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Real-time Insertion Depth Tracking of Cochlear
Implant Electrode Array with Bipolar Complex

Impedance and Machine Intelligence
Nauman Hafeez, Nikolaos Boulgouris, Philip Begg, Richard Irving, Chris Coulson, Hao Wu, Huan Jia, Xinli Du

Abstract—Cochlear implants have significantly improved hear-
ing for many as the most successful prosthesis, however, hear-
ing outcomes vary. Uncertainty during electrode array (EA)
insertion, including trauma and depth control, is one factor.
To minimize radiation exposure from imaging methods like
CT scans, this in-vitro study investigates the use of bipolar
electrode impedance and artificial intelligent models to determine
EA insertion depth. Complex impedance data was collected by
inserting a commercial EA into a scaled-up 2D scala tympani
model using a robotic feeder system. A support vector machine
model produced a 98% classification accuracy for final insertion
depth estimation. A CNN-LSTM hybrid model yielded 0.85 R-
squared and 1.72 mm mean absolute error in depth estimation at
each millimeter during a 25 mm insertion. This approach to depth
assessment based on impedance may help with cochlear implant
procedures and find use in other medical implant applications.

Index Terms—cochlear implant, electrode array, bipolar
impedance, insertion depth, machine intelligence

I. INTRODUCTION

Cochlear Implant (CI) with all its shortcomings is still the
most advanced prosthesis that is providing hearing treatment
to people with severe to profound hearing loss [1]. One of the
shortcomings is variability in post-surgical hearing outcomes
that may be due to different factors. One such factor is trauma
induced during the electrode array insertion that may erode
residual hearing capabilities [2]. Another factor affecting CI
performance is electrode array (EA) insertion depth [3]. The
depth at which the electrodes are inserted into the cochlea
determines their proximity to the auditory nerve fibers, which
is an important factor in the ability of the implant to stimulate
the auditory nerve and provide sound perception. Recently,
Cochlear and MED-EL introduced their continuous impedance
magnitude measuring tools (SmartNav and eIFT respectively)
for better electrode placement.

In general, a deeper insertion depth is associated with better
performance in terms of speech recognition and sound quality
[4]–[6]. This is because the deeper electrodes can reach more
auditory nerve fibers, which can improve the ability of the
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implant to stimulate the auditory nerve and provide a more
robust and accurate representation of sound. However, deeper
insertion depths can also be associated with a higher risk of
surgical complications and may not be suitable for all patients
[2].

Electrode array insertion depth can be assessed by medical
imaging modalities e.g., Computed Tomography (CT), either
at the end of the procedure or sometimes during the surgery
if an imaging device is available in the operating room [7].
However, those imaging techniques come with the risk of
radiation exposure and are mostly avoided especially during
the insertion process [8]. It also increases the time and cost
of the surgical procedure.

Several studies have used different methods to predict EA
insertion depth before implantation as part of the surgical
planning process [9]. In one of the studies, basal turn diameter
and width were used to predict the angular insertion depth
using a planning software [10]. The results were compared
with the routine prediction method using 2D CT images. [11],
[12] also presented methods to predict insertion depth.

In other biomedical applications, an ultrasound-based per-
cutaneous needle insertion guidance robotic system has been
developed which is used for real-time monitoring of posi-
tioning and orientation [13], [14]. Real-time monitoring of
the insertion depth of an optical fiber-based needle array was
carried out for cancer treatment [15].

We have seen complex impedance measurements vary con-
cerning the EA position in the cochlear model during insertion
[16]–[18]. Giardina et al. [19] briefly touched upon the rela-
tionship of response magnitude with insertion depth in their
research with evidence from the in-vitro experiments. It was
concluded that magnitude response (in mV ) increases with
the insertion depth, however, there was no further comment
on whether it’s possible to estimate insertion depth with
impedance measurements. The magnitude response of most
apical electrodes was compared at different insertion depths
as well as magnitude response of most deepest and shallowest
electrodes was also compared after the full insertion. Electro-
cochleography (ECochG) has also been used intraoperatively
for monitoring EA insertion and there is a strong correlation
between response to ECochG and EA scalar position during
implantation [20]–[22]. Therefore, ECochG has the potential
to estimate insertion depth, however, only in patients with
residual hearing which is not always the case [23].

One of the studies [24], recently found a strong correla-
tion between intra-operative impedances and insertion depth.

