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We extend the phase field model of heterogeneoistatmucleation developed recently [L.&Bésy, T.

Pusztai, D. Saylor, and J. A. Warren, Phys. Rett. B8 035703 (2007)] to binary alloys. Three approaches
are considered to incorporate foreign walls of hieavetting properties into phase field simulatiomgonti-
nuum realization of the classical spherical cap ehddalled Model A herein), a non-classical apploac
(Model B) that leads to ordering of the liquid hetwall, and to the appearance of a surface spinadd a
non-classical model (Model C) that allows for tippearance of local states at the wall that aresadde in

the bulk phases only via thermal fluctuations. Wesirate the potential of the presented phasd fistthods

for describing complex polycrystalline solidificati morphologies including the shish-kebab structace

lumnar to equiaxed transition, and front-particieraction in binary alloys.

PACS number(s): 64.60.Qb, 64.70.Dv, 82.60.Nh

I. INTRODUCTION
When one cools a liquid below its melting tempematit is no longer stable, and will freeze eveliyud]. However,
the liquid will exist in a metastable state untihiacleation event occurs. In the study of nuclegtéodistinction is made be-
tween homogeneousind heterogeneousiucleation [1,2]. Homogeneous nucleation occursrinidealized pure material,
where the only source of nucleation in an undeembahelt is due to fluctuation phenomena [1,2]. B dther hand, hete-
rogeneous nucleation occurs in “impure” materialdsere walls or some agent, usually particles sulisdly larger than the
atomic scale introduced to the melt (either intemdily or not) facilitate nucleation by reducingtbnergy barrier to the
formation of the stable phase. This reduction cgeuien the impurities induce ordering in the ligi8fithat enhances the
formation of the solid phase. Heterogeneous nuole& not only a phenomenon of classic importanaeaterials science,

but also remains one of continuously growing irderdue to the emerging technological interestanapatterning tech-



niques and control of related nano-scale procdg$eb spite of its technological importance, hetgeneous nucleation is
poorly understood due to difficulties in describihg interaction between the foreign matter andstiielifying melt.

In classical theory, the action of the impurityeiohance or suppress the solid phase can be foeduldthin the lan-
guage of wetting. That is, given the surface emsrffr liquid-solid fg,), wall-liquid (kv.), and wall-solid f¢<9 boundaries,
we may calculate the contact angle of a solid-tiquall triple junction (assuming isotropic surfaamergies [5]). Using Fig.
1 as a schematic guide (where the drop is imagdindx solid in liquid, not liquid in gas) to deteéma the contact anglg
between the solid-liquid surface and the wall (with angle subtending the solid material) we fingtesion of the Young-

Laplace Equation:

cosy :M_ (1)
YsL

Clearly, within this framework, ify= 0 then the surface will be wet with the solid pdzand there will be no barrier to
nucleation. In the case whege= 1t the liquid phase is preferred at the interfacel, e system behaves as if the particle
were not there. Within the framework of the claaklspherical cap" model, the nucleation baigesimply reduced by the
catalytic potency factoi(¢) as follows,Whetero = Whomo (), Wheref(¢) = [¢ — %2 sin(2)]/tandf(¢) = ¥4 [2 —3 cos)
+cos(y)’] for two and three dimensions, respectively [178]e above argument becomes more complex if tHaciener-
gies are anisotropic [5], but are not changed #litative detail.

Wetting of a foreign wall by fluids/crystals haselmestudied extensively [6] including such phenomanaritical wet-
ting and phase transitions at interfaces [7]. Masimethods have been applied to address thesem®iuch as continuum
models [8] and atomistic simulations [9]. Desphiestinventory, recent studies [10] addressing logeneous crystal nuc-
leation rely almost exclusively on the classicdiesjcal cap model, which assumes mathematicallypsimeerfaces [1,11].
While this approach may quantitatively describetington the macroscale, it loses its applicab{ltyl 2] when the size of
nuclei is comparable to the interface thicknese (tanometer range, according to experiment andistionsimulations
[13]). Such nanoscale nuclei are essentiallyitadirface”. Recent investigations show [12] tiheg phase field approach
(PFT, for recent reviews see [14,15]) can descsilmgh non-classical nuclei. Indeed, the PFT cantgatively predict the
nucleation barrier for systems (e.g., hard-sphesenard-Jones, ice-water, etc.) where the necessauny data are availa-
ble [12,16]. We therefore adopt this approach wcdbe heterogeneous nucleation. Experimentally détails of the wall-
fluid interaction are embedded in more directlyemsible quantities, such as the contact angleuiidgum. It is thus de-
sirable to develop a model that describes the wallich phenomenological terms.

To address heterogeneous nucleation within theephelsl approach, we need to include foreign watlsally, we may

regard the foreign "wall" as a new phase witlitalthemical and wetting properties known. Thithis case in previous stu-



dies addressing solidification in eutectic and teetic systems, where the secondary crystallinsgl@pears via heteroge-
neous nucleation on the surface of the first-nuekkg@rimary phase. Nucleation and subsequent growtluchintrinsic
walls have been addressed in some depth in previous|[Welk

More often, however, we do not have such detaitdédrination on foreign walls, and have to satisfyselves with
knowing only their wetting properties (e.g., thentaxt angle). It would be, therefore, desirablavtwk out PFT techniques
for such cases. In order to distinguish this casmfthe fully characterized walls, and becausenheffact that they can be
represented in the PFT by boundary conditions, megaing to term them asxternal walls Indeed, as we will see, to
achieve this, we have to specify appropriate bondanditions at the wall represented by a mathaalasurface. Pre-
vious work along this line incorporates numericapr@aches designed to ensure the desired contgle H8], or either
fixing the value of the phase field at the wall JJ18r the normal component of the phase field gratd[15,19-22]. Early
work in this area addressed only the non-wettirgeg@ = 0 corresponding te = 1) [19], or the semi-wetting cas@/ &
172), realized by the no-flux boundary [15:41]. Recently, however, we have shown that eithémd the normal compo-
nent of the phase field gradient (Model A) or tladue of the phase field (Model B) appropriatelytet wall, one can real-
ize all kinds of contact angles [23].

It is appropriate to mention that ideas similathose presented in our paper [23] seemed to béh&mir" in other
branches of field theoretic modeling. For examplesimulation by Jacqmin [24] performed for a licdiguid interface
forming contact angles ab = + 174 with opposite walls suggests that he might Hzaen aware of Model A, although nei-
ther a derivation of the model nor its general folation valid for other contact angles has beemsgmted in his paper. In
fact, Model B has already been used in an eatigtyg8(e)], however, for describing the wettingsafid surfaces by flu-
ids, yet not for a structural order parameter. Ifina few days before our prior paper on this tof@5] has been published
electronically, a similar work has been submittetiich outlines Model A for interfaces between tWaids. These tech-
niques have been worked out for single fields, ey have yet to be generalized to cases wherstithetural order para-
meter is coupled to other fields.

Herein, we generalize the approaches describe2Binfdr the solidification of binary alloys (structl order parameter
coupled to a concentration field). It will be shotiwat with a specific parabolic approximation of finee energy surface the
contact angle vs. boundary condition relationskigscribed in [23] remain valid. After developing tinodel for isotropic,
binary alloys, we extend the model (adding noisaingboundary effects and interfacial anisotrogigveing us to perform

simulations of heterogeneous nucleation duringgtiogvth of a polycrystalline material.



Il. PHASE FIELD THEORY FOR WETTING AND HETEROGENEO US NUCLEATION
Recently, a rich array of phenomena has been mbdedimg a phase field theoretic approach that hasrlst simple

form (see the appendices of [15]):
52
F=[av] 1(@o)+ ST OpR)+ 10 (OR)| @

wheref(gc) has the form of a skewed double well, with miniimahe two phases #= 0 (liquid) andg=1 (solid), and the
difference in height being controlled by the thedymmamic variables such as temperatlirand concentratioe. In this
modelT is assumed uniform. The gradient coefficientsets the interface width, while the form/gfa homogeneous de-
gree one function of its argument, determines ttisotropy. The contribution from orientation duegm@in boundaries is
embedded in the local orientation matRx In generalR is anSQ(3) object, and thus transforms in manner congistéh
this group. There are a number of equivalent remtagions ofR [26, 27], but here we will use a quaternion fomoni
[28]. O@ /R rotates the vectdrg into the frame of the orientation of the crysfdie function then™ determines the penal-
ty for gradients in this direction. It thus reprats the local interface energy anisotropy. As mdgeneous degree one

function, " (v) can be written as

r(v) =V (1 +An),

wheren = v/}v|, is the normal to the level sets@fin the coordinate system of the crystal, and thuke natural extension
of the surface normal in classical theory to a pHfaed model, ang?is necessarily a homogeneous degree zero funation
its argument. For four-fold symmetry, a common ckdior 8= a (n* + ny4+ n"), wherea is a constant. WheR(O¢) =
|[dd (or 8= 0), the interface energy will be independenttaf brientation of the phase boundary. Finallydhentation

penalty taken to have the simple form
fori: HTU(@ ||:|R| +O(|DR|2),

where we use the standdrinorm of the gradient of the orientation, whichaisnetric that yields the local misorientation.
The functionu(g is zero in the liquid, and increases in the solidere grain boundary energies are well definedjuater-
nion notation

|DR|:[z(uqi)2J

[26, 28].



