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A B S T R A C T

Purpose: Adverse drug events (ADEs) are a significant global public health concern, and they have resulted in 
high rates of hospital admissions, morbidity, and mortality. Prior to the use of machine learning and deep 
learning methods, ADEs may not become well recognized until long after a drug has been approved and is widely 
used, which poses a significant challenge for ensuring patient safety. Consequently, there is a need to develop 
computational approaches for earlier identification of ADEs not detected during pre-registration clinical trials.
Methods: This paper presents a state-of-the-art network-based approach that models patients as subgraphs 
composed of nodes of International Classification of Diseases (ICD) codes and directed edges illustrating disease 
progression. Four Graph Neural Network (GNN) variants were employed to make sub-graph level predictions 
that answer three Research Questions (RQ): 1) whether ADE(s) would occur given a patient’s prior diagnoses 
history, 2) when an ADE would occur, and 3) which ADE would occur. The first and second RQs were addressed 
using a binary classification approach. The third RQ was addressed using a multi-label classification model.
Results: The proposed network-based approach demonstrated superior performance in predicting ADEs, with the 
GraphSage model exhibiting the highest accuracy for both RQ 1 (0.8863) and RQ 3 (0.9367), while the Graph 
Attention Networks (GAT) model was found to perform best for RQ 2 (0.8769). Furthermore, an analysis 
segmented by ADE classification revealed that while RQs 1 and 3 exhibited minimal variance across different 
ADE categories, a distinct advantage was observed for categories B, C, and E in the context of RQ 2 when 
applying this sub-graph method.
Conclusion: The network-based approach demonstrates the potential of GNNs in supporting the early detection 
and prevention of ADEs. Accurately predicting ADEs could enable healthcare professionals to make informed 
clinical decisions, take preventive measures and adjust medication regimens before serious adverse events occur. 
The proposed prediction method could also lead to optimized usage of healthcare resources by preventing 
hospital admissions and reducing the overall burden of adverse drug events on the healthcare systems.

1. Introduction

The issue of medication safety has become an increasingly pressing 
concern in many countries. A multitude of studies conducted across 
various regions have revealed that adverse drug reactions (ADRs) and/ 
or adverse drug events (ADEs) are closely associated with a significant 
proportion of hospital admissions, ranging from 3.7 % to 16.6 % [1]. 
Hospital readmission rates resulting from drug-related incidents have 

been documented to vary between 3 % and 64 %, with a median of 21 % 
[2]. In Australia, where a substantial proportion of the population (47 
%) is reported to consume prescription drugs each fortnight, adverse 
drug events result in hospitalization for 1.3 %–4.6 % of patients and up 
to 9 % of emergency admissions [3]. Additionally, it has been reported 
that adverse drug reactions result in the death of approximately 197,000 
people in Europe each year [4]. These issues have also resulted in sig
nificant direct and indirect economic burdens for numerous countries 
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[5].
The World Health Organization (WHO) defines ADRs as noxious and 

unintended responses that occur at doses generally used in the human 
body [6]. Adverse drug events (ADEs) are defined more broadly as any 
injuries caused by medications, including overdoses and medication 
errors [7]. Distinguishing between ADRs and ADEs can be clinically 
challenging due to insufficient information available, and this follows 
through to how such hospital encounters are coded following discharge. 
Therefore, this study will not differentiate between these two terms but 
will refer to them collectively as ADEs that are identified using ICD-10 
diagnostic codes through a systematic review conducted by Hohl et al. 
[8]. The details of their classifications will be presented in the Data 
Preparation section.

The use of machine learning and deep learning methods in predicting 
ADEs has the potential to revolutionize clinical practice by providing 
early detection and prevention of adverse drug reactions [9]. For 
instance, Pauwels et al. [10] investigated the chemical substructures of 
drugs and developed prediction models at the pre-clinical stage using 
k-nearest neighbors (kNN), support vector machine (SVM), ordinary 
canonical correlation analysis (OCCA), and sparse canonical correlation 
analysis (SCCA). Similarly, Liu et al. [11] employed five types of drug 
feature vectors and applied logistic regression (LR), naïve Bayes (NB), 
kNN, random forest (RF), and SVM to build their prediction models. 
Huang et al. [12] considered drug targets, protein-protein interaction 
networks, and gene ontology annotation and employed two classifiers - 
SVM and LR.

In recent studies, many researchers used graph-based methods to 
identify ADRs and ADEs from different data sources. GNN and its vari
ants have shown outstanding applicability and scalability when tailored 
for various prediction tasks [13]. Notably, Bean et al. [14] proposed a 
comprehensive knowledge graph of four types of nodes: drugs, protein 
targets, indications, and adverse reactions. Enrichment tests were 
applied to this graph to learn the characteristics of drugs and predict 
ADRs. Zitnik et al. [15] developed a novel poly-medication graph to 
predict ADRs resulting from given drug combinations. They utilized 
convolutional neural network methods to explore latent information 
between drugs and proteins, drugs to drugs, and proteins to proteins. In 
another study, Deac et al. [16] proposed a graph neural network (GNN) 
based on the common attention mechanism. ADR types and drug mo
lecular structures were used to predict possible ADEs resulting from 
multidrug combinations. Yu [17] developed a deep multi-structured 
neural network model based on multi-scaled features by utilizing 
sequence-based word embedding, substructure-based molecular finger
print, and chemical structure-based graph embeddings. Recently, more 
GNN-based models have emerged. Chen [18] introduced an innovative 
Graph Neural Network architecture. This sophisticated approach in
tegrates two key components: one based on Drug Chemical Structure 
Graphs and another leveraging Drug Knowledge Graphs. By synthesizing 
these elements, the model effectively captures the multimodal charac
teristics of pharmaceutical compounds for a better drug to drug pre
dictions. Khan et al. [19] proposed a new method of generating 
polymedication regimen and polymedication networks from the 
administrative data, which could be used as the basis for further 
detection of adverse drug reactions. It was proven in a study by Wang 
[20] that the involvement of sub-graph can help improve the ADE pre
dictions as this method provides more explainable paths. A recent 
comprehensive review of the datasets and approaches used to identify 
ADRs [21] suggests that researchers have made significant progress by 
leveraging comprehensive information from molecular drug structures, 
drug attributes such as drug pathways, protein interactions, and other 
data sources. A summary of these related works could be found in 
Table 1. While all these studies have made significant progress in pre
dicting adverse drug reactions using various machine learning tech
niques and data sources, there remains a gap in utilizing patient 
diagnosis history for ADE prediction, which comes as a research moti
vation for us to aim to fill this gap by proposing a novel graph-based 

modeling method that uses health claims data and patients’ ICD (In
ternational Classification of Diseases) code histories.