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE) .Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works (see: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI: 
10.1109/TMRB.2024.3407355, 2024 IEEE Transactions on Medical Robotics and Bionics



2

Tissue resistances were extrapolated from trans-impedance
recordings and their relationship with insertion depth was
statistically validated. Final electrode positions were acquired
from CT images of 20 implanted subjects. In all subjects the
same lateral wall electrode array was inserted. The proposed
model can estimate the linear insertion depths by a margin of
0.76 ± 0.53 mm (mean and variance). In another study from
the same group, postoperative insertion depths were estimated
and tracked for up to 60 months using monopolar impedance
recordings [25]. The insertion depth of all electrodes was
estimated with an absolute error of 0.9mm ± 0.6mm or
22◦ ± 18◦ angle (mean± SD).

Post-surgery hearing outcomes dependency on EA insertion
depth is very much debatable among researchers. For example,
according to [5], it is concluded that deep electrode array
insertion gives better speech perception whereas in another
study it is the opposite due to potential effects of trauma
because of deeper insertion [26]. However, CI surgery needs
objective measures to improve the insertion process and assess
surgical outcomes. These measures could also be used for real-
time monitoring of the EA insertion process.

In this work, we have chosen to utilize complex bipolar
electrical impedance of electrodes to track the linear insertion
depth of EA. It is because impedance magnitude measuring
capability is built into all commercial cochlear implants and
it is viable to introduce implants with complex impedance
measuring capabilities. Furthermore, previous studies [27],
[28] have demonstrated that complex impedance has efficacy
for EA localization. This work has employed two strategies
to track linear insertion depth; the first one is based on
classification that tries to distinguish partial insertion depths in
the artificial ST whereas the other based on regression tries to
capture each millimeter insertion depth using a recording of a
single pair of electrodes. For classification, classical machine
learning models are trained using complex impedance data of
an electrode pair, and a hybrid model of convolution neural
network (CNN) and long short-term memory (LSTM) network
is used for regression.

II. METHODOLOGY

A. Data Recording Setup

An overall block diagram of the experimental setup is
shown in Fig. 1. A 2D plastic ST model filled with 0.9%
saline solution was used to mimic the inner ear structure.
EVO® electrode array from Oticon Medical was utilized that
has 20 equally spaced platinum-iridium electrodes having an
active length of 24mm and insertion length of 25mm. It is
a medium-sized EA compared to MED-EL FlexSoft/Flex34
(31.5/34mm) and Cochlear Slim20 (20mm) [29]. The electrode
array was placed on a 3-degree-of-freedom (DoF) actuation
system (Physik Instrumente (PI) GmbH & Co.) with a holder.
There were x-y axes linear actuators and a rotational actuator.
The x-axis linear actuator and the rotational actuator were used
to adjust the electrode array insertion trajectory whereas the
y-axis linear actuator was meant for electrode array insertion
into the ST model. These actuators were connected to the PC
via controllers to deliver instructions to them.

A custom-built complex impedance measuring meter was
designed using data acquisition devices (DAQ) (National In-
struments, Austin, TX) and a basic 2-element series circuit.
One element of this circuit is a fixed 1 kΩ resistor R and
the other is the electrode pair (EP). Impedance magnitude
|ZEP | of an electrode pair is measured by applying a voltage
signal Vin (generated by DAQ’s voltage write port) of 1V
(peak-peak) on this series circuit, measuring the current in
the circuit by Ohm’s law (Ic = Vin/R) and eventually
|ZEP | = VEP /Ic (VEP is recorded by the DAQ’s voltage read
port). The impedance phase θ is measured as the difference
between the current phase and voltage phase across EP.
Impedance real (resistance, R) and imaginary (reactance, X)
parts are calculated using the polar coordinates (|Z| and θ) as
R = |Z|cosθ and X = |Z|sinθ. These are the 4 time-series
data collected during the insertion process. Multiple electrode
pairs can be recorded using a multiplexer controlled by the
digital ports of a DAQ device.

A custom-built MATLAB software with a graphical user
interface (GUI) was used for sending commands to both the
actuation system and the impedance meter. Linear insertion
depth and velocity of the insertion used to be chosen before
the insertion as well as the number of electrode pairs for
complex impedance measurement. As the EA is inserted in
the ST model, the impedance of EPs was sequentially recorded
one by one.