Until we return to the more complex case of polgtajline growth later in the manuscript, we wiltés on the isotrop-

ic case. We thus drofg; and assum€&(v) = |, yielding a standard model phase field model birary alloy, like that

found in Warren and Boettinger [29] and many otlja@§, with the form

2
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Equations of motion then have the form
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whereM,andM, are mobilities.

As in classical theory, the critical fluctuatioru@heus) represents an extremum of the free en@igys it can be found
by solving the appropriate Euler-Lagrange equatidfess conservation needs to be taken into acdoena, a constraint

that can be enforced by addirid c(r) dV to the free energy, wherkis a Lagrange multiplier

&'
_:0, 6
& (6)
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whereF’ =F + A [ c(r) dV is the free energy functional that includes #rentwith the Lagrange multiplier.

We wish now to supplement this model in a mannat ill allow for a physical representation of timfluence of a
new material on the statics and dynamics of criystdilon. There are several ways that this caddree: (i) the imposition
of appropriate boundary conditions on the aboveaggus, or (ii) the addition to the model of a set@hase field to di-
rectly model the impurities. Both of these appraschill allow us to to model the wetting of a cheatiy inert phase em-
bedded in the solid-liquid matrix, and concomitgntlevelop a physical model of heterogeneous nticleaHaving devel-
oped these two approaches, and examining theiectgp benefits and costs, we will then discusg tiedationship to the
“full” three-phase-field model, and demonstrateetcommon mathematical basis for all of models kg herein. We

now present, in substantial detail, the specificthese assertions, and then use the model to exaseveral relevant ex-

amples.



A. Defining “external” walls
There are several mathematical approaches to mgdelihree phase system. The first we considehiagdreating the
inert material as a sharp wall, the walls influersceontrolled by the behavior of the alloy abugtihie wall. The two most
natural choices to consider are either specifyig/n or gon the boundary. We explore both below.

In steady state the one dimensional equations id@sgithe system can be integrated to find

£2( g\’
—(—qoj =Af(pc) = f(pc)-u(c—Cy)— fo;
2\ 0x
const. = ,u:i , (8)
dac

wheregu is the chemical potentidi, = f(@., C.) andg, and ¢, are the far field values gfandcrespectively.

From Egs. (8) we see immediately that specifyirgythlue of eitheig df/ox or ¢ at the boundary immediately deter-
mines the other two (in steady state). In this nsaript we will examine the consequences of thressipte choices (i) spe-
cification of gat the boundary (ii) specification of a normaldjest 0 @fT at the boundaryn(is the surface normal), and fi-
nally (iii) introduction of a new bulk field terrgy, an auxiliary field that takes the value 1 in th&ll material (wherep=
0). We explore this last approach in a subsequestion, as it will become the foundation for impkemting all of the me-
thods described herein.

We follow the ideas of Cahn [7], who examined tihebem of introducing a wettable interface intoiadby alloy lig-
uid with a miscibility gap (the system thereforalteacritical point). Cahn imposed an “interfacediion” that determined a
boundary condition on the concentration field, éimeh examined the behavior of the system nearritieat point. We
now propose to do the same analysis in the coofetkte non-conserveghase field model of an ideal binary solution. We
should note that the use ofs&ructural order parameter in this analysis has specific iphysmplications that are non-
trivially different from those realized under Cahanalysis of @onservedrder parameter. In particular, as the dynamics
these two types of flows is substantially differeme expect the behavior of nucleation in theseesys to be qualitatively
different. The analysis of equilibrium, will, hower, be quite analogous, and we will adapt conaildlermaterial devel-
oped by others for our own use.

We assume a free energy of the following form, whéere is a boundaf which specified the presence of an “inert”

wall.

2
F :£2(¢)ds+‘[dv{f(¢1,c)+%l"2(qu)}. )



Minimization of the total free energy = 0 yields both Egs. (4) and (5) as well as thendary condition

dp[z(¢) + £0@/mM] =0 onS (10)

wheren is the outward pointing normal to the surf&andz(¢) = 0Z/d@ This boundary condition can be met in one of two
ways, either&0@/h = z(¢) (Model A) or = const. (Model B), on the boundary. These naméswidhe nomenclature of
Ref. 23, but we will allow for another way of setiithe normal component of the phase field gradirthe interface
(Model C). For concreteness we will explore hetmith the model found in Ref. 23, where a specialaghfor z@is used,
namely that along the inert boundary, all phade fientours have the same form as the one-dimealspyofile rotated by
an angleg as well as a simple quadratic model, where 6)5, (¥g¢ + hg), with g andh specified constants. Specifically

we have for Models A and C on surfaége

Model A:
z=-&0@M) =- 6. d1 - @) cos@), (11)
Model B:
@= const. (12)
Model C:
z= -&(0g ) = 6jeL (gp+ h), (13)

wherey is the imposed contact angle, and the specifigcehaf z(¢@) in Model A will become self-evident aftéris speci-
fied in a subsequent section of this manuscriptd®® A, B, and C are all legitimate solutions te thariational problem,
but may have different consequences on the dynaafitse system. Note that if there are multiplesifaces, then the
boundary condition applies at each instance okthiace with in or surrounding the alloy. We ses the boundary condi-
tion generally relategto (0@ /n) on surfaces.

Next, we briefly deduce Models A, B, and C. Alorigde lines, we demonstrate that, under certaimrostances, a
three-phase-field model (liquid-solid-wall) canfeeluced to a single phase field model with a bogndandition g= ¢ =

const. at the inert interfaces (Model B) and shioat how Model A can be nested into a three-phadd-fiodel.



B. Derivation of Model A
We wish to ensure in equilibrium that the soliddidj interface has a fixed contact anglevith a foreign wall placed at
z=0. To achieve this, we prescribe the followirgmbdary condition at the wall, which can be vievasda binary generali-

zation of Model A presented in Ref. 23:

1/2
(nDg) = (M] cos() . (24)

The motivation for this boundary condition is sfgiaiforward in the case of a stable triple junctionywhich the equilibrium
planar solid-liquid interface has a contact angleith the wall. The wall is assumed to lead to atlening of the adjacent
liquid, an effect that extends into a liquid laysrthicknessd, which is only a few molecular diameters thicke(seg.,
[31,32]). If we take a plane= z, which is slightly above this layer, i.&, > d, on this plane, the structure of the equili-
brium solid-liquid interface remains unperturbedtbg wall. Then, at = zthe phase field and concentration profiles are
trivially related to the equilibrium profiles acshe solid-liquid interface via the integral fowwhthe EL equation that

holds only for the planar interface:

£2( ap )\ _
7(KJ =Mf[pc(@)], (15)

whereng, is a spatial coordinate normal to the solid-liginiterface, while the component @fpnormal to the wall is then
(n¢) = @¢@dns)Bos) = (20f/£)*@Bos(y). Remarkably, if the parabolic groove approximatiy Folch and Plapp [33]

is applied for the free energy surface, one filds convenienthAf{ gc(@)] O F(1 - @2

C. Three-phase model vs. Model B
Typically to model three phases (solid, liquid arall), we would introduce three phase field vargabig, ¢, and @y,

respectively), where each variable takes on theevalin its named phase and 0 elsewhere, and intbes®nstraint that

Bra+ay=1. (16)

This constraint requires that phases evolve onlyréaysforming into another phase (no holes canldpyeThe constraint
reduces the problem to only two independent phiate ¥ariables. For specificity, we will assumeiquid/solid binary al-
loy system at a uniform temperature (similar to ¢time employed by Warren and Boettinger [29] and yrathers [30]).

