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A B S T R A C T

The main purpose of driving cycles is to estimate accurately on-road fuel use and the associated 
emissions of greenhouse gases and other air pollutants by vehicles. Conventionally, driving cycles 
are developed using micro-trips, Markov chains, or hybrid approaches, with accuracy determined 
by comparing metrics of the candidate cycles with the observed data. Through a natural driving 
experiment, we suggest traffic and road topology have a dominant role in influencing individual 
driving styles, more so than driver age or gender, or vehicle characteristics. Using experimental 
data and a Markov chain approach, we make three contributions to driving cycle development. 
First, we identify a reduced set of 26 metrics which materially influence fuel economy. Second, 
we assess the trade-offs in accuracy between reproducing vehicle dynamics and fuel economy. 
Finally, we identify the impact of natural driving variability on the accuracy of candidate cycles.

1. Introduction

National emissions inventories require realistic estimates of actual fuel use by different types of vehicles. To estimate emissions due 
to the operations of vehicles, drive cycles are used to represent typical or standardised driver behaviours. The more accurately such 
cycles capture real-world driving behaviour, the better the estimates of environmental impacts. Standardised driving cycles are also 
important for the type-approval of new vehicles developed by manufacturers. Historically, regulated driving cycles overestimated fuel 
economy and underestimated the associated emissions under real-world driving (Franco et al., 2013). For example, the gap between 
real-world fuel economy and that achieved under the New European Driving Cycle (NEDC) grew from less than 10 % in 2001 to a 
maximum of 37 % in 2016, dropping to 30 % in 2019 (Dornoff et al., 2024). Studies on plug-in hybrid vehicles (PHEV) found real- 
world fuel consumption was up to five times higher than type-approval values on average (Plotz et al., 2022, 2021). Some discrep-
ancy is to be expected given the differences between test procedures and real-world driving. In particular, the all-electric range was 
shorter, and the engine used more fuel, than under type-approval testing. The consequence is PHEVs tend to drive more using the 
engine than under the test procedure, resulting in higher fuel use and associated emissions. Isenstadt et al. (2022) found PHEV fuel 
consumption in the US is on average up to 67 % higher than the EPA fuel label.

Some of the shortcomings in the accuracy of regulated driving cycles were addressed in the development of the World Harmonised 
Light Duty Driving Test Cycle (WLTC) and associated Test Procedure (WLTP). The WLTC is based on 750,000 km of driving data 
collected in 2010–2011 using multiple vehicle types on different road types and conditions across North America, Europe and Asia 
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(Tutuianu et al., 2014). The WLTC and WLTP improved on the original regulated driving cycles, however, as of 2022, a discrepancy of 
14 % remained between real-world and type-approval fuel economy (Dornoff et al., 2024).

The WLTC training data was at least six years old when the WLTP was implemented in Europe in 2017. This difference between data 
collection and cycle introduction is relevant because we postulate a spatial–temporal distribution of driving habits, based on char-
acteristics of both the vehicle and driver. For example, 40 local driving cycles (de Andrade et al., 2020) showed large differences in 
average speed and acceleration, supporting the argument of unique spatial characteristics of driving. A study of regional driving in the 
US, comprising over 10,000 vehicles and 1.3 million vehicle miles travelled concluded regional fuel economy varies due to differences 
in driving patterns (Borlaug et al., 2020). We can expect the age and performance characteristics of vehicles to afford different driving 
behaviours, causing the driving cycle to change through time. This change may be due to the higher torque output of modern engines 
allowing faster acceleration; or aids to support eco-driving, such as gear-shift indicators, auto start/stop, fuel economy indicators and 
electronic driving modes. However, the repeatability of the WLTP and other test procedures is based on narrow conditions, such as no 
road-grade or auxiliaries, including air-conditioning or headlights. Consequently, the restrictions of the WLTP may erode the ability to 
predict real-world fuel economy using the WLTC.

