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Speech super-resolution (SSR) aims to predict a high-resolution (HR) speech signal1

from its low-resolution (LR) counterpart. The previous models usually perform this2

task at a fixed sampling rate, reconstructing only high-frequency spectrogram compo-3

nents and merging them with low-frequency ones in noise-free cases. These methods4

achieve high accuracy but they are less effective in real-world settings, where ambi-5

ent noise and flexible sampling rates are presented. To develop a robust model that6

fits practical applications, in this work, we introduce Super Denoise Net (SDNet), a7

neural network for noise-robust SR with flexible input sampling rates. To this end,8

SDNet’s design includes gated and lattice convolution blocks for enhanced repair and9

temporal-spectral information capture. The frequency transform blocks are employed10

to model long frequency dependencies, and a multi-scale discriminator is proposed11

to facilitate the multi-adversarial loss training. The experiments show that SDNet12

outperforms current state-of-the-art noise-robust SSR models on multiple test sets,13

indicating its robustness and effectiveness in real-world scenarios.14
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I. INTRODUCTION15

Speech super-resolution (SSR) aims to reconstruct missing high-frequency components16

from known low-resolution speech signals, thereby rendering speech clearer, more natural,17

and easier to comprehend. For speech communication, the application of SSR technology18

can effectively enhance call quality, mitigate distortion, and augment the intelligibility and19

comfort of speech. Furthermore, for numerous downstream tasks, this technique can also20

aid machines in better understanding human language, thus improving the accuracy and21

efficiency of tasks such as speech recognition (Haws and Cui, 2019) and speech synthe-22

sis (Yoneyama et al., 2023).23

Early SSR approaches primarily employed signal processing methods grounded in source-24

filter theory (Taylor and Reby, 2010), which models the speech signal as a product of the25

source signal passing through a vocal tract filter. These methods effectively extend the26

low-frequency signal by mapping low-frequency to high-frequency features using statistical27

techniques. However, with the advent and development of deep learning technology, neural28

network-based methods have emerged as the predominant approach in this field, demon-29

strating superior performance.30

Despite substantial progress in deep learning-based SSR in recent years, current fre-31

quency domain-based approaches typically keep the low-frequency components and predict32

only the high-frequency components before combining the two. This method performs well in33

noise-free environments but fails to remove noise from the low-frequency part, introducing34

distortions in high-frequency prediction due to noise interference. As most existing net-35
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works are not designed to handle noise, retraining them with noisy data will be ineffective.36

Additionally, existing SSR models operate under fixed configurations, transforming spe-37

cific low-sample-rate inputs to specific high-sample-rate outputs, and do not generalise well38

across different low-sampling rates. Performance degrades with varying speech databases39

or low-resolution signals generated by different downsampling schemes (Wang and Wang,40

2021).41

Recent studies have achieved high-quality speech super-resolution with flexible sampling42

rate inputs, often using Mel spectroscopy followed by neural vocoder synthesis. While these43

methods produce high-quality speech at 44.1 kHz or 48 kHz in noise-free environments,44

their large model sizes and numerous parameters complicate training and inference. Some45

efforts have focused on noise robustness in SSR, employing multi-stage training strategies46

or intermediate variable adjustments to jointly remove noise and increase the sampling47

rate from 8 kHz to 16 kHz. However, these methods suffer significant performance drops48

with certain noise types or low signal-to-noise ratios, and their complexity affects model’s49

reproducibility.50

For image super-resolution, convolutional neural networks with lattice blocks have demon-51

strated remarkable superiority (Luo et al., 2022, 2020a), and this design has been successfully52

applied to more complex image restoration tasks. Despite their success in computer vision,53

these networks have not yet been explored for audio restoration tasks, including SSR, noise54

suppression, and packet loss concealment.55

To improve SSR performance in noisy environments, we propose Super Denoise Net (SD-56

Net), a neural network designed to remove noise while extending bandwidth. Drawing57
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inspiration from image restoration, we incorporate gated convolution to boost the network’s58

generative capability and introduce lattice convolution blocks in the bottleneck layer to59

capture more information in the time-frequency domain. Training the model with large,60

noise-containing datasets, our experiments show that SDNet significantly outperforms ex-61

isting SSR models in both objective and subjective evaluations. An ablation study further62

highlights the impact of our design on model performance.63

Our main contributions are summarised as follows:64

• We introduced lattice blocks and gated convolution structures, which have proven65

effective in image restoration, to the SSR task, enhancing the network’s recovery ca-66

pabilities.67

• Through data augmentation, we achieved greater noise robustness compared to exist-68

ing noise-robust speech super-resolution models, without requiring prior knowledge of69

the input signal’s sampling rate.70

• Within an adversarial training framework, we developed a multi-scale discriminator71

strategy to optimise multiple loss functions72

• Our model outperforms the baseline in both noise-free and noisy environments, em-73

ploying a simpler training strategy and resulting in negligible artifacts in the transition74

frequency band.75

The rest of the paper is organized as follows. In Section II, we introduce the settings76

of the task addressed in this article and its related works. In Section III, we describe the77

details of the proposed network and the data processing method. We document the details78
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of the experimental settings as well as the different baselines in Section IV. In Section V, we79

report and analyse the experimental results, followed by the conclusion and future works in80

Section VI.81

II. PROBLEM FORMULATION AND RELATED WORKS82

A. Modeling of SSR Task83

Speech super-resolution is also known as the bandwidth extension of speech signals in84

many previous works. In the time domain, low-sampling-rate speech contains fewer sample85

points for the same duration, and the super-resolution model predicts extra sample points86

based on the information from the low-sampling-rate speech waveform, so that they are87

converted into high-sampling-rate speech with better sound quality. From the aspect of88

frequency domain, due to the increase in the number of sampling points in the same duration,89

the missing high-frequency portion of the low-sampling-rate speech signal is supplemented.90

In a formal setting, noted in previous work’s description (Kuleshov et al., 2017), we91

represent a low-resolution speech waveform as x(t), t = 0, 1, ..., T, T ∈ R, where T is the92

duration (in seconds) of this signal and x(t) is the amplitude at time t. When it is sampled93

at a sampling rate of R1 Hz, t = 1
R1
, 2
R1
, ..., T , and the goal of SSR is to generate a high-94

resolution version ŷ(t) of x(t) that has a sampling rate R2 > R1 and the same duration as95

x(t), where t = 1
R2
, 2
R2
, ..., T .96

In noisy environments, the speech signal is corrupted by noises, which can be expressed97

by98
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xn(t) = x(t) + n(t), (1)

where n(t) is the noise with a sampling rate of R1 Hz. The noise-robustness of SSR means99

the capability to restore the high-resolution clean version ŷc(t) of xn(t), i.e. removing the100

noise of low-frequency part and predicting the clean high-frequency part at the same time.101

B. Noise-Free SSR Methods102

Most early SSR approaches are bandwidth extension (BWE) methods based on traditional103

signal processing theory and the source-filter speech generation model (Taylor and Reby,104

2010). Within this framework, various techniques have been developed to estimate wide-105

band spectral envelopes (Cheng et al., 1994; Park and Kim, 2000), including methods based106

on Gaussian Mixture Models (GMM) (Nour-Eldin and Kabal, 2009), Hidden Markov Models107