We then postulate a free energy of the followingrfo



F :Jdv[f((ps,q_,w,v,c)+KS|D¢s|2 +KL|D¢1_|2+KW|[|¢{N|2], (17)

wheref is a local free energy density with minimaggt 0,1 for all three phas¢s= L,SW. The stability or metastability of
each of these minima is dependent on the partewhthe form off, which is in turn dependent upon the thermodynamic
particulars of the alloy in question. We will spfgca particular choice of below. The gradient terms have a form that
yields an isotropic interface energy, a choice Widan be remedied in a number of ways, but thiscehia no way effects
the gist of the argument below. Using the constrgip (16), we can eliminate one of the variabiastliis case we will

choose the liquid), re-label the solid varialgle~ @and obtain
F :jdv[f (@@ C)+ (Ks + k)| D> + 26 D@y +(ky +KL)||:|(/{N|2]. (18)

In a typical phase field treatment, at this stagewould minimize the free energy with respect toteo remaining phase
field variables, and postulate dynamics accordmg taw of gradient flow. However, in this instange take a different
approach, namely that the profile @f, is determined by the free energy in steady staig it is comprised of a series of
sharpjumps between regions whegg = 1 (inert wall) andgy = 0 (liquid or solid). In principle, this implie®ome singular
behavior for the total free energy density, ifsittd yield a sharp interface gy (and therefore discontinuous jumps in the
other variables). However, as we demonstrate beloevparticular nature of these singularities isl@vant for practical

computations. Given this constraint, we write tlyaaimical equations as

09 _ oF _ of 2 2

E-—ng_—Mw{ﬁ—Z(KS+KL)D -2k, 0 (R/v} (19)
% o oE om0 (20)
at & ac

Note that the form of Eq. (19) is, excepting thert@roportional td1’gy, identical to Eq. (4).
We assume thagy is time independent, and makes discontinuous jumpseen regions of inert wallg( = 1) and the
regions of liquid or solidgy = 0). As@= 0 in regions whereg, = 1, it is clear thafpmust make discontinuous jumps that

mirror gy. Given this, we assume the existence of an aunxifimction gx(x, t) and write

@ = (X 1) [1 - @v(x 1], (21)

wheregx(x, t) is differentiable everywher@¥) andgx(x, t) = g at the inert wall. If we insert these expressioins Eq. (19),

and equate orders in the divergences associatbdspaétial derivatives i@y, we find that at the wall
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@=—" (22)

for all time. Note that the value @f is independent of far field boundary conditions

Thus, we see that these equations effectively yiéldundary conditioron g= ¢ (Model B) at inert particle interfaces.
Hence, we propose that an essentially equivalgmtoagh the above problem is to simpiyposethis boundary condition,
and drop the additional equations associated wighother phase fields. Either method will be equeffective, however

implementation may be easier for one or the othethod depending on the particulars of the probleivet considered.

D. Three-phase model vs. Model A
In addition to allowing the solution to Model B etlauxiliary fieldgy is a useful numerical convenience for implement-
ing the classical approach described above in theiqus section for Model A. Specifically, we caxtend the integrals
over the inert wall and the containing volume tioodlspace (the space containing both the liquidissind the wall materi-

al) by the following modifications to

2
F= j dv{Z(co)lmvl{f(co,c)+%r2(D<o)](1-¢w)}, 123

where [Igy| is a Diracdfunction that locateZ(¢ to the interface, while the new factor {1¢gy) locates the free energy
density for the liquid/solid phase to those regiaere gy = 0. ComputingdF yields a modified equation fa@g specifical-
ly,

_L%’ziz[i_

22 _ 2
Moo dp L ow &0 w)(l qq,\,)+[z((o)+£ Dq)m]|quN|, (24)

where we have used= Ogy/|[0@y|. This expression is in some sense “obvious”,esaltwe are doing is adding the Model
A boundary condition multiplied by &function to the original variation over the volurmeunded by the inert wall. Thus,
be prescribing the auxiliary fielgy, we may perform computations over all of space, rmeed not explicitly impose boun-

dary conditions on the liquid-solid material at thert wall.

E. A comment on grain boundaries
At this juncture it is useful to briefly considéret grain boundary model mentioned in the previacsian, as there is a
mathematical analogy between the introduction eflibundary condition in the phase field model tgtojgy| and the

grain boundary energy penalty tefiR]. As first noticed by Tangt al. [34], this grain boundary model is mathematically
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identical to the model of Cahn for critical wettingow, with the above analysis, the reasons fa théthematical equiva-

lence become obvious. SpecificallyRhas a step discontinuity at a point in space,ra tdrthe form

Iu((o)|DR|dV :Aeju(go)ds,
\% S

where AG is the misorientation across the grain boundahusT the model including grain boundary effectscdbsd
above, and solved in subsequent sections, incltweseffective boundary-like terms, one static (thert particles de-

scribed bygy), and one dynamic (the grain boundaries, desciiydR{q).

F. Physical interpretation of Models A, B, and C

At this stage, it is appropriate discuss the plajgitctures underlying Models A, B, and C.

Model A places the mathematical surface at whiehltbundary condition acts slightly beyond the baumpdayer influ-
enced by the wall. Thus the bulk liquid and solihges in contact with the wall are connected tHrargunperturbed sol-
id-liquid interface profile, and the derivation thie interface function for the desired contact anglstraightforward. All ef-
fects of liquid ordering and solid disordering doehe wall are buried into the contact angle {eea by the particular sur-
face function) as in the classical sharp interfacelel. Then, the total free energy of the systesnrmorates both a volume-
tric and a surface contribution. Model B prescribigsid ordering and solid disordering at the wablicitly. A shortcom-
ing is though that it implicitly assumes that thalenforces the formation @f specific layer of the solid-liquid interface
(corresponding t@g), simplifying considerably the nature of the wiajuid / wall-solid interactions. Here, the freeeegy
of the system originates exclusively from the vodtric contribution.

Relying on a model parametdn) (of less straightforward physical interpretatiban either the contact angle or the val-
ue of @, Model C is able to prescribe local conditionst i@ not present inside the solid-liquid interfa€er exampleg
values may appear along the wall that fall outsitithe (0, 1) range. Note that the appearance af states is not unnatur-
al: they are also present in phase field modelgmntangevin noise is added to the equations ofanofihese values @
may be viewed, as local states that are either mmlered or disordered than the bulk crystal aquidi phases (e.g., f@>
1, atoms are more localized that in the bulk salidile @< 0 might indicate a liquid with density deficiurther work is,
however, desirable that relates the model parasiéemicroscopic properties (such as molecularéacteon / molecular
scale misfit at the wall). Remarkably, Model C irmaratesboth structural change at the interfa@ad a surface function
both of which contribute to the total free enerdyhe system. In this respect, Model C can be vieaga generalization of
the other two models. Nevertheless, we note tha¢mgdly Model A cannot be obtained as a limitingeaf Model C. It is

remarkable, however, that settigg h = 0 in Model C, one can recover Castro’s apprabahuses the “no-flux” boundary
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condition [(rill ¢ = 0] to realize a Y0contact angle [20]. This specific case can alscebevered in Model A by prescrib-

ing ¢ = 90. In these specific limits, solutions of Models AdaC coincide.

Ill. MATERIALS PROPERTIES

In this work we employ a parabolic well approxinsatito the free energy density based on the wofotth and Plapp

[33] (FP free energy henceforth). Specifically, sedectf(@ c) to be appropriate for an ideal solution
f(g.c) =wG(¢) + X{% (=T —Ac(M)[L- p(@)])? +[cs(T) - ClAc(T)[L- p((ﬂ)]}, (25)

whereG(¢@) = ¢ (1 - @? is a double-well with minima ap= 0, 1 (the commong¢-potential”),w is the scale of the height
of the double wellX is an energy scale associated with chemical clsaingide system, amu(¢) = ¢#(10 - 15¢+ 6¢F) is an
interpolating function between phases with
p(0) = 0 andp(1) = 1. The functions, (T) andcg(T), which determinéc(T) = ¢, — csare the concentrations of liquid / solid
coexistence (the liquidus and solidus), which imtdepend on the temperatufie,(which has been assumed uniform). Fi-
nally, € is a concentration locating the minima in thed@ee energy. This free energy model has the adgarof repro-
ducing a variety of phase diagrams, while allowfmiga significant amount of analysis in one dimensias will discussed
below. This parabolic well approximation to theefrenergy surface has, furthermore, the intereginogerty thatAf{ g
c(@] = wG(@, wherec = c(¢@ is the explicit relationship betweerand gemerging from the Euler-Lagrange equation [Eq.
(7)] for the concentration field [35]. This featumeans that in equilibrium (whether stable or upistai.e., planar surface
or nuclei) there is no chemical contribution to free energy. This also means that a single solufdhe EL equation for
the one--component case can be transformed intofiaite number of binary solutions using the egjtlrelationships =
c(¢) emerging from Eq. (7), provided that the lattees not contain &°c term. {We note that for nuclei the= c(¢) rela-
tionship depends on the initial composition of lilqeid [13].} Since these features simplify the bpigal calculations con-
siderably, we use the approximate thermodynamigsngby Eq. (25) throughout this work. We note, hegrethat in gen-
eral Af[ @ c(@] has a more complex form.

