.(

SE
)

20
17

Spr/Aut 243.0 244.4 255.1 252.5 234.2 250.2 239.8
Wint 329.1 358.5 330.3 323.3 304.0 308.9 313.5
Sum 227.2 244.3 226.0 224.2 209.1 216.6 218.520

13

Spr/Aut 254.1 278.2 255.3 247.8 223.8 238.5 236.8
Wint 269.5 276.4 272.3 267.8 257.5 257.1 265.1
Sum 216.6 226.6 215.9 209.9 203.4 206.0 206.020

14

Spr/Aut 215.2 227.7 213.5 211.9 206.9 209.4 213.7
Wint 254.0 277.5 257.1 257.2 250.9 255.5 257.2
Sum 202.7 219.3 205.5 205.5 204.5 207.6 207.220

15

Spr/Aut 206.2 217.0 205.8 205.8 202.6 205.0 204.1
Wint 243.2 249.6 247.5 247.1 248.0 242.9 254.9
Sum 197.4 199.3 197.5 197.0 193.1 207.7 198.720

16

Spr/Aut 203.1 205.5 202.8 202.4 196.2 203.4 207.9
Wint 225.4 235.2 226.1 226.4 208.0 222.1 224.2
Sum 187.9 197.5 184.8 183.5 173.8 186.8 177.5

St
or

es
w

ith
el

ec
.a

nd
ga

s
(S

E
G

)

20
17

Spr/Aut 193.1 198.0 190.4 190.7 180.5 186.6 190.2

Table B.8 Prediction results using the MD (kWh) evaluator for the algorithms over experi-
ments during all seasons, years and store types.
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Prediction results for EDLPs

TypSt Year Season KNN KNN-dist KNN-EQk KNN-3ck OLS SVR ANN
Wint 46.0 21.8 -14.1 -16.5 4.0 66.2 -9.9
Sum 28.3 -7.6 -24.3 -24.8 -43.7 58.8 -32.720

13

Spr/Aut 53.1 19.2 7.5 5.3 17.4 67.2 17.8
Wint 6.8 -16.8 -99.3 -47.9 -70.2 -30.7 -67.5
Sum 5.5 7.9 -30.6 -3.3 -31.4 22.4 -19.920

14

Spr/Aut -68.0 -14.7 -63.6 -62.5 -85.9 -52.1 -86.3
Wint -7.8 -14.7 -41.7 -38.0 -34.0 8.5 -41.3
Sum -28.1 28.5 -73.1 -42.0 -77.1 -37.1 -84.420

15

Spr/Aut -1.1 10.9 -57.2 -53.2 -46.5 -12.0 -57.8
Wint -23.6 -52.1 -108.9 -110.1 -107.0 -66.0 -116.6
Sum 21.2 40.6 43.5 40.8 6.4 55.1 8.820

16

Spr/Aut 21.2 15.3 2.3 34.1 -17.6 38.9 -5.8
Wint 28.4 92.4 38.4 36.0 30.8 82.6 33.4
Sum 32.3 13.3 30.2 28.4 -23.1 44.9 -13.4

St
or

es
ju

st
w

ith
el

ec
.(

SE
)

20
17

Spr/Aut 10.1 6.4 -9.0 -10.5 -48.5 23.9 -16.2
Wint -61.6 -61.1 -57.1 -49.2 -33.2 16.8 -39.0
Sum -20.3 10.5 -12.3 -7.8 -18.1 15.6 -3.620

13

Spr/Aut -31.7 -19.9 -30.6 -25.5 -13.8 11.5 -17.6
Wint -64.2 -50.8 -76.6 -68.3 -59.8 -0.0 -56.1
Sum -24.6 -13.6 -32.0 -28.9 -33.6 -7.3 -28.520

14

Spr/Aut -43.6 -27.5 -52.3 -49.2 -48.3 -15.1 -45.0
Wint -37.6 -39.3 -50.8 -51.0 -15.0 -16.7 -13.7
Sum -37.6 -47.6 -47.9 -47.6 -61.5 -47.5 -52.120