Complex bipolar impedance data recording of the electrodes
during the insertion process was carried out by a system
comprising of a 3-degree of freedom actuation system, a
saline-filled plastic cochlea model, an impedance meter, and
an electrode array attached to the actuation system as shown
in Fig. 1.

B. Equivalent Circuit

The impedance model is based on Tykocinski et al. [30], and
consists of three components, 1) resistance between electrodes
due to bulk medium (saline), 2) polarization resistance, and
3) capacitive reactance due to electrode-electrolyte interface.
Components (2) and (3) combined are called polarization
impedance and can be modeled as a parallel circuit with (1)
in series with them. According to this model, we not only
need to measure impedance magnitude but also the phase, and
impedance resistive and reactive components to fully compre-
hend the model and use these features for prediction. Since we
are measuring bipolar impedance, the total impedance includes
resistive and reactive components as shown in Fig. 2. R3 is
the bulk resistance between the 2 electrodes. On either side
of it, we have polarization circuits for each electrode due to
electrochemical reactions.

C. Data Collection

There are two datasets collected to analyze the hypothesis
that complex bipolar impedance can be used to track the
linear insertion depth of the electrode array during insertion.
Dataset-1 consists of complex impedance measurements of
most apical electrode pair at different insertion depths. The
electrode array was inserted 10 times for each insertion depth.
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Fig. 1. The experimental setup for the automated electrode array insertion, impedance data collection, and analysis pipeline.

Fig. 2. Bipolar Impedance equivalent circuit model for the stimulation
electrodes

Insertion depths we tried were 5 mm, 10 mm, 15 mm, 20
mm, and 25 mm as shown in Fig. 3. Therefore, we have
50 examples in this dataset. Each example has 4 time-series
features (Z, θ, R, X). However, we collected 25 samples for
a time series each even if the EA is inserted for less than 25
mm. For example, the system would measure 5 samples each
for a time series of 5 mm and then the rest of the 20 samples
would be measured when EA is static at 5 mm depth. This is
to ensure, we have equal length time series for training and
testing. The electrode array is inserted from the middle of the
ST model in all experiments of this dataset. This dataset is
used for the classification of different insertion depths of the
electrode array.

Fig. 4 shows a graphical representation of the complex
impedance measurements taken during the experiments. The
graph shows impedance magnitude, phase, resistive, and re-
active parts of the first electrode pair EP1 at different inser-
tion depths. We have electrical measurements row-wise and
different insertion depths column-wise. Graphs are plotted

for 25 samples, however, measurements are taken both while
the electrode array is continuously inserted and at rest for
depths lower than 25mm. Each time sample corresponds to
a 1mm insertion depth for 25mm depth. For other insertion
depths, partial measurements are taken when the array is static
after being inserted to the corresponding depth. The graphs
shown in the figure are the mean and standard deviation of
the respective insertion depth experimental data. Looking at
the first column, when EA is inserted for 5 mm, impedance
magnitude decreases even though EA remains at the center
of the ST model. However, the decrease is small and the
decrease is continuous during both instances when EA is
moving (inserted) for 5mm and then static for the rest of the
20 time-samples. On the other hand, the impedance phase is
getting less negative but the most change is observed when
the electrode array is moving and not static. The change is
also minimal, amounting to less than 0.5◦. In the same way,
a decrease in resistance and reactance can also be seen. In
the second column, more changes in all electrical properties
are observed when the EA has touched the lateral wall and
rests there. This is due to the proximity of EP1 to the plastic
material which is a higher impedance material than the saline
solution. We can see there is 100Ω increase in |Z| and 1
change in phase θ. Similarly, for insertion depths of 15mm,
20mm, and 25mm, there are more pronounced changes in
electrode pair complex impedance after it touches the lateral
and slides along it or rests there.

