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We extend the phase field model of heterogeneous crystal nucleation developed recently [L. Gránásy, T. 

Pusztai, D. Saylor, and J. A. Warren, Phys. Rev. Lett. 98, 035703 (2007)] to binary alloys. Three approaches 

are considered to incorporate foreign walls of tunable wetting properties into phase field simulations: a conti-

nuum realization of the classical spherical cap model (called Model A herein), a non-classical approach 

(Model B) that leads to ordering of the liquid at the wall, and to the appearance of a surface spinodal, and a 

non-classical model (Model C) that allows for the appearance of local states at the wall that are accessible in 

the bulk phases only via thermal fluctuations. We illustrate the potential of the presented phase field methods 

for describing complex polycrystalline solidification morphologies including the shish-kebab structure, co-

lumnar to equiaxed transition, and front-particle interaction in binary alloys.  

 

PACS number(s): 64.60.Qb, 64.70.Dv, 82.60.Nh  

 

I.  INTRODUCTION 

When one cools a liquid below its melting temperature, it is no longer stable, and will freeze eventually [1]. However, 

the liquid will exist in a metastable state until a nucleation event occurs. In the study of nucleation, a distinction is made be-

tween homogeneous and heterogeneous nucleation [1,2]. Homogeneous nucleation occurs in an idealized pure material, 

where the only source of nucleation in an undercooled melt is due to fluctuation phenomena [1,2]. On the other hand, hete-

rogeneous nucleation occurs in “impure” materials, where walls or some agent, usually particles substantially larger than the 

atomic scale introduced to the melt (either intentionally or not) facilitate nucleation by reducing the energy barrier to the 

formation of the stable phase. This reduction occurs when the impurities induce ordering in the liquid [3] that enhances the 

formation of the solid phase. Heterogeneous nucleation is not only a phenomenon of classic importance in materials science, 

but also remains one of continuously growing interest, due to the emerging technological interest in nano-patterning tech-
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niques and control of related nano-scale processes [4]. In spite of its technological importance, heterogeneous nucleation is 

poorly understood due to difficulties in describing the interaction between the foreign matter and the solidifying melt. 

In classical theory, the action of the impurity to enhance or suppress the solid phase can be formulated within the lan-

guage of wetting. That is, given the surface energies for liquid-solid (γSL), wall-liquid (γWL), and wall-solid (γWS) boundaries, 

we may calculate the contact angle of a solid-liquid-wall triple junction (assuming isotropic surface energies [5]). Using Fig. 

1 as a schematic guide (where the drop is imagined to be solid in liquid, not liquid in gas) to determine the contact angle ψ 

between the solid-liquid surface and the wall (with the angle subtending the solid material) we find a version of the Young-

Laplace Equation: 

 

                                                                  
SL
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γ
γγψ −

=cos .                                                                                 (1) 

 

Clearly, within this framework, if ψ = 0 then the surface will be wet with the solid phase, and there will be no barrier to 

nucleation. In the case where ψ = π the liquid phase is preferred at the interface, and the system behaves as if the particle 

were not there. Within the framework of the classical ''spherical cap'' model, the nucleation barrier is simply reduced by the 

catalytic potency factor f(ψ) as follows, Whetero = Whomo f(ψ), where f(ψ) = [ψ − ½ sin(2ψ)]/π and f(ψ) = ¼ [2 − 3 cos(ψ) 

+cos(ψ)3] for two and three dimensions, respectively [1,5]. The above argument becomes more complex if the surface ener-

gies are anisotropic [5], but are not changed in qualitative detail. 

Wetting of a foreign wall by fluids/crystals has been studied extensively [6] including such phenomena as critical wet-

ting and phase transitions at interfaces [7]. Various methods have been applied to address these problems such as continuum 

models [8] and atomistic simulations [9]. Despite this inventory, recent studies [10] addressing heterogeneous crystal nuc-

leation rely almost exclusively on the classical spherical cap model, which assumes mathematically sharp interfaces [1,11]. 

While this approach may quantitatively describe wetting on the macroscale, it loses its applicability [2,12] when the size of 

nuclei is comparable to the interface thickness (the nanometer range, according to experiment and atomistic simulations 

[13]). Such nanoscale nuclei are essentially ''all interface''.  Recent investigations show [12] that the phase field approach 

(PFT, for recent reviews see [14,15]) can describe such non-classical nuclei. Indeed, the PFT can quantitatively predict the 

nucleation barrier for systems (e.g., hard-sphere, Lennard-Jones, ice-water, etc.) where the necessary input data are availa-

ble [12,16]. We therefore adopt this approach to describe heterogeneous nucleation. Experimentally, the details of the wall-

fluid interaction are embedded in more directly accessible quantities, such as the contact angle in equilibrium. It is thus de-

sirable to develop a model that describes the wall in such phenomenological terms. 

To address heterogeneous nucleation within the phase field approach, we need to include foreign walls. Ideally, we may 

regard the foreign ''wall'' as a new phase with all its chemical and wetting properties known. This is the case in previous stu-
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dies addressing solidification in eutectic and peritectic systems, where the secondary crystalline phase appears via heteroge-

neous nucleation on the surface of the first-nucleated primary phase. Nucleation and subsequent growth on such intrinsic 

walls have been addressed in some depth in previous work [17]. 

More often, however, we do not have such detailed information on foreign walls, and have to satisfy ourselves with 

knowing only their wetting properties (e.g., the contact angle). It would be, therefore, desirable to work out PFT techniques 

for such cases. In order to distinguish this case from the fully characterized walls, and because of the fact that they can be 

represented in the PFT by boundary conditions, we are going to term them as external walls. Indeed, as we will see, to 

achieve this, we have to specify appropriate boundary conditions at the wall represented by a mathematical surface. Pre-

vious work along this line incorporates numerical approaches designed to ensure the desired contact angle [18], or either 

fixing the value of the phase field at the wall [19], or the normal component of the phase field gradient [15,19−22]. Early 

work in this area addressed only the non-wetting case (φ = 0 corresponding to ψ = π) [19], or the semi-wetting case (ψ = 

π/2), realized by the no-flux boundary [15,19−21]. Recently, however, we have shown that either fixing the normal compo-

nent of the phase field gradient (Model A) or the value of the phase field (Model B) appropriately at the wall, one can real-

ize all kinds of contact angles [23].  

It is appropriate to mention that ideas similar to those presented in our paper [23] seemed to be "in the air" in other 

branches of field theoretic modeling. For example, a simulation by Jacqmin [24] performed for a liquid-liquid interface 

forming contact angles of ψ = ± π/4 with opposite walls suggests that he might have been aware of Model A, although nei-

ther a derivation of the model nor its general formulation valid for other contact angles has been presented in his paper. In 

fact, Model B has already been used in an earlier study [8(e)], however, for describing the wetting of solid surfaces by flu-

ids, yet not for a structural order parameter. Finally, a few days before our prior paper on this topic [25] has been published 

electronically, a similar work has been submitted, which outlines Model A for interfaces between two fluids. These tech-

niques have been worked out for single fields, and they have yet to be generalized to cases where the structural order para-

meter is coupled to other fields.  

Herein, we generalize the approaches described in [23] for the solidification of binary alloys (structural order parameter 

coupled to a concentration field). It will be shown that with a specific parabolic approximation of the free energy surface the 

contact angle vs. boundary condition relationships described in [23] remain valid. After developing the model for isotropic, 

binary alloys, we extend the model (adding noise, grain boundary effects and interfacial anisotropy) allowing us to perform 

simulations of heterogeneous nucleation during the growth of a polycrystalline material. 
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II.  PHASE FIELD THEORY FOR WETTING AND HETEROGENEO US NUCLEATION  

Recently, a rich array of phenomena has been modeled using a phase field theoretic approach that has a fairly simple 

form (see the appendices of [15]): 

∫ 

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where f(φ,c) has the form of a skewed double well, with minima in the two phases at φ = 0 (liquid) and φ =1 (solid), and the 

difference in height being controlled by the thermodynamic variables such as temperature T and concentration c. In this 

model T is assumed uniform. The gradient coefficient,ε , sets the interface width, while the form of Γ, a homogeneous de-

gree one function of its argument, determines the anisotropy. The contribution from orientation due to grain boundaries is 

embedded in the local orientation matrix R.  In general, R is an SO(3) object, and thus transforms in manner consistent with 

this group. There are a number of equivalent representations of R [26, 27], but here we will use a quaternion form from 

[28]. ∇φ ⋅ R rotates the vector ∇φ  into the frame of the orientation of the crystal. The function then Γ determines the penal-

ty for gradients in this direction.  It thus represents the local interface energy anisotropy. As a homogeneous degree one 

function, ΓΓΓΓ(v) can be written as  

ΓΓΓΓ(v) = |v| (1 + β(n)), 

 

 where n = v/|v|, is the normal to the level sets of φ, in the coordinate system of the crystal, and thus is the natural extension 

of the surface normal in classical theory to a phase field model, and β is necessarily a homogeneous degree zero function of 

its argument. For four-fold symmetry, a common choice for β = α (nx
4 + ny

4 + nz
4), where α is a constant. When ΓΓΓΓ(∇φ) = 

|∇φ| (or β = 0), the interface energy will be independent of the orientation of the phase boundary.  Finally the orientation 

penalty taken to have the simple form 

 

fori= HTu(φ) |∇R| + O(|∇R|2), 

 

where we use the standard L2 norm of the gradient of the orientation, which is a metric that yields the local misorientation. 