Zhou and Uddin proposed a subgraph prediction method for ADR 
that uses information from connected patients’ diagnosis histories and 
the topological structure of a patient’s history [22]. The current study 
deepens this research by varying the research questions and endeavors 
to solve three related problems. This approach represents a paradigm 
shift in ADE prediction by viewing each patient’s medical history as a 
subgraph within a larger graph of disease progression. The contributions 
of this research are threefold. First, this is the first study that uses only 
patients’ diagnosis history to predict ADEs by modeling each patient’s 
history as a subgraph that lies in a full graph where ICD codes are used as 
nodes, and the directed edges illustrate the progression of patients’ 
diseases. Second, administrative data is exclusively used as an enabling 
source for early prediction of ADEs, which is time-efficient and 
cost-effective in comparison to other computationally expensive 
methods. As has been pointed out in a recent review paper by Luo [23], 
extensive and rich drug features can undoubtedly improve model per
formance. Still, they could also introduce more noise and, therefore, a 
dataset where more readily accessible negative samples emerge as a 
crucial factor in enhancing predictions of ADEs. This gap shall be 
moderately bridged by the proposed dataset used in this study. This 
choice of data also distinguishes our work from most existing studies in 
the field, which typically incorporate various drug-related datasets. 
Third, the proposed framework not only predicts whether ADEs are 
associated with a specific patient but also identifies when and which 
ADEs occur with high accuracy.

This paper aims at three research questions. 

Research Question 1: Can graph machine learning methods distin
guish between patients who experience ADEs and patients who do 
not?
Research Question 2: During a particular admission, can this method 
be used to predict the likelihood of ADEs based on their prior 
diagnosis?
Research Question 3: What type(s) of ADEs are likely to develop?

RQ 1 helps us understand how well graph machine learning methods 
can predict ADEs. RQ 2 assists hospitals or clinics in predicting the 
likelihood of a patient experiencing an ADE during a particular admis
sion or clinical encounter. RQ 3 aids in understanding which specific 
ADEs are most likely to occur in patients.

The subsequent sections are structured as follows: The ‘Data Prepa
ration’ section outlines the data source, cohort selection, and data la
beling methods. The ‘Methods’ section describes the GNN-based 
methods employed to predict ADEs. The ‘Results’ section empirically 
evaluates the proposed framework’s efficacy for the three ADE predic
tion questions. Following this, we discuss the findings and limitations of 
the experiments and highlight potential avenues for future research. 
Finally, we conclude the study in the ‘Conclusion’ section.

2. Data preparation

This study draws upon health claims data from the Commonwealth 
Bank Health Society (CBHS), an Australian private health insurance 
company [24], to analyze patients’ progression of diseases over time 
using ICD codes. A flowchart that details the selection process and the 
corresponding number of patients at each stage is shown in Fig. 1. The 
dataset includes 419,952 de-identified patients from 1976 to 2018, of 
which 123,983 have at least one claim record. The dataset records pa
tients’ ID, age and gender and also each claim’s details, including service 
type (ICD-9 or ICD-10), item number (ICD codes), created date, and 
diagnosis procedure code, among others. This study focuses only on 
patients recorded with ICD-10 codes to ensure consistency, and 118,695 
patients were identified to have ICD-10 codes recorded following hos
pital admissions. The ICD-10 codes were utilized as inputs for the Graph 
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Table 1 
Summary of related papers.

Ref Title Dataset Method Evaluation metric Pros Cons

[10] Predicting drug side-effect 
profiles: a chemical 
fragment-based approach

SIDER, DrugBank Sparse 
canonical 
correlation 
analysis

Accuracy, Area Under 
the ROC Curve 
(AUROC)

The unified framework integrates 
chemical and pharmacological 
spaces. This integration enables 
the extraction of correlated sets of 
chemical substructures and side 
effects. It allows for the 
simultaneous prediction of 
numerous potential side effects.

These processes rely heavily on 
predefined chemical 
substructures and specific side- 
effect terminology.

[11] Large-scale prediction of 
adverse drug reactions 
using chemical, biological, 
and phenotypic properties 
of drugs

SIDER, DrugBank, 
PubChem, KEGG

LR, NB, kNN, 
RF, SVM

Accuracy, Precision, 
Recall, Area Under the 
ROC Curve (AUROC)

Chemical properties (compound 
signatures), biological elements 
(targets, transporters, enzymes, 
and pathways), and phenotypic 
characteristics (indications and 
known side effects) are integrated 
into this approach.

The phenotypic features were 
represented in a relatively simple 
manner. More complex 
techniques, such as categorizing 
drug indications through 
ontologies, warrant further 
investigation. Moreover, a drug’s 
action involves perturbing 
biological systems, 
encompassing various molecular 
interactions. These interactions 
include protein-protein 
interactions, signaling pathways, 
and pathways related to drug 
action and metabolism.

[12] Predicting adverse side 
effects of drugs

SIDER, DrugBank, 
HAPPI

Integrating 
gene network 
and gene 
annotation

Accuracy, Precision, 
Recall, Area Under the 
ROC Curve (AUROC)

Clinical observation data is 
combined with drug target 
information, protein-protein 
interaction (PPI) networks, and 
gene ontology (GO) annotations.

This approach enables the 
examination of functional 
relationships between proteins 
lacking direct associations. 
Furthermore, experimentally 
derived genotype-phenotype 
data, such as that obtained from 
genome-wide association 
studies, may prove valuable. 
Recent studies on genetic 
polymorphisms of 
cardiotoxicity-inducing enzymes 
have already demonstrated the 
potential of this additional 
information.

[14] Knowledge graph 
prediction of unknown 
adverse drug reactions and 
validation in electronic 
health records

SIDER, DrugBank, 
PubChem, Te EHR 
at the South London 
and Maudsley NHS 
Foundation Trust

Youden’s J 
statistic 
optimized 
logistic 
regression

Area Under the ROC 
Curve (AUROC)

A knowledge graph was 
constructed, comprising four node 
types: drugs, protein targets, 
indications, and adverse 
reactions. Utilizing this graph, 
they developed a machine 
learning algorithm founded on a 
basic enrichment test. Initial 
demonstrations showed this 
method’s exceptional 
performance in classifying known 
causes of adverse reactions.

A significant constraint of this 
approach lies in the necessary 
assumption that patients adhere 
to their prescribed medications. 
Additionally, they must assume 
that all medications taken by 
patients are accurately captured 
in the Electronic Health Record 
(EHR).