(HMM) (Bauer and Fingscheidt, 2008), and codebook mapping (Pulakka et al., 2013).108

With the current developments of deep learning, new methods and models to further109

improve the performance of SSR tasks have been proposed (Birnbaum et al., 2019; Li and110

Lee, 2015; Ling et al., 2018; Wang and Wang, 2021). TFNet (Lim et al., 2018) enhances the111

SSR quality by jointly optimizing both the time and frequency domain. AFiLM (Rakotoni-112

rina, 2021) introduces self-attention based on TFiLM (Kuleshov et al., 2017) and achieves113

a better performance with a faster inference speed. Utilizing a U-Net, (Li et al., 2021) and114

(Nguyen et al., 2022) improve the SSR accuracy under a constraint of low complexity, with115

pre-training and self-supervised learning methods, respectively.116

These previous studies have been centered on transforming the speech signal from narrow-117

band to wide-band, and super-resolution to a higher resolutions was still not achieved.118
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(a) (b) (c) (d) (e)

FIG. 1. (color online) Spectrograms of reconstructed and original speech. (a) Narrow-band speech

without noise. (b) Wide-band version of (a) generated by a noise-free SSR model. (c) Narrow-band

speech containing noise. (d) Wide-band version of (c) generated by a noise-free SSR model. (e)

Wide-band version of (c) generated by a noise-robust SSR model.

With the background of a general promotion in the quality of network communications,119

recent works mainly focus on generating high-fidelity and full-band speech (Zhang et al.,120

2021). As has been verified in computer vision, generative model has high the potential121

in generative tasks like image super-resolution and reconstruction, so generative adversarial122

network (GAN) and diffusion based methods are widely adopted in current SSR works (Han123

and Lee, 2022; Moliner and Välimäki, 2023; Shuai et al., 2023; Yoneyama et al., 2023; Yu124

et al., 2023). In (Mandel et al., 2023), the authors propose a GAN operating in the frequency125

domain to eliminate the artifacts at the transition region between existing and generated126

frequency bands. BAE-Net (Yu et al., 2024) addresses the fluctuations of effective bandwidth127

in real-world audio for SSR. With a latent diffusion model and a neural vocoder, AudioSR128

(Liu et al., 2024) handles the super-resolution of speech, music recording, and sound effects.129

A similar two-stage vocoder-based structure was also used by Fre-Painter (Kim et al., 2024).130
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However, many of these studies are limited by fixed sampling rates and the concatenation131

of different bands, leading to degraded performance in noisy environments (see FIG. 1(d)132

and artefacts in transition parts (see FIG. 1(a). These issues also hinder retraining the133

original models with noisy data.134

C. Noise-Robust SSR Methods135

In practical scenarios, speech signals are often corrupted different noises and present136

various bandwidth ranges, which makes it hard to directly improve their quality by most137

noise-free SSR models, and this issue is visualized in Figure 1. In order to make SSR138

techniques more practical, it is crucial to investigate the robustness and bandwidth-adaption139

in complex environments.140

A typical approach to solve the noise problem in SSR task is to first perform speech141

enhancement on noisy narrow-band signals and then followed by a bandwidth extension142

under noise-free conditions. For example, (Moreno et al., 1996) applied an iterative vector143

Taylor series (VTS) approximation algorithm on feature enhancement, and then reconstruct144

the wide-band signal with a Gaussian mixture model or a maximum a posterior estimation145

(Seltzer et al., 2005; Seo et al., 2014). The same approach also applies to two-stage neural146

network (Chen et al., 2022; Liu et al., 2018; Taher et al., 2023). These methods, although147

simple and straightforward, faces difficulties in phase estimation. In addition, some multi-148

task models (Hernandez-Olivan et al., 2024; Moliner et al., 2023) consider noise, clipping,149

and bandwidth loss simultaneously, but such approaches deal with different single tasks150
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separately with a versatile framework and are not effective for the case where multiple151

distortions co-exist.152

To further develop the noise-robust SSR model, (Hou et al., 2020) proposes a multitasking153

framework that reconstructs clean wide-band signals directly from noisy narrow-band signals154

by introducing intermediate variables into the loss function. VoiceFixer (Liu et al., 2022)155

fixes multiple distortions simultaneously in the Mel-spectrum domain and then reconstructs156

the waveform with a neural vocoder. In 2023, (Lin et al., 2023) proposed EP-WUN based157

on the WaveUNet backbone (Stoller et al., 2018). To treat noise suppression and super-158

resolution jointly, the method uses three stages of training and introduces intermediate159

variables into the improved triplet loss. The authors claim that the model achieves the state-160

of-the-art performance on noise-robust SSR task currently and introduce a large positive161

impact on the accuracy of the speech recognition task.162

In summary, there are relatively few studies on noise-robust SSR compared to noise-163

free SSR. Most models extend 8 kHz recordings to 16 kHz for clean speech, leaving room164

for improvement in robust bandwidth adaptation. Additionally, there is a need for the165

development of simple and effective training algorithms.166

III. PROPOSED NETWORK167

Figure 2 illustrates the SSR model proposed in this paper. It employs a GAN archi-168

tecture comprising pre- and post-processing modules, a generator operating in the spectral169

domain, and a multi-scale discriminator. Initially, we perform a short-time Fourier trans-170

form (STFT) on the narrow-band speech and obtain the wide-band speech by zero-padding171
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FIG. 2. (color online) The structure of proposed generative adversarial network.

the high-frequency part through resampling. Unlike conventional noise-free methods, our172

resampling step maintains the same scale for input and output, enabling the network to173

make comprehensive end-to-end predictions across the entire bandwidth, thus overcoming174

the limitations of previous splicing methods that fail to eliminate low-frequency noise and175

produce artefacts. The generator features a traditional U-shaped structure with encoder176

and decoder modules and a bottleneck layer. Notably, we incorporate lattice convolution177

blocks (LBs) in the bottleneck layer to capture both local and global dependencies effec-178

tively, reducing computational complexity while preserving modelling capability through179

sparse connectivity. Detailed descriptions of each module are given below:180
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FIG. 3. (color online) The structure of encoder layer (a) and decoder layer (b).

A. Spectral Generator181

1. Encoder and Decoder Layer182

As depicted in FIG. 2, the encoder-decoder framework consists of four layers each, fa-183

cilitating the transformation of input data into a latent representation and its subsequent184

reconstruction. With the encoder, depicted in FIG. 3(a), the initial layer undertakes the185

reshaping of the input via a 2D convolution operation. Following this, a pivotal frequency186

transform block (FTB) (Yin et al., 2020) intervenes to capture non-local correlations within187

the spectrogram, traversing along the frequency axis. The operations within each FTB can188

be succinctly represented by a distinct formula, indicated in FIG. 4(a):189
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FIG. 4. (color online) The structure of FTB module (a) and gated convolution (b).