The function u(φ) is zero in the liquid, and increases in the solid, where grain boundary energies are well defined. In quater-

nion notation 
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[26, 28]. 
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Until we return to the more complex case of polycrystalline growth later in the manuscript, we will focus on the isotrop-

ic case. We thus drop fori and assume ΓΓΓΓ(v) = |v|, yielding a standard model phase field model of a binary alloy, like that 

found in Warren and Boettinger [29] and many others [30], with the form 

 

∫ 










∇+= 2

2

2
),( φεφ cfdVF .                                                                (3) 

 

Equations of motion then have the form 
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where Mφ and Mc are mobilities. 

As in classical theory, the critical fluctuation (nucleus) represents an extremum of the free energy. Thus it can be found 

by solving the appropriate Euler-Lagrange equations. Mass conservation needs to be taken into account here, a constraint 

that can be enforced by adding Λ ∫ c(r ) dV to the free energy, where Λ is a Lagrange multiplier  

 

0=
′

δφ
δF

,                                                                                      (6)  

0=
′

c

F

δ
δ

,                                                                                     (7) 

 

where F’  = F + Λ ∫ c(r ) dV  is the free energy functional that includes the term with the Lagrange multiplier. 

We wish now to supplement this model in a manner that will allow for a physical representation of the influence of a 

new material on the statics and dynamics of crystallization.  There are several ways that this can be done: (i) the imposition 

of appropriate boundary conditions on the above equations, or (ii) the addition to the model of a second phase field to di-

rectly model the impurities. Both of these approaches will allow us to to model the wetting of a chemically inert phase em-

bedded in the solid-liquid matrix, and concomitantly, develop a physical model of heterogeneous nucleation.  Having devel-

oped these two approaches, and examining their respective benefits and costs, we will then discuss their relationship to the 

‘’full’’ three-phase-field model, and demonstrate the common mathematical basis for all of models developed herein.  We 

now present, in substantial detail, the specifics of these assertions, and then use the model to examine several relevant ex-

amples. 
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A.  Defining “external” walls 

There are several mathematical approaches to modeling a three phase system. The first we consider involves treating the 

inert material as a sharp wall, the walls influence is controlled by the behavior of the alloy abutting the wall. The two most 

natural choices to consider are either specifying  ∇φ ⋅ n or φ on the boundary. We explore both below. 

In steady state the one dimensional equations describing the system can be integrated to find 
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∂=≡const. ,                                                                          (8) 

 

where µ is the chemical potential, f∞ = f(φ∞, c∞) and φ∞ and  c∞ are the far field values of φ and c respectively. 

From Eqs. (8) we see immediately that specifying the value of either φ, ∂f/∂x or c at the boundary immediately deter-

mines the other two (in steady state). In this manuscript we will examine the consequences of three possible choices (i) spe-

cification of φ at the boundary (ii) specification of a normal gradient ∇φ⋅n at the boundary (n is the surface normal), and fi-

nally (iii) introduction of a new bulk field term φW, an auxiliary field that takes the value 1 in the wall material (where φ = 

0). We explore this last approach in a subsequent section, as it will become the foundation for implementing all of the me-

thods described herein. 

We follow the ideas of Cahn [7], who examined the problem of introducing a wettable interface into a binary alloy liq-

uid with a miscibility gap (the system therefore had a critical point). Cahn imposed an “interface function” that determined a 

boundary condition on the concentration field, and then examined the behavior of the system near the critical point.  We 

now propose to do the same analysis in the context of the non-conserved phase field model of an ideal binary solution.  We 

should note that the use of a structural order parameter in this analysis has specific physical implications that are non-

trivially different from those realized under Cahn's analysis of a conserved order parameter. In particular, as the dynamics 

these two types of flows is substantially different, we expect the behavior of nucleation in these systems to be qualitatively 

different.  The analysis of equilibrium, will, however, be quite analogous, and we will adapt considerable material devel-

oped by others for our own use. 

We assume a free energy of the following form, where there is a boundary S, which specified the presence of an “inert” 

wall. 
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 Minimization of the total free energy δF = 0 yields both Eqs. (4) and (5) as well as the boundary condition  

 

δφ [z(φ) + ε2∇φ ⋅ n] = 0  on S,                                                                (10) 

 

where n is the outward pointing normal to the surface S and z(φ) ≡ ∂Z/∂φ. This boundary condition can be met in one of two 

ways, either −ε2∇φ ⋅ n = z(φ) (Model A) or φ = const. (Model B), on the boundary. These names follow the nomenclature of 

Ref. 23, but we will allow for another way of setting the normal component of the phase field gradient at the interface 

(Model C). For concreteness we will explore herein both the model found in Ref. 23, where a special choice for z(φ)is used, 

namely that along the inert boundary, all phase field contours have the same form as the one-dimensional profile rotated by 

an angle φ, as well as a simple quadratic model, where Z = 6γSL (½gφ2 + hφ), with g and h specified constants. Specifically 

we have for Models A and C on surface S: 

 

Model A: 

                  z = −ε2(∇φ ⋅ n) = − 6γSL φ(1 − φ) cos(ψ),                                                             (11) 

 

Model B: 

                φ = const.                                       (12) 

 

Model C: 

          z = −ε2(∇φ ⋅ n) = 6γSL (gφ + h),                                                                  (13) 

 

where ψ is the imposed contact angle, and the specific choice of z(φ) in Model A will become self-evident after f  is speci-

fied in a subsequent section of this manuscript. Models A, B, and C are all legitimate solutions to the variational problem, 

but may have different consequences on the dynamics of the system. Note that if there are multiple interfaces, then the 

boundary condition applies at each instance of the surface with in or surrounding the alloy. We see that the boundary condi-

tion generally relates φ to (∇φ ⋅ n) on surface S. 

Next, we briefly deduce Models A, B, and C. Along these lines, we demonstrate that, under certain circumstances, a 

three-phase-field model (liquid-solid-wall) can be reduced to a single phase field model with a boundary condition φ = φ0
 = 

const. at the inert interfaces (Model B) and show that how Model A can be nested into a three-phase-field model.  
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B.  Derivation of Model A 

We wish to ensure in equilibrium that the solid-liquid interface has a fixed contact angle ψ with a foreign wall placed at 

z = 0. To achieve this, we prescribe the following boundary condition at the wall, which can be viewed as a binary generali-

zation of Model A presented in Ref. 23: 

)cos(
)](,[2

)(
2/1
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ε
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
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n .                                                            (14) 

 

 The motivation for this boundary condition is straightforward in the case of a stable triple junction, in which the equilibrium 

planar solid-liquid interface has a contact angle ψ with the wall. The wall is assumed to lead to an ordering of the adjacent 

liquid, an effect that extends into a liquid layer of thickness d, which is only a few molecular diameters thick (see e.g., 

[31,32]). If we take a plane z = z0, which is slightly above this layer, i.e., z0 > d, on this plane, the structure of the equili-

brium solid-liquid interface remains unperturbed by the wall. Then, at z = z0 the phase field and concentration profiles are 

trivially related to the equilibrium profiles across the solid-liquid interface via the integral form of the EL equation that 

holds only for the planar interface: 
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where nSL is a spatial coordinate normal to the solid-liquid interface, while the component of ∇φ normal to the wall is then 

(n⋅∇φ) = (∂φ/∂nSL)⋅cos(ψ) = (2∆f/ε2)1/2⋅cos(ψ). Remarkably, if the parabolic groove approximation by Folch and Plapp [33] 

is applied for the free energy surface, one finds that conveniently ∆f[φ,c(φ)] ∝ φ2(1 − φ)2. 

 

C.  Three-phase model vs. Model B 

Typically to model three phases (solid, liquid and wall), we would introduce three phase field variables (φS, φL, and φW, 

respectively), where each variable takes on the value 1 in its named phase and 0 elsewhere, and impose the constraint that 

 

φS + φL + φW = 1.                                                                              (16) 

 

This constraint requires that phases evolve only by transforming into another phase (no holes can develop). The constraint 

reduces the problem to only two independent phase field variables. For specificity, we will assume a liquid/solid binary al-

loy system at a uniform temperature (similar to the one employed by Warren and Boettinger [29] and many others [30]).  