1.1. Driving cycle metrics

Much of the development of real-world cycles is focused on capturing driving behaviour by collecting on-road measurements from 
many vehicles to create a body of data (called a corpus) and reproducing it in a candidate cycle of a shorter duration. Studies have 
investigated the optimum driving cycle length to return the smallest overall error, compared to the training data. Research by Desi-
needi et al. (2020) compared the average error of bus driving cycles constructed using clustered micro-trips and Markov chains by time 
of day. In general, average error across 12 driving cycle metrics approached a minimum for driving cycles longer than 2000 s. A range 
of metrics have been used to assess the accuracy of the candidate cycle against the corpus, including: average velocity, acceleration and 
deceleration; proportion of time spent accelerating, decelerating, idling and cruising; and number of starts/stops per km (Barlow et al., 
2009). Most candidate cycles capture the behaviour of the corpus to within 5 %, but the challenge is to create a candidate cycle that can 
reproduce accurately both the fuel economy and emissions of the vehicle. In particular, the speed profile is related to emissions but 
may not reproduce them completely. Instead, a candidate cycle incorporating changes in vehicle specific power (VSP) may capture 
most of the activity upon which (light-duty) vehicle emissions are dependent (Carslaw et al., 2013; Carslaw and Rhys-Tyler, 2013; Lee 
and Frey, 2012; Yu et al., 2010; Zhang et al., 2014). In an exhaustive study of the metrics, characteristic parameters, and performance 
values of driving cycles, Quirama et al. (2021) hypothesised that two or three metrics were sufficient to characterise the corpus well. 
Although a unique pair and triple returned the lowest error, up to 15 pairs and triples returned similar performance. Additionally, 
different metrics were found to return the smallest error across the two regions and different pollutants.

Most driving cycle research focuses on reproducing the speed-time characteristics of observed data, but only recently has fuel-use 
and emissions data been exploited to construct representative driving cycles. Quirama et al. (2021) introduced an energy-based micro- 
trip method to reproduce on-road energy use and emissions using 15 buses measured on similar routes to those used by Huertas et al. 
(2018), with specific fuel consumption as one of the metrics to find the best candidate driving cycle. Earlier work by Bishop et al. 
(2019) used the elastic net approach on 29 driving cycle metrics, nine vehicle attributes and two ambient conditions to determine those 
which influenced most the trip average fuel use by and associated emissions of nitrogen oxides (NOx) from Euro 6 petrol and diesel 
passenger cars. Sangeetha and Bose (2021) introduced a method (termed the Real-World Cycle Condenser) to consider engine pa-
rameters that have a role in emissions formation by identifying families of micro-trips with similar driving cycle metrics, selecting a 
representative trip within a family and then eliminating the remaining trips. ‘Condensed’ cycles are generated until one is found which 
meets a threshold of 2 % error, compared to the corpus. Then, a vehicle system simulator was used to assess the fuel use and emissions 
of the corpus and the condensed cycle and verified on a chassis dynamometer. In general, fuel use and CO2 emissions were reproduced 
well, while the synthesised cycle failed to capture trip-level NOx and CO emissions as accurately.

1.2. Driving cycle development

The micro-trip method remains the most popular in the literature for developing driving cycles. Some authors have used a hybrid 
micro-trip and Markov chain approach to create candidate cycles. In one study, the full training data of 459 vehicles, sampled across 
17,000 days and 3.3 million km was categorized into seven speed clusters of 10–20 km/h each (Ma et al., 2019). These clusters were 
used to create a seven-by-seven transition probability matrix with which the authors created candidate driving cycles for peak and off- 
peak driving. In another study, the driving of 40 electric taxis was monitored across six months, with the data split into micro-trips and 
assigned to a nine-by-nine transition probability matrix based on average velocity intervals of 10 km/h. Twelve driving cycle metrics 
were used to calculate the root mean squared (RMS) error and identify the best candidate driving cycle (Wang et al., 2019). These 
hybrid micro-trip Markov chain approaches may be necessary for managing larger amounts of data. However, it remains funda-
mentally a micro-trip method with the ‘memory’ concept of the Markov chain, rather than random selection, to determine the next 
micro-trip in the sequence.