For regression analysis, dataset-2 with examples of inser-
tions from different directions will be used for maximum
coverage of the ST model. In dataset-2, the electrode array
is inserted from three different angles (medial, middle, and
lateral) where the middle position was the center of the plastic
model and medial and right at 0.5◦ to either side from the
center. The electrode array is inserted into the ST model
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Fig. 3. Electrode array insertion at different insertion depths. (a)5 mm, (b)10 mm, (c)15 mm, (d)20 mm, (e)25 mm
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Fig. 4. Electrical impedance visualization of EP1 at different insertion depths. Columns[left-right]: 5 mm, 10 mm, 15 mm, 20 mm, 25 mm. Rows[top-bottom]:
Impedance magnitude, phase, resistance, and reactance

for 25 mm at a speed of 0.08 mm/s by moving the vertical
linear actuator (EA is placed on it with a holder). Impedance
recordings of 8 electrode pairs (EP1:E1-E2, EP2:E3-E4, . . .
EP8:E15-E16) were taken with a sampling time of ≈1.5s.
Therefore, each pair has 25 samples during complete insertion
(1 sample/pair/mm). The most apical electrode pair EP1 is
used in the analysis to predict mm-insertion depth.

D. Data and Models for Classification

Dataset-1 is used for the classification of different depths
of insertion and it is defined as D = {(x(1), y(1)), (x(2), y(2))
...(x(i), y(i))} where i = 50, x is the input vector and y is
the target label. The input x is presented as x = {Z,Θ,R,X}
where Z = {|Z|1, |Z|2, ...|Z|m}, Θ = {θ1, θ2, ...θm}, R =
{R1, R2, ...Rm}, and X = {X1, X2, ...Xm} where m = 25.
The target label y ∈ {1, 2, 3, 4, 5} represents 5 classes for
different insertions depths (5mm, 10mm, 15mm, 20mm, and
25mm respectively). The data is first standardized by subtract-
ing the mean and dividing it by the standard deviation. Then

the machine learning models are trained and tested using 5-
fold cross-validation scheme.

Supervised machine learning algorithms are used for clas-
sification namely, support vector machines (SVM), k-nearest
neighbors (kNN), random forest (RF), and (shallow) artificial
neural network (ANN).

Support Vector Machines: Support Vector Machines
(SVM) were initially designed as discriminative functions and
were mainly used for large-margin classification. Simply put,
given a set of training examples, the SVM classifier learns
the position of its support vectors and then subsequently
the optimal hyperplane to categorize unseen samples. Owing
to their impressive generalization ability, SVMs have been
extensively studied to solve several classification tasks (see
e.g. [31]–[33]). More recently, their use cases have expanded
to include function approximation, regression, and time series
prediction by introducing an appropriate loss function [34].

k-Nearest Neighbours: k-Nearest Neighbor (kNN) clas-
sifier is a fairly simple supervised learning algorithm that
classifies a data point based on how its neighbors are classified.
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kNN algorithm is based on feature similarity, that is, choosing
the right k (number of neighbors) value is important for
better accuracy. Another parameter is the distance measure that
induces the relationship between neighbors [35], for example,
Euclidean distance, Dynamic Time Warping (DTW), Manhat-
ten distance, etc. [36] found that a simple 1-NN classifier with
DTW distance measure generally produces better results than
more complex classification algorithms on time series data.

Artificial Neural Network: ANNs are complex computa-
tional models that learn to solve a given task by extracting
meaningful information from the training data. ANNs were
first introduced in 1943 [37] and the authors presented a
simplified version of the computational model based on how
neurons in the brain perform complex tasks. An ANN is
composed of simple computational nodes, called neurons,
typically arranged in the form of layers. Each layer performs
a simple linear transformation on the incoming data, followed
by a point-wise non-linear function. These seemingly simple
models have proven to be immensely powerful in solving prob-
lems that have resisted the efforts of the scientific community
for many years.

Random Forest: Random Forest (RF) classifier first in-
troduced by Breiman [38]. It is an ensemble of relatively
uncorrelated decision trees where they vote for the most
popular class and the class with the most votes becomes the
model prediction for a particular sample. A decision tree is
a set of nodes and leaves that are constructed based on a
training set constituted of a feature collection. The purpose
is to divide the training set into smaller subsets by carrying
out a sequence of tests. When a subset contains only the cases
belonging to a single class, the process terminates. These types
of tests are called the nodes and subsets are known as the
leaves. Predicting the class for a new data sample, the process
starts at the tree root and finishes up at one of the leaves.

The k-fold cross-validation method is employed for training
and testing the dataset to avoid any over-fitting and k=5 is
chosen. The model was trained and tested 5 times in our case
and produced the accuracy of the model in each iteration.
During each iteration, the dataset was divided into 5 folds
(portions); 4 folds were assigned as a training set and one fold
as a test set so the training and test sets are different in each
iteration. The final accuracy was the average of accuracies of
all iterations.