We then postulate a free energy of the following form 
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[ ]∫ ∇+∇+∇+= 222
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where f is a local free energy density with minima at φj = 0,1 for all three phases j = L,S,W. The stability or metastability of 

each of these minima is dependent on the particulars of the form of f, which is in turn dependent upon the thermodynamic 

particulars of the alloy in question. We will specify a particular choice of f below. The gradient terms have a form that 

yields an isotropic interface energy, a choice which can be remedied in a number of ways, but this choice in no way effects 

the gist of the argument below. Using the constraint Eq. (16), we can eliminate one of the variables (in this case we will 

choose the liquid), re-label the solid variable φS → φ and obtain 

 

[ ]∫ ∇++∇⋅∇+∇++= 22
)(2)(),,( WLWWLLSW cfdVF φκκφφκφκκφφ .                                (18) 

 

In a typical phase field treatment, at this stage we would minimize the free energy with respect to our two remaining phase 

field variables, and postulate dynamics according to a law of gradient flow. However, in this instance we take a different 

approach, namely that the profile of φW is determined by the free energy in steady state and it is comprised of a series of 

sharp jumps between regions where φW = 1 (inert wall) and φW = 0 (liquid or solid). In principle, this implies some singular 

behavior for the total free energy density, if it is to yield a sharp interface in φW (and therefore discontinuous jumps in the 

other variables). However, as we demonstrate below, the particular nature of these singularities is irrelevant for practical 

computations. Given this constraint, we write the dynamical equations as 
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Note that the form of Eq. (19) is, excepting the term proportional to ∇2φW, identical to Eq. (4). 

We assume that φW is time independent, and makes discontinuous jumps between regions of inert wall (φW = 1) and the 

regions of liquid or solid (φW = 0).  As φ = 0 in regions where φW = 1, it is clear that φ must make discontinuous jumps that 

mirror φW. Given this, we assume the existence of an auxiliary function φR(x, t) and write 

 

φ  = φR(x, t) [1 − φW(x, t)],                                                                 (21) 

  

where φR(x, t) is differentiable everywhere (C1) and φR(x, t) = φ0 at the inert wall. If we insert these expressions into Eq. (19), 

and equate orders in the divergences associated with spatial derivatives in φW, we find that at the wall 
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for all time. Note that the value of φ0 is independent of far field boundary conditions. 

Thus, we see that these equations effectively yield a boundary condition on φ = φ0 (Model B) at inert particle interfaces. 

Hence, we propose that an essentially equivalent approach the above problem is to simply impose this boundary condition, 

and drop the additional equations associated with the other phase fields. Either method will be equally effective, however 

implementation may be easier for one or the other method depending on the particulars of the problem to be considered. 

 

D.  Three-phase model vs. Model A 

In addition to allowing the solution to Model B, the auxiliary field φW is a useful numerical convenience for implement-

ing the classical approach described above in the previous section for Model A. Specifically, we can extend the integrals 

over the inert wall and the containing volume to all of space (the space containing both the liquid/solid and the wall materi-

al) by the following modifications to 
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where |∇φW| is a Dirac δ-function that locates Z(φ) to the interface, while the new factor (1 − φW) locates the free energy 

density for the liquid/solid phase to those regions where φW = 0. Computing δF yields a modified equation for φ, specifical-

ly, 

[ ] WW z
fF

tM
φφεφφφε

φδφ
δφ

φ
∇⋅∇++−








∇−

∂
∂==

∂
∂− n222 )()1(

1
,                                     (24)  

 

where we have used n = ∇φW/|∇φW|. This expression is in some sense “obvious”, since all we are doing is adding the Model 

A boundary condition multiplied by a δ-function to the original variation over the volume bounded by the inert wall. Thus, 

be prescribing the auxiliary field φW, we may perform computations over all of space, and need not explicitly impose boun-

dary conditions on the liquid-solid material at the inert wall. 

 

E.  A comment on grain boundaries 

At this juncture it is useful to briefly consider the grain boundary model mentioned in the previous section, as there is a 

mathematical analogy between the introduction of the boundary condition in the phase field model through |∇φW| and the 

grain boundary energy penalty term |∇R|. As first noticed by Tang et al. [34], this grain boundary model is mathematically 
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identical to the model of Cahn for critical wetting. Now, with the above analysis, the reasons for this mathematical equiva-

lence become obvious. Specifically, if R has a step discontinuity at a point in space, a term of the form  

 

∫∫ ∆=∇
SV

dSudVRu )()( φθφ , 

 

where ∆θ is the misorientation across the grain boundary. Thus, the model including grain boundary effects described  

above, and solved in subsequent sections, includes two effective boundary-like terms, one static (the inert particles de-

scribed by φW), and one dynamic (the grain boundaries, described by R(q). 

 

F.  Physical interpretation of Models A, B, and C 

At this stage, it is appropriate discuss the physical pictures underlying Models A, B, and C.  

Model A places the mathematical surface at which the boundary condition acts slightly beyond the boundary layer influ-

enced by the wall. Thus the bulk liquid and solid phases in contact with the wall are connected through an unperturbed sol-

id-liquid interface profile, and the derivation of the interface function for the desired contact angle is straightforward. All ef-

fects of liquid ordering and solid disordering due to the wall are buried into the contact angle (realized by the particular sur-

face function) as in the classical sharp interface model. Then, the total free energy of the system incorporates both a volume-

tric and a surface contribution. Model B prescribes liquid ordering and solid disordering at the wall explicitly. A shortcom-

ing is though that it implicitly assumes that the wall enforces the formation of a specific layer of the solid-liquid interface 

(corresponding to φ0), simplifying considerably the nature of the wall-liquid / wall-solid interactions. Here, the free energy 

of the system originates exclusively from the volumetric contribution.  

Relying on a model parameter (h) of less straightforward physical interpretation than either the contact angle or the val-

ue of φ0, Model C is able to prescribe local conditions that are not present inside the solid-liquid interface. For example, φ 

values may appear along the wall that fall outside of the (0, 1) range. Note that the appearance of such states is not unnatur-

al: they are also present in phase field models, when Langevin noise is added to the equations of motion. These values of φ 

may be viewed, as local states that are either more ordered or disordered than the bulk crystal and liquid phases (e.g., for φ > 

1, atoms are more localized that in the bulk solid; while φ < 0 might indicate a liquid with density deficit). Further work is, 

however, desirable that relates the model parameters to microscopic properties (such as molecular interaction / molecular 

scale misfit at the wall). Remarkably, Model C incorporates both structural change at the interface and a surface function, 

both of which contribute to the total free energy of the system. In this respect, Model C can be viewed as a generalization of 

the other two models. Nevertheless, we note that generally Model A cannot be obtained as a limiting case of Model C. It is 

remarkable, however, that setting g = h = 0 in Model C, one can recover Castro’s approach that uses the “no-flux” boundary 
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condition [(n⋅∇φ) = 0] to realize a 90o contact angle [20]. This specific case can also be recovered in Model A by prescrib-

ing ψ = 90o. In these specific limits, solutions of Models A and C coincide.   

 

III.  MATERIALS PROPERTIES  

In this work we employ a parabolic well approximation to the free energy density based on the work of Folch and Plapp 

[33] (FP free energy henceforth). Specifically, we select f(φ, c) to be appropriate for an ideal solution 

 

{ })](1)[(])([)])(1)[(()(),( 2
2
1 φφφφ pTccTcpTcccXwGcf S −∆−+−∆−−+= ,                               (25)  

 

where G(φ) = φ2 (1 − φ)2 is a double-well with minima at φ = 0, 1  (the common “φ4-potential”), w is the scale of the height 

of the double well, X is an energy scale associated with chemical changes in the system, and p(φ) = φ3(10 − 15φ + 6φ2) is an 

interpolating function between phases with  

p(0) = 0 and p(1) = 1. The functions cL(T) and cS(T), which determine ∆c(T) = cL − cS are the concentrations of liquid / solid 

coexistence (the liquidus and solidus), which in turn depend on the temperature, T, (which has been assumed uniform). Fi-

nally, c  is a concentration locating the minima in the solid free energy. This free energy model has the advantage of repro-

ducing a variety of phase diagrams, while allowing for a significant amount of analysis in one dimension, as will discussed 

below. This parabolic well approximation to the free energy surface has, furthermore, the interesting property that ∆f[φ, 

c(φ)] = wG(φ), where c = c(φ) is the explicit relationship between c and φ emerging from the Euler-Lagrange equation [Eq. 