In order to do numerical calculations, we needpecey a number of parameters in the theary, w, c.(T), cs(T), and
T, and for dynamics, the mobilitidd,, andM.. Herein, these model parameters are chosen swiinatomputations are
comparable to the Cu-Ni ideal solution applied iany earlier studies [15,21,29,36]. With this in thimve choose a tem-
peraturel = 1574 K, wheres = 0.399112, ands = 0.466219, ani = 7.054610° J/nT.

Next, we chose the interfacial parameters: In Heeof nucleation studies relying on solving thee§luations, we have

usedd;g.900,= 1 NM for the 10%-90% interface thickness, asetqud on the basis of atomistic simulations [13, The in-



13

terfacial free energy has been chosen as the av@ag 0.2958 J/if) of the experimental values for Cu (0.223 and B.23
J/nf) and Ni (0.364 J/R) from the grain boundary groove and dihedral tegies (data compiled in [37]). Accordingls,
= 3y = 4.03%107° J/m andw = 6)g/dy = 3.89%10° J/nT, wheredy = dy0.9054IN(0.9/0.1). These calculations can be re-
garded quantitative.

As our illustrative computations for complex strets forming via heterogeneous nucleation are d#ério be merely
technology demonstrators, we aimed at only qualganodeling.

For example, in describing the shish-kebab morghokppearing in polymer-carbon nano-tube syster@k {8e have
used an ideal solution approximant of the Cu-Nayal| applied in several previous works of us [2]L,B@&wever, to mimic

polymers, a high anisotropy of six-fold symmetry floe kinetic coefficient [see Fig. 2(a)] has begplied

My | o, 70+ + )3+ cosbratang, 14}

Mo Z+a+af

(=5 andn7 = 0.001), a combination that mimics the behaviopaymeric systems in that the asymptotic growahnf
(kinetic Wulff shape, calculated according to R&) is a hexagonal plate [see Fig. 2(b)]. [Hereuse the notationi{g)? =
@’ + @ + ¢] In the simulations, we have used the followiraggmeter set for the free energy= 1.6510° J/m,w =
5.2810 J/n?, while X is the same as above, and assuming that the diffusiefficients in the liquid and solid abg= 10°
m?s andDs = 0, respectively, while the phase field mobiligM,,= 0.05 ni/(JS).

Other simulations for solidification in the preseraf foreign particles have been performed for % 1®0 % interface
thickness of 5 nm, and a slightly higher interfaéi@ee energy (0.360 J/h The respective values for the model parameters
are:& = 4.95¢10° J/m, andv = 3.96x 10° J/n?.

Finally, a few illustrative computations have bgemformed to model the columnar to equiaxed tramsis a function
of contact angle in the AJTi,s alloy. The thermodynamic properties have beenntdilaan a CALPHAD-type assessment of
the phase diagram [40]. For further details see ®RefHere, the same anisotropy function has beed torM, as in the
case of the polymeric system, however, now with0.3 andy = 1.0. The respective orientation dependendd génd the

respective asymptotic growth form (octahedron)stu@wn in Fig. 3.

IV. RESULTS AND DISCUSSION
Before performing numerical solutions to the ecuragiit is useful to determine those cases wherkytamaalculations

are tractable. With this is mind we examine thregeses of interest in steady state: (i) a tripleiom (solid-liquid-wall) of
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3 flat interfaces, (ii) an undercooled liquid inntact with and inert wall (iii) solid droplet (sptheal-cap) in contact with an

inert wall.

A. Wetting properties of external walls
In order to compare these phase field models withng's Equation [Eqg. (1)], we must compute theaaafenergies
and other relevant quantities. The surface energiasbe computed using the first integral and aenptsifound in a num-

ber of sources [8, 41]. In general the surface@nbketween any two, semi-infinite phageandB will be

Yas =2 _f dxAf[g.c(@)] - (26)
We are going to address wetting properties usiigyetkpression valid for far field behavior, andimitng the specific form

of the free energy surface given by Eq. (25).

1. The triple junction of 3 flat interfaces
In order to examine all of these cases, it is Ugefaonsider flat interfaces in equilibrium. THede phases will coexist
at the melting point. Utilizing the properties difet FP free energy, the liquid/solid interface femergy s, far from the

junction is

6

1 1
VoL =€ j dey/28f [@,c(@)] = ev/2w j gL pg=EL2 (27)
0 0

Regardless of whether we impose a conditionpam O@, the interface boundary condition establisheslaevéor @ As
discussed aboveis either specifieddp= 0 on the boundary), or, if an interface functisspecified than we may combine

Eq. (8) with the interface boundary condition tadfithe roots of
280 @ o(9)] = (6)6)° G(9 = Z(9), (28)
which has the simpler form
6L o(l-9=+29, (29)

Eqg. (28), combined witldf/oc =y, is sufficient to determine the interface valuésp@andc. In general, these expressions
will have multiple roots, and the system's selectiba particular root will be determined such ttie free energy is mini-

mized. We denote the roots selected when eitheidligr solid abuts the inert wall gs and ¢ respectively.



15

Given gat the wall, we may determine the energies of-igulid and wall-solid boundaries as

¥ =Z(@) + y3a” - 27, (30)

Wus=Z(g) + e [1 - 3¢ + 2. (31)

Thus the expression for the contact angle reads as

cos) = 2OV ZB) | 52553 -p-ap? + 202 (32)
YsL
This expression includes the mild assumption thatftee energies of flat, isolated interface camuded in constructing a
Young's equation. While this is exact for the séabiple junction in an infinite system, it is ordyn approximation in the
undercooled state, as all the field variables adtin the triple junction region, but the approation may hold under a va-
riety of circumstances. We will test the accuratthis through simulations shown below.

For Model A, the above analysis is nearly trivad,gy = 0, @vs= 1, and the contact angle is actually the coniesh-
meter of the model. Accordingly, the surface fumatcan be expressed 28) — yw. = 6. cos@) [2¢ — 3&] = (Mws— Kw)
[2¢ - 3], yielding O for the bulk liquid phase& 0), and s— kv for the bulk solid ¢= 1) phase at the interface.

For the case, whegis specified at the interface (Model B) than= @& =g and the expression for the contact angle
simplifies to cosg) = 2@*(3 - 2¢) — 1. In this case we see that@ganges from 0 to 1 thegy ranges from 0 (total liquid
wetting, solid dewetting) tax (total solid wetting, liquid dewetting). This i®ihsurprising, since making the interface “sol-
id-like” causes solid to wet the surface, while witlee surface is “liquid-like” the reverse is true.

For Model C, things are a bit more complicated @wprisingly), but the analysis is revealing. Wd at the boundary

that 1- @ =+ (h + g¢), which can be quickly solved to find up to foeal roots

(33)

1
a0 =3 1- 0%~ -4n|
P = 5|19 a-g)* +4n |
It simplifies the analysis of these roots to coasitthe casg = 0, as this assumption does not change the deaclche so-
lutions, only the particulars. (Note that this caeédllg) = - const., which can be viewed as a straightéwdigeneralization
of Castro’s “no-flux” condition for establishingantact angle ofv2 [20].) In this case, one finds that the minimtnee

energy solutions fopare
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(173 :%[1+M],
:%[1—M],

(34)

where we note thapwill take valuesoutsidethe range [0,1] at the wall. Agis a structural order parameter, and not a con-
centration, this is not, necessarily, unphysicavasnentioned above. This changes some of the figrs®me of the terms
in the expression for the surface energy, and warg be taken. Using these valueggfwe can calculate the contact angle

to be
cosy = % (1-4h)%2 - 1+ 4h) %2, (35)

Note that ifh > ¥4 [23"2 - 3]*?= 0.1703, then the contact anglatigcomplete wetting by the liquid), while if < —/4 [23'/2
- 3]*2= -0.1703 the contact angle is 0 and the solid “w#is”interface. A plot of the contact angle as afiom of h is

given in Fig. 4.