There are four models (SVM, ANN, kNN, RF) that are
cross-validated on specific and optimized hyperparameters. For
ANN, we used a shallow multilevel perceptron (MLP) with
two hidden layers of size layer1=100 neurons and layer2=10
neurons, and finally a classification layer with 3 neurons. The
hidden layers had an associated non-linearity of rectified linear
units (ReLU). A softmax layer was used to convert the output
of the MLP into probabilities of the respective classes. The
network was trained for 1000 epochs using an Adam optimizer
at a learning rate of 0.001. For SVM, the Radial Basis Function
(RBF) kernel function was used to train the data, and Dynamic
Time Warping (DTW) was used as a distance metric and 5
number of neighbors for the kNN classifier model. RF is
trained with 5 trees in the forest with Gini impurity to measure
the quality of the tree split. We have not used any weight class

metric as our dataset is balanced. All models are trained using
the Python Sklearn library.

E. Data and Models for Regression

In the regression problem, the input X is mapped to the
output Y by the algorithm M : X → Y where X is an
input sample set X = {x(1), x(2), ...x(m)} and corresponding
output target set Y = {y(1), y(2), ...y(m)} where m in our
dataset is 3425. One of the examples of input x corresponds
to {|Z|, θ, R,X} having a time sample each for impedance
magnitude, phase, resistance, and reactance. The output target
set Y values range from 1-25 mm as shown in Fig. 5. In
this, we have used our insertion trajectory dataset to cover the
dynamics of the ST model and different insertion paths. Linear
regression algorithm is used to fit the data, however, after get-
ting unsatisfactory results advanced convolution and recurrent
neural networks are applied for this regression problem.
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Fig. 5. Insertion depth blueprint of a 3:1 scaled-up ST model. EA is inserted
to 25mm depth.

Convolution Neural Network (CNN): CNNs are com-
monly used for computer vision, but are also used for natural
language processing and time series analysis [39]. They detect
patterns in data and are useful for 2 and 3-dimensional data
such as images and video frames. Recently, 1-dimensional
CNNs have been introduced for 1-D data in the biomedical
field [40]. Convolutional layers are the backbone of detecting
patterns and extracting features from input data. A filter slides
across the data and convolving is the process of taking the
dot product of the filter values with the data. Each layer has
different filters called kernels, and the data matrix is convolved
with each kernel separately.

With the success of 2D and 3D CNNs, there are also 1D
CNNs for time series or 1-dimensional data. So instead of 2D
filters, there are 1D filters to slide over the 1D data and perform
convolution. They produce 1D output for further processing in
the next layers. Time series exhibit one dimensional data (time)
instead of 2-D (width and height). Filters provide non-linear
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Fig. 6. Long Short Term Memory network block with key operations

transformation of 1D data. The convolution to the time series
data can be presented as

Ct = f(w ∗Xt−l/2:t+l/2 + b) (1)

where C presents the outcome of the convolution process
(dot-product) resulting from the application of a function f
to a univariate time series X with filter w of length l. There
is an additional bias factor b. f represents the final non-linear
function applied to the convolution result for example a ReLU
or sigmoid function. Convolving 1D data with multiple filters
in a layer produces a multivariate output whose size is equal to
the number of filters. Filter values are initialized randomly and
they are learned automatically as the process goes according to
the dataset. A pooling layer can be added after the convolution
layer to reduce the size of the convolutional layer output by
aggregating. Another type of layer called the normalization
layer helps the network converge faster. The biggest advantage
of CNN training is its speed compared to the conventional fully
connected networks due to the weight-sharing mechanism.

Recurrent Neural Network (RNN): RNN is recommended
for data with temporal information, but suffers from vanishing
or exploding gradients during training [41]. LSTM, a type of
RNN, solves this problem using memory blocks and gates.
The gates control data flow and decide which information to
keep or discard, similar to human memory.