(7)] for the concentration field [35]. This feature means that in equilibrium (whether stable or unstable, i.e., planar surface 

or nuclei) there is no chemical contribution to the free energy. This also means that a single solution of the EL equation for 

the one--component case can be transformed into an infinite number of binary solutions using the explicit relationships c = 

c(φ) emerging from Eq. (7), provided that the latter does not contain a ∇2c term. {We note that for nuclei the c = c(φ) rela-

tionship depends on the initial composition of the liquid [13].} Since these features simplify the analytical calculations con-

siderably, we use the approximate thermodynamics given by Eq. (25) throughout this work. We note, however, that in gen-

eral ∆f[φ, c(φ)] has a more complex form.   

In order to do numerical calculations, we need to specify a number of parameters in the theory. ε, X, w, cL(T), cS(T), and 

T, and for dynamics, the mobilities Mφ and Mc. Herein, these model parameters are chosen so that our computations are 

comparable to the Cu-Ni ideal solution applied in many earlier studies [15,21,29,36]. With this in mind, we choose a tem-

perature T = 1574 K, where cS = 0.399112, and cS = 0.466219, and X = 7.0546×109 J/m3. 

Next, we chose the interfacial parameters: In the case of nucleation studies relying on solving the EL equations, we have 

used d10-90% = 1 nm for the 10%-90% interface thickness, as expected on the basis of atomistic simulations [13, 14]. The in-
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terfacial free energy has been chosen as the average (γSL = 0.2958 J/m2) of the experimental values for Cu (0.223 and 0.232 

J/m2) and Ni (0.364 J/m2) from the grain boundary groove and dihedral techniques (data compiled in [37]). Accordingly, ε2 

= 3γSLd0 = 4.038×10−10 J/m and w = 6γSL/d0 = 3.899×109 J/m3, where d0 = d10-90%/ln(0.9/0.1). These calculations can be re-

garded quantitative. 

As our illustrative computations for complex structures forming via heterogeneous nucleation are intended to be merely 

technology demonstrators, we aimed at only qualitative modeling. 

For example, in describing the shish-kebab morphology appearing in polymer-carbon nano-tube systems [38], we have 

used an ideal solution approximant of the Cu-Ni alloys, applied in several previous works of us [21,36]. However, to mimic 

polymers, a high anisotropy of six-fold symmetry for the kinetic coefficient [see Fig. 2(a)] has been applied  
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 (ε = 1/3 and η = 0.001), a combination that mimics the behavior of polymeric systems in that the asymptotic growth form 

(kinetic Wulff shape, calculated according to Ref. 39) is a hexagonal plate [see Fig. 2(b)]. [Here we use the notation (∇φ)2 = 

φx
2 + φy

2 + φz
2.] In the simulations, we have used the following parameter set for the free energy: ε2 = 1.65×10−8 J/m, w = 

5.28107 J/m3, while X is the same as above, and assuming that the diffusion coefficients in the liquid and solid are Dl = 10−9 

m2/s and Ds = 0, respectively, while the phase field mobility is Mφ = 0.05 m3/(J⋅s). 

Other simulations for solidification in the presence of foreign particles have been performed for a 10% - 90 % interface 

thickness of 5 nm, and a slightly higher interfacial free energy (0.360 J/m2). The respective values for the model parameters 

are: ε2 = 4.95×10−9 J/m, and w = 3.96 × 108 J/m3. 

Finally, a few illustrative computations have been performed to model the columnar to equiaxed transition as a function 

of contact angle in the Al55Ti45 alloy. The thermodynamic properties have been taken from a CALPHAD-type assessment of 

the phase diagram [40]. For further details see Ref. 41. Here, the same anisotropy function has been used for Mφ as in the 

case of the polymeric system, however, now with ε = 0.3 and η = 1.0. The respective orientation dependence of Mφ and the 

respective asymptotic growth form (octahedron) are shown in Fig. 3. 

 

IV.  RESULTS AND DISCUSSION 

Before performing numerical solutions to the equations it is useful to determine those cases where analytic calculations 

are tractable. With this is mind we examine threes cases of interest in steady state: (i) a triple junction (solid-liquid-wall) of 
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3 flat interfaces, (ii) an undercooled liquid in contact with and inert wall (iii) solid droplet (spherical-cap) in contact with an 

inert wall. 

 

A.  Wetting properties of external walls 

In order to compare these phase field models with Young's Equation [Eq. (1)], we must compute the surface energies 

and other relevant quantities. The surface energies can be computed using the first integral and arguments found in a num-

ber of sources [8, 41]. In general the surface energy between any two, semi-infinite phases A and B will be 

 

∫
∞

∞−

∆= )](,[2 φφγ cfdxAB .                                                                        (26) 

 

We are going to address wetting properties using this expression valid for far field behavior, and utilizing the specific form 

of the free energy surface given by Eq. (25). 

 

1.  The triple junction of 3 flat interfaces 

In order to examine all of these cases, it is useful to consider flat interfaces in equilibrium. The three phases will coexist 

at the melting point. Utilizing the properties of the FP free energy, the liquid/solid interface free energy γSL far from the 

junction is 

∫∫ =−=∆=
1

0

1

0
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εφφφεφφφεγ                                        (27) 

 

Regardless of whether we impose a condition on φ or ∇φ⋅n, the interface boundary condition establishes a value for φ. As 

discussed above, φ is either specified (δφ = 0 on the boundary), or, if an interface function is specified than we may combine 

Eq. (8) with the interface boundary condition to find the roots of 

 

2ε2∆f[φ, c(φ)] = (6γSL)
2 G(φ) = z2(φ),                                                            (28) 

 

which has the simpler form 

 

 6γSL φ (1 − φ) = ± z(φ),                                                                       (29) 

 

Eq. (28), combined with ∂f/∂c =µ, is sufficient to determine the interface values of φ and c. In general, these expressions 

will have multiple roots, and the system's selection of a particular root will be determined such that the free energy is mini-

mized. We denote the roots selected when either liquid or solid abuts the inert wall as φL and φS respectively. 
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Given φ at the wall, we may determine the energies of wall-liquid and wall-solid boundaries as   

 

γWL = Z(φL) + γSL [3φL
2 − 2φL

3],                                                                 (30) 

 

 

γWS = Z(φS) + γSL [1 − 3φS
2 + 2φS

3].                                                            (31) 

 

Thus the expression for the contact angle reads as 

 

[ ]3232 231)23(
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= .                                         (32) 

 

This expression includes the mild assumption that the free energies of flat, isolated interface can be used in constructing a 

Young’s equation. While this is exact for the stable triple junction in an infinite system, it is only an approximation in the 

undercooled state, as all the field variables interact in the triple junction region, but the approximation may hold under a va-

riety of circumstances. We will test the accuracy of this through simulations shown below.  

For Model A, the above analysis is nearly trivial, as φWL = 0, φWS = 1, and the contact angle is actually the control para-

meter of the model. Accordingly, the surface function can be expressed as Z(φ) − γWL = γSL cos(ψ) [2φ3 − 3φ2] = (γWS − γWL) 

[2φ3 − 3φ2], yielding 0 for the bulk liquid phase (φ = 0), and (γWS − γWL) for the bulk solid (φ = 1) phase at the interface.  

For the case, when φ is specified at the interface (Model B) then φL = φS =φ0 and the expression for the contact angle 

simplifies to cos(ψ) = 2φ0
2(3 − 2φ0) − 1. In this case we see that as φ0 ranges from 0 to 1 then ψ ranges from 0 (total liquid 

wetting, solid dewetting) to π (total solid wetting, liquid dewetting). This is not surprising, since making the interface “sol-

id-like” causes solid to wet the surface, while when the surface is “liquid-like” the reverse is true. 

For Model C, things are a bit more complicated (not surprisingly), but the analysis is revealing. We have at the boundary 

that φ(1− φ) = ± (h + gφ), which can be quickly solved to find up to four real roots 
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It simplifies the analysis of these roots to consider the case g = 0, as this assumption does not change the character of the so-

lutions, only the particulars. (Note that this case, (n⋅∇φ) = - const., which can be viewed as a straightforward generalization 

of Castro’s “no-flux” condition for establishing a contact angle of π/2 [20].) In this case, one finds that the minimum free 

energy solutions for φ are 
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where we note that φ will take values outside the range [0,1] at the wall. As φ is a structural order parameter, and not a con-

centration, this is not, necessarily, unphysical as we mentioned above. This changes some of the signs for some of the terms 

in the expression for the surface energy, and care must be taken. Using these values of φ0, we can calculate the contact angle 

to be 

 

[ ]2/32/3 )41()41(
2

1
cos hh +−−=ψ .                                                                (35) 

 

Note that if h > ¼ [2⋅31/2 − 3]1/2 ≈ 0.1703, then the contact angle is π (complete wetting by the liquid), while if h < −¼ [2⋅31/2 

− 3]1/2 ≈ −0.1703 the contact angle is 0 and the solid “wets” the interface. A plot of the contact angle as a function of h is 

given in Fig. 4. 