2. Undercooled liquid next to an inert wall, andritical” wetting: 1D solutions
In this sub-section, we consider a semi-infinitpesgaturated (undercooled) liquich i ¢ (T), @ = 0] in contact with a
planar wall placed &= 0. Then the first integral of the respective BlDer-Lagrange equation for the phase field reads a

8_2(%’

2
5 az) = f - f, —u(c-c,) =wG(¢) - XAc(c, —C,,) p(@) = Af[@.c(@)]. (36)

Here, the FP choice of the free energy densitylgial skewed double well as a functiorgof

Model A shows a classical behavior: neither ligoidering nor critical wetting is predicted at tinéeirface.

In Model B liquid ordering is inherent and a spiablike behavior can be seen at high enough drifimge. Here, we
have ¢ = const.O [0, 1] at the wall. Under such conditions, the EDler-Lagrange equation can be integrated to obtain
#X), yielding a solution representing a metastablglidggium (supersaturated liquid in contact witlettvall). Remarkably,
Eq. (36) can only be integrated to yield a reauioh in the region, where/G(¢) — XAc(c, — ¢..)p(@ = 0. ForwG(¢) —
XAc(c, - ¢,)p(@ < 0, only a time dependent solution exists: gpgating solidification front. The critical supesation
that separates these two types of solutions, vghéscribing a fixedg value at the wall, is given by the conditis®(g) —
XAc(c, - C.)p(@) = 0, yieldingS,i; = WG(@/[XAc’p(g)]. (It is the binary analogue of the critical unceoling of the unary

systems discussed in Ref. 23.) The critical supers@on vsg relationship corresponding to the FP parametersifipd in
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Section 11l is shown in Fig. 5. It can also be sho{see next subsection) that the nucleation battersolid phase has to
pass to start solidification, tends to zero in thigt, and the solid phase wets ideally the waliis phenomenon is analog-
ous to the critical wetting of a solid wall seerntwo-fluid systems near the critical point. Howewse have here a solid and
a liquid phase, instead of the two fluids.

For g = h = 0, Model C coincides with Model A av = 172, therefore, under such conditions no surfacesrerd
ing/disordering or spinodal are observed. Despitéase ordering/disordering, ftr> 0, no surface spinodal exists in Mod-
el C @ = 0). However, foh < 0, wherep [0, 1] at the wall, Model Cy(= 0) predicts both surface ordering and a spinodal
The relationship betwednand the critical supersaturation can be compusitithe expressior,i; = WG'(@/[XAc?p’ (@]
andh = x(@ = - {G(@ — p(@XAc(cL — Cerit)/W} V2 \wherecyi = ¢, — SyiAC, Where the expression f&;;; originates from the
condition that the critical state corresponds te ¢éxtremum of the loop ig(¢ that incorporates the poigt= 0, y = O.
(Note that the expression f8q is the condition both for the maximum gradiégtoz of the 1D solution and for the loca-
tion of the central hill of the double-well freeezgy.) The respectivg.;; vs.—h relationship is shown for the Cu-Ni system
with dig.000,= 1 Nm interface thickness &t= 1574 K in Fig. 6. We note that with the actuabice of the model parameters
(as for other continuum models), the spinodal pbettveen the solid and supersaturated liquid fatts the physically in-

accessible region of negative concentrations (se€iscussion later).

B. Heterogeneous nucleation on external walls irnC8
In our previous work [23], we have investigatedenegeneous nucleation in 2D using Models A and Bafaingle
component system. Herein, assuming isotropic iatéf free energy, and utilizing the respectivengddical symmetry, we
extend our study to 3D and binary alloys usingRRethermodynamic model [Eq. (22)]. The respectiwenfof the Euler-

Lagrange equation for the phase field is

10 (r a_w]+ 9’9 _G(@w-p(@Xc(e, ~C.) -

? or{ or 072 g2

where prime stands for differentiation with respiecthe argument of the function. This equation besn solved numeri-
cally under boundary conditions given by ModelsBAand C ¢ = 0) using the PDE Toolbox of Matlab (@ The MathWéor
Inc., 1984-2008) that relies on a combination &f fihite element and relaxation methods [43]. TApproach needs a rea-
sonable guess for the phase field distribution ithaufficiently close to the solution, to be usedthe starting distribution
for relaxation.

In mapping the properties of nuclei, we have usedfollowing strategy. First, the solution corresgimg to semi-

wetting case = 112, g = 0.5,h = 0, respectively in Models A, B, and @ £ 0)] has been determined. The initial phase
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field distribution used here wagr) = % {1 — tanh[¢ — Rcn7)/dg]}, Where Rent = 2y d[XAc(c. — C.)] and dy = dy,.
00¢/In(0.9/0.1) are the classical radius of nuclei andnterface thickness parameter, expressedrnmstef the 10%- 90%
interface thickness. Having found the respectivatim by the relaxation method, the mapping propé&y, @, h, supersa-
turation, etc.) has been changed in small increspestt that the solution for the previous computatiould be used as a
suitable starting distribution for the next compiata.

For Models A and Cg = 0), the free energy of formation of nuclei hagi calculated as

W = Fld (1)] - FIg (0] - j A (D)~ Vi) (38)
S

where the first two terms represent the volumetdntribution, while the third term account to theange of the surface
function. Herep(@ — ww. = —J&L cos@) [2¢ — 3¢ + 1] [23], while@ ' (r) is the solution corresponding to the nucleus, and
@ (r) is the solution without nucleus (liquid of thetial composition in contact with the wall). Thetkr solution has been
obtained the same way as the one for the nuclewgg\rer, using a homogeneous bulk liquid in contéth the wall as the
starting condition.

In Model B, there is no contribution from the irfeare function, thus

Wg = F[dg ()] - Fl ()] (39)

applies.

We have investigated the properties of nucleildiga supersaturatiorsE 5.0). The free energy of formation of the he-
terogeneous nuclei relative to the free energyohétion of the respective classical (sharp interffdhomo geneous solu-
tion is shown for Models A, B, and @ € 0) in Figs. 7-9, respectively.

One observes remarkable differences in the shagieafontour lines the three models predictMibdel A(Fig. 7), the
contour lines corresponding to phase field levél.t4, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and OvBdn they appear), are
roughly concentric circles, of which those fpg 0.5 intersect the wall. The contour lige= 0.5 approximates well the no-
minal (equilibrium) contact angle. Accordingly, MeldA can indeed be viewed as a diffuse interfaedization of the clas-
sical spherical cap model (a diffuse solid-liquiderface combined with a sharp wall). At this udeting, the radius of
curvature of the particle is several times larg@ntthe interface width. Accordingly, the behawbthe classical spherical
cap model is recovered quite accurately. For exam@WenT from the phase field computations approximatesetiothe

catalytic potency factdX¢) (see lowermost panel in Fig. 7).



19

In Model B(Fig. 8), only a single contour line intersects #all, the one corresponding ¢ while the others are either
closed (> @) or open < @). Accordingly, one can define a contact angledoly the contour linep= @. The contact
angle defined this way, however, depends stronglthe applied supersaturation, and convergeg 00 as the respective
critical liquid composition (that depends gnas shown in Fig. 4) is approached. Accordinglya dixed supersaturation,
the W/Went VS @ curve reaches zero (ideal wetting) at a figgealue (see lowermost panel in Fig. 8), where tttaa lig-
uid composition is the critical composition (giviey the relationship shown in Fig. 4).

In the case oModel C (g = 0)(Fig. 9), the situation resembles to that seerModel B, though it is somewhat more
complex: there are closed contour lines, and giem @nes; however, they are separated by not kesiagtour line that in-
tersects the wall, as in Model B, but by a rangeunth contour lines. Phase field values out of{hd] range can be ob-
served at the interfacelifZ O as predicted in Section IV.A.& 0 values at the wall-liquid interfacehf> 0; ¢> 0 values
at the wall-solid interface t < 0). These local states at the wall cannot beddn the bulk solid and liquid phases, though
they are temporarily accessible in the bulk phageshermal fluctuations.