The use of n-1 Markov chains is an alternative to the micro-trip method (Bishop et al., 2012; Lee et al., 2011; Lee and Filipi, 2011) 
and assumes that the probability of moving from one speed to another is not independent. From the data comprising the corpus, a 
transition probability matrix embeds the likelihood of moving between any pair of consecutive (speed) states. Subsequently, the 
Markov chain approach has been used by Qiu et al. (2022) to compare with the performance of a genetic algorithm using 1768 micro- 
trips classified by k-means into three clusters, with the data grouped into 5 km/h bins for the transition probability matrix. The Markov 
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chain approach was found to capture the trend of real-world driving, but the authors’ spectral clustering-based method was more 
accurate at reproducing the values of eight commonly-used driving cycle metrics to within 10 %. Peng et al. (2020) used k-means to 
divide 11,619 micro-trips into three clusters. Transition probability matrices were developed for each cluster and Markov chains used 
to generate candidate cycles of various lengths. Six driving cycle metrics and the speed-acceleration frequency distribution of the 
candidate driving cycles were compared to the corpus, with the ‘target’ cycle being the candidate with the sum of the smallest error. A 
min–max Ant Colony Optimisation with Markov chain has been used (Cui et al., 2022) where the journey through the transition 
probability matrix mirrors the foraging behaviour of an ant swarm. The authors used the Comprehensive Modal Emissions Model to 
estimate fuel consumption of the best candidate driving cycle, compared to what was observed in the real-world.

These studies illustrate hybrid approaches, where clustering or micro-trip methods are used to pre-process the data and feed into a 
Markov chain process. Such pre-processing may help to manage the quantity of data being used to generate the Markov transition 
probability matrix, but introduces subjectivity, such as the choice of the number of clusters or the identification of important com-
ponents (through principal component analysis, PCA) on which to evaluate how well the candidate driving cycle reproduces the 
corpus. The different mathematical and computational approaches each have their advantages and disadvantages, but what connects 
many of the studies described is that they collect data using specific routes, cities, fleets, or (professional) drivers. Comparing syn-
thesised drive cycles with the corpus may yield information about the efficacy of the analytical method chosen, but the usefulness of 
the drive cycle itself is dependent on how well the corpus captures the natural variability of real driving.

Markov processes have complemented other methods such as clustering or micro-trips, to yield more accurate driving cycles. 
However, we suggest the Markov chain approach is sufficiently robust to accommodate the corpus directly, removing the need for data 
pre-processing and allowing a closer link to be drawn between the data captured during the experiment and the best candidate driving 
cycle.

In summary, recent literature has introduced new approaches to driving cycle development across different vehicle types. Our focus 
is to fill two gaps in the literature: first, a widely varying number of driving cycle metrics continues to be used to determine how well a 
candidate cycle captures the dynamics of the observed data; and second, there is little evidence to show how the final candidate driving 
cycle reproduces the observed fuel use. We build on earlier real-world driving cycle development (Bishop et al., 2012) in three ways. 
First, we use data collected from different passenger vehicles and drivers as part of a natural experiment to reflect the breadth in the 
range of driving styles and vehicle types. We collect driving data, including fuel use, at high frequency and maintain this granularity 
throughout our analysis. Second, we use the elastic net approach to inform a materiality assessment of driving cycle metrics to identify 
those most influential on fuel economy. Finally, we identify those candidate driving cycles which reproduce accurately both the 
driving cycle metrics and observed fuel use in the corpus.