  

2.  Undercooled liquid next to an inert wall, and “critical” wetting: 1D solutions 

In this sub-section, we consider a semi-infinite supersaturated (undercooled) liquid [c∞ ≠ cL(T), φ∞ = 0] in contact with a 

planar wall placed at z = 0. Then the first integral of the respective 1D Euler-Lagrange equation for the phase field reads as 
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Here, the FP choice of the free energy density yields a skewed double well as a function of φ.  

Model A shows a classical behavior: neither liquid ordering nor critical wetting is predicted at the interface.  

In Model B liquid ordering is inherent and a spinodal-like behavior can be seen at high enough driving force. Here, we 

have φ0 = const. ∈ [0, 1] at the wall. Under such conditions, the 1D Euler-Lagrange equation can be integrated to obtain 

φ(x), yielding a solution representing a metastable equilibrium (supersaturated liquid in contact with the wall). Remarkably, 

Eq. (36) can only be integrated to yield a real solution in the region, where wG(φ) − X∆c(cL − c∞)p(φ) ≥ 0. For wG(φ) − 

X∆c(cL − c∞)p(φ) < 0, only a time dependent solution exists: a propagating solidification front. The critical supersaturation 

that separates these two types of solutions, while prescribing a fixed φ0 value at the wall, is given by the condition wG(φ0) − 

X∆c(cL − c∞)p(φ0) = 0, yielding Scrit = wG(φ)/[X∆c2p(φ)]. (It is the binary analogue of the critical undercooling of the unary 

systems discussed in Ref. 23.) The critical supersaturation vs φ0 relationship corresponding to the FP parameters specified in 
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Section III is shown in Fig. 5. It can also be shown (see next subsection) that the nucleation barrier, the solid phase has to 

pass to start solidification, tends to zero in this limit, and the solid phase wets ideally the wall. This phenomenon is analog-

ous to the critical wetting of a solid wall seen in two-fluid systems near the critical point. However, we have here a solid and 

a liquid phase, instead of the two fluids. 

For g = h = 0, Model C coincides with Model A at ψ = π/2, therefore, under such conditions no surface order-

ing/disordering or spinodal are observed. Despite surface ordering/disordering, for h > 0, no surface spinodal exists in Mod-

el C (g = 0). However, for h < 0, where φ ∈ [0, 1] at the wall, Model C (g = 0) predicts both surface ordering and a spinodal. 

The relationship between h and the critical supersaturation can be computed using the expressions Scrit = wG’(φ)/[X∆c2p’(φ)] 

and h = χ(φ) = − {G(φ) − p(φ)X∆c(cL − ccrit)/w} 1/2, where ccrit = cL − Scrit∆c, where the expression for Scrit originates from the 

condition that the critical state corresponds to the extremum of the loop in χ(φ) that incorporates the point φ = 0, χ = 0. 

(Note that the expression for Scrit is the condition both for the maximum gradient ∂φ/∂z of the 1D solution and for the loca-

tion of the central hill of the double-well free energy.) The respective Scrit vs. −h relationship is shown for the Cu-Ni system 

with d10-90% = 1 nm interface thickness at T = 1574 K in Fig. 6. We note that with the actual choice of the model parameters 

(as for other continuum models), the spinodal point between the solid and supersaturated liquid falls into the physically in-

accessible region of negative concentrations (see the discussion later). 

 

  B.  Heterogeneous nucleation on external walls in 3D 

In our previous work [23], we have investigated heterogeneous nucleation in 2D using Models A and B for a single 

component system. Herein, assuming isotropic interfacial free energy, and utilizing the respective cylindrical symmetry, we 

extend our study to 3D and binary alloys using the FP thermodynamic model [Eq. (22)]. The respective form of the Euler-

Lagrange equation for the phase field is 
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where prime stands for differentiation with respect to the argument of the function. This equation has been solved numeri-

cally under boundary conditions given by Models A, B, and C (g = 0) using the PDE Toolbox of Matlab (@The MathWorks 

Inc., 1984-2008) that relies on a combination of the finite element and relaxation methods [43]. This approach needs a rea-

sonable guess for the phase field distribution that is sufficiently close to the solution, to be used as the starting distribution 

for relaxation.  

In mapping the properties of nuclei, we have used the following strategy. First, the solution corresponding to semi-

wetting case [ψ = π/2, φ0 = 0.5, h = 0, respectively in Models A, B, and C (g = 0)] has been determined. The initial phase 
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field distribution used here was φ(r) = ½ {1 − tanh[(r − RCNT)/d0]}, where RCNT = 2γLS/[X∆c(cL − c∞)] and d0 = d10-

90%/ln(0.9/0.1) are the classical radius of nuclei and an interface thickness parameter, expressed in terms of the 10% − 90% 

interface thickness. Having found the respective solution by the relaxation method, the mapping property (ψ, φ0, h, supersa-

turation, etc.) has been changed in small increments, so that the solution for the previous computation could be used as a 

suitable starting distribution for the next computation.  

For Models A and C (g = 0), the free energy of formation of nuclei has been calculated as 
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WLWCA dArFrFW γφγφφ                                             (38) 

 

where the first two terms represent the volumetric contribution, while the third term account to the change of the surface 

function. Here γW(φ) − γWL = −γSL cos(ψ) [2φ3 − 3φ2 + 1] [23], while φ1
*(r ) is the solution corresponding to the nucleus, and 

φ0
*(r ) is the solution without nucleus (liquid of the initial composition in contact with the wall). The latter solution has been 

obtained the same way as the one for the nucleus, however, using a homogeneous bulk liquid in contact with the wall as the 

starting condition. 

In Model B, there is no contribution from the interface function, thus 
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applies. 

We have investigated the properties of nuclei at a high supersaturation (S = 5.0). The free energy of formation of the he-

terogeneous nuclei relative to the free energy of formation of the respective classical (sharp interface) homo geneous solu-

tion is shown for Models A, B, and C (g = 0) in Figs. 7-9, respectively. 

One observes remarkable differences in the shape of the contour lines the three models predict. In Model A (Fig. 7), the 

contour lines corresponding to phase field levels of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 (when they appear), are 

roughly concentric circles, of which those for φ ≤ 0.5 intersect the wall. The contour line φ = 0.5 approximates well the no-

minal (equilibrium) contact angle. Accordingly, Model A can indeed be viewed as a diffuse interface realization of the clas-

sical spherical cap model (a diffuse solid-liquid interface combined with a sharp wall). At this undercooling, the radius of 

curvature of the particle is several times larger than the interface width. Accordingly, the behavior of the classical spherical 

cap model is recovered quite accurately. For example, W/WCNT from the phase field computations approximates closely the 

catalytic potency factor f(ψ) (see lowermost panel in Fig. 7). 
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In Model B (Fig. 8), only a single contour line intersects the wall, the one corresponding to φ0, while the others are either 

closed (φ > φ0) or open (φ < φ0). Accordingly, one can define a contact angle for only the contour line φ = φ0. The contact 

angle defined this way, however, depends strongly on the applied supersaturation, and converges to ψ = 0 as the respective 

critical liquid composition (that depends on φ0 as shown in Fig. 4) is approached. Accordingly, at a fixed supersaturation, 

the W/WCNT vs φ0 curve reaches zero (ideal wetting) at a finite φ0 value (see lowermost panel in Fig. 8), where the actual liq-

uid composition is the critical composition (given by the relationship shown in Fig. 4).  

In the case of Model C (g = 0) (Fig. 9), the situation resembles to that seen for Model B, though it is somewhat more 

complex: there are closed contour lines, and also open ones; however, they are separated by not a single contour line that in-

tersects the wall, as in Model B, but by a range of such contour lines. Phase field values out of the [0, 1] range can be ob-

served at the interface if h ≠ 0 as predicted in Section IV.A.2 (φ < 0 values at the wall-liquid interface if h > 0; φ > 0 values 

at the wall-solid interface if h < 0). These local states at the wall cannot be found in the bulk solid and liquid phases, though 

they are temporarily accessible in the bulk phases via thermal fluctuations.  