XO = Conv(Concat(Linear(XI ⊗ Attn(XI)))), (2)

where XI , XO, and ⊗ represent input, output spectrogram tensor, and point-wise mul-190

tiplication, with the Attn(·) operation highlighted in the dotted box. In the context of191

time-frequency domain, non-local correlations manifest along the frequency axis. A promi-192

nent example of such correlations pertains to harmonics, which have been demonstrated193

to aid in reconstructing distorted spectrograms. However, a direct concatenation of 2D194

convolution layers with small kernels fails to adequately capture these global correlations.195

In this work, we set the incorporation of FTBs at the beginning of the residual branches196

to address this limitation, ensuring that the resulting features encompass a comprehensive197

frequency receptive field. The gated convolution (GConv) was first proposed in free-form198

image inpainting (Yu et al., 2019), which has similar points with SSR task in uncertain199

sampling rates. In FIG. 4(b), with a soft-masking and a featuring branch, gated convolu-200

tion layer learns a dynamic feature selection mechanism for each channel and each spatial201
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location, promoting the adaption of our model for various bandwidth distortion in complex202

environments. It is formulated by203

M =
∑∑

WMC ·Xin, (3)

204

F =
∑∑

WFC ·Xin, (4)

205

Xout = ϕ(F )⊗ σ(M ), (5)

where σ is sigmoid function and ϕ can be any activation functions. In our study, ϕ is206

LeakyReLU (slope=0.2, inplace=True), WMC and WFC are convolutional filters of soft-207

masking and feature branches, M and F denote mask and feature tensor.208

Within the inner encoder architecture, a dual residual branch is employed, with the209

insertion of two 1D gated convolutions at the ingress and egress points. Situated centrally,210

crucial components including bidirectional long short-term memory (BiLSTM) units and211

attention module serve to model long-range dependencies, enriching the model’s capacity212

to discern temporal correlations across the spectral latent space. Sequentially, each encoder213

layer is succeeded by a corresponding decoder layer (see FIG. 3(b)), which aims to reconstruct214

latent vectors commensurate with the spectrogram’s dimensions after they passed through215

the encoder layers. Specifically, a concatenated residual connection is set between each216

encoder and decoder layer, facilitating the seamless flow of information across the encoding-217

decoding. Conversely, within the encoder layer, a summative residual connection between218

two residual branches is instantiated, consolidating information flow and mitigating the219

vanishing gradient phenomenon across the network. These architectural designs collectively220
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FIG. 5. (color online) The structure of lattice block.

contribute to the model’s efficacy in capturing intricate spectral dependencies intrinsic to221

the noisy speech data.222

2. Lattice Convolution Blocks223

The bottleneck layers of our model include four lattice convolution blocks (LBs), a novel224

concept initially introduced in the domain of image restoration tasks (Luo et al., 2022,225

2020a). When integrated with gated convolution, this architectural arrangement presents a226

fusion of structured interpolation alongside adaptive and expansive context modeling capa-227

bilities. As depicted in FIG. 5, each LB module consists of paired lattice structures. Input228

data traverses through two distinct branches, each comprising multiple convolutional layers,229

with a subsequent LeakyReLU activation layer following each convolutional operation. No-230

tably, these two branches engage in mutual interaction facilitated by learnable combination231

coefficients, fostering collaborative feature extraction and representation. Specifically, given232
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an input feature I, the first combination is233

M1(I) = I + a1J(I), (6)
234

N1(I) = a2I + J(I), (7)

where J(·) denotes to the implicit non-linear function of several layers shown in FIG. ??.235

Similarly, the second combination is236

M2(I) = b1N1 +K(M1(I)), (8)
237

N2(I) = N1 + b2K(M1(I)). (9)

Then, the outputs of two branches are merged in channel dimension and then compressed238

by a 1×1 convolution layer. The final output is239

O = Conv(Concat(M2(I), N2(I))). (10)

The combination coefficients are mainly determined in the following way. The mean240

and standard deviation in channel dimension are first obtained by global mean pooling241

in the upper branch and global standard deviation pooling in the lower branch. Then,242

those statistics in two branches are passed through two fully connected layers, each followed243

by ReLU and Sigmoid activation functions, respectively. Finally, the outputs of the two244

branches are averaged to obtain the combined coefficients.245

B. Multi-Scale Discriminator246

To implement multi-loss training in an adversarial framework for enhancing SSR speech247

quality, we leverage multi-scale discriminators, illustrated in FIG. 6. These discrimina-248

tors are integral components of the system, analyzing inputs comprising SR speech and249
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FIG. 6. (color online) The multi-scale discriminators architecture.

high-resolution reference signals, both synthesized by the generator. Comprising a trio of250

discriminators denoted by D1, D2, D3, each adheres to the structural design in MelGAN.251

In particular, each discriminator consists of 7 convolutional layers, with 4 layers equipped252

with downsampling capabilities. As data traverse through these layers, they yield real and253

fake features across distinct scales, pivotal for computing the feature loss. Additionally,254

the discriminator’s outputs contribute to the computation of adversarial losses for both the255

generator and discriminator. Moreover, it is worth highlighting that the inputs provided to256

D1, D2, and D3 represent original waveforms, 2-times down-sampled waveforms, and 4-times257

down-sampled waveforms, respectively, augmenting the discriminators’ capability to discern258

features at varied resolutions. For in-depth insights into the discriminators’ architectural259

specifics, readers are encouraged to refer to (Kumar et al., 2019).260
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C. Loss Function261

The model is trained with an adversarial approach. We use a multi-scale STFT loss262

with FFT bins ∈ {512, 1024, 2048} and hop length ∈ {50, 120, 240} to form one part of the263

loss function. The window lengths are {240, 600, 1200}. On the other hand, the multi-scale264

adversarial and feature losses in the time domain are also added in. The total loss is265

L = LMSTFT + Ladv
G + λfLf , (11)

where λf = 100, LMSTFT , Ladv
G and Lf are multi-scale STFT loss, adversarial loss of gener-266

ator, and feature loss, respectively. Let s(x, θm) denote |STFT (x)| with the m-th hyperpa-267

rameters θm, the multi-scale STFT loss is defined as268

LMSTFT = E(x,y)∼pdata[
3∑

m=1

(
||s(y, θm)− s(x, θm)||F

||s(y, θm)||F
+

1

N
||log s(y, θm)

s(x, θm)
||
)]

,

(12)

where || · ||F and || · ||1 are Frobenius and ℓ1-norms, N is the number of elements in the269

magnitude.270

As shown in FIG. 6, the latter two loss functions can be depicted as271

Ladv
G = Ex∼pdata

[
1

K

∑
k

max(0, 1−Dk(G(x)))

]
, (13)

272

Lf = E(x,y)∼pdata

[
1

KL

∑
k,l

||Dl
k(y)−Dl

k(G(x))||1

]
, (14)

where k = 1, ..., K is the number of discriminators, l = 1, ..., L is the number of layer in one273

discriminator.274
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(a) (b)

FIG. 7. (color online) Spectrograms of the downsampled speech using resample function (a) and

our proposed method (b).