15

Spr/Aut -13.4 -26.6 -28.0 -28.0 -27.1 -21.2 -31.0
Wint -18.9 -31.6 -34.7 -34.2 -46.5 -4.7 -50.7
Sum 18.4 8.7 14.0 14.6 7.1 23.1 0.320

16

Spr/Aut -0.6 -5.1 -6.2 -5.9 -13.5 9.2 -18.5
Wint -11.7 -20.9 -11.7 -11.8 -12.4 16.8 -14.1
Sum -3.2 -15.8 0.3 -0.8 -2.3 25.6 -1.2

St
or

es
w

ith
el

ec
.a

nd
ga

s
(S

E
G

)

20
17

Spr/Aut -2.5 -12.0 -0.9 -1.0 -3.7 20.1 -6.0

Table B.9 Prediction results using the DRE (kWh) evaluator for the algorithms over experi-
ments during all seasons, years and store types.
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TypSt Year Season KNN KNN-dist KNN-EQk KNN-3ck OLS SVR ANN
Wint 21.8 22.5 23.1 22.7 20.9 20.8 21.9
Sum 19.2 20.3 23.5 23.1 18.8 19.1 18.920

13

Spr/Aut 19.0 19.5 21.5 21.2 18.1 18.5 19.0
Wint 22.5 22.0 24.9 24.1 21.2 21.6 22.0
Sum 18.9 21.1 23.8 23.5 19.1 20.2 20.020

14

Spr/Aut 19.9 21.2 24.5 23.6 20.0 20.9 20.9
Wint 24.1 23.6 24.1 24.2 22.1 23.1 22.5
Sum 19.9 20.2 22.7 21.7 20.2 20.1 21.020

15

Spr/Aut 21.1 20.3 22.3 22.3 19.8 20.0 20.4
Wint 25.5 26.3 27.3 27.1 26.4 26.8 26.6
Sum 18.0 18.9 20.8 20.2 18.4 18.3 19.220

16

Spr/Aut 19.2 19.2 21.1 20.3 18.9 19.8 19.0
Wint 21.5 21.4 22.8 22.6 21.2 21.9 22.3
Sum 17.0 18.6 20.6 19.8 17.9 17.0 17.8

St
or

es
ju

st
w

ith
el

ec
.(

SE
)

20
17

Spr/Aut 19.9 19.8 21.7 21.5 18.8 19.5 19.2
Wint 20.2 22.0 20.3 19.7 18.3 18.4 18.7
Sum 14.4 15.1 14.4 14.2 13.2 13.7 13.720

13

Spr/Aut 16.1 17.5 16.2 15.7 14.2 15.0 14.9
Wint 17.7 18.2 18.0 17.5 16.6 16.5 17.1
Sum 14.8 15.5 15.0 14.6 14.1 14.2 14.220

14

Spr/Aut 15.2 15.8 15.0 14.8 14.3 14.6 14.7
Wint 17.3 18.8 17.5 17.5 16.7 17.1 17.0
Sum 14.6 15.5 14.6 14.6 14.6 14.7 14.620

15

Spr/Aut 14.5 15.2 14.4 14.4 14.2 14.5 14.2
Wint 17.1 17.6 17.4 17.3 17.1 16.7 17.6
Sum 13.4 13.5 13.3 13.2 13.0 13.8 13.420

16

Spr/Aut 14.0 14.2 13.9 13.9 13.4 13.9 14.2
Wint 15.7 16.3 15.7 15.7 14.5 15.2 15.5
Sum 13.0 13.8 12.7 12.6 11.9 12.8 12.3

St
or

es
w

ith
el

ec
.a

nd
ga

s
(S

E
G

)

20
17

Spr/Aut 13.6 13.9 13.3 13.3 12.5 12.9 13.3

Table B.10 Prediction results using the NP (%) evaluator for the algorithms over experiments
during all seasons, years and store types.
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Prediction results for EDLPs

TypSt Year Season KNN KNN-dist KNN-EQk KNN-3ck OLS SVR ANN
Wint -2.6 -4.3 -5.8 -5.6 -2.7 -0.4 -3.8
Sum -4.6 -7.0 -9.3 -9.0 -6.9 -2.2 -6.120