The W/WCNT vs h relationship is shown in the lowermost panel of Fig. 9. Interestingly, in the supersaturated state h can 

reach lower values than allowed in equilibrium. Also, the maximum value for the nucleation barrier may exceed that for 

homogeneous nucleation. The latter finding suggests that Model C (g = 0) can capture walls that prevent nucleation in their 

neighborhood [44]. Such walls represent a foreign matter that enforces a local structure on the liquid, which is incommen-

surable with the crystal structure to which the liquid structure transforms during freezing. This might have interesting con-

sequences: Nanoporous materials of walls of this kind could stabilize the liquid state in the pores at temperatures, where 

otherwise the liquid would freeze.   

For fixed model parameter values (ψ, φ0, and h) corresponding to the same equilibrium contact angle, we have computed 

the nucleation barrier as a function of supersaturation. The results are compared in Fig. 10. For all the models, we find that 

for S → 0 the ratio of the nucleation barrier to the corresponding classical spherical cap result (W/WSC) tends to 1, i.e., with 

increasing size the phase field results converge to the classical spherical cap model. In the cases of Models A and B, the 

nucleation barrier decreases monotonically with an increasing driving force, and for Model B it converges to 0 at a φ0-

dependent critical supersaturation (for the dependence see Fig. 5). In contrast, in Model C (g = 0), the W vs. S relationship 

shows a maximum, before the barrier height decreases to 0 at an h-dependent critical supersaturation (for the dependence, 

see Fig. 6). For h > 0 there is no critical supersaturation in Model C, and W decreases monotonically with increasing driving 

force S, although W/WSC increases.  

We note here that in many gradient theories one has a spinodal point between the highly undercooled bulk liquid and the 

crystalline phase [45] (though usually it falls into the non-physical regime, e.g. to a negative temperature). The existence of 
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such a spinodal point and its influence on nucleation has been the subject of extensive discussions [46,47], especially for 

short range interactions (see [46] for review). Recent atomistic simulations seem to imply that no convincing evidence is 

available for the existence of such a spinodal point [48]. With the present choice of G(φ) and p(φ), this crystal-liquid spi-

nodal falls to the S → ∞ limit, well beyond the boundary of the physically accessible  range Smax = 6.9474 corresponding to 

c∞ = 0.   

C.  Formation of complex structures via heterogeneous nucleation 

 

1. Shish-kebab structure in Model A 

Here, we present polycrystalline structures obtained relying on the quaternion representation of local crystallographic 

orientation, Pusztai et al. [26] proposed recently. For the sake of illustrating the capabilities of advanced phase field model-

ing that relies on noise-induced heterogeneous nucleation on external walls, we simulate the shish-kebab structure seen to 

form on carbon nanotubes in polymeric systems [38]. To accomplish this, we have introduced curved tubes into the simula-

tion box generated so that the local (gradually changing) crystallographic orientation lies in the axis of the tube, whose 

shape has been constructed stepwise, so that its direction in the next segment might deviate from the orientation of the pre-

vious segment by only a small random angle. The contact at the wall of the nanotubes is characterized by Eq. (14), while 

prescribing a contact angle of ψ = π/4.  

Illustrative simulations have been performed for a hypothetic binary system, whose phase diagram and thermodynamic 

properties are similar to those of the Ni-Cu system, approximated by the regular solution model, applied in previous work 

[21]. (Application for real polymer blends of known Gibbs free energy functions should be straight-forward.) Unlike, the 

metallic systems, polymers often crystallize in the form of disc-like flakes. To mimic this behavior, we have introduced an 

anisotropic form for the phase field mobility, which prefers the formation of disc-like growth forms (see Fig. 2). 

The simulation has been performed on a 200 × 200 × 300 cubic grid with spatial and time steps of ∆x = 10 nm and ∆t = 

10 ns at the initial liquid concentration of cNi = 0.4192. Snapshots of the simulation are shown in Fig. 11. Note the similarity 

to the experimental structures reported in Ref. 38.  

 

2. Columnar to equiaxed transition in Model A 

Another illustration that shows the capabilities of phase field simulations incorporating heterogeneous nucleation is the 

application of Model A for describing the columnar to equiaxed transition (a work done in the framework of the EU FP6 

IMPRESS project [49]). Here, we have combined Model A with a 3D model of polycrystalline solidification relying on the 

quaternion representation of the crystallographic orientations [26] and adopted it to constant temperature gradient and a 

moving frame. To enable large scale simulations, we have used a broad interface (of thickness 65.6 nm), and included an 
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anti-trapping current [50] to ensure a quantitative description of growth kinetics. In the simulation window, the material is 

made to move with a homogeneous velocity from right to left, while a fixed temperature gradient is prescribed in the hori-

zontal direction. Particles of given number density, of random orientation and size, and of given contact angle enter into the 

simulation window at the right edge, while periodic boundary condition is used on the horizontal edges.  

Snapshots of the chemical and orientation maps illustrating polycrystalline solidification under such conditions are pre-

sented in Fig. 12. As a result of the diminishing nucleation rate due to the increasing contact angle, we observe a gradual 

transition from the equiaxed polycrystalline structure to a columnar structure. A more detailed analysis of this phenomenon 

will be presented elsewhere [51]. 

 

3. The liquid-solid meniscus position in Model B 

As demonstrated above, if we fix the value of the phase field at a wall to φ =φ0, a contact angle will result.  Specifically, 

at the wall, the expression for the contact angle is cos(ψ) = 2φ0
2(3 − 2φ0) − 1. This can be realized numerically by fixing the 

value of the phase field at φ =φ0 everywhere in the “wall” material. To illustrate this approach we have done a few sample 

calculations of capillary rise under circumstances that favor either wetting or dewetting. Using our model, we are able to in-

vestigate the evolution of a column of liquid-solid and between two wetting interfaces, and compare the predictions with the 

analysis made above. We choose to do calculations in an insulating box (no change in the total mass of the system), with ε2 

= 4.95 × 10−9 J/m, and w = 3.96 × 108 J/m3, as is done in the simulations with particles shown above. Fig. 13 shows two typ-

ical simulations, with box sizes of 22.8 nm × 22.8 nm, with 100 × 100 grid resolution, and 20% of the box on the left and 

right occupied by wall material. We consider the symmetric cases of φ0 = 0.3 [Figs. 13(a) and (b)] and φ0 = 0.7 [Figs. 13(c) 

and (d)], corresponding to solid-wall contact angles of ψ = 124.61° and ψ = 55.39°, respectively. We start with a system at a 

uniform concentration that guarantees that the final interface position remains in the box, which, for these choices of contact 

angle, is satisfied by S = 1.0 and 0.2 respectively. The figure shows the calculation initially, and after it has come to equili-

brium (1 ms). 

To get an estimate of the equilibrium configuration of the meniscus, one can use a simple mass conservation argument 

to show that  
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where HS is the height at the center of the solid meniscus from the bottom of the column, W is the width of the column, and L 

is the height of the entire column, the bracketed quantity accounts for the circular cap of liquid or solid, and S is here the su-
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persaturation, uncorrected for curvature. To improve on the estimate, the supersaturation can be corrected, to linear order, 

by replacing S by S + 2 γSL sinψ / (X∆c2
L). Using these relationships the calculations shown in the figure agree with this 

analysis within 5%, with no substantial improvement if the grid is refined.  

For φ0 = 0.3, the measured value of HS is 0.625, while the analysis yields 0.603, while for φ0 = 0.7 HS converges to 0.628, 

while the analysis yields 0.597. The estimate could be improved by using a full, non-linear correction to the compositions, 

as well as a more consideration of the non-classical influence of the finite interface thickness. Clearly, the method is a con-

venient approach for capturing complex phenomena. 

 

4. Particle-front interaction in Model C  

Finally we examine an application of Model C. We consider the same parameters (except that the initial supersaturation 

is S = 0.86) used in the above section, but now examine the passage of an interface through a distribution of interacting par-

ticles. The analysis of such a phenomenon is essentially similar to Zener pinning [52], and it is not the intent of this manu-

script to fully explore this phenomenon, but instead to demonstrate the flexibility and generality of our approach.  

Fig. 14 shows a series of calculations that show the phenomenological richness available within this relatively simple 

model. We discuss the images in a clockwise sequence. Panels (a)−(c) show the propagation of the solidification front in the 

presence of foreign particles of circular shape, starting with (a) and proceeding for 6 µs, with a contact angle on the particles 

set in Model C using h = − 0.05 [so the equilibrium contact angle defined by Eq. (35) is ψ ≈ 73°]. The interface eventually 

arrests, but much of the box solidifies (≈ 71%). In order to examine the influence of shape and wettability, we first examine 

changing the shape of the drops to “sticks”, [seen in panels (d) and (e)] but with the same distribution of particles. We see 

that for the sticks the interface arrests much more quickly, at a solid fraction of ≈ 39%. Solidification at a reduced wettabili-

ty h = − 0.025 (corresponding to ψ ≈ 81°), is shown in panels (e) to (h). Apparently, this does not alter substantially the so-

lidification front [cf. panels (d) and (e)]. Thus we infer that the presence of right angle corners strongly influences the pin-

ning of the interface. In contrast, in frame (f) all that is changed from frame (c) is the contact angle, and we see that the in-

terface now arrests with this modestly higher angle (a solid fraction ≈ 29%), and increasing the size of the droplets [see pan-

el (g)] does not influence the profile substantially (25%, however much of the difference is due to the increased percentage 

of impurities). Finally, in panel (h), we reduce the size of the particles, and the interface once again is substantially less im-

peded, with 73% of the liquid solidifying. Clearly, a substantial numerical exploration of this phenomenon could yield fur-

ther insights into such pinning behavior in real systems, particularly if a physically motivated wall function could be estab-

lished through either measurement or ab initio calculations. 