IV. EXPERIMENTS275

A. Data Augmentation276

In this study, we use the dataset from the Deep Noise Suppression (DNS) Challenge277

presented at ICASSP 2023 (Dubey et al., 2024) and the corpus compiled by Valentini-278

Botinhao (Valentini-Botinhao et al., 2016). This combination provides comprehensive train-279

ing data with diverse noise profiles, representative of real-world scenarios. We constructed280

the training data by synthesising clean and noisy speech pairs through random mixing of281

speech and noise components, resulting in a 500-hour audio dataset. Each sample is stan-282

dardised to 5 seconds, with controlled signal-to-noise ratios (SNR) ranging from -5 dB to283

20 dB to mimic real-world conditions. Additionally, 16 kHz sampling rate is applied for all284

samples, ensuring compatibility with contemporary audio processing frameworks285

In most existing SSR training dataset generation, a fixed filter with a fixed sampling287

rate or a direct resampling function is used (Xu et al., 2023), leading to the artefacts in288
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Algorithm 1: Downsampling algorithm for flexible sampling rates cases.

Data: y ∈ Y
Result: The high-quality speech y and its downsampled version x

x = s;
type = randomType (Chebyshev,Elliptic, Butterworth,Boxcar);
fcut ∼ U(Clow, Chigh);
order ∼ U(Olow, Ohigh);
x = x ∗ Filter(type, fcut, order);
if resample then

x = Resample(Resample(x, 16000, fcut × 2), fcut × 2, 16000);
end if

the generated spectrogram. Inspired by (Liu et al., 2022), we employ a filtering mechanism289

with stochastic parameters. As outlined in Algorithm 1, the filter types include Chebyshev,290

Elliptic, Butterworth, and Boxcar, each offering distinct characteristics. The filter order is291

determined by a randomly generated integer ranging from 2 to 10, ensuring variability and292

robustness. The cutoff frequency, essential for defining the filter’s behaviour, ranges from 2293

kHz to 8 kHz, covering a bandwidth relevant to our study. This data augmentation strategy294

preserves the transition region between high and low-frequency bands, as shown in Figure 7.295

Besides, by leveraging varied filters and downsampling factors, our approach prevents the296

model from being overly tailored to any single type of filtering or downsampling process.297

This diversity in training conditions equips the model to perform well across a wider range298

of real-world scenarios, enhancing its generalisation capability.299

B. Implementation Settings300

In contrast to the complex training strategies in prior research, which often involve multi-301

stage training, variable learning rates, and warm-up procedures, our proposed methodology302

adopts a streamlined, single-stage approach. Specifically, we use the Adam optimizer with303

parameters β1 = 0.8 and β2 = 0.999, maintaining a consistent learning rate of 1× 10−4 for304

20



JASA/Sample JASA Article

both the generator and discriminator components. Training spans 200 epochs on NVIDIA305

RTX3090 GPUs. To evaluate the model’s generalisation and performance, we use a valida-306

tion dataset and select the checkpoint from the epoch with the best performance for further307

testing. This protocol aims to create a robust and straightforward pipeline yielding promis-308

ing results across varied evaluation metrics. For more details on our parameter setup, please309

refer to our demo page1.310

C. Baselines311

For the noise-free SSR task, we selected the following baselines:312

• WSRGlow (Zhang et al., 2021): It combines glow model and WaveNet (Stoller et al.,313

2018) for audio super-resolution, introducing LR and STFT encoders to generate full-314

band audio.315

• NU-Wave 2 (Han and Lee, 2022): NU-Wave 2 is a diffusion model that generates316

high-quality 48 kHz audio from various input sampling rates using fewer parameters.317

• VoiceFixer (Liu et al., 2022): VoiceFixer is a two-stage neural vocoder framework318

designed for general speech restoration, capable of handling multiple distortions like319

denoising, dereverberation, super-resolution, and declipping in a unified model.320

• AERO (Mandel et al., 2023): It is a spectral-domain GAN based model using a U-Net321

generator to predict high-frequency content, surpassing state-of-the-art methods.322

• AudioSR (Liu et al., 2024): AudioSR is a diffusion-based model for versatile audio323

super-resolution which can handle various audio types (speech, music and sound ef-324

21



JASA/Sample JASA Article

fects) to in Mel domain and using a HiFi-GAN (Kong et al., 2020) neural vocoder to325

generate audio waveforms.326

However, some of these do not support flexible input sampling rates, so comparisons were327

made only with Nu-Wave 2, VoiceFixer, and AudioSR when the sampling rate was flexible.328

For the noise-robust SSR task, we compared our model with the previous state-of-the-art329

methods:330

• UEE (Liu et al., 2018): This is a unified framework for speech enhancement and331

bandwidth extension using jointly trained BLSTM-RNNs, with multi-task transfer332

learning for model compression.333

• MTL-MBE (Hou et al., 2020): It is a noise-robust bandwidth extension framework334

using multi-task learning and time-domain masking for joint speech enhancement and335

bandwidth extension.336

• EP-WUN (Lin et al., 2023): EP-WUN is a noise-robust bandwidth extension model337

that enhances Wave-U-Net (Stoller et al., 2018) with a speech quality classifier and a338

modified triplet loss to improve speech representation for 8 kHz speech.339

• I-DTLN + AFiLM (Chen et al., 2022): The proposed model integrates Unet+AFiLM340

and I-DTLN to create a system for audio super-resolution and noise cancellation in341

low sampling rate and noisy environments.342

As the authors did not provide source code, we re-implemented the method proposed in343

(Chen et al., 2022) to produce the results. For uncertain input sampling rates, VoiceFixer344

was used as the baseline, being the only model currently supporting this case.345
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To evaluate the denoising performance of our method, we conducted a 16 kHz to 16 kHz346

denoise task on the same dataset using various popular denoise neural models, including:347

• TSTNN (Wang et al., 2021): A two-stage transformer-based neural network for time-348

domain speech enhancement.349

• DPRNN (Luo et al., 2020b): A dual-path recurrent neural network, splitting input350

sequences into chunks for local and global processing.351

• TFT-Net (Tang et al., 2020): A cross-domain speech enhancement model that uses a352

dual-path attention block to enhance spectrogram-to-waveform conversion.353

• DCCRN (Hu et al., 2020): A deep complex convolution recurrent network for phase-354

aware speech enhancement using complex CNNs and LSTMs.355

• FullSubNet (Hao et al., 2021): A real-time speech enhancement model that fuses356

full-band and sub-band information to capture both global spectral context and local357

signal details.358

• DPT-FSNet (Dang et al., 2022): A dual-path transformer-based network that fuses359

full-band and sub-band information for improved speech enhancement in the frequency360

domain.361

The baseline system for all experiments in this article is from the above model. For all362

the baselines we follow the original settings and they will be re-trained in our experiments363

if necessary. The audio clips are stored in ’.wav’ format with 16 bit depth unless otherwise364

specified.365
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D. Objective Evaluation Metrics366

The following objective evaluation metrics are employed:367

Perceptual evaluation of speech quality (PESQ) (Rix et al., 2001). PESQ is a368

metric for assessing speech quality, with a range from -0.5 to 4.5. The closer the value is to369

this upper limit, the higher quality the speech has. It also has two versions, including both370

narrow-band (PESQ-NB, 0-8 kHz) and wide-band (PESQ-WB, 8-16 kHz).371

Short-Time Objective Intelligibility (STOI) (Taal et al., 2011). STOI evaluates372

the objective intelligibility of a degraded speech signal by computing the correlation of the373

temporal envelopes of the degraded speech signal and its clean reference (Zhao et al., 2024).374