2. Method

The data used to develop the driving cycles was collected from 2011 to 2018 through a voluntary study of members of staff at 
Brunel University of London and the University of Cambridge. The collection, management and storage of data was approved by Ethics 
Committees at both universities. Each participant was provided with an OBDII dongle which was paired with the DashCmd or Torq 
apps, both of which were available to Apple and Android users. Table 1 indicates the vehicle characteristics and total distance 
contributed to the study; each driver making multiple trips. Vehicle make and model were recorded by the participants, while physical 
and engine characteristics were derived from Automobile Catalog.1 The rolling resistance coefficient (Crr) was assumed to be 0.0059 
for all participating cars.

Over the course of the study, Driver 1 and Driver 4 changed vehicles a number of times. We treat the trips undertaken in each 
vehicle separately because the vehicle type might afford different behaviour. Fig. 1 outlines the routes taken by the participants. A 
driver’s speed profile is influenced by the driver demographics, the capability of the vehicle and the external constraints imposed by 
the topology of the road network, and traffic conditions. Having participants who frequently made the same trip captured the inherent 
variability of traffic conditions. The corpus contains trips from the most common types of road: city-centre, suburban, country, and 
highway.

2.1. Building the corpus

Engine channel data was captured and recorded at the natural rate (often greater than 1 Hz). The raw data was filtered using integer 
timestamps in seconds to return a 1 Hz set of data for each trip, driver and vehicle. The data was pre-processed to account for three 
types of error: 1) loss of GPS signal; 2) a logged trip starting or ending at non-zero speed; and 3) no fuel use recorded.

The loss of GPS signal resulted in entries with zero latitude, longitude, and speed. Entries meeting these three conditions were 
identified. The velocity in these entries was replaced with an interpolated velocity based on the entries immediately preceding and 
following. This procedure led to 483 s of driving being interpolated (0.54 % of the total). On occasion, the logger started recording only 
once the vehicle was moving, leading to a non-zero start velocity. In this case, the data between the start of the file and the first zero 
velocity entry was truncated. A similar procedure was followed for the data between the last zero velocity entry and the end of the file. 
This procedure led to 6437 s of driving being excluded from the corpus (7.3 % of the total). Fuel use was not recorded for Driver 8, 

1 https://www.automobile-catalog.com/.
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Table 1 
Physical and trip characteristics of study vehicles.

Vehicle 
characteristic

Units Driver 1 Driver 2 Driver 3 Driver 4 Driver 5 Driver 6 Driver 7 Driver 8 Driver 9 Driver 10 Driver 11

Model year  2011 2009 2001 2013 2012 2006 2017 2017 2018 2018 2018
Make and model  Ford 

Focus
Mercedes Benz 
C180

Porsche 
911

Ford 
Focus

Ford 
Focus

Audi A3 Hyundai 
i30

Mercedes Benz 
C200

Hyundai 
Tuscon

Citroen 
Picasso

Vauxhall Corsa 
SRi

Vehicle mass (m) kg 1282 1405 1375 1276 1263 1330 1322 2015 1497 1297 1585
Frontal area (Af) m2 2.26 2.17 1.91 2.36 2.25 2.01 2.09 2.17 2.44 2.39 2.05
Drag coefficient 

(Cd)
 0.32 0.25 0.30 0.27 0.31 0.33 0.3 0.27 0.3 0.3 0.27

Peak power kW 80 115 221 74 70 103 74 135 97 96 55
Peak torque Nm 240 230 350 170 230 320 134 300 161 230 130
Engine volume cc 1560 1597 3387 999 1560 1968 1368 1991 1591 1199 1398
NEDC fuel use l/100 km 4.4 6.7 12 4.8 4.2 5.5 5.4 6.8 7.2 5 5
 MJ/100 

km
164 213 381 152 157 206 172 216 229 159 178

Fuel type  Diesel Petrol Petrol Petrol Diesel Diesel Petrol Petrol Petrol Petrol Petrol
Reference no.†  1232960 1550540 2866790 1776185 1592855 1190765 2525600 2504240 2761880 2513150 2769680
Total driving 