The W/Wcnr Vs h relationship is shown in the lowermost panel @f. M. Interestingly, in the supersaturated shatan
reach lower values than allowed in equilibrium. &lshe maximum value for the nucleation barrier reageed that for
homogeneous nucleation. The latter finding suggéstsModel C ¢ = 0) can capture walls that prevent nucleatioth@ir
neighborhood [44]. Such walls represent a foreigtten that enforces a local structure on the liguidich is incommen-
surable with the crystal structure to which theiidtstructure transforms during freezing. This niighve interesting con-
sequences: Nanoporous materials of walls of tmsl kiould stabilize the liquid state in the poreseatperatures, where
otherwise the liquid would freeze.

For fixed model parameter valuag, (@, andh) corresponding to the same equilibrium contactegnge have computed
the nucleation barrier as a function of superséituraThe results are compared in Fig. 10. Fothalmodels, we find that
for S - 0 the ratio of the nucleation barrier to the cgpanding classical spherical cap resWt\Wsg) tends to 1, i.e., with
increasing size the phase field results converghedaclassical spherical cap model. In the caséddarfels A and B, the
nucleation barrier decreases monotonically withirmmeasing driving force, and for Model B it conges to O at ag-
dependent critical supersaturation (for the depeoelsee Fig. 5). In contrast, in Model = 0), theW vs. S relationship
shows a maximum, before the barrier height deceetrs® at arh-dependent critical supersaturation (for the depecele
see Fig. 6). Foh > 0 there is no critical supersaturation in Mo@elndW decreases monotonically with increasing driving
force S althoughW/Wscincreases.

We note here that in many gradient theories onelsmnodal point between the highly undercooldé bguid and the

crystalline phase [45] (though usually it fallsdrihe non-physical regime, e.g. to a negative teaipee). The existence of
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such a spinodal point and its influence on nuabeatias been the subject of extensive discussidhd T} especially for

short range interactions (see [46] for review). &gcatomistic simulations seem to imply that noviocing evidence is

available for the existence of such a spinodal {jgi@]. With the present choice of @(andp(¢), this crystal-liquid spi-

nodal falls to theS - « limit, well beyond the boundary of the physicalycessible rang®,.x= 6.9474 corresponding to
C,=0.

C. Formation of complex structures via heterogenass nucleation

1. Shish-kebab structure in Model A

Here, we present polycrystalline structures obthiredying on the quaternion representation of laggktallographic
orientation, Pusztadt al.[26] proposed recently. For the sake of illustrgtihe capabilities of advanced phase field model-
ing that relies on noise-induced heterogeneouseatioh on external walls, we simulate the shishake$tructure seen to
form on carbon nanotubes in polymeric systems [B8]accomplish this, we have introduced curvedduht® the simula-
tion box generated so that the local (graduallyngivag) crystallographic orientation lies in the sxif the tube, whose
shape has been constructed stepwise, so thatétgidn in the next segment might deviate fromdhentation of the pre-
vious segment by only a small random angle. Theaobrat the wall of the nanotubes is charactertaedtq. (14), while
prescribing a contact angle gf=174.

lllustrative simulations have been performed fdryaothetic binary system, whose phase diagram laeniodynamic
properties are similar to those of the Ni-Cu systapproximated by the regular solution model, aapln previous work
[21]. (Application for real polymer blends of knov@ibbs free energy functions should be straightvéod.) Unlike, the
metallic systems, polymers often crystallize in thiem of disc-like flakes. To mimic this behavieve have introduced an
anisotropic form for the phase field mobility, whiprefers the formation of disc-like growth fornse¢ Fig. 2).

The simulation has been performed on a 22D0 x 300 cubic grid with spatial and time stepgdaf= 10 nm and\t =
10 ns at the initial liquid concentration @f = 0.4192. Snapshots of the simulation are showkignll. Note the similarity

to the experimental structures reported in Ref. 38.

2. Columnar to equiaxed transition in Model A
Another illustration that shows the capabilitiespbiase field simulations incorporating heterogeseumucleation is the
application of Model A for describing the columrtarequiaxed transition (a work done in the framéwafrthe EU FP6
IMPRESS project [49]). Here, we have combined Modl&lith a 3D model of polycrystalline solidificatiorelying on the
quaternion representation of the crystallograpiiemations [26] and adopted it to constant temjpeeagradient and a

moving frame. To enable large scale simulationshexe used a broad interface (of thickness 65.6 any included an
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anti-trapping current [50] to ensure a quantitatiescription of growth kinetics. In the simulatismndow, the material is
made to move with a homogeneous velocity from righeft, while a fixed temperature gradient isqmmibed in the hori-
zontal direction. Particles of given number densifyrandom orientation and size, and of given aonangle enter into the
simulation window at the right edge, while periodmundary condition is used on the horizontal edges

Snapshots of the chemical and orientation mapstiiting polycrystalline solidification under sucbnditions are pre-
sented in Fig. 12. As a result of the diminishingleation rate due to the increasing contact avgtepbserve a gradual
transition from the equiaxed polycrystalline strretto a columnar structure. A more detailed amglgEthis phenomenon

will be presented elsewhere [51].

3. The liquid-solid meniscus position in Model B

As demonstrated above, if we fix the value of thage field at a wall tp=¢, a contact angle will result. Specifically,
at the wall, the expression for the contact argjleos()) = 2@*(3 - 2@) — 1. This can be realized numerically by fixing the
value of the phase field at=¢g everywhere in the “wall” material. To illustratieis approach we have done a few sample
calculations of capillary rise under circumstanited favor either wetting or dewetting. Using oundel, we are able to in-
vestigate the evolution of a column of liquid-sddidd between two wetting interfaces, and comparthdictions with the
analysis made above. We choose to do calculatioas insulating box (no change in the total mashefsystem), with®
=4.95x 10° J/m, andwv = 3.96x 1¢° J/nT, as is done in the simulations with particles sh@afvove. Fig. 13 shows two typ-
ical simulations, with box sizes of 22.8 nn22.8 nm, with 100« 100 grid resolution, and 20% of the box on thé deifd
right occupied by wall material. We consider thengyetric cases ofp = 0.3 [Figs. 13(a) and (b)] ang = 0.7 [Figs. 13(c)
and (d)], corresponding to solid-wall contact asgiéy = 124.62 and = 55.39, respectively. We start with a system at a
uniform concentration that guarantees that thd firtarface position remains in the box, which, fleese choices of contact
angle, is satisfied bg = 1.0 and 0.2 respectively. The figure shows tileutation initially, and after it has come to dgui
brium (1 ms).

To get an estimate of the equilibrium configuratafrthe meniscus, one can use a simple mass catienargument

to show that

o cosps
He = ws+z{%} , (40)

whereHs is the height at the center of the solid meniscomfthe bottom of the columM,is the width of the column, ard

is the height of the entire column, the bracketeandjty accounts for the circular cap of liquidsalid, andSis here the su-
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persaturationuncorrected for curvatureTo improve on the estimate, the supersaturationbeacorrected, to linear order,
by replacingS by S + 2 ys sing / (XAc?). Using these relationships the calculations shawthe figure agree with this
analysis within 5%, with no substantial improvemiétie grid is refined.

For ¢ = 0.3, the measured valuefis 0.625, while the analysis yields 0.603, whide ¢ = 0.7 Hs converges to 0.628,
while the analysis yields 0.597. The estimate cdsddmproved by using a full, non-linear correctiorthe compositions,
as well as a more consideration of the non-claksiflaence of the finite interface thickness. Glgathe method is a con-

venient approach for capturing complex phenomena.

4. Particle-front interaction in Model C

Finally we examine an application of Model C. Wesider the same parameters (except that the isifjgérsaturation
is S= 0.86) used in the above section, but now exatfiegassage of an interface through a distribugfdnteracting par-
ticles. The analysis of such a phenomenon is dafigrgimilar to Zener pinning [52], and it is ntte intent of this manu-
script to fully explore this phenomenon, but instéademonstrate the flexibility and generalityooi approach.