It ranges from 0 to 1 and the higher value represents the better quality.375

CSIG, CBAK and COVL (Hu and Loizou, 2007). The CSIG, CBAK, and COVL376

are the Mean Opinion Score (MOS) prediction of signal distortion, intrusiveness of377

background noise, and overall effect, and they all range from 0 to 5. CSIG predicts the378

rating of speech distortion. Higher CSIG values indicate better performance in reducing379

distortion. CBAK evaluates the intrusiveness of background noise distortion. Higher CBAK380

values indicate better noise suppression. COVL combines CSIG and CBAK to provide an381

overall score of processed speech quality.382

Log Spectral Distance (LSD), which is defined by383

S = 10 log10 |s(t, k)|2,
384

Ŝ = 10 log10 |s(t, k)|2,
385

LSD(Ŝ, S) =
1

T

T∑
t=1

√√√√ 1

K

K∑
k=1

(S − Ŝ)2, (15)
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where s(t, k) and ˆs(t, k) represent the spectrogram of the ground truth and the reconstructed386

speech respectively, T,K denote the number of time frames and bins in the spectrogram.387

LSD is a distance measure between two spectra so the lower LSD means the produced speech388

has more similarity to the ground truth.389

E. Subjective Evaluation Metrics390

The subjective evaluation metric is overall MOS (835, 2003), which is a widely used391

metric for evaluating speech quality. It provides a subjective assessment of how well a392

listener perceives the quality of a speech signal. We randomly selected 50 samples from the393

each test set and asked 15 people to provide overall MOS score of each sample in a range of394

5 levels (see table I). These listeners are native speakers and represent the target audience.395

The final MOS score is the average of these evaluations.396

TABLE I. Levels of MOS score.

Score Description

5 Excellent (Near-perfect quality.)

4 Good (Clear and pleasant.)

3 Fair (Acceptable but not ideal.)

2 Poor (Noticeably degraded.)

1 Bad (Unintelligible or severely distorted.)
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V. RESULTS AND ANALYSIS397

A. Noise-Free Cases398

For noise-free cases, we first conducted comparison on DNS no-reverb test set with fixed399

sampling rate, i.e. 8 kHz to 16 kHz super-resolution, and the results are in Table II. We400

compare five state-of-the-art SSR methods using their original implementations alongside401

the proposed method as follows.402

TABLE II. Test results of noise-free 8k to 16k SSR task on DNS no-reverb test set.

Method PESQ-NB PESQ-WB STOI(%) CSIG CBAK COVL LSD MOS

WSRGlow (Zhang et al., 2021) 4.365 2.811 99.4 3.946 4.068 3.433 0.929 4.21

NU-Wave 2 (Han and Lee, 2022) 4.353 2.646 99.4 3.663 2.869 3.209 1.328 4.08

VoiceFixer (Liu et al., 2022) 2.999 1.983 85.9 2.937 2.095 2.416 1.140 4.18

AERO (Mandel et al., 2023) 4.369 3.295 98.5 4.287 4.273 3.844 0.802 4.27

AudioSR (Liu et al., 2024) 4.368 2.299 98.8 3.464 2.952 2.937 1.141 4.29

Ours 4.377 3.611 98.6 4.103 4.553 3.935 0.783 4.55
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In noise-free cases, our method presents significant advantages compared to other deep403

SSR baselines, with better performance in most metrics. In particular, in wide-band PESQ,404

our method outperforms the best baseline model by 0.316, which indicates that our method405

substantially improves speech quality over the entire bandwidth range and is not limited406

to the original or generated part. In CBAK, our method reaches 4.553, outperforming407

the baseline model by 0.28, which demonstrates that our special network design and data408

simulation methods for background noise are very effective. The performance of our method409

in CSIG is slightly lower than that of AERO. This may be due to the slight impairment410

of the speech component when removing noise, which is a common issue for all denoising411

neural models. However, our method is still the best performing one among the methods in412

the table due to overall sights.413

Table III illustrates the test results when the sampling rates of input data are flexible,414

and the test set also do not contain noises. For this cases, all speech clips in test set were415

downsampled using the method proposed in Sec.IV, with the random sampling rates from416

4 kHz to 16 kHz. Due to the random downsampling, the sampling rates of the narrow-band417

speech data is overall higher than that in Table 1, which also causes the objective metrics to418

be increased. Similarly, the number of baseline models under this experiment setup drops419

because most models do not support inference for data with flexible sampling rates. In a420

comparison with all baseline models, our method performs best across all objective metrics.421

Our model improves over the baseline by 0.974 on the broadband PESQ, and we achieve422

a performance of 4 or more in the CSIG, CBAK, and COVL metrics, which measure the423

effectiveness of the proposed method. The improvement in the objective metrics indicates424
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that the reconstructed speech using our method without prior sampling rates knowledge is425

already of high quality, and even for some narrow-band speech containing fewer distortion,426

and the reconstruction is very close to the ground truth.427

TABLE III. Test results of noise-free SSR task with uncertain input sampling rates on DNS no-

reverb test set.

Method PESQ-NB PESQ-WB STOI(%) CSIG CBAK COVL LSD MOS

NU-Wave 2 (Han and Lee, 2022) 4.397 3.407 98.4 4.102 3.274 3.819 1.193 4.23

VoiceFixer (Liu et al., 2022) 2.974 2.179 85.9 3.191 2.191 2.641 1.086 4.21

AudioSR (Liu et al., 2024) 4.262 2.911 98.0 3.920 3.271 3.504 1.012 4.36

Ours 4.436 3.885 99.1 4.151 4.633 4.075 0.695 4.59

B. Noise-Robust Cases428

Table IV comprehensively compares our proposed model with existing deep noise-robust429

SSR methods, including the SOTA models. From the table, our model consistently outper-430

forms other methods in most metrics, which validates its effectiveness in handling the joint431

task of SSR and noise suppression. In particular, for PESQ-WB and COVL, we observe432

excellent performance, ahead of the current SOTA method by 0.13 and 0.06, respectively.433
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TABLE IV. Test results of noise-robust SSR tasks. The 8 kHz source speeches are from Valentini-

Botinhao noisy test set and the 4-16 kHz source speeches are from DNS no-reverb noisy test set.

Method Source PESQ-NB PESQ-WB STOI(%) CSIG CBAK COVL LSD

UEE (Liu et al., 2018)

8 kHz

—— 2.23 93 2.27 2.39 2.17 2.72

MTL-MBE (Hou et al., 2020) —— 2.55 94 2.64 3.21 2.46 2.29

EP-WUN (Lin et al., 2023) —— 2.25 92 3.50 2.94 2.86 1.23

AFiLM + I-DTLN (Chen et al., 2022) —— 2.54 90 2.63 2.87 2.18 1.54

Ours —— 2.67 95 3.29 3.32 2.92 1.16

VoiceFixer (Liu et al., 2022)

4-16 kHz

2.54 1.82 84.2 2.74 1.98 2.22 1.28

Ours 3.55 3.01 97.3 3.66 3.73 3.36 1.11

These results are in line with our initial expectations, verifying that our improvements to434

the network architecture and the use of novel simulations for the data not only improve435

the quality of the reconstructed high-frequency part, but also suppress the noise to a better436

extent. However, it is worth noting that our method exhibits a slight degradation in the437
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CSIG metric. This is because the suppression of noise, although beneficial to the overall438

quality, may unintentionally affect the speech parts, as we mentioned before. In conclusion,439

in addition to CSIG, our SDNet shows significant promise in noise-robust SSR. These find-440

ings highlight that our model is a balanced approach that optimises both noise reduction441

and SSR tasks for better results.442

TABLE V. Comparison on the number of parameters of different models.