distance
km 54 172 7 42 188 19 50 N/a 156 341 113

† https://www.automobile-catalog.com.
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equivalent to 2622 s of driving being excluded from the corpus (2.6 % of the total). In total, the corpus comprised 1142 km of driving 
over 55,969 s, with a total of 9059 s cleaned as above. GPS coordinates associated with the cleaned data were mapped to a digital 
elevation model.2 The slope between two consecutive coordinates was taken as the quotient of the rise (altitude) over the run (hor-
izontal distance travelled in one second based on the velocity). The slope was calculated and included in the estimate of VSP, but the 
impact on fuel use was not considered important because over 99 % of slope values were between − 0.5 % and 0.5 %.

For each vehicle, the trips were appended into a single velocity–time profile, on which 29 metrics were calculated, given in Table 2. 
Specific power was estimated for each trip per vehicle based on the vehicle characteristics in Table 1. The corpus is illustrated in Fig. 2
using the profiles of speed and specific power. The four anomalous spikes seen in the specific power profile of the corpus (Fig. 2b). 
These do not influence the results because the Markov chain approach favours higher frequency transitions and is insensitive to low 
frequency data anomalies, a notable advantage of this method.

Vehicle recorded fuel use in litres per second which was converted to fuel use per km based on the total volume of fuel and the total 
distance travelled. The accuracy of fuel use derived from the OBD is dependent on how well the vehicle estimates fuel use and measures 
distance. Pavlovic et al. (2021) tested light and heavy vehicles and concluded fuel use estimated via the OBD was within 7 % of what 
was observed in the laboratory, with accuracy increasing with increased driving time. This value was converted to MJ/100 km using 
the lower specific energy of motor spirit and gas/diesel oil, at 31,791 MJ/m3 and 37,385 MJ/m3, respectively. The observed fuel 
economy of the corpus was 231 MJ/100 km.

The velocity–time data for each vehicle was appended to give a new single velocity–time profile representing the full study data. 
Vehicle-specific information is lost when the training data is converted to a frequency and transition probability matrix. A repre-
sentative vehicle was developed based on the relative proportion of driving data, yielding a new mass, Cd and Crr of 1402 kg, 0.29 and 
0.006, respectively. This representative vehicle was used to estimate the specific power in each candidate driving cycle.

2.2. Creating the frequency and transition probability matrices

Markov chains introduce memory by ensuring the probability of achieving a state in time t is a function of the states at time t-1, t-2, 
…,t-n. Using one state per km/h, with the speed rounded to the nearest one km/h, an n-1 transition frequency matrix is created where 
the entry at (i,j) represents the number of times state j follows state i. The transition frequency matrix is transformed into the transition 
probability matrix using the method devised by Bishop et al. (2012). The code is written in Matlab (version R2023a) using the Statistics 
and Machine Learning Toolbox and runs on a i7-7700 processor (Windows 10 Pro) with 256 kB L1 cache and 32 GB of RAM.

The n-1 Markov chain considers the pair representing the velocity one second in the past and the current velocity. The square 
frequency matrix was populated with the number of times a specific n-1 pair was observed. Fig. 3 illustrates a heat map of the transition 
probability matrix which was derived from each row element divided by its row sum.

Fig. 1. GPS trace of the corpus. Each trace represent multiple trips.

2 Available at https://www.gpsvisualizer.com.
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Table 2 
List of driving cycle metrics, elastic net coefficients, their product and the material metrics denoted with * in the last column.