Fig. 6 shows the inner structure of an LSTM block/cell and
the operations involved in it. These operations allow the LSTM
network to keep or let information during the training process.
There are three LSTM blocks in the figure and the center one
is elaborated. The other two blocks will help understand the
flow of information from the previous to the next block. The
memory block mentioned above is also called cell state. Cell
state is like a memory that carries the information along the

sequence of data. Gates decide which information to keep in
the cell state. In Fig. 6, X is the input sequence, and C is the
cell state, h is the hidden state. We have three neurons with
sigmoid activation functions in pink (from left to right) first
sigmoid is the forget gate, the second sigmoid is the input gate,
and third sigmoid is the output gate. The sigmoid activation
function outputs the value between 0 and 1. Any value close
to 0 will be forgotten and values close to 1 will be kept in the
cell. In the forget gate, current input Xt and previous hidden
state ht−1 values are combined to form a vector and multiplied
with the weights before passing on to the sigmoid function,
the resulting value will decide whether to keep or forget it
according to the rule mentioned earlier. Output of the forget
gate for time sample t can be presented as

ft = δ(wf [ht−1, Xt] + bf ) (2)

where ft is the output of the forget gate, δ is the sigmoid
function, wf and bf are the weight matrix and bias associated
with the forget gate neuron, ht−1 is the hidden state of the
previous cell, and Xt is the input. Before getting into the input
gate, it’s important to mention another activation function
involved which is tanh in the blue color neurons. These are
input/output activation functions. To update the cell state, ht−1

and Xt are combined to form a vector and multiplied with
the weight matrix associated with the input gate before being
forwarded to the input gate sigmoid function and the same
information is passed on to tanh function. The input gate
output and tanh function are presented as in 3 and 4

it = δ(wi[ht−1, Xt] + bi) (3)

tit = tanh(wti[ht−1, Xt] + bti) (4)
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Fig. 7. Hybrid CNN-LSTM model for insertion depth prediction

Tanh function outputs the value between -1 and 1 to regulate
the network. The dot product of the output from the tanh and
sigmoid function is taken and this product would help decide
which information from the tanh function to keep or leave
out. To find the cell state, the forget state output is pointwise
multiplied by the previous cell’s cell state and added to the
input gate output. This process updates the current cell state
value and is presented as in 5.

ct = (it · tit) + (ft · ct−1) (5)

In the output gate, it calculates the hidden state that keeps
the information of the previous inputs. First, the previous cell’s
hidden state and current input are combined to form a vector,
multiplied by the weight matrix associated with the output
neuron, and fed into the sigmoid function. It can be presented
as in 6

ot = δ(wo[ht−1, Xt] + bo) (6)

On the other hand, the cell state is processed through a tanh
function. The dot product of output from the sigmoid function
and the output from the tanh output are taken to decide what
information would be carried in the hidden state. In this way,
both the cell state and hidden state are carried to the next
LSTM cell. The current cell hidden state and output can be
presented as in 7 and 8

ht = ot · tanh(ct) (7)

yt = wyht + by (8)

CNN-LSTM Hybrid Model: A hybrid 1D CNN and LSTM
model (as shown in Fig. 7) is used for regression to predict
linear insertion depth using complex bipolar impedance fea-
tures. The model consists of an input layer, convolutional layer,

LSTM layer, dense layer, and output layer. The convolution
layer extracts spatial features, while the LSTM layer extracts
temporal features. The input layer arranges the data for the
convolutional layer. The model is trained on EP1 data (|Z|,
θ, R and X) and can be applied to other electrode pairs. The
dataset has 3425 examples, each with four recorded values and
a target label between 1-25mm according to the depth of the
most apical electrode during the insertion process.

Once we have the input layer setup, there is a 1-D con-
volutional layer. The reason for using the 1-D CNN layer
is its low computational complexity compared to 2-D CNN
and also 1-D CNN even with shallow architectures can learn
from complex 1-D signals [40]. There are 12 1D filters of
size 1x4. The selection of the number of filters is carried
out as hyperparameter tuning starts from 4 filters. Each filter
learns different features from the input 1-D signal. The size
of the filter has been kept as the size of the input signal. The
convolution layer produces the output (feature map) of the
size 4x12 for each input training example. The feature map is
fed into the LSTM layer with 200 cells. The number of LSTM
cells is selected according to the size of its input from the CNN
layer. Each cell works as explained in Fig.6 and carries the
information to the next LSTM cell. The LSTM layer produces
an output of the size 1x12 that is fed into the fully connected
layer with 25 neurons and onto a single neuron output layer.
The output layer finally gives the insertion depth prediction.