[15] Modeling polypharmacy 
side effects with graph 
convolutional networks

STITCH, SIDER, 
OFFSIDES, TWO 
SIDES

Decagon model Area Under the ROC 
Curve (AUROC), Area 
Under the Precision- 
Recall Curve (AUPRC)

Decagon’s functionality includes 
predicting associations between 
side effects and co-prescribed 
drug pairs (drug combinations). 
This capability allows for the 
identification of side effects that 
are not attributable to individual 
drugs in isolation.

The methodology incorporates 
molecular protein-protein and 
drug-target networks in 
conjunction with population- 
level side effect data from 
patients. Additional biomedical 
information sources, such as 
dosed drug concentration levels, 
may be pertinent to modeling the 
side effects of drug pairs. We 
anticipate exploring the 
potential benefits of integrating 
these additional data sources 
into the model.

[16] Drug-drug adverse effect 
prediction with graph co- 
attention

STITCH, SIDER, 
OFFSIDES, TWO 
SIDES

MHCADDI 
model

Area Under the ROC 
Curve (AUROC)

A graph neural network 
architecture has been introduced, 
achieving state-of-the-art results 
in predicting potential 
polypharmacy side effects from 
drug combinations. This 
architecture relies exclusively on 
the molecular structure 
information of drug pairs.

Potential future research could 
explore the application of similar 
cross-modal architectures to 
predict interactions in diverse 
network types. These could 
include language or social 
networks, where components 
from different networks interact 
with one another.

(continued on next page)
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Neural Network algorithm by modeling each patient as a subgraph. In 
this model, each node represents an ICD-10 code, and each edge signifies 
the progression of diagnoses over time. Detailed modeling methods and 
a simplified example are in Section 3.1: ICD-10 Code Network.

Further filtering includes that only individuals who had a minimum 
of two claim episodes were considered, and patients were filtered based 
on the ADEs codes identified in the previously mentioned systematic 
review [8]. After these filtering steps, 1660 patients who were labeled 
with at least one ADEs code were identified. For a fair comparison, 
selecting 1660 patients from the eligible individuals who did not expe
rience any ADEs was challenging since it is often difficult to find patients 
with identical demographic information, but we attempted to overcome 
this challenge by selecting patients based on similar age and gender 
distributions. Specifically, we stratified our cohorts into distinct seg
ments based on gender and age intervals of five years. To maintain a 
balanced representation, we employed a stratified sampling method to 
identify the corresponding number of negative patient cases within each 
segment. In this way, we ensured that our classification captured the 
unique characteristics of each age and gender group and that our anal
ysis accounted for potential differences between these groups. Table 2
displays detailed statistics regarding the age distribution of the two 

genders.
As pointed out by several scholars, establishing a causal link between 

an ADE and drug exposure can be a daunting task due to the existence of 
other potential risk factors such as medical care, underlying conditions, 
and genetic predispositions [25]. Notably, no universally accepted 
framework for assessing ADE causality is present [26]. There are tools 
used clinically, e.g., Naranjo score, but causal inference at a population 
level requires several considerations. Nonetheless, the study by Hohl 
et al. [8] contains a causality rating table in the appendix section that 
features nine categories, with A1, A2, B1, and B2 being four of those 
categories that directly relate to medication or drug usage. Categories C 
(very likely), D (likely), E (possible), and U (unlikely) signify varying 
degrees of the likelihood that the ICD-10 code corresponds with an ADE, 
while category V represents Vaccine-associated. Importantly, only cat
egories A1, A2, B1, B2, and C, D, and E are regarded as validated to have 
a causative link, which was used in this study, accordingly. These seg
ments, labeled A, B, C, D, and E, were defined based on distinct criteria 
outlined in Table 3.

To answer the three RQs posed earlier, the selected cohorts were 
labeled differently. A simplified example is shown in Table 4, which 
displays the ICD code (represented by random letters from ‘A’ to ‘N’) 
history of four patients, with each patient corresponding to a row and 
the time sequence represented from left to right. The bold and under
lined letters ‘F’ and ‘G’ denote ADEs. This table also addresses the three 
distinct RQs as abovementioned, and are labeled accordingly.

In RQ 1, the labels correspond to which group of cohorts the patients 
are in. The RQ 2 aims to predict when a patient will experience ADEs, 
given that they have been classified as ADE-associated patients based on 
the criteria established in RQ 1. The patient histories for Patient ii and 
Patient iii are divided into (n-1) segments, where n is the total number of 
their ICD codes. If the last ICD-10 code belongs to a class of ADE, this will 
be labeled as 1; otherwise, it will be labeled as 0. In RQ 3, an ADE will be 

Table 1 (continued )

Ref Title Dataset Method Evaluation metric Pros Cons

[17] MSDSE: Predicting drug- 
side effects based on multi- 
scale features and deep 
multi-structure neural 
network

SIDER, Drugbank, 
PubChem, MedDRA

MSDSE model Area Under the 
Precision-Recall Curve 
(AUPRC), mean 
reciprocal rank 
(MRR), F1, Matthews 
correlation coefficient 
(MCC)

Diverse features are fused to 
provide a more comprehensive 
portrayal of drug properties. 
Additionally, an adaptive neural 
network is designed to align with 
the feature data structure for 
enhanced processing. The 
resulting high-quality features 
facilitate subsequent prediction 
tasks.

A significant constraint of these 
approaches is their applicability 
only to drugs in the maturation 
stage.

[18] An effective framework for 
predicting drug–drug 
interactions based on 
molecular substructures 
and knowledge graph 
neural network

Drugbank, KEGG MSKG-DDI 
model

Accuracy, F1, Area 
Under the Precision- 
Recall Curve (AUPRC), 
Area Under the ROC 
Curve (AUROC)

MSKG-DDI uses knowledge- 
embedded neural networks on 
raw molecular graphs to extract 
rich drug features. It predicts 
drug-drug interactions by 
identifying substructure 
interactions, enabling predictions 
for new drug pairs.

Future work could focus on 
improving model interpretability 
through visualization and 
explanation methods and 
identifying key components in 
molecular and knowledge graphs 
for DDI predictions.

[20] Accurate and interpretable 
drug-drug interaction 
prediction enabled by 
knowledge subgraph 
learning

Drugbank, TWO 
SIDES

KnowDDI F1, Accuracy, Cohen’s 
k

They aim to develop an effective 
Drug-Drug Interation (DDI) 
predictor from rare DDI fact 
triplets. KnowDDI leverages 
biomedical knowledge and deep 
learning to enhance drug 
representations and similarities, 
compensating for the lack of 
known DDIs.

They exclude molecular features 
of drugs to test KnowDDI’s 
ability to learn from external 
knowledge graphs and DDI fact 
triplets alone.

Fig. 1. Study cohort selection process.

Table 2 
Age distribution of the studied cohort (3320 patients), categorized by gender.