Model # Parameters

UEE (Liu et al., 2018) 22.42M

MTL-MBE (Hou et al., 2020) 6.82M

EP-WUN (Lin et al., 2023) 4.58M

WSRGlow (Zhang et al., 2021) 229M

NU-Wave 2 (Han and Lee, 2022) 1.70M

VoiceFixer (Liu et al., 2022) 122.07M

AERO (Mandel et al., 2023) 19.43M

AudioSR (Liu et al., 2024) 258.20M

Ours 25.04M

For the noise-robust SSR, when the sampling rates of source are flexible, we retrained443

VoiceFixer, a general speech restoration model, as our baseline model since current compa-444

rable models only support 8 kHz input signals. As shown in the following section of Table445
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4, in a comparison with VoiceFixer, our method outperforms it in all metrics for both 8 kHz446

to 16 kHz and 4-16 kHz to 16 kHz noise-robust BWE tasks. VoiceFixer aims to repair many447

distortions such as clipping, reverberation, and we find the speeches produced mismatch448

with the reference signal in terms of loudness, etc., which causes the degradation of its per-449

formance in objective metrics, but in subjective metrics, the scores of these speeches are450

still very high, which shows its repair is still very effective. We also summarize the number451

of parameters in each baseline model, and the results are in Table V. It is observed that452

our proposed model results in an increase in parameters, but this is acceptable due to the453

significant performance gain achieved.454

TABLE VI. Test results of denoise-only task on DNS no-reverb noisy test set sampling at 16 kHz.

Method PESQ-NB PESQ-WB STOI(%)

TSTNN (Wang et al., 2021) 2.61 2.55 91.9

DPRNN (Luo et al., 2020b) 2.68 2.57 92.5

TFT-Net (Tang et al., 2020) 2.74 2.60 92.7

DCCRN (Hu et al., 2020) 3.17 2.64 92.9

FullSubNet (Hao et al., 2021) 3.28 2.72 95.3

DPT-FSNet (Dang et al., 2022) 3.28 2.72 95.3

Ours 3.29 2.80 96.0
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Additionally, we used our model to process DNS test set under wide-band environment455

at 16 kHz sampling rate, where the speech has the full bandwidth but contains noise in both456

the high and low frequency parts. To validate the facilitation of our joint optimization on a457

single task, we compare its performance with neural baseline models for only noise reduction.458

The results are depicted in Table VI. We observe that the proposed method improves both459

PESQ and STOI compared to the baseline models. Specifically, the narrow-band PESQ is460

slightly ahead of the best baseline model by 0.01, while the wide-band PESQ improves by461

0.082, and the STOI achieves a performance of 96.0%, which is at least 0.7% higher than the462

baselines. Although the quality of the speech generated by our model is degraded due to the463

fact that it was not trained on 16 kHz noisy-clean data pairs compared to the noise-free and464

noise-robust SSR tasks, it still outperforms all the baselines. This indicates on the one hand465

that our model has high generalization capabilities and is able to repair unseen distortion466

types well, and on the other hand that our optimization for the joint task also benefits the467

single task.468

C. Generalization Test469

In order to better observe the generalization capability of the model, we tested the baseline470

models and proposed method using data from different source compared to training stage.471

In this case, for the noise-free case, we use the test set of the TIMIT (Garofolo et al., 1993)472

and LibriTTS (Zen et al., 2019) to perform 8 kHz to 16 kHz noise-free SSR task; and for473

the noise-robust case, we use the test set from Voicebank-DEMAND (Veaux et al., 2013). It474
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is worth mentioning that all models involved in this comparison have not been trained with475

the data from these two datasets.476

Tables VII, VIII, and IX show the test results for the noise-free case and the noise-robust477

case, respectively. Our model presents better performance on wide-band, with PESQ-WB478

significantly higher than the other baselines, and maintains the lead in other metrics as479

well. This indicates that our data augmentation approach allows the model to show a better480

TABLE VII. Generalization test results on TIMIT.

Method PESQ-NB PESQ-WB STOI(%) CSIG CBAK COVL LSD

WSRGlow (Zhang et al., 2021) 4.087 2.180 98.5 3.558 3.425 2.916 1.146

NU-Wave2 (Han and Lee, 2022) 4.479 2.327 97.5 3.705 2.122 3.070 2.110

VoiceFixer (Liu et al., 2022) 2.890 1.884 88.5 2.965 1.753 2.375 1.190

AudioSR (Liu et al., 2024) 4.491 2.939 99.3 3.904 2.607 3.480 1.430

AERO (Mandel et al., 2023) 4.481 3.401 99.7 4.226 4.261 3.870 1.176

Ours 4.489 4.029 99.7 4.228 4.644 4.188 1.137
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TABLE VIII. Generalization test results on LibriTTS.

Method PESQ-NB PESQ-WB STOI(%) CSIG CBAK COVL LSD

WSRGlow (Zhang et al., 2021) 4.051 2.694 98.1 3.914 4.142 3.359 1.039

NU-Wave2 (Han and Lee, 2022) 4.237 2.682 94.1 3.108 2.811 2.932 1.391

VoiceFixer (Liu et al., 2022) 3.194 2.773 93.9 3.186 2.813 2.890 1.137

AudioSR (Liu et al., 2024) 4.293 2.728 98.6 3.774 3.533 3.308 1.113

AERO (Mandel et al., 2023) 4.308 3.500 99.4 4.386 4.656 4.005 0.988

Ours 4.377 3.647 99.4 4.412 4.752 4.118 1.085

generalization performance for speech features from other channels, and this performance481

gain is observed in both the noisy and noise-free environments.482

D. Performance on Compressed Speeches483

Speech signal compression in real-world conditions involves reducing the data required to484

represent speech, which mainly include:485

• Bit Compression: Reducing the depth of bit, leading to a loss of detail and fidelity.486

34



JASA/Sample JASA Article

TABLE IX. Generalization test results on Voiceband-DEMAND.