III. RESULTS

A. Classification Results

Cross-validated accuracies of four machine learning algo-
rithms are given in Table I with their standard deviation. Sup-
port vector machine gave the highest accuracy with 98% with
an SD of 4%, whereas Shallow neural network and k-nearest
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TABLE I
TEST ACCURACIES OF FIVE CLASS INSERTION DEPTH DATASET

EP
Accuracy % (SD)

ANN SVM kNN RF

1 96.0(4.9) 98.0(4.0) 96.0(4.9) 92.0(9.8)

neighbors were equally good at giving the same accuracy of
96% with an SD of 4.9%. Random forest algorithm not only
gave the lowest accuracy of 92% but also had the highest SD
of 9.8%. It is important to mention that insertion depths are
estimated/classified using 100% of the most apical EP data.
The same procedure can be repeated with other EPs data or
can also use a combination of EPs data.

Further analysis is carried out by looking into the confusion
matrix that gives us a summary of the predictions of a classi-
fication problem. It gives information about the true positive,
true negative, false positive, and false negative predictions with
count values broken down by each class. Fig. 8 shows the
confusion matrix of all 4 learning models. In each matrix,
x-labels and y-labels are representing the five classes. The
confusion matrix for SVM is at the top left corner, where we
have only 2 incorrect predictions of insertion depth 15mm as
10mm insertion depth. All other insertion depth classes have
a 100% true positive rate. With the ANN case on the right top
corner, only one incorrect prediction of the 10mm insertion
depth class is seen as 5mm insertion depth. All other classes
have true positive predictions. The confusion matrix of kNN
(left down) is similar to the matrix of SVM. For the random
forest machine learning model, we can see three incorrect
predictions; 10mm insertion depth is incorrectly predicted as
5mm, and 15mm insertion is once incorrectly predicted as
10mm and once as 5mm. All other 3 classes have 100% true
positive rate.

With confusion matrix analysis, it is evident that the in-
sertion depths of 10mm and 15mm have incorrect predictions
whereas the rest of the classes have no incorrect predictions
in all trained models. The reason may be explained that these
insertion depths are at the crossroads of straight and curved
insertion paths, especially 10mm depth. Having said that, with
such a small dataset, the models are trained well and prediction
accuracies are above 95%.

B. Regression Results

The learning model is developed in Python 3.6 using the
Keras library with tensorflow on the backend. The dataset is
divided into 85/15 ratios for training and testing the regression
model. The activation function for the convolutional layer and
dense layer is Rectified Linear Unit (ReLU) which suppresses
all negative values and is a linear function for values above
0. The activation function for the LSTM layer is tanh and
recurrent activation is the sigmoid function.

The model is trained for 1000 epochs with a batch size of
30. Adaptive moment estimation (ADAM) optimizer is used
with a learning rate of 0.001 and mean squared error (MSE)
as the loss function. To avoid overfitting, earlystopping has

been used with a patience value of 200. This helps to stop the
training process if the model is overfitting. Fig. 9 shows the
progress of model training where the x-axis is the number of
epochs and the y-axis is the MSE value. It is evident that the
model is not overfitting as the MSE of the validation set is a
little higher than the MSE of the train set and there is not a
big difference between those RMSE values.

Linear insertion depth estimation was carried out by a
hybrid learning model. The model is trained and tested on
a dataset collected in vitro in a plastic ST model. Out of 3425
data examples, 2911 are used for training the model while the
rest of 514 are used for testing the model performance. The
performance measures of our model are depicted in Table II.
The mean absolute error for the test dataset is 1.62mm which
indicates good model performance. The MSE is 7.36 mm2

which is a bit high concerning our data range of 1-25 mm.
The reason for this high value is the inherited property of
MSE to penalize large errors compared to small errors. Better
performance measures of regression models are RMSE and R2
values that turned out to be 2.71 and 0.85 (85%) respectively.

TABLE II
REGRESSION PERFORMANCE METRICS FOR VALIDATION DATASET USING

CNN-LSTM MODEL

EP Dataset
Model: CNN+LSTM

MAE MSE RMSE R2

1 Test 1.62 7.36 2.71 0.85

To get a clearer visual representation of the predictive
performance of the model, Fig.10 presents a fitted linear
regression line. Actual targets are along the x-axis and model
predicted values are along the y-axis. This graph also shows
the distribution of the actual and predicted insertion depths
on the top and right sides of it in green color. It can be
seen, that there is even distribution of our test set in terms
of linear insertion depth 1-25mm data samples. If we see the
distribution of the predicted depths, the performance is good
in the middle part of the insertion depths whereas prediction
performance deteriorates for the deeper depths estimation,
for example, from 22-25 mm depths. The insertion depth
estimation is also not up to the mark at 1 mm. The reason
for this may be the stabilization of impedance values at the
beginning of the insertion.