Count Average Maximum Minimum Standard Deviation

Male 1450 51.96 106 1 25.80
Female 1870 50.22 106 0 22.80
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precisely identified using one-hot vectors, which will be assigned a 
length equivalent to the total number of ADEs contained in the dataset.

3. Methods

The baseline method is a consolidated and customized approach 
from the literature where multiple authors have used centrality mea
sures for graph prediction. Khan et al. [27] used a comorbidity network 
to understand chronic disease progression. Building on this study, Khan 
et al. [28] also proposed using several measures extracted from graph 
theory and social-network theory that look at the prevalence of 
comorbidities, transition patterns, and clustering to predict type 2 dia
betes. Lu et al. [29] represented patients as nodes and their shared 

diseases as weighted edges to predict diabetes. Additionally, Zhou et al. 
[30] proposed using multiple graph centrality measures to predict ADRs, 
which has successfully utilized administrative healthcare data to create 
a graph where patients are represented as nodes with edges showing 
their relatedness. Classical machine learning methods such as logistic 
regression (LR) can be applied to leverage network centrality measures 
to predict whether an individual would develop ADRs.

In contrast to the above baseline method, the overall framework of 
the proposed method is illustrated in Fig. 2, and its details will be 
illustrated in the following sub-sections. Based on this new framework, 
GNN-based algorithms should be able to learn the relationships between 
ICD codes and predict a subgraph.

3.1. ICD-10 Code Network

In this network, each sub-ICD code, such as C15.0 for the cervical 
part of the esophagus, is represented as a node. The progression of a 
patient’s ICD code history is depicted as a subgraph comprising some 
nodes, and the edges showing the sequence of their codes. For instance, 
in Fig. 3, four patients are illustrated, mirroring the data provided in 
Table 4. The ICD codes F and G are identified as ADEs codes, conse
quently making each patient associated with these two letters as posi
tive. This approach is particularly advantageous because it allows us to 
utilize information from ICD codes that may not be present in a patient’s 
diagnosis history but are related to codes that are present. Such re
lationships and implicit information cannot be easily revealed or 
explored using traditional machine learning algorithms when applied to 
the benchmarking patient network as shown in Fig. 4. This also gives an 
intuition that Graph Neural Network will be able to pick up the latent 
information and make better predictions.

3.2. GNN-based approaches

As demonstrated in the above construction of the proposed network 
of ICD codes, it is necessary to learn the hidden relationships between 
ICD codes in order to achieve more accurate predictions. To accomplish 
this task, GNN-based algorithms are utilized, as they are designed to 
aggregate information from neighboring nodes. The general mechanism 
of the GNN approach is displayed in Fig. 5. These GNNs are built by 
stacking layers, where each layer represents a node that aggregates in
formation from its neighbors that are one extra hop away. The inputs to 
the GNN at the first layer consist of the input embeddings of the sub
graph nodes, represented as vectors of dimension 256. The second layer 
contains vectors of dimension 128, and the third layer has vectors of 
dimension 64. Additionally, we employ the top-k pooling method in the 
GNN. This method selects the top k nodes based on a learned score, 

Table 3 
Classification of ICD-10 codes of ADEs with examples.

Code 
Category

Definition Code 
example

Code example description Number of code 
counts in the entire 
cohort

Number of 
distinct patient 
counts

A The ICD-10 code description includes the phrase 
‘induced by medication/drug’ or ‘induced by 
medication or other causes’.

J70.2 Acute drug-induced interstitial lung disorders 2141 1339
142.7 Cardiomyopathy due to drugs and other external 

agents
B The ICD-10 code description includes the phrase 

‘poisoning by medication’ or ‘poisoning by or harmful 
use of medication or other causes’.

T36 Poisoning by systemic antibiotics 364 168
X44 Accidental poisoning by, and exposure to, other 

and unspecified drugs, medicaments and 
biological substances

C Adverse drug events are deemed to be very likely, 
although the ICD-10 code description does not refer to 
a drug.

L51.2 Toxic epidermal necrolysis 237 209

D Adverse drug events are deemed to be likely, although 
the ICD-10 code description does not refer to a drug

N17 Acute renal failure with tubular necrosis 1538 534

E Adverse drug events are deemed to be possible, 
although the ICD-10 code dictionary does not refer to a 
drug

K25 Gastric ulcer 3135 937

Table 4 
An example of four patients’ ICD-10 Code history, where there might be ADEs 
represented by the underlined letters (e.g., F and G), and their labeling methods 
for the three questions. In the label column, ‘1’ denotes the presence of ADEs 
identified in the above patients’ history, while ‘0’ indicates the absence of such 
events.

Example of four patients’ ICD-10 Code history

Patient ICD-10 code history

i A B C D ​
ii E F G C H
iii I J F E ​
iv K L M N ​

Labels for RQ 1

Patient Label

i 0
ii 1
iii 1
iv 0

Labels for RQ 2

Patient history segment Label

ii – 1 (E, F) 1
ii – 2 (E, F, G) 1
ii – 3 (E, F, G, C) 0
ii – 4 (E, F, G, C, H) 0
iii – 1 (I, J) 0
iii – 2 (I, J, F) 1
iii – 3 (I, J, F, E) 0

Labels for RQ 3

Patient Label

ii 0, 0, 0, 1, 1, 0, 0, 0, 0, 0
iii 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
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allowing the model to focus on the most informative nodes in the graph. 
By retaining only the most relevant nodes, top-k pooling reduces the 
complexity of the graph and enhances the model’s ability to capture 
essential patterns and relationships, thereby improving the overall 
performance of the GNN in tasks such as classification and prediction. 
Every layer of a GNN embodies three fundamental functions: the mes
sage function, aggregation function, and update function.

This study analyses and compares four variants of GNN models, 
namely: Graph Convolutional Network (GCN) [31], Graph Attention 
Network (GAT) [32], Graph Attention Network version 2 (GATv2) [33], 
and Graph Sample and Aggregate (GraphSAGE) [34].

Graph Convolutional Network (GCN) is a fast approximation 
convolution method used in graph learning. GCN utilizes a layer-wise 
propagation rule, as shown below [31]: 

H(l+1) = σ

⎛

⎝D̃
−

1
2 ÃD̃

−
1
2 H(l)W(l)

⎞

⎠

Where H(l+1) refers to the activations of the (l+1) th layer after applying 
the activation function σ( ⋅) (such as ReLU) to the node embeddings in 
the l th layer; Ã represents the adjacency matrix of the constructed 

Fig. 2. Overall framework of this study.

Fig. 3. Proposed ICD-10 codes network, where patients are represented 
as subgraphs.

Fig. 4. Benchmark patient network.
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graph, including self-connections for each node (corresponding to the 
diagonal positions in the matrix); D̃ii =

∑
jÃij and the weight matrix W(l)

of the l th layer can be updated during training. H(l) is the activation 
matrix of the l th layer.