Method PESQ-NB PESQ-WB STOI(%) CSIG CBAK COVL LSD

VoiceFixer (Liu et al., 2022) 3.062 2.369 88.6 3.432 2.327 2.901 1.081

I-DTLN+AFiLM (Chen et al., 2022) 3.059 2.090 89.3 1.877 2.827 1.925 1.460

Ours 3.295 2.380 93.4 3.526 2.356 2.915 1.003

• Sampling Rate Reduction: Lowering the sampling rate, which reduces audio resolution487

and high-frequency details.488

• Data Compression Algorithms: Applying lossy compression techniques that remove489

parts of the audio signal deemed less perceptually important, often introducing arti-490

facts (e.g., MP3, AAC).491

These methods are crucial for efficient storage and transmission, especially in environments492

with limited bandwidth. However, they can affect the clarity and naturalness of the com-493

pressed speech.494

The main objective of a SSR model is specifically designed to address the second type of495

compression, where the objective is to convert low sampling rate audio into high sampling496

rate audio, which means the tasks like transforming low bit depth speech clip to the high497

one or restoring the lossless speech from its lossy compression version are out of its capacity.498
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However, our model can be robust under these conditions involving compression, namely our499

system supports to deal with the speech with lower bit depth and lossy encoding format,500

but the system only predicts its lossy band, keeping the bit depth and format the same.501

TABLE X. Performance valuation on compressed speech clips and downstream task.

Input Format Bit Depth Sampling Rate PESQ-NB PESQ-WB STOI(%) LSD WAcc(%)

Noisy

Lossless (.wav/flac)

8bit

8 kHz 3.103 1.981 87.9 1.004 ——

Predict 16 kHz 3.253 2.192 89.1 0.820 ——

Noisy

16bit

8 kHz 2.879 1.910 92.0 2.721 90.90

Predict

16 kHz

3.295 2.369 93.4 1.003 92.62

Reference —— —— —— —— 95.98

Noisy

Lossy (.mp3) 16bit

8 kHz 2.975 1.939 90.9 2.790 ——

Predict 16 kHz 3.296 2.274 92.4 1.476 ——
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We have normalised the test set of Voicebank-DEMAND (Veaux et al., 2013) to a lower502

bit depth (8bit) and a lossy compression format (MP3) respectively and the test results are503

in Table X. In this test, we upsample the 8 kHz signal to 16 kHz to calculate PESQ-WB504

and LSD. Table X shows that the performance of the model is not affected and it still505

significantly improves the signal quality.506

E. Downstream Task Evaluation507

In order to assess the effectiveness of proposed model in enhancing the performance of508

downstream tasks. By taking Automatic Speech Recognition (ASR) as an instance, we509

evaluate the ASR performance on original low-resolution, enhanced and a reference speech510

clips of Voicebank-DEMAND (Veaux et al., 2013) test set, where we use the base version511

of Whisper 2 (Radford et al., 2023) as the pre-trained ASR system in all cases. The results512

are also provided in Table X.513

The experiment concludes that our method enhances the performance of ASR compared514

to the original lossy speech. These results demonstrate the model’s potential to improve515

ASR robustness and reliability, confirming its value as a pre-processing step in real-world516

speech processing applications.517

F. Ablation Studies518

We conduct the ablation studies using the DNS no-reverb test set and 8 kHz to 16519

kHz noise-robust SSR task, and the experiments are set to verify the influences of network520

components, loss functions, FFT bins, and resampling algorithm to the final performance.521

37



JASA/Sample JASA Article

The results are listed in Table XI. From the network structure point of view, when the522

gated convolution (‘w/o GConv’ in the table) is replaced by the general convolution, the523

network performance degrades due to the lack of 6-8 kHz details. If the LB is removed,524

the performance also decreases due to not utilising the time dimension information in the525

spectrogram tensor. When both of these changes work together, the accuracy of the model526

drops even more. The network achieves the best LSD performance when using only the527

MSTFT loss, but the PESQ is not as good as the optimal setting for either narrow-band or528

TABLE XI. Results of ablation studies.

Method PESQ-NB PESQ-WB LSD

w/o LBs 3.442 2.633 1.256

w/o GConv 3.445 2.630 1.262

w/o LBs and GConv 3.372 2.538 1.293

w/o adversarial training 3.453 2.658 1.200

w/o adversarial loss 3.313 2.484 1.242

w/o feature loss 2.941 1.840 1.309

FFT bins=128 3.274 2.459 1.272

FFT bins=256 3.238 2.369 1.301

w/o Algorithm 1 3.341 2.483 1.240

original settings 3.554 2.777 1.218
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wide-band, being lower by 0.101 and 0.119, respectively. On top of this, the introduction529

of either the feature loss or the adversarial loss alone deteriorates the performance and530

moves the model even further away from the optimal performance. Also, if the number of531

FFT bins during the STFT operation is chosen larger or a direct downsampling function532

is used to produce the training data, the performance of the network is degraded as the533

input features become coarser. Therefore, the results of the ablation experiments illustrate534

that our proposed modules, adversarial training policy, and data augmentation approach535

improve the overall performance of the model on the test set, and also shows that the536

network performs best with FFT bins of 512, which is exactly the setting we used.537

G. Spectrogram Comparison538

Figure 8 - 10 are the comparisons of the spectrograms that are generated by different539

models on different tasks. On noise-free SSR task (see Figure 8), the result of our method is540

closer to the ground truth and presents no artifacts at the 4 kHz band, while other methods541

produce some bias at high-frequency part and has the unnatural transition band.542

The similar situation also exists in the noise-robust SSR task (see Figure 9). Compared to543

our method, I-DTLN + AFiLM model (Figure 9(b)) only predicts a small part of the whole544

high frequency band and the VoiceFixer (Figure 9(c)) generates a spectrogram with a larger545

amplitude than the ground truth, causing the deviation. For 16 kHz to 16 kHz denoise task546

(Figure 10), baselines’ results still produce residual noises in either low- or high-frequency547

parts, while our model generates a better result.548
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(a) (b) (c) (d) (e)

FIG. 8. (color online) Spectrograms of noise-free SSR task results. (a) Input; (b) Nu-Wave 2; (c)

WSRGlow; (d) our method; (e) ground truth.

(a) (b) (c) (d) (e)

FIG. 9. (color online) Spectrograms of noise-robust SSR task results. (a) Input; (b) I-DTLN +

AFiLM; (c) VoiceFixer; (d) our method; (e) ground truth.

(a) (b) (c) (d) (e)

FIG. 10. (color online) Spectrograms of 16 kHz to 16 kHz denoise results. (a) Input; (b) DPRNN;

(c) DCCRN; (d) our method; (e) ground truth.
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VI. CONCLUSION549

This paper proposes a novel noise-robust speech super-resolution model, termed SDNet.550

We introduce a U-shaped neural architecture generator, employing FTB, gated convolution,551

lattice blocks, and other modules, some of which are employed in the SSR field for the552

first time. Adversarial training is achieved through multi-scale discriminators with multiple553

loss functions, building robust reconstruction capability for the generator, augmented by554

a specialised data augmentation algorithm. The proposed model demonstrates superior555

performance in noise-free SSR, noise-robust SSR, and denoise-only tasks, for both fixed and556

flexible input sampling rates. Ablation studies demonstrate the effectiveness of our design557

choices. However, when training the model at higher resolutions such as 48 kHz, achieving558

denoising and SSR simultaneously becomes challenging, a common issue encountered by559

many models. Furthermore, the model’s parameter count (25.04M) remains substantial.560

Future work will focus on lightweight, high resolution SSR, and considering the inclusion of561

music and other personalised datasets.562
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27, 2018, edited by E. Gómez, X. H. 0001, E. Humphrey, and E. Benetos, pp. 334–340,719