 



 23

V.  SUMMARY  

We have presented three possible approaches to model the wetting properties of foreign walls in the framework of phase 

field simulations for the solidification of binary alloys. These approaches differ in the treatment of the foreign surfaces: 

  

(a) Model A is a diffuse interface realization of the classical spherical cap model with a contact angle that is essentially 

independent of the driving force ensured by a specific surface function.  

(b) Model B is a non-classical formulation that assumes a fixed phase field value at the interface, leading to surface or-

dering/disordering, a strongly supersaturation dependent contact angle, and to a surface spinodal (ideal wetting 

beyond a critical supersaturation). In this model, only such local states can be realized at the wall, which are present 

in the solid-liquid interface.  

(c) Model C is a non-classical approach, which in its simplest form (g = 0), fixes the normal component of the phase 

field gradient, leading to surface ordering / disordering, a supersaturation dependent contact angle, and to a surface 

spinodal, the latter restricted to the h < 0 region (ψ < π/2). This model allows a stable appearance of such local 

states at the wall that are available in the bulk phases only temporarily in the presence of thermal fluctuations. 

 

Models A, B, and C represent different levels of abstraction as we discussed above, and can be used to address a broad 

variety problems of including the formation of complex solidification structures, such as the shish-kebab morphology in 

carbon nanotube filled polymers, the columnar to equiaxed transition and the front-particle interaction in alloys. Any of 

these models can be used to describe interfaces that are characterized by a given contact angle in equilibrium, however, the 

behavior predicted in the supersaturated state depends on the individual model.    

Comparative studies relying on combined phase field and atomistic simulations are planned to identify the validity range 

of the individual models and the predicted complex behavior (e.g. the appearance of surface spinodal).  
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FIGURE CAPTIONS 

 

FIG. 1: Definition of contact angle,ψ : glycerin droplet on glass surface.  

http://lejpt.academicdirect.org/A10/029_038_files/image009.jpg)    

 

FIG. 2: (a) Kinetic anisotropy used in simulations for the polymer-carbon nanotube mixture and (b) the respec-

tive asymptotic growth form (kinetic Wulff shape [38]).    

 

FIG. 3: (a) Anisotropy of the interfacial free energy used in simulations for columnar to equiaxed transition in 

the Al-Ti alloy and (b) the respective asymptotic growth form (kinetic Wulff shape [38]). 

 

FIG. 4: A plot of contact angle as a function of parameter h in Model C (g = 0). For h < − 0.1703 the contact an-

gle is 0, while for h > 0.1703, it is π.    

 

FIG. 5: Critical liquid supersaturation corresponding to ideal wetting as a function of phase field value φ0 at the 

wall in Model B at T = 1574 K for Cu-Ni with a physical interface thickness of 1 nm. The horizontal dashed line 

shows the maximum possible supersaturation Smax = 6.9474 (corresponding to c∞ = 0). Results above this line are 

unphysical. 

 

FIG. 6: Critical liquid supersaturation corresponding to ideal wetting as a function of −h at the wall in Model C 

(g = 0) at T = 1574 K for Cu-Ni with a physical interface thickness of 1 nm. The horizontal dashed line shows 

the maximum possible supersaturation Smax = 6.9474 (corresponding to c∞ = 0). Results above this line are un-

physical. 

 

FIG. 7: Structure of heterogeneous nuclei at S = 5.0 in Model A at various contact angles (upper and central 

row)). There is a symmetry plane on the left edge. The contour lines vary between 0.1 and 1.0 by increments of 

0.1: φ = 0.1, 0.2, … , 0.9. Note that these lines correspond to local supersaturations of S = 0.1, 0.2, … ,0.9. The 
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lowermost panel shows the ratio of the PF prediction for the nucleation barrier height (circles) normalized by the 

barrier height for the homogeneous nucleus in the droplet model of the classical nucleation theory. For compari-

son, the catalytic potency factor f(ψ) from the spherical cap model is also shown (solid line). 

 

FIG. 8: Structure of heterogeneous nuclei at S = 5.0 in Model B at various phase field values at the wall (upper 

and central row)). The contour lines vary between 0.1 and 1.0 by increments of 0.1: φ = 0.1, 0.2, … , 0.9. Note 

that these lines correspond to local supersaturations of S = 0.1, 0.2, … ,0.9. The lowermost panel shows the ratio 

of the PF prediction for the nucleation barrier height (circles) normalized by the barrier height for the homoge-

neous nucleus in the droplet model of the classical nucleation theory. For comparison, the catalytic potency fac-

tor f(ψ) from the spherical cap model is also shown (solid line). 

 

FIG. 9: Structure of heterogeneous nuclei at S = 5.0 in Model C (g = 0) at various values of the model parameter 

h (upper and central row)). The contour lines vary between 0.1 and 1.0 by increments of 0.1: φ = 0.1, 0.2, … , 

0.9. Note that these lines correspond to local supersaturations of S = 0.1, 0.2, … ,0.9. The lowermost panel 

shows the ratio of the PF prediction for the nucleation barrier height normalized by the barrier height for the ho-

mogeneous nucleus in the droplet model of the classical nucleation theory (circles). For comparison, the catalytic 

potency factor f(ψ) from the spherical cap model is also shown (solid line). The deviation of the background hue 

from white in panels for h > 0 indicates that negative φ  and S values appear in the vicinity of the wall, where it 

is contact with the liquid phase. 

 

FIG. 10: Nucleation barrier height (W) normalized by that from the classical spherical cap model (WSC) vs. su-

persaturation (S) for Models A (square), B (triangle), and C (diamond) at interface parameters ψ  = 60°, φ0 = 

0.673648 and h = −0.083733, respectively, which all realize the same equilibrium contact angle. Note that for 

both Models B and C (for h < 0), there exists a critical supersaturation, where ideal wetting switches in (the nuc-

leation barrier disappears). This critical supersaturation Sc depends on the respective interfacial parameter (φ0 or 

h). Such surface spinodal-like behavior has not been observed for Model A that realizes the nominal contact an-

gle ψ fairly accurately even at high supersaturations (for Model A the deviation from W/WSC.= 1 originates do-

minantly from the fact that at large supersaturationa, the height of heterogeneous nuclei becomes comparable to 
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the interface thickness, and thus there are no bulk crystal properties in the nuclei). The vertical dash-dot line in-

dicates the border Smax of the physically accessible region (S ≤ Smax). 

 

FIG. 11: Formation of shish-kebab structure by noise induced heterogeneous nucleation on tubular walls of con-

tact angle ψ = π/4 in Model A [Eq. (14)] at T = 1574 K and cNi = 0.4192, in a hypothetical system whose ther-

modynamic properties are given by an ideal solution approximation of the Cu-Ni system, while its kinetic aniso-

tropy (anisotropy of the phase field mobility) and growth shape are shown in Fig. 2. Snapshots taken at times t = 

30, 40, 50, and 60 µs show the walls and the solidification front (φ  = 0.5). The computations have been per-

formed on a 200 × 200 × 300 grid (2 µm × 2 µm × 3 µm). 

 

FIG. 12: Phase-field simulation of columnar to equiaxed transition in the Al0.45Ti0.55 alloy as a function of contact 

angle of foreign particles in a moving frame (V = 1.26 cm/s) and a constant temperature gradient (∇T = 1.12 × 

107 K/m) in Model A [Eq.(14)]. Composition (on the left) and orientation maps (on the right) corresponding to 

contact angles of ψ = 30°, 60°, 90°, and 120° (from top to bottom, respectively) are shown. The computations 

have been performed by solving the 3D phase field model of polycrystalline solidification [26] in 2D on a 600 × 

3000 grid (3.93 µm × 19.68 µm). White spots in the chemical map indicate the foreign particles, whose diameter 

varies in the 13 nm − 66 nm range. In order to be able to distinguish the orientation of the foreign particles, the 

fluctuating orientation field of the liquid is not shown in the orientation map [color map is multiplied by p(φ)]. 