Graph Attention Network (GAT) utilizes an attention mechanism 
that involves a single-layer feedforward neural network and applies the 
LeakyReLU nonlinearity [32]. The coefficient for a node pair (i, j) can be 
computed using the formula below: 

αij =

exp
(

LeakyReLU
(

a→T
[

W h
→

i

⃦
⃦
⃦
⃦W h

→
j

]))

∑
k∈Ni

exp
(

LeakyReLU
(

a→T
[

W h
→

i

⃦
⃦
⃦
⃦W h

→
k

]))

Where T is transpose and ‖ is vector concatenation; Ni is the first-order 

neighboring nodes of the node i of the graph; h
→

is the input node fea
tures; W is the weight matrix that serves as a shared linear trans
formation that applies to every node.

The normalized attention coefficients are then used to compute a 
linear combination of the features to serve as the final output for the 
nodes after applying a nonlinearity σ: 

h
→ʹ

i = σ
(
∑

j∈Ni

αijW h
→

j

)

Graph Attention Network version 2 (GATv2) - To extend the 
popular GAT architecture, GATv2 is proposed to upgrade the static 
attention to be dynamic depending on the query node [33]. The differ
ence to GAT is that this version applies a layer after the nonlinearity 
LeakyReLU, which could be observed from below formula: 

αij =

exp
(

a→T⋅LeakyReLU
([

W h
→

i

⃦
⃦
⃦
⃦W h

→
j

]))

∑
k∈Ni

exp
(

a→T⋅LeakyReLU
([

W h
→

i

⃦
⃦
⃦
⃦W h

→
k

]))

Graph Sample and Aggregate (GraphSAGE) uniformly samples a 
fixed number of neighbors instead of the entire neighborhood. Unlike 
GCN, this approach uses various aggregation architectures such as Mean 
aggregator, LSTM aggregator, and Pooling aggregator [34]. In this 
study, the LSTM aggregator proposed by Hochreiter and Schmidhuber 
[35] is used. Since LSTM is inherently asymmetric due to its sequential 
processing of inputs, GraphSAGE is adapted to handle an unordered set 
of neighbors by applying LSTM to a random permutation of the 
neighbors.

4. Results

4.1. Baseline method results

The baseline method is only suitable for addressing RQs 1 and 2, as 
RQ 3 involves a multi-value prediction problem. The application of bi
nary prediction methods to multi-label classification scenarios necessi
tates a holistic consideration of all labels. Conventionally, the loss 
function is computed as an aggregation across all labels. However, this 
approach may not be optimal in the context of medical informatics, 
particularly in pharmacovigilance. The summation of losses can poten
tially lead to the oversight of critical ADEs, as the model might prioritize 
overall loss minimization at the expense of detecting less frequent but 
clinically significant events. The baseline method analysis focuses on 
extracting network centrality measures, such as weighted degree cen
trality, eigenvector centrality, closeness centrality, betweenness cen
trality, and clustering coefficient, to predict the likelihood of ADEs based 
on patient-specific features, such as age and gender, as well as network 
features. With this baseline approach, the GridSearchCV technique from 
the Scikit-Learn library [36] was used to search for the optimal hyper
parameters. The results of the two questions are presented in Table 5.

Answering RQ 1, the Random Forest algorithm demonstrated supe
rior performance, achieving an accuracy of 0.8011 along with better 
performance across other evaluation metrics. Similarly, in RQ 2, 
Random Forest was generally the best-performing classifier, exhibiting 

Fig. 5. The general mechanism of GNN-based training methods.
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an accuracy of 0.8323. Of note, Naïve Bayes achieved the highest pre
cision. Nevertheless, the absolute values of these performance metrics 
are not entirely satisfactory.

4.2. Experimental settings for the proposed model

The datasets for each of the three RQs were randomly divided into 
training, validation, and test sets based on a ratio of 0.6:0.2:0.2. This 
ensures enough data for training, validation, and testing while mini
mizing bias. To train the graph-based models, we utilized the PyTorch 
Geometric (PyG) library [37]. For all four architectures (GCN, GAT, 
GATv2Conv, and GraphSAGE), a three-layer neural network was 
implemented with an input of 128 embedding dimensions and hidden 
layers with 256, 128, and 64 neurons. The batch size was 256. All the 
models were trained for a maximum of 500 epochs using the Adam 
optimizer [38], with early stopping at 20 epochs. The convergence 
criteria are to let the training run for up to 500 epochs unless it stops 
early by detecting 20 consecutive epochs where the losses do not 
change. ReLu was used as the activation function for the hidden layers. 
The Sigmoid function was used as the activation function for the last 
layer. The selected parameter ranges are as follows: the dropout rate (p) 
varies from 0.1 to 0.9 in increments of 0.1, the top-k pooling ratio ranges 
from 0.2 to 0.8 in increments of 0.05, and the learning rate includes 
values of 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, and 0.5. Binary 
Cross-Entropy Loss for Q1,2 and BCEWithLogitsLoss for Q3 was 
employed to measure and minimize the loss during training. After 
testing various combinations of these relevant hyperparameters, the best 
ones used in the three RQs are in Table 6.

4.3. Evaluation and discussion

4.3.1. Evaluation metrics
To evaluate the prediction results, we employed five metrics: Accu

racy, Precision, Recall, F1-score, and AUROC. These metrics are defined 
based on the comparison of predicted labels against ground truth labels. 
The confusion matrix used for these calculations is presented below in 
Table 7, followed by the definitions of the five metrics. 

Accuracy=
TP + TN

TP + FP + FN + TN 

Precision=
TP

TP + FP 

Recall=
TP

TP + FN 

F1=
2* Precision*Recall
Precision + Recall 

The calculation of AUROC is based on True Positive Rate (TPR) and 
False Positive Rate (FPR): 

TPR=Precision =
TP

TP + FP 

FPR=
FP

FP + TN 

The area under the curve of TPR against FPR according to different 
thresholds is calculated as Area Under the Receiver Operating Charac
teristic curve (AUROC) and this is displayed in Fig. 6.

4.3.2. Results from the entire cohort
The results obtained from the four GNN-based models for each RQ 

are summarized in Table 8. Overall, the four GNN models have yielded 
satisfactory results based on their accuracy, F1-score, and AUROC scores 
for all three RQs, and they have outperformed the baseline model in all 
metrics for RQs 1 and 2. To evaluate the performance differences among 
the four proposed GNN variants, we employed independent Student’s t- 
tests. This statistical analysis was conducted to determine whether the 
superior performance of the highest-scoring variant was consistent and 
statistically significant, rather than occurring by chance. For example 
the first test would be to compare GraphSAGE and GCN for their accu
racy. The null hypothesis is GraphSAGE is not better than GCN in ac
curacy and the alternative hypothesis is that GraphSAGE does provide 
better accuracy. Similar tests are all done for each pair of results and the 
significance threshold is set at 0.05 as is conventionally used in statistics. 
The results of these comparative analyses are presented in Table 9. This 
approach allows us to assess the reliability and consistency of the per
formance advantages observed in the highest-performing GNN variant 
across multiple trials.