13

Spr/Aut -1.3 -3.4 -4.8 -4.5 -1.8 0.1 -1.7
Wint -5.6 -6.7 -12.0 -10.0 -8.3 -6.7 -8.6
Sum -5.5 -6.7 -10.2 -10.1 -7.1 -4.8 -6.520

14

Spr/Aut -9.1 -7.6 -13.2 -12.4 -10.1 -9.1 -10.6
Wint -7.4 -7.4 -8.2 -8.2 -5.4 -3.9 -6.0
Sum -7.4 -4.3 -12.4 -10.7 -8.9 -7.3 -9.420

15

Spr/Aut -5.7 -4.8 -9.9 -9.9 -6.5 -4.9 -7.5
Wint -8.4 -10.2 -13.5 -13.4 -12.4 -10.3 -12.6
Sum -1.5 -2.1 -4.5 -3.9 -2.1 -0.8 -2.920

16

Spr/Aut -2.8 -2.6 -4.4 -2.9 -3.7 -0.8 -2.4
Wint -2.2 1.0 -3.0 -2.9 -1.5 0.8 -2.0
Sum -2.5 -4.6 -5.7 -5.1 -3.9 -1.7 -3.9

St
or

es
ju

st
w

ith
el

ec
.(

SE
)

20
17

Spr/Aut -4.6 -4.9 -6.9 -6.8 -7.3 -3.1 -5.1
Wint -7.2 -7.9 -7.1 -6.3 -4.2 -2.4 -4.8
Sum -3.9 -2.2 -3.3 -2.9 -2.6 -1.4 -1.820

13

Spr/Aut -4.5 -4.5 -4.5 -4.0 -2.2 -1.6 -2.9
Wint -6.7 -6.6 -7.8 -7.0 -5.7 -2.6 -5.7
Sum -4.5 -4.3 -5.3 -4.9 -4.4 -3.4 -4.320

14

Spr/Aut -5.9 -5.0 -6.1 -5.8 -4.9 -3.5 -4.8
Wint -5.7 -6.2 -6.4 -6.4 -3.1 -3.9 -3.2
Sum -5.4 -6.4 -5.9 -5.9 -6.0 -5.4 -5.420

15

Spr/Aut -3.4 -4.6 -4.1 -4.1 -3.4 -3.5 -3.7
Wint -4.0 -4.9 -5.0 -4.9 -5.2 -2.7 -5.6
Sum -0.7 -1.3 -1.1 -1.0 -0.7 -0.3 -1.320

16

Spr/Aut -2.0 -2.3 -2.4 -2.3 -2.0 -1.1 -2.7
Wint -3.7 -4.3 -3.6 -3.6 -3.2 -1.5 -3.4
Sum -2.8 -3.8 -2.4 -2.4 -1.8 -0.7 -1.9

St
or

es
w

ith
el

ec
.a

nd
ga

s
(S

E
G

)

20
17

Spr/Aut -2.7 -3.3 -2.5 -2.5 -2.1 -0.8 -2.4

Table B.11 Prediction results using the PDRE (%) evaluator for the algorithms over experi-
ments during all seasons, years and store types.
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Prediction results for EDLPs
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Prediction results for EDLPs
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Appendix C

Prediction results for the reduced-feature
representation
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Prediction results for the reduced-feature representation

TypSt Year Season KNN OLS SVR ANN
Wint 96.8 86.7 89.5 89.7
Sum 70.1 61.6 66.3 65.020

13
Spr/Aut 80.0 70.6 73.3 75.3

Wint 90.5 83.3 86.6 87.1
Sum 65.6 59.6 63.6 64.020

14

Spr/Aut 77.6 70.0 74.2 73.4
Wint 91.1 84.2 88.0 87.8
Sum 63.9 58.7 62.6 63.220

15

Spr/Aut 67.6 65.0 67.0 68.7
Wint 81.3 85.3 91.1 89.1
Sum 55.9 55.9 59.1 59.420

16

Spr/Aut 58.8 59.3 63.7 65.3
Wint 80.5 75.2 79.5 79.8
Sum 53.0 52.5 50.6 57.5

St
or

es
ju

st
w

ith
el

ec
.(

SE
)