Fig. 14 shows a series of calculations that shawvpthenomenological richness available within teigatively simple
model. We discuss the images in a clockwise sequétanels (a&)c) show the propagation of the solidification framthe
presence of foreign particles of circular shapatisty with (a) and proceeding fon, with a contact angle on the particles
set in Model C usingp = - 0.05 [so the equilibrium contact angle definedHay (35) is¢ = 73°]. The interface eventually
arrests, but much of the box solidifies{1%). In order to examine the influence of shape \@ettability, we first examine
changing the shape of the drops to “sticks”, [segpanels (d) and (e)] but with the same distrilmutdf particles. We see
that for the sticks the interface arrests much ngoiiekly, at a solid fraction of 39%. Solidification at a reduced wettabili-
ty h=-0.025 (corresponding t¢~ 81°), is shown in panels (e) to (h). Apparently, ttiiees not alter substantially the so-
lidification front [cf. panels (d) and (e)]. Thus we infer that the preseof right angle corners strongly influences pilre
ning of the interface. In contrast, in frame (f)thkt is changed from frame (c) is the contaciengnd we see that the in-
terface now arrests with this modestly higher arfgleolid fractior= 29%), and increasing the size of the droplets fsee
el (g)] does not influence the profile substanjigl5%, however much of the difference is due ®ititreased percentage
of impurities). Finally, in panel (h), we reducetsize of the particles, and the interface oncéndgasubstantially less im-
peded, with 73% of the liquid solidifying. Clearky,substantial numerical exploration of this pheanan could yield fur-
ther insights into such pinning behavior in reatsyns, particularly if a physically motivated walhction could be estab-

lished through either measurementbrinitio calculations.
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V. SUMMARY
We have presented three possible approaches td thedeetting properties of foreign walls in tharfrework of phase

field simulations for the solidification of binaafloys. These approaches differ in the treatmeti@foreign surfaces:

(@) Model A is a diffuse interface realization of tHassical spherical cap model with a contact anw¢ is essentially
independent of the driving force ensured by a dgesirface function.

(b) Model B is a non-classical formulation that assumésed phase field value at the interface, legdmsurface or-
dering/disordering, a strongly supersaturation ddpat contact angle, and to a surface spinodabl(idetting
beyond a critical supersaturation). In this modaly such local states can be realized at the wélich are present
in the solid-liquid interface.

(c) Model C is a non-classical approach, which in itspdest form § = 0), fixes the normal component of the phase
field gradient, leading to surface ordering / dikoing, a supersaturation dependent contact aagtkto a surface
spinodal, the latter restricted to the< O region (¢ < 17/2). This model allows a stable appearance of sochl

states at the wall that are available in the bhl&sgs only temporarily in the presence of therinatdations.

Models A, B, and C represent different levels oftediction as we discussed above, and can be useititess a broad
variety problems of including the formation of cdep solidification structures, such as the shishake morphology in
carbon nanotube filled polymers, the columnar taiageed transition and the front-particle interactio alloys. Any of
these models can be used to describe interfacearihaharacterized by a given contact angle iilibgum, however, the
behavior predicted in the supersaturated statendispen the individual model.

Comparative studies relying on combined phase &eld atomistic simulations are planned to ideritify validity range

of the individual models and the predicted comfiekavior (e.g. the appearance of surface spinodal).
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FIGURE CAPTIONS

FIG. 1: Definition of contact angle,: glycerin droplet on glass surface.

http://lejpt.academicdirect.org/A10/029_038_filexige009.jpg)

FIG. 2: (a) Kinetic anisotropy used in simulatidos the polymer-carbon nanotube mixture and (b)rdspec-

tive asymptotic growth form (kinetic Wulff shape3|3

FIG. 3: (a) Anisotropy of the interfacial free eggmsed in simulations for columnar to equiaxedditon in

the Al-Ti alloy and (b) the respective asymptotiowth form (kinetic Wulff shape [38]).

FIG. 4: A plot of contact angle as a function ofgraeteth in Model C ¢ = 0). Forh < - 0.1703 the contact an-

gle is 0, while foih > 0.1703, it iSt

FIG. 5: Critical liquid supersaturation corresparglio ideal wetting as a function of phase fieltleag at the
wall in Model B atT = 1574 K for Cu-Ni with a physical interface thigss of 1 nm. The horizontal dashed line
shows the maximum possible supersaturafign= 6.9474 (corresponding to, = 0). Results above this line are

unphysical.

FIG. 6: Critical liquid supersaturation correspamglio ideal wetting as a function el at the wall in Model C
(g =0) atT = 1574 K for Cu-Ni with a physical interface thiss of 1 nm. The horizontal dashed line shows
the maximum possible supersaturatif, = 6.9474 (corresponding m, = 0). Results above this line are un-

physical.

FIG. 7. Structure of heterogeneous nuclebat 5.0 in Model A at various contact angles (upaed central
row)). There is a symmetry plane on the left edde contour lines vary between 0.1 and 1.0 by mergs of

0.1: 9= 0.1, 0.2, ..., 0.9. Note that these lines cowadpto local supersaturations®f 0.1, 0.2, ... ,0.9. The
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lowermost panel shows the ratio of the PF predictiw the nucleation barrier height (circles) nolimed by the
barrier height for the homogeneous nucleus in tbpldt model of the classical nucleation theory. €@mpari-

son, the catalytic potency facti§gy) from the spherical cap model is also shown (dolig).

FIG. 8: Structure of heterogeneous nuclesat5.0 in Model B at various phase field valueshat wall (upper
and central row)). The contour lines vary betwegnahd 1.0 by increments of 0.4= 0.1, 0.2, ..., 0.9. Note
that these lines correspond to local supersatmatéS = 0.1, 0.2, ... ,0.9. The lowermost panel showsatie
of the PF prediction for the nucleation barriergmei(circles) normalized by the barrier height fiee homoge-
neous nucleus in the droplet model of the classinaleation theory. For comparison, the catalytitepcy fac-

tor f(¢) from the spherical cap model is also shown (dotig).

FIG. 9: Structure of heterogeneous nucles at5.0 in Model C ¢ = 0) at various values of the model parameter
h (upper and central row)). The contour lines vagtwieen 0.1 and 1.0 by increments of @k 0.1, 0.2, ...,
0.9. Note that these lines correspond to local rsaperations ofS = 0.1, 0.2, ... ,0.9. The lowermost panel
shows the ratio of the PF prediction for the nuideebarrier height normalized by the barrier heifgin the ho-
mogeneous nucleus in the droplet model of the iciassucleation theory (circles). For comparisdrg tatalytic
potency factof(¢) from the spherical cap model is also shown (doti€). The deviation of the background hue
from white in panels foh > 0 indicates that negative andS values appear in the vicinity of the wall, whetre i

is contact with the liquid phase.

FIG. 10: Nucleation barrier heightMf normalized by that from the classical spherieg model \Wsd) vs. su-
persaturation (S) for Models A (square), B (tria)glnd C (diamond) at interface parametgrss 60, ¢ =
0.673648 andh = —0.083733, respectively, which all realize the samailibrium contact angle. Note that for
both Models B and C (fdn < 0), there exists a critical supersaturation, whdeal wetting switches in (the nuc-
leation barrier disappears). This critical supensdionS. depends on the respective interfacial parameteor(
h). Such surface spinodal-like behavior has not eserved for Model A that realizes the nominaltaohan-
gle y fairly accurately even at high supersaturations lodel A the deviation fromV/Wsc= 1 originates do-

minantly from the fact that at large supersaturetidhe height of heterogeneous nuclei becomes ax@inie to
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the interface thickness, and thus there are no dnyital properties in the nuclei). The verticasld@ot line in-

dicates the bordes, . of the physically accessible regid®<{ Snay)-

FIG. 11: Formation of shish-kebab structure by edasluced heterogeneous nucleation on tubular whten-
tact angley = 174 in Model A [Eq. (14)] all = 1574 K andky; = 0.4192, in a hypothetical system whose ther-
modynamic properties are given by an ideal solutipproximation of the Cu-Ni system, while its kineiniso-
tropy (anisotropy of the phase field mobility) agrdwth shape are shown in Fig. 2. Snapshots takémest =
30, 40, 50, and 6Qs show the walls and the solidification fromt & 0.5). The computations have been per-

formed on a 20& 200x 300 grid (2um x 2 um x 3 um).

FIG. 12: Phase-field simulation of columnar to ecped transition in the AlsTigss alloy as a function of contact
angle of foreign particles in a moving framé=£ 1.26 cm/s) and a constant temperature gradiéht=(1.12x
10’ K/m) in Model A [Eq.(14)]. Composition (on the fpfaind orientation maps (on the right) correspopdn
contact angles ofy = 3, 6(°, 9¢°, and 120 (from top to bottom, respectively) are shown. Toeenputations
have been performed by solving the 3D phase fieddehof polycrystalline solidification [26] in 2Dnoa 600x
3000 grid (3.93um x 19.68um). White spots in the chemical map indicate threif particles, whose diameter
varies in the 13 nm 66 nm range. In order to be able to distinguighdtientation of the foreign particles, the

fluctuating orientation field of the liquid is nehown in the orientation map [color map is muléglbyp(g].