IV. DISCUSSION

The results of the current study suggest that the complex
impedance of the electrode pairs can be utilized for final
and partial insertion depths (down to 1mm) estimation of
the CI electrode array. Our machine-learning models correctly
predicted different linear insertion depths with a true positive
rate of up to 100%. The only exception is when we tried
to predict a depth of 10-15mm, it is the time when the array
starts to touch the first ST curve. The difference in time, when
EA touches the curve when inserted from different angles,
could be the cause of a slightly lower true positive rate in this
region. For mm-depth prediction, the reason for using the deep
learning model was a lower performance on linear regression
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Fig. 9. CNN-LSTM hybrid model training for insertion depth regression

and other machine learning models. A possible reason for
better performance by our hybrid CNN-LSTM model is its
ability to learn both spatial and temporal features.

There are certain limitations of this study, for example, we
have used only most apical electrode pairs to train our models,
however, these models should be tested on other electrode
pairs. Having said that, it is easy to ascertain the depth of
other electrodes as the distance between electrodes on the
array is known. As we recorded the data on a fixed-size ST
model, it is straightforward to convert our linear insertion
depths to angular depths, it will be a different scenario when
we have different size ST models like humans do. Another
consideration is the use of a 3:1 scaled-up model where EA

Fig. 10. Regression line with actual/predicted values distribution in the test
set

is inserted up to the second turn. Insertion depth estimation
could be better if a normal adult-sized ST model is used,
allowing the EA to be inserted for additional turns, which
may enhance discrimination. The size and stiffness of the
EA are also important factors while evaluating the insertion
pattern using impedance measurement. The stiffness of the EA
contributes heavily to the trauma caused during the insertion.
Moreover, variation in stiffness among EAs may contribute
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to different impedance profiles along the path (e.g., we have
observed impedance increase after the first turn even when
insertion was stopped).

Future endeavors also include validating the developed
algorithm on 3D cochlear models, potentially followed by
animal and cadaver trials. This step aims to further refine
and assess the algorithm’s accuracy and reliability in more
complex, realistic scenarios, thereby advancing its potential
clinical application for enhancing cochlear implant procedures.

It is also important to mention, unlike other studies that
use impedance recording built into the CI, we used a different
method. Commercial CI only records impedance magnitude
and several studies have used different impedance equivalent
models and estimation algorithms (e.g., bivariate spline extrap-
olation [24]) to derive polarization and resistive impedance
components. Studies have shown that this extra data help
aid better electrode placement. Our method directly records
impedance magnitude, phase, and resistive and reactive com-
ponents that have the potential to be easily applicable to track
insertion depth on run time during the insertion process.

To accurately track the insertion depth or trajectory of
EA intraoperatively, it may be useful to devise a system
that integrates different sensing modalities such as ECochG,
monopolar/bipolar complex impedance recordings for machine
learning model to predict better.

V. CONCLUSION

The paper concentrates on leveraging the complex bipo-
lar electrical impedance of electrodes to monitor the linear
insertion depth of Electrode Arrays (EA) within commercial
cochlear implants. It employs two main methodologies: (1)
classification, aimed at recognizing partial insertion depths,
and (2) regression, intended to capture varying depths using
recordings from electrode pairs. The study utilizes classical
machine learning models and a hybrid Convolutional Neu-
ral Network (CNN) and Long Short-Term Memory (LSTM)
network for classification and regression, respectively. The
research achieved a remarkable 98% classification accuracy
using the Support Vector Machine (SVM) algorithm. Addi-
tionally, it introduced a CNN-LSTM hybrid regression model
designed for precise tracking of EA insertion depths in mil-
limeter increments, accomplishing a mean absolute error of
1.72 and an R-squared value of 0.85 during a 25mm insertion
depth. Notably, this investigation utilized a 2D cochlear model.
Real-time recording of complex impedance of electrodes may
likely pave the way for objective feedback for surgeons when
manually inserting the electrode array within the cochlea. This
technique could also be handy as a sensing modality of a
robotic system for the automated insertion of an electrode
array that is designed to preserve residual hearing by reducing
induced trauma.
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