20
17

Spr/Aut 64.1 59.2 61.1 61.7
Wint 87.5 76.6 77.9 78.6
Sum 63.5 54.6 54.2 56.320

13

Spr/Aut 70.1 59.0 61.2 60.1
Wint 74.7 65.6 67.6 70.3
Sum 58.5 52.4 53.6 53.520

14

Spr/Aut 64.3 56.4 56.9 57.4
Wint 71.4 65.1 66.6 67.1
Sum 55.8 51.2 52.7 52.320

15

Spr/Aut 57.1 51.9 54.2 53.7
Wint 59.2 63.3 64.4 66.7
Sum 47.6 47.5 53.3 50.320

16

Spr/Aut 49.6 48.3 51.8 50.2
Wint 62.4 52.1 55.5 57.2
Sum 54.7 44.1 46.2 46.8

St
or

es
w

ith
el

ec
.a

nd
ga

s
(S

E
G

)

20
17

Spr/Aut 55.8 46.4 47.7 49.5

Table C.1 Prediction results using the ED (kWh) evaluator for the profile represented with
the key features. Results are separated by algorithms, seasons, years and store types.
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TypSt Year Season KNN OLS SVR ANN
Wint 379.7 346.5 353.3 357.4
Sum 290.9 256.9 281.0 271.320

13
Spr/Aut 322.2 284.0 297.6 301.9

Wint 344.0 324.2 339.3 343.9
Sum 270.3 244.6 265.5 263.520

14

Spr/Aut 309.7 272.9 296.3 289.0
Wint 364.2 332.6 357.7 347.6
Sum 268.4 245.1 263.4 264.020

15

Spr/Aut 272.7 258.9 273.5 275.7
Wint 329.0 338.1 367.2 354.9
Sum 236.2 235.4 245.7 247.320

16

Spr/Aut 240.0 237.9 258.6 261.8
Wint 320.0 302.3 322.2 315.6
Sum 218.5 221.3 212.7 235.5

St
or

es
ju

st
w

ith
el

ec
.(

SE
)

20
17

Spr/Aut 259.7 241.9 251.2 251.6
Wint 349.0 308.4 313.5 322.1
Sum 258.3 220.1 220.9 229.520

13

Spr/Aut 282.6 239.7 249.6 245.5
Wint 303.7 268.2 277.3 286.6
Sum 238.7 215.5 217.5 217.220

14

Spr/Aut 255.0 228.2 229.2 231.2
Wint 285.6 263.1 270.8 270.5
Sum 228.6 213.7 219.2 216.520

15

Spr/Aut 233.2 212.4 221.3 219.9
Wint 244.7 255.4 260.5 269.9
Sum 200.4 195.0 220.0 205.220

16

Spr/Aut 205.4 196.8 208.0 205.9
Wint 252.8 211.7 227.8 234.2
Sum 225.4 182.2 191.8 194.5

St
or

es
w

ith
el

ec
.a

nd
ga

s
(S

E
G

)

20
17

Spr/Aut 228.5 190.8 197.7 202.1

Table C.2 Prediction results using the MD (kWh) evaluator for the profile represented with
the key features. Results are separated by algorithms, seasons, years and store types.
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Prediction results for the reduced-feature representation

TypSt Year Season KNN OLS SVR ANN
Wint 44.0 3.7 59.2 4.1
Sum 30.3 -7.2 55.5 -9.820

13
Spr/Aut 45.3 7.6 69.6 4.4

Wint -48.5 -44.8 -30.1 -82.6
Sum 22.4 2.9 29.6 -2.420

14

Spr/Aut -71.4 -67.6 -48.3 -92.1
Wint -28.5 -43.1 10.5 -23.6
Sum -46.4 -70.1 -42.0 -74.920