Regarding RQ 1, GraphSAGE exhibited superior performance in all 
metrics, with an accuracy of 0.8863. Moreover, this model demonstrated 
remarkable stability, as evidenced by its lowest standard deviation for 
accuracy and AUROC, which were 0.0146 and 0.0152. This finding can 
be attributed to the inductive nature of GraphSAGE, which is deemed to 
be transductive enough to allow for efficient generalization to unseen 
nodes in evolving graphs, in contrast to other GNN-based algorithms 
[34]. It is worth mentioning that all models outperformed the baseline 

Table 5 
Results of the machine learning algorithms applied to patients’ attributes and 
network centrality measures for RQ 1 and RQ 2.

RQ 1- classify two cohorts

Models Accuracy Precision Recall F1-score

Logistic Regression 0.7473 0.7505 0.7409 0.7456
Naïve Bayes 0.7400 0.7256 0.7719 0.7480
K Nearest Neighbors 0.6943 0.6833 0.7245 0.7033
Support Vector Machine 0.7646 0.7636 0.7664 0.7650
Decision Tree 0.7573 0.7681 0.7372 0.7523
Random Forest 0.8011 0.7936 0.8139 0.8036

RQ 2 - predict the timing of ADEs

Models Accuracy Precision Recall F1-score

Logistic Regression 0.7414 0.7822 0.6529 0.7117
Naïve Bayes 0.7475 0.8162 0.6240 0.7073
K Nearest Neighbors 0.8202 0.7865 0.8678 0.8251
Support Vector Machine 0.7737 0.7802 0.7479 0.7637
Decision Tree 0.8000 0.7719 0.8388 0.8040
Random Forest 0.8323 0.7955 0.8843 0.8376

Table 6 
Hyper-parameters of the four models (GCN, GAT, GATv2Conv, GraphSAGE) for 
the three RQs, respectively.

RQ 1 RQ 2 RQ 3

GCN Dropout (p) 0.5 0.5 0.3
Top k Pooling Ratio 0.8 0.8 0.9
Learning Rate 0.001 0.001 0.003

GAT Dropout (p) 0.5 0.5 0.3
Top k Pooling Ratio 0.8 0.8 0.9
Learning Rate 0.001 0.001 0.003

GATv2Conv Dropout (p) 0.5 0.5 0.3
Top k Pooling Ratio 0.8 0.8 0.9
Learning Rate 0.001 0.001 0.003

GraphSAGE Dropout (p) 0.5 0.5 0.3
Top k Pooling Ratio 0.8 0.8 0.9
Learning Rate 0.001 0.001 0.003

Table 7 
Confusion matrix.

Predicted

Positive Negative

Actual Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)
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model across all metrics, thus underscoring the effectiveness of 
GNN-based models for ADE prediction.

The motivation for setting up RQ 2 was to investigate whether the 
ICD codes of non-ADE-associated patients played a crucial role in the 
predictive power of the models in RQ 1. By not including any negative 
patients in RQ 2, the models can more explicitly learn from the positive 
patients’ ICD code histories, enabling the prediction of the timing when 
ADEs might occur. Interestingly, the GAT model was found to be the 

best-performing model among the four for RQ 2, while GraphSAGE was 
the best for RQ 1.

In RQ 3, the GraphSAGE model exhibits the highest accuracy of 
0.9367, while all other models yield results above 92 %. Notably, the 
standard deviation for RQ 3 is remarkably small across various experi
ments. With respect to accuracy measurement, GraphSAGE’s standard 
deviation is merely 0.0045, denoting that the model is stable and robust. 
In comparison to RQs 1 and 2, the low precision of RQ 3 is compre
hensible and credible. The GraphSAGE model’s precision fluctuates 
around 0.3709, signifying that only about 37 % of predicted positives 
correspond to the actual values. Nevertheless, considering the Recall’s 
high value of 98.12 %, it can be inferred that GraphSAGE correctly 
predicts 98.12 % of actual positive subgraphs despite low precision. It is 
noteworthy that in this medical setting, a higher recall is more valuable, 
as detecting possible ADEs provides greater assurance of patient safety, 
even if it results in some false positive cases. The low precision also 
implies that they could be used to recognize possible unreported ADEs. 
The global ADE research area has encountered a contentious issue of 
underreporting, as is also the case in Australia [39]. Therefore, these 
models could predict unobserved ADEs, thereby serving as a tool to 
address the possible underreporting issue and providing additional 
confidence to researchers and patients. The primary clinical utility 
would be the capability to forecast the occurrence and identify the type 
of ADEs during a patient’s admission, leveraging their past admission 
history. This predictive insight would enable clinicians to proactively 
intervene, thereby mitigating the associated risks. Taking a step back to 
address the high recall but low precision issue, implementing rule-based 
filters or secondary machine learning models to refine the initial pre
dictions would be a suitable approach in this medical context.

The results from the independent t-tests presented in Table 9
examine the null hypothesis that the best model for each RQ does not 
have a significantly greater performance metric score compared to the 
other models, and the alternative hypothesis is that the best model has a 
higher performance score than the corresponding compared models, 
which assesses that the result is not due to chance. For RQ 1, the null 
hypothesis is rejected for all performance metrics except Recall when 
comparing GraphSAGE to GCN and GAT. In these cases, GraphSAGE 
exhibits a significantly better performance than the other models. We 
also note that the p-value in the failed tests is just slightly greater than 
0.05. In RQ 2, the null hypothesis is rejected only when comparing the 
best model with GATv2Conv. That means only GATv2Conv’s perfor
mance is significantly lower than all the other three. For RQ 3, the null 
hypothesis is rejected for precision and recall when comparing 
GraphSAGE to GAT and GATv2Conv. Overall, these results suggest that 
GraphSAGE and GAT generally outperform other models in their 
respective best-performing RQs. Further analysis or a larger sample size 
may be needed to determine whether these results hold up or if addi
tional factors might influence model performance.

We have also added a table to show the time complexity of the 
proposed model in Table 10 where the execution time of various graph 
neural network models was compared across three RQs. The GAT model 
exhibited the highest variability, particularly in RQ 1, with a standard 
deviation of 886.85 s. GATv2Conv demonstrated the longest execution 
time for RQ 2 at an average of 4584.47 s. Interestingly, GraphSage 
performed the fastest for RQ 3. Overall, the choice of model significantly 
impacts execution time, with performance varying across different RQs.