FIG. 13: Time evolution of solid-liquid meniscus\adrtical walls in Model B for (a),(b) wetting(= 55.39)
and (c),(d) non-wettingi = 124.62) walls. The phase field map is shown [whitdulk solid @= 1); black—
bulk liquid (¢= 0)]. The computations have been performed foeNGwassuming a 5 nm thick solid-liquid inter-

face. The software tool FiPy was used for the datimns qttp://www.ctcms.nist.gov/fipy

FIG. 14: Particle-front interaction in Model C afixed initial liquid supersaturatio8 = 0.86. Pinning of solidi-
fication front to foreign particles: (a)-(c) Promdign and pinning of the solidification front inetlpresence of

circular foreign particles. (d),(e) The effect bfape and contact angle on front-pinning. (f)-(hg Efffect of par-
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ticle size on the front-pinning. For discussiore ke text. The computations have been performe@isNi,
assuming a 5 nm thick solid-liquid interface. Imada)-(c) have been computed witk= — 0.05, while (e)-(f)
with h = = 0.025. (Black- solid; white— liquid; green- foreign particle.) The software tool FiPy was u$ad

the calculations (http://www.ctcms.nist.gov/fipy).
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FIG. 1: Definition of contact anglg,: glycerin droplet on glass surface.

(http://lejpt.academicdirect.org/A10/029_038_fileslge009.jpg)

@

(b)

FIG. 2: (a) Kinetic anisotropy used in simulatidosthe polymer-carbon nanotube mixture and (b)réspective

asymptotic growth form (kinetic Wulff shape [38]).
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(b)

FIG. 3: (a) Anisotropy of the interfacial free eggiused in simulations for columnar to equiaxedditon in the

Al-Ti alloy and (b) the respective asymptotic grbvibrm (kinetic Wulff shape [38]).
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FIG. 4: A plot of contact angle as a function ofgraeteth in Model C ¢ = 0). Forh <-0.1703 the contact angle

is 0, while forh > 0.1703, it iST
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FIG. 5: Critical liquid supersaturation corresporglio ideal wetting as a function of phase fieltlieag at the
wall in Model B atT = 1574 K for Cu-Ni with a physical interface thigss of 1 nm. The horizontal dashed line

shows the maximum possible supersaturaign= 6.9474 (corresponding @, = 0). Results above this line are

unphysical.
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-h
FIG. 6: Critical liquid supersaturation corresparglto ideal wetting as a function ¢lfi at the wall in Model Cq
=0) atT = 1574 K for Cu-Ni with a physical interface thigss of 1 nm. The horizontal dashed line shows the

maximum possible supersaturati®p, = 6.9474 (corresponding t, = 0). Results above this line are unphysical.
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v =30° v =45° v =60°

FIG. 7. Structure of heterogeneous nucleBat 5.0 in Model A at various contact angles (upged central
row)). There is a symmetry plane on the left edde contour lines vary between 0.1 and 1.0 by mergs of
0.1: 9=0.1, 0.2, ..., 0.9. Note that the respective llsopersaturations can be givenség =S + g(¢. The lo-
wermost panel shows the ratio of the PF predictiorthe nucleation barrier height (circles) normedl by the
barrier height for the homogeneous nucleus in tpldt model of the classical nucleation theory: €ampari-

son, the catalytic potency factiggy) from the spherical cap model is also shown (dotig).
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FIG. 8: Structure of heterogeneous nucleSat 5.0 in Model B at various phase field valueshat wall (upper
and central row)). The contour lines vary betweenahd 1.0 by increments of 0.¢= 0.1, 0.2, ... , 0.9. Note
that the respective local supersaturations cariviea @ss(¢@) =S + f(@. The lowermost panel shows the ratio of
the PF prediction for the nucleation barrier heigintcles) normalized by the barrier height for timmogeneous
nucleus in the droplet model of the classical ratid® theory. For comparison, the catalytic potefaxyorf(¢)

from the spherical cap model is also shown (sdti€l)l
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h=-0.2 h=-0.15 h=-0.1

h=0 h=0.1 h=0.15

FIG. 9: Structure of heterogeneous nucles at5.0 in Model C ¢ = 0) at various values of the model paramhter
(upper and central row)). The contour lines vargeen 0.1 and 1.0 by increments of gt 0.1, 0.2, ..., 0.9.
Note that the respective local supersaturationseagiven as(¢g) =S + p(@. The lowermost panel shows the ra-
tio of the PF prediction for the nucleation barrfwight normalized by the barrier height for thenlegeneous
nucleus in the droplet model of the classical natab® theory (circles). For comparison, the catalgbtency fac-
tor f(¢) from the spherical cap model is also shown (slitig). The deviation of the background hue fromitevh
in panels foh > 0 indicates that negative ands < Svalues appear in the vicinity of the wall, wheréicontact

with the liquid phase.
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FIG. 10: Nucleation barrier heightVf normalized by that from the classical spherieg model Ysg vs. super-
saturation (S) for Models A (square), B (trianglahd C (diamond) at interface parametgrs= 60, ¢ =
0.673648 andc = —0.083733, respectively, which all realize the saygailibrium contact angle. Note that for
both Models B and C (fdn < 0), there exists a critical supersaturation, whdeal wetting switches in (the nuc-
leation barrier disappears). This critical supensdionS. depends on the respective interfacial paramegeor(
h). Such surface spinodal-like behavior has not lmeserved for Model A that realizes the nominaltaohangle

Y fairly accurately even at high supersaturations lfodel A the deviation froriM/Wsc= 1 originates dominant-
ly from the fact that at large supersaturationa,htbight of heterogeneous nuclei becomes compa@bie inter-
face thickness, and thus there are no bulk crgstaderties in the nuclei). The vertical dash-dot lindicates the

borderS, . of the physically accessible regidhg Sy.).
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FIG. 11: Formation of shish-kebab structure by edigluced heterogeneous nucleation on tubular wék®n-
tact angley = 14 in Model A [EqQ. (14)] all = 1574 K andy; = 0.4192, in a hypothetical system whose thermo-
dynamic properties are given by an ideal solutippreximation of the Cu-Ni system, while its kinetinisotropy
(anisotropy of the phase field mobility) and growstrape are shown in Fig. 2. Snapshots taken a$ tim8&0, 40,

50, and 6Qus show the walls and the solidification frogt € 0.5). The computations have been performed on a

200x 200x 300 grid (2um x 2 um x 3 um).
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FIG. 12: Phase-field simulation of columnar to egped transition in the AbsTigss alloy as a function of contact
angle of foreign particles in a moving framé= 1.26 cm/s) and a constant temperature gradiéht(1.12x 10’
K/m) in Model A [Eq.(14)]. Composition (on the Ifind orientation maps (on the right) correspondingon-
tact angles ofy = 3¢, 6(°, 9¢°, and 120 (from top to bottom, respectively) are shown. Thenputations have
been performed by solving the 3D phase field modiglolycrystalline solidification [26] in 2D on &6 x 3000
grid (3.93um x 19.68um). White spots in the chemical map indicate theifm particles, whose diameter varies
in the 13 nn+ 66 nm range. In order to be able to distinguighdtientation of the foreign particles, the fluctua

ing orientation field of the liquid is not showntime orientation map [color map is multiplied fxy)].
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FIG. 13: Time evolution of solid-liquid meniscuswatrtical walls in Model B for (a),(b) wetting/(= 55.39) and
(c),(d) non-wetting ¢ = 124.62) walls. The phase field map is shown [whitéulk solid @= 1); black- bulk
liquid (¢ = 0)]. The computations have been performed foNGwassuming a 5 nm thick solid-liquid interface.

The software tool FiPy was used for the calculaigitp://www.ctcms.nist.gov/fipy).
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FIG. 14: Particle-front interaction in Model C afixed initial liquid supersaturatio = 0.86. Pinning of solidi-
fication front to foreign particles: (a)-(c) Promdipn and pinning of the solidification front ingtpresence of
circular foreign particles. (d),(e) The effect dfape and contact angle on front-pinning. (f)-(heTéffect of
particle size on the front-pinning. For discussisee the text. The computations have been perfofaredu-

Ni, assuming a 5 nm thick solid-liquid interfacmdges (a)-(c) have been computed with— 0.05, while (e)-

() with h == 0.025. (Black- solid; white— liquid; green— foreign particle.) The software tool FiPy was used

for the calculations (http://www.ctcms.nist.govif)p