 

FIG. 13: Time evolution of solid-liquid meniscus at vertical walls in Model B for (a),(b) wetting (ψ = 55.39°) 

and (c),(d) non-wetting (ψ = 124.61°) walls. The phase field map is shown [white − bulk solid (φ = 1); black − 

bulk liquid (φ = 0)]. The computations have been performed for Cu-Ni, assuming a 5 nm thick solid-liquid inter-

face. The software tool FiPy was used for the calculations (http://www.ctcms.nist.gov/fipy). 

 

FIG. 14: Particle-front interaction in Model C at a fixed initial liquid supersaturation S = 0.86. Pinning of solidi-

fication front to foreign particles: (a)-(c) Propagation and pinning of the solidification front in the presence of 

circular foreign particles. (d),(e) The effect of shape and contact angle on front-pinning. (f)-(h) The effect of par-
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ticle size on the front-pinning. For discussion, see the text. The computations have been performed for Cu-Ni, 

assuming a 5 nm thick solid-liquid interface. Images (a)-(c) have been computed with h = − 0.05, while (e)-(f) 

with h = − 0.025. (Black − solid; white − liquid; green − foreign particle.) The software tool FiPy was used for 

the calculations (http://www.ctcms.nist.gov/fipy). 
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FIG. 1: Definition of contact angle,ψ : glycerin droplet on glass surface. 

(http://lejpt.academicdirect.org/A10/029_038_files/image009.jpg) 

(a)  

(b)  

 

 

FIG. 2: (a) Kinetic anisotropy used in simulations for the polymer-carbon nanotube mixture and (b) the respective 

asymptotic growth form (kinetic Wulff shape [38]).    
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FIG. 4: A plot of contact angle as a function of parameter h in Model C (g = 0). For h < − 0.1703 the contact angle 

is 0, while for h > 0.1703, it is π.    

                                                    (a)                                         (b)  

 

 

FIG. 3: (a) Anisotropy of the interfacial free energy used in simulations for columnar to equiaxed transition in the 

Al-Ti alloy and (b) the respective asymptotic growth form (kinetic Wulff shape [38]).    
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FIG. 5: Critical liquid supersaturation corresponding to ideal wetting as a function of phase field value φ0 at the 

wall in Model B at T = 1574 K for Cu-Ni with a physical interface thickness of 1 nm. The horizontal dashed line 

shows the maximum possible supersaturation Smax = 6.9474 (corresponding to c∞ = 0). Results above this line are 

unphysical.    

 

FIG. 6: Critical liquid supersaturation corresponding to ideal wetting as a function of −h at the wall in Model C (g 

= 0) at T = 1574 K for Cu-Ni with a physical interface thickness of 1 nm. The horizontal dashed line shows the 

maximum possible supersaturation Smax = 6.9474 (corresponding to c∞ = 0). Results above this line are unphysical.    
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FIG. 7: Structure of heterogeneous nuclei at S = 5.0 in Model A at various contact angles (upper and central 

row)). There is a symmetry plane on the left edge. The contour lines vary between 0.1 and 1.0 by increments of 

0.1: φ = 0.1, 0.2, … , 0.9. Note that the respective local supersaturations can be given as s(φ) = S + p(φ). The lo-

wermost panel shows the ratio of the PF prediction for the nucleation barrier height (circles) normalized by the 

barrier height for the homogeneous nucleus in the droplet model of the classical nucleation theory. For compari-

son, the catalytic potency factor f(ψ) from the spherical cap model is also shown (solid line).    
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FIG. 8: Structure of heterogeneous nuclei at S = 5.0 in Model B at various phase field values at the wall (upper 

and central row)). The contour lines vary between 0.1 and 1.0 by increments of 0.1: φ = 0.1, 0.2, … , 0.9. Note 

that the respective local supersaturations can be given as s(φ) = S + p(φ). The lowermost panel shows the ratio of 

the PF prediction for the nucleation barrier height (circles) normalized by the barrier height for the homogeneous 

nucleus in the droplet model of the classical nucleation theory. For comparison, the catalytic potency factor f(ψ) 

from the spherical cap model is also shown (solid line).    
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FIG. 9: Structure of heterogeneous nuclei at S = 5.0 in Model C (g = 0) at various values of the model parameter h 

(upper and central row)). The contour lines vary between 0.1 and 1.0 by increments of 0.1: φ = 0.1, 0.2, … , 0.9. 

Note that the respective local supersaturations can be given as s(φ) = S + p(φ). The lowermost panel shows the ra-

tio of the PF prediction for the nucleation barrier height normalized by the barrier height for the homogeneous 

nucleus in the droplet model of the classical nucleation theory (circles). For comparison, the catalytic potency fac-

tor f(ψ) from the spherical cap model is also shown (solid line). The deviation of the background hue from white 

in panels for h > 0 indicates that negative φ  and s < S values appear in the vicinity of the wall, where it is contact 

with the liquid phase. 
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FIG. 10: Nucleation barrier height (W) normalized by that from the classical spherical cap model (WSC) vs. super-

saturation (S) for Models A (square), B (triangle), and C (diamond) at interface parameters ψ  = 60°, φ0 = 

0.673648 and h = −0.083733, respectively, which all realize the same equilibrium contact angle. Note that for 

both Models B and C (for h < 0), there exists a critical supersaturation, where ideal wetting switches in (the nuc-

leation barrier disappears). This critical supersaturation Sc depends on the respective interfacial parameter (φ0 or 

h). Such surface spinodal-like behavior has not been observed for Model A that realizes the nominal contact angle 

ψ fairly accurately even at high supersaturations (for Model A the deviation from W/WSC.= 1 originates dominant-

ly from the fact that at large supersaturationa, the height of heterogeneous nuclei becomes comparable to the inter-

face thickness, and thus there are no bulk crystal properties in the nuclei). The vertical dash-dot line indicates the 

border Smax of the physically accessible region (S ≤ Smax). 
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FIG. 11: Formation of shish-kebab structure by noise induced heterogeneous nucleation on tubular walls of con-

tact angle ψ = π/4 in Model A [Eq. (14)] at T = 1574 K and cNi = 0.4192, in a hypothetical system whose thermo-

dynamic properties are given by an ideal solution approximation of the Cu-Ni system, while its kinetic anisotropy 

(anisotropy of the phase field mobility) and growth shape are shown in Fig. 2. Snapshots taken at times t = 30, 40, 

50, and 60 µs show the walls and the solidification front (φ  = 0.5). The computations have been performed on a 

200 × 200 × 300 grid (2 µm × 2 µm × 3 µm).  
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FIG. 12: Phase-field simulation of columnar to equiaxed transition in the Al0.45Ti0.55 alloy as a function of contact 

angle of foreign particles in a moving frame (V = 1.26 cm/s) and a constant temperature gradient (∇T = 1.12 × 107 

K/m) in Model A [Eq.(14)]. Composition (on the left) and orientation maps (on the right) corresponding to con-

tact angles of ψ = 30°, 60°, 90°, and 120° (from top to bottom, respectively) are shown. The computations have 

been performed by solving the 3D phase field model of polycrystalline solidification [26] in 2D on a 600 × 3000 

grid (3.93 µm × 19.68 µm). White spots in the chemical map indicate the foreign particles, whose diameter varies 

in the 13 nm − 66 nm range. In order to be able to distinguish the orientation of the foreign particles, the fluctuat-

ing orientation field of the liquid is not shown in the orientation map [color map is multiplied by p(φ)]. 



 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 13: Time evolution of solid-liquid meniscus at vertical walls in Model B for (a),(b) wetting (ψ = 55.39°) and 

(c),(d) non-wetting (ψ = 124.61°) walls. The phase field map is shown [white − bulk solid (φ = 1); black − bulk 

liquid (φ = 0)]. The computations have been performed for Cu-Ni, assuming a 5 nm thick solid-liquid interface. 

The software tool FiPy was used for the calculations (http://www.ctcms.nist.gov/fipy). 



 43

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 14: Particle-front interaction in Model C at a fixed initial liquid supersaturation S = 0.86. Pinning of solidi-

fication front to foreign particles: (a)-(c) Propagation and pinning of the solidification front in the presence of 

circular foreign particles. (d),(e) The effect of shape and contact angle on front-pinning. (f)-(h) The effect of 

particle size on the front-pinning. For discussion, see the text. The computations have been performed for Cu-

Ni, assuming a 5 nm thick solid-liquid interface. Images (a)-(c) have been computed with h = − 0.05, while (e)-

(f) with h = − 0.025. (Black − solid; white − liquid; green − foreign particle.) The software tool FiPy was used 

for the calculations (http://www.ctcms.nist.gov/fipy). 

 