4.3.3. Results from ADE segments
Further, experiments were conducted focusing on ADE segments, 

delineated according to the classification system proposed by Hohl and 
the detailed description of these categories has been presented in the 
data preparation section. These further experimentations were con
ducted utilizing the GraphSAGE framework, focusing on a subset of the 
ADEs delineated in the accompanying table. These ADEs were catego
rized into five subsections: A, B, C, D, and E. This segmentation was 
pursued with the objective of exploring whether distinct identification 

Fig. 6. The definition of AUROC.

Table 8 
Results of the four models (GCN, GAT, GATv2Conv, GraphSAGE) for the three 
RQs.

RQ 1- classify two cohorts

Models Accuracy Precision Recall F1-score AUROC

GCN 0.8631 ±
0.0236

0.8551 ±
0.0275

0.9003 ±
0.0270

0.8769 ±
0.0221

0.8597 ±
0.0232

GAT 0.8717 ±
0.0149

0.8706 ±
0.0241

0.8997 ±
0.0188

0.8841 ±
0.0126

0.8692 ±
0.0161

GATv2Conv 0.8676 ±
0.0206

0.8703 ±
0.0237

0.8944 ±
0.0268

0.8819 ±
0.0188

0.8643 ±
0.0209

GraphSAGE 0.8863 ±
0.0146

0.8812 ±
0.0213

0.9128 
± 0.0192

0.8965 
± 0.0132

0.8841 
± 0.0152

RQ 2 - predict the timing of ADEs

Models Accuracy Precision Recall F1-score AUROC

GCN 0.8763 ±
0.0177

0.9069 ±
0.0224

0.8355 ±
0.0354

0.8691 ±
0.0194

0.8751 ±
0.0169

GAT 0.8769 ±
0.0206

0.9072 ±
0.0249

0.8402 
± 0.0403

0.8718 
± 0.0243

0.8760 
± 0.0205

GATv2Conv 0.8569 ±
0.0280

0.9103 ±
0.0333

0.7873 ±
0.0611

0.8423 ±
0.0319

0.8562 ±
0.0271

GraphSAGE 0.8753 ±
0.0257

0.9054 ±
0.0324

0.8328 ±
0.0394

0.8669 ±
0.0267

0.8744 ±
0.0253

RQ 3 - predict what ADE(s) would occur

Models Accuracy Precision Recall F1-score AUROC

GCN 0.9253 ±
0.0051

0.3634 ±
0.0211

0.9781 ±
0.0091

0.5296 ±
0.0277

0.9558 ±
0.0056

GAT 0.9346 ±
0.0054

0.3567 ±
0.0233

0.9764 ±
0.0081

0.5221 ±
0.0255

0.9547 ±
0.0056

GATv2Conv 0.9336 ±
0.0067

0.3547 ±
0.0258

0.9797 ±
0.0066

0.5203 ±
0.0285

0.9558 ±
0.0055

GraphSAGE 0.9367 ±
0.0045

0.3709 ±
0.0156

0.9812 
± 0.0076

0.5382 
± 0.0165

0.9581 
± 0.0048
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of causal relationships within these subsections could yield varied out
comes. The results of these experiments are presented in Table 11.

Upon examining the results by subsection, it appears that RQs 1 and 
3 do not exhibit significant variance across the different categories; they 
have all maintained a nearly identical level of predictive power and 
robustness. However, it is notable that the outcomes from RQ 2 reveal 
that subsections B, C, and E demonstrate a much higher level of accuracy 
(0.9144, 0.9031, and 0.9271, respectively) compared to the general 
results (0.8753), while subsections A and D exhibit considerably lower 
accuracy (0.7231 and 0.7144, respectively). This warrants further ex
amination to explore potential causes, such as the spatial distribution of 
various sections or the unique intrinsic characteristics that distinguish 
the different categories as they have been identified based on different 
key words or different causal ratings.

Interpreting how graph-based models predict and classify different 
cohorts has been a challenging task due to the fact that latent infor
mation present in the hidden layers is difficult to visualize [40]. We 
utilized the final convolution layer of the four models for RQ 1 and 
plotted their abilities to distinguish between the two cohorts in Fig. 7a 
using the Seaborn library [41]. The yellow circles represent positive 
patients, while the blue circles represent negative patients. As the 
dimension of the last hidden layer is 64, principal component analysis 
(PCA) was applied to the convolution vector in the last hidden layer, and 
a three-dimensional vector was used to make the plots. It is apparent 
that GraphSAGE and GAT are better at classifying the two classes of data 
points, but it is not visually discernible which one between these two is 
superior. The same plotting technique was also used for RQ 2 in Fig. 7b.

The practical implementation of this model represents a significant 
advancement in pharmacovigilance and patient safety. The current 
system for detecting ADEs primarily relies on passive reporting mech
anisms, wherein clinicians and patients voluntarily report incidents after 

Table 9 
Independent t-test examining the null hypothesis that the best model for each question does not have a significantly greater performance metric score than others.

RQ 1- classify two cohorts

Accuracy Precision Recall F1-score AUROC

GraphSAGE GraphSAGE GraphSAGE GraphSAGE GraphSAGE

GCN 0.0004 0.0009 0.0637 0.0003 0.0002
GAT 0.0002 0.0908 0.0002 0.0004 0.0000
GATv2Conv 0.0000 0.0192 0.0003 0.0000 0.0000

RQ 2 - predict the timing of ADEs

Accuracy Precision Recall F1-score AUROC

GAT GATv2Conv GAT GAT GAT

GCN 0.2218 0.1659 0.3295 0.3110 0.2385
GAT – 0.2972 – – –
GATv2Conv 0.0025 – 0.0005 0.0001 0.0003
GraphSAGE 0.1489 0.2550 0.1961 0.1272 0.1984

RQ 3 - predict what ADE(s) would occur

Accuracy Precision Recall F1-score AUROC

GraphSAGE GraphSAGE GraphSAGE GraphSAGE GraphSAGE

GCN 0.4235 0.7747 0.4669 0.5458 0.8837
GAT 0.8619 0.0268 0.0495 0.7797 0.5625
GATv2Conv 0.5189 0.0049 0.0495 0.1788 0.8035

Table 10 
Execution time comparison of graph neural network models across RQs (in 
seconds).