48

https://doi.org/10.21437/Interspeech.2005-529
https://doi.org/10.21437/Interspeech.2005-529
https://doi.org/10.21437/Interspeech.2005-529
https://doi.org/10.1109/ICASSP.2014.6854773
https://doi.org/10.1109/ICASSP.2014.6854773
https://doi.org/10.1109/ICASSP.2014.6854773
https://doi.org/10.21437/Interspeech.2023-113


JASA/Sample JASA Article

http://ismir2018.ircam.fr/doc/pdfs/205_Paper.pdf.720

Taal, C. H., Hendriks, R. C., Heusdens, R., and Jensen, J. (2011). “An algorithm for721

intelligibility prediction of time–frequency weighted noisy speech,” IEEE Transactions on722

Audio, Speech, and Language Processing 19(7), 2125–2136, doi: 10.1109/TASL.2011.723

2114881.724

Taher, T., Mamun, N., and Hossain, M. A. (2023). “A joint bandwidth expansion and speech725

enhancement approach using deep neural network,” in 2023 International Conference on726

Electrical, Computer and Communication Engineering (ECCE), IEEE, pp. 1–4.727

Tang, C., Luo, C., Zhao, Z., Xie, W., and Zeng, W. (2020). “Joint time-frequency and728

time domain learning for speech enhancement,” in Proceedings of the Twenty-Ninth In-729

ternational Joint Conference on Artificial Intelligence, IJCAI-20, edited by C. Bessiere,730

International Joint Conferences on Artificial Intelligence Organization, pp. 3816–3822,731

https://doi.org/10.24963/ijcai.2020/528, doi: 10.24963/ijcai.2020/528, main732

track.733

Taylor, A. M., and Reby, D. (2010). “The contribution of source–filter theory to mammal734

vocal communication research,” Journal of Zoology 280(3), 221–236.735

Valentini-Botinhao, C., Wang, X., Takaki, S., and Yamagishi, J. (2016). “Speech En-736

hancement for a Noise-Robust Text-to-Speech Synthesis System Using Deep Recurrent737

Neural Networks,” in Proc. Interspeech 2016, pp. 352–356, doi: 10.21437/Interspeech.738

2016-159.739

Veaux, C., Yamagishi, J., and King, S. (2013). “The voice bank corpus: Design, collection740

and data analysis of a large regional accent speech database,” in 2013 International Con-741

49

http://http://ismir2018.ircam.fr/doc/pdfs/205_Paper.pdf
https://doi.org/10.1109/TASL.2011.2114881
https://doi.org/10.1109/TASL.2011.2114881
https://doi.org/10.1109/TASL.2011.2114881
http://https://doi.org/10.24963/ijcai.2020/528
https://doi.org/10.24963/ijcai.2020/528
https://doi.org/10.21437/Interspeech.2016-159
https://doi.org/10.21437/Interspeech.2016-159
https://doi.org/10.21437/Interspeech.2016-159


JASA/Sample JASA Article

ference Oriental COCOSDA held jointly with 2013 Conference on Asian Spoken Language742

Research and Evaluation (O-COCOSDA/CASLRE), pp. 1–4, doi: 10.1109/ICSDA.2013.743

6709856.744

Wang, H., and Wang, D. (2021). “Towards robust speech super-resolution,” IEEE/ACM745

transactions on audio, speech, and language processing 29, 2058–2066.746

Wang, K., He, B., and Zhu, W.-P. (2021). “Tstnn: Two-stage transformer based neural747

network for speech enhancement in the time domain,” in ICASSP 2021 - 2021 IEEE748

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7098–749

7102, doi: 10.1109/ICASSP39728.2021.9413740.750

Xu, C., Tan, G., and Ying, D. (2023). “Time-frequency network combining batch at-751

tention and spatial attention for speech bandwidth extension,” Applied Acoustics 211,752

109582, https://www.sciencedirect.com/science/article/pii/S0003682X23003808,753

doi: https://doi.org/10.1016/j.apacoust.2023.109582.754

Yin, D., Luo, C., Xiong, Z., and Zeng, W. (2020). “Phasen: A phase-and-harmonics-755

aware speech enhancement network,” in Proceedings of the AAAI Conference on Artificial756

Intelligence, Vol. 34, pp. 9458–9465.757

Yoneyama, R., Yamamoto, R., and Tachibana, K. (2023). “Nonparallel high-quality audio758

super resolution with domain adaptation and resampling cyclegans,” in Proc. ICASSP, pp.759

1–5.760

Yu, C.-Y., Yeh, S.-L., Fazekas, G., and Tang, H. (2023). “Conditioning and sampling in761

variational diffusion models for speech super-resolution,” in ICASSP 2023-2023 IEEE In-762

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp.763

50

https://doi.org/10.1109/ICSDA.2013.6709856
https://doi.org/10.1109/ICSDA.2013.6709856
https://doi.org/10.1109/ICSDA.2013.6709856
https://doi.org/10.1109/ICASSP39728.2021.9413740
http://https://www.sciencedirect.com/science/article/pii/S0003682X23003808
https://doi.org/https://doi.org/10.1016/j.apacoust.2023.109582


JASA/Sample JASA Article

1–5.764

Yu, G., Zheng, X., Li, N., Han, R., Zheng, C., Zhang, C., Zhou, C., Huang, Q., and765

Yu, B. (2024). “Bae-net: a low complexity and high fidelity bandwidth-adaptive neu-766

ral network for speech super-resolution,” in ICASSP 2024 - 2024 IEEE International767

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 571–575, doi:768

10.1109/ICASSP48485.2024.10446439.769

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S. (2019). “Free-form image770

inpainting with gated convolution,” in Proceedings of the IEEE/CVF international con-771

ference on computer vision, pp. 4471–4480.772

Zen, H., Dang, V., Clark, R., Zhang, Y., Weiss, R. J., Jia, Y., Chen, Z., and Wu, Y. (2019).773

“Libritts: A corpus derived from librispeech for text-to-speech,” in Interspeech 2019, pp.774

1526–1530, doi: 10.21437/Interspeech.2019-2441.775

Zhang, K., Ren, Y., Xu, C., and Zhao, Z. (2021). “WSRGlow: A Glow-Based Waveform776

Generative Model for Audio Super-Resolution,” in Proc. Interspeech 2021, pp. 1649–1653,777

doi: 10.21437/Interspeech.2021-892.778

Zhao, L., Zhu, W., Li, S., Luo, H., Zhang, X.-L., and Rahardja, S. (2024). “Multi-resolution779

convolutional residual neural networks for monaural speech dereverberation,” IEEE/ACM780

Transactions on Audio, Speech, and Language Processing 32, 2338–2351, doi: 10.1109/781

TASLP.2024.3385270.782

51

https://doi.org/10.1109/ICASSP48485.2024.10446439
https://doi.org/10.21437/Interspeech.2019-2441
https://doi.org/10.21437/Interspeech.2021-892
https://doi.org/10.1109/TASLP.2024.3385270
https://doi.org/10.1109/TASLP.2024.3385270
https://doi.org/10.1109/TASLP.2024.3385270