15

Spr/Aut -50.8 -30.2 -6.9 -47.0
Wint -18.5 -83.5 -62.7 -86.9
Sum 5.8 -25.6 64.8 4.020

16

Spr/Aut 1.2 -19.9 50.1 11.9
Wint 41.9 20.7 52.7 31.8
Sum 38.9 -6.4 45.9 4.9

St
or

es
ju

st
w

ith
el

ec
.(

SE
)

20
17

Spr/Aut -14.1 -50.3 27.2 -21.7
Wint -72.6 -35.9 -8.3 -32.0
Sum -26.8 -4.5 15.0 1.320

13

Spr/Aut -5.6 -16.0 11.5 -13.3
Wint -57.4 -45.2 -14.7 -49.1
Sum -11.1 -25.4 10.0 -19.520

14

Spr/Aut -4.0 -36.0 -7.7 -25.6
Wint 0.3 -16.8 12.8 -9.8
Sum -28.5 -52.0 -45.9 -47.520

15

Spr/Aut -18.1 -37.2 -19.8 -18.0
Wint -47.6 -40.0 -10.2 -47.2
Sum -0.8 0.8 13.0 -1.220

16

Spr/Aut -25.1 -25.3 -20.9 -27.4
Wint -8.3 14.7 15.8 -12.3
Sum -8.8 9.5 24.9 8.0

St
or

es
w

ith
el

ec
.a

nd
ga

s
(S

E
G

)

20
17

Spr/Aut -11.1 4.2 27.7 3.1

Table C.3 Prediction results using the DRE (kWh) evaluator for the profile represented with
the key features. Results are separated by algorithms, seasons, years and store types.
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TypSt Year Season KNN OLS SVR ANN
Wint -0.7 -2.8 -0.7 -2.8
Sum -3.6 -4.4 -2.4 -4.320

13
Spr/Aut -1.9 -1.7 0.3 -1.9

Wint -7.3 -6.3 -7.0 -8.5
Sum -4.2 -4.1 -4.3 -5.220

14

Spr/Aut -10.4 -8.7 -9.4 -9.9
Wint -6.6 -5.9 -4.0 -5.1
Sum -8.4 -7.8 -7.8 -8.820

15

Spr/Aut -7.9 -5.4 -4.9 -6.6
Wint -8.0 -10.4 -10.8 -11.3
Sum -4.7 -4.8 -0.3 -2.620

16

Spr/Aut -3.5 -3.5 -0.0 -0.5
Wint -1.8 -2.5 -1.1 -1.7
Sum -1.8 -4.5 -1.7 -2.5

St
or

es
ju

st
w

ith
el

ec
.(

SE
)

20
17

Spr/Aut -6.4 -7.3 -3.4 -5.8
Wint -7.9 -4.4 -4.0 -4.6
Sum -4.2 -1.4 -1.3 -1.220

13

Spr/Aut -2.8 -2.3 -1.7 -2.5
Wint -6.6 -4.6 -3.8 -5.3
Sum -4.0 -4.0 -2.4 -3.820

14

Spr/Aut -3.3 -4.0 -3.2 -3.6
Wint -2.7 -3.2 -2.0 -3.0
Sum -4.7 -5.4 -5.4 -5.120

15

Spr/Aut -3.7 -4.0 -3.6 -2.8
Wint -5.8 -4.8 -3.3 -5.5
Sum -1.9 -1.2 -1.3 -1.520

16

Spr/Aut -3.6 -3.0 -3.1 -3.4
Wint -3.4 -1.3 -1.6 -3.3
Sum -3.1 -1.2 -0.7 -1.4

St
or

es
w

ith
el

ec
.a

nd
ga

s
(S

E
G

)

20
17

Spr/Aut -3.2 -1.6 -0.6 -1.8

Table C.4 Prediction results using the PDRE (%)evaluator for the profile represented with
the key features. Results are separated by algorithms, seasons, years and store types.
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Prediction results for the reduced-feature representation
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Appendix D

Results for the UHI effect over
supermarkets demand
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Results for the UHI effect over supermarkets demand
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Results for the UHI effect over supermarkets demand
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