RQ1 RQ2 RQ3

GCN 1301.13 ± 34.77 2113.62 ± 131.30 1676.40 ± 57.86
GAT 2712.66 ± 886.85 3124.85 ± 151.51 1422.30 ± 30.93
GATv2Conv 1879.52 ± 56.98 4584.47 ± 353.87 1641.70 ± 56.65
GraphSage 1865.91 ± 110.25 2518.12 ± 108.40 1391.76 ± 46.88

Table 11 
Results of sub-sections using GraphSAGE setups.

RQ 1- classify two cohorts

Sub- 
sections

Accuracy Precision Recall F1-score AUROC

A 0.8859 ±
0.0183

0.8851 ±
0.0213

0.9045 ±
0.0209

0.8946 ±
0.0180

0.8841 ±
0.0180

B 0.8829 ±
0.0163

0.8808 ±
0.0242

0.9040 ±
0.0180

0.8920 ±
0.0164

0.8814 ±
0.0170

C 0.8894 ±
0.0158

0.8797 ±
0.0220

0.9232 ±
0.0197

0.9006 ±
0.0142

0.8858 ±
0.0166

D 0.8866 ±
0.0141

0.8757 ±
0.0243

0.9209 ±
0.0193

0.8974 ±
0.0127

0.8838 ±
0.0148

E 0.8846 ±
0.0188

0.8851 ±
0.0206

0.9049 ±
0.0216

0.8947 ±
0.0166

0.8829 ±
0.0191

RQ 2 - predict the timing of ADEs

Sub- 
sections

Accuracy Precision Recall F1-score AUROC

A 0.7231 ±
0.0386

0.7563 ±
0.0592

0.6811 ±
0.0585

0.7138 ±
0.0367

0.7254 ±
0.0385

B 0.9144 ±
0.0215

0.9122 ±
0.0341

0.9194 ±
0.0315

0.9151 ±
0.0208

0.9144 ±
0.0205

C 0.9031 ±
0.0326

0.9120 ±
0.0297

0.8919 ±
0.0416

0.9015 ±
0.0322

0.9034 ±
0.0314

D 0.7144 ±
0.0390

0.7291 ±
0.0657

0.6896 ±
0.0434

0.7067 ±
0.0374

0.7158 ±
0.0394

E 0.9271 ±
0.0123

0.9454 ±
0.0337

0.9041 ±
0.0180

0.9237 ±
0.0144

0.9267 ±
0.0125

RQ 3 - predict what ADE(s) would occur

Sub- 
sections

Accuracy Precision Recall F1-score AUROC

A 0.9378 ±
0.0029

0.3711 ±
0.0122

0.9809 ±
0.0099

0.5384 ±
0.0135

0.9585 ±
0.0058

B 0.9359 ±
0.0049

0.3625 ±
0.0258

0.9794 ±
0.0045

0.5286 ±
0.0275

0.9568 ±
0.0034

C 0.9370 ±
0.0046

0.3634 ±
0.0200

0.9811 ±
0.0050

0.5301 ±
0.0217

0.9582 ±
0.0034

D 0.9386 ±
0.0044

0.3710 ±
0.0194

0.9817 ±
0.0054

0.5382 ±
0.0207

0.9593 ±
0.0041

E 0.9387 ±
0.0044

0.3680 ±
0.0180

0.9847 ±
0.0078

0.5355 ±
0.0186

0.9608 ±
0.0022
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they occur [42]. This approach, while valuable, is inherently limited by 
substantial underreporting, which can lead to delayed recognition of 
potential drug safety issues and inadequate risk assessment. By 
leveraging administrative data, as demonstrated in our study, we have 
developed a more proactive and comprehensive approach to ADE 
detection and prediction, which is critical to improving the detection 
rate and ability to predict ARS at a given presentation.

Regardless, this study has several limitations. First, any window time 
between diseases were not considered, which means a month’s gap 
between diseases or a year’s gap between diseases were embedded with 
the same methods. As a result, ICD codes associated with an ADE could 
only serve as a connection in the entire graph without providing further 
insights into their relationships with a specific ADE. Second, due to 
people making bulk claims for a couple of prior medication expenses on 
a single date, the claims data may not accurately reflect ICD-code 
sequencing, and we did not have the ability to distinguish between 
primary ICD-code and supportive ICD-code for each admission. There
fore, the sequenced modeling of the ICD codes in the dataset may not 
reflect reality precisely. Third, personal attributes such as age and 
gender, which have been shown to be important in ADE studies [43,44], 
were not considered. Fourth, The results from our method are not 

compared to other existing works in the literature due to different 
problem formulations and our attempts to predict various categories of 
ADEs.

As can be seen from Table 10, training GNNs on large-scale health 
claims data presents significant computational challenges due to the 
sheer volume and complexity of the data, let alone that we have only 
included a small number of patients used as training and testing samples. 
To manage the challenges effectively, we can employ various strategies 
such as graph sampling techniques, distributed computing, and GPU 
acceleration. For instance, node-wise or subgraph sampling can reduce 
memory requirements, while distributed processing across multiple 
machines can handle larger datasets. To ensure scalability, incremental 
learning methods and model compression techniques like knowledge 
distillation can be utilized. By combining these approaches, it can be 
expected to develop GNN models that are both computationally efficient 
and capable of extracting valuable insights from vast health claims 
datasets.

5. Conclusion

This study proposes a novel approach to predict ADEs using a 

Fig. 7a. Three-dimensional plots of the final convolution layer in the four proposed models for RQ 1.
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network of ICD-10 codes extracted from CBHS claims history. By 
modeling patients as subgraphs and applying GNN-based machine 
learning methods to these subgraphs, the study aims to answer three 
RQs: the likelihood of a patient experiencing an ADE, the timing of such 
events, and the specific ADEs a patient might develop. Experimental 
results showed that GraphSAGE had the highest accuracy for RQs 1 and 
3, 0.8863 and 0.9367, respectively, while GAT had the best performance 
for RQ 2, which was 0.8769. These findings highlight the potential of 
GNNs to accurately model the complex relationships between ICD-10 
codes and predict the occurrence of ADEs. These models could be use
ful in drug development and clinical settings to improve patient care. In 
light of the limitations identified in this study, several avenues for future 
research can be considered to enhance the framework and further 
contribute to the field of adverse drug event prediction. Future studies 
could explore the integration of time-based information [45], capturing 
the time gaps between diseases and leveraging them to gain deeper in
sights into the relationships between ICD codes and specific ADEs. 
Additionally, finding methods to distinguish primary and supportive 
ICD codes within the claims data would further refine the accuracy and 
real-world applicability of the model. To address scalability challenges 
associated with larger datasets, we could investigate the integration of 
graph machine learning with federated learning approaches [46] or 

consider a fog computing environment [47], which could potentially 
reduce computational time and enhance model performance.
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Fig. 7b. Three-dimensional plots of the final convolution layer in the four proposed models for RQ 2.
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