# Driving cycle metric Abbreviation Units Initial value Elastic net coefficient Metric Coefficient

1 Running velocity v run m/s 20.6 –33.4 − 688 *
2 Average velocity avg v m/s 18.3 5.24 95.9 *
3 Number of accelerations and decelerations per km acc-dec/km # 3.97 1.19 4.72 
4 Average vehicle specific power avg VSP kW/ 

kg
7.75 2.85 22.1 *

5 Variance of VSP VSP var kW/ 
kg

13.0 − 20.5 − 266 *

6 Root mean squared of acceleration RMS acc m/s2 0.70 − 12.9 − 9.03 *
7 Number of stops per km Stops/km # 0.33 − 25.5 − 8.42 *
8 Maximum VSP Max VSP kW/ 

kg
376 0.26 97.8 *

9 Average acceleration Avg accn m/s2 0.45 112 50.4 *
10 Average deceleration Avg decn m/s2 − 0.45 48.8 –22.0 *
11 Proportion of time spent decelerating % dec % 22.5 − 5.26 1.18 *
12 Proportion of time spent accelerating % acc % 23.6 67.8 16.0 *
13 Proportion of time spent cruising % cruise % 47.0 96.6 45.4 *
14 Proportion of time spent idling % idle % 6.94 –23.0 − 1.60 *
15 Relative positive acceleration RPA m/s2 0.15 31.7 4.76 
16 Relative negative acceleration RNA m/s2 − 0.14 − 50.0 7.00 *
17 Relative positive speed squared RPSS m2/s2 25.5 45.9 1170 *
18 Relative positive speed cubed RPSC m3/s3 720 − 0.45 − 324 *
19 Kinematic intensity KI  0.20 135 27.0 *
20 Aerodynamic velocity V aero m/s 26.8 19.1 512 *
21 Characteristic acceleration Char acc m/s2 0.14 34.4 4.82 *
22 Maximum acceleration Max acc m/s2 0.89 106 94.3 *
23 Maximum deceleration Max dec m/s2 − 0.89 119 − 106 *
24 Maximum velocity V max m/s 33.5 − 11.1 − 372 *
25 Interquartile range of acceleration IQR accn m/s2 0.89 152 135 *
26 Interquartile range of velocity IQR v m/s 20.1 − 2.39 − 48.04 *
27 95th percentile of the product of velocity and acceleration va95 m2/s3 28.0 5.62 157 *
28 Median jolt median jolt m/s3 0 135 0 
29 Interquartile range of jolt IQR jolt m/s3 1.79 − 166 − 297 *

Fig. 2. Plot of corpus showing a) speed and acceleration, and b) specific power.
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2.3. Identifying the key driving cycle metrics

The driving cycle metrics are based on velocity, acceleration or a combination of the two. Therefore, there is correlation across the 
metrics implying that a simplified subset might capture the variability of driving behaviour evident in 29 driving cycle metrics 
(Table 2) given in Bishop et al. (2019). By using PCA, other studies assume independence of variables, and therefore the metrics. In 
contrast, the elastic net method does not assume independence, identifying correlated variables and applying coefficients to balance 
the number of variables with accuracy. The elastic net was applied to the complete set of individual trips that comprise the corpus. The 
independent variable is each driving cycle metric, and the dependent variable is trip level fuel use (MJ/100 km).

The group of independent variables was split into a training set and a validation set, based on Matlab’s cvpartition cross-validation, 
with a training set of 70 % and a test set of 30 % of the observations. The ‘standardize’ and ‘intercept’ flags were set to false: if 
‘standardize’ was true, the elastic net would attempt to fit models to predictor data standardized to have mean and variance of zero and 
one, respectively; and a true ‘intercept’ flag would return a linear model which did not pass through the origin. The cvpartition and 
elastic net method returned a reduced set of lasso variables and associated linear elastic net coefficients which yielded an estimate of 
fuel economy. There was a different set of lasso variables, elastic net coefficients and estimated fuel economy for each cvpartition run. 
Therefore, the cvpartition approach was run 500 times which yielded 500 different lasso fuel economy values. The set of elastic net 
coefficients which delivered estimated fuel economy closest to the corpus was chosen.

A ‘materiality’ assessment was conducted to determine which metric and elastic net coefficient pairs most influenced the fuel 
economy estimate. Whether the input data was standardized or not prior to applying the elastic net, the result was the same. The 
product of the elastic net coefficient and corresponding metric was either negative or positive, depending on the sign of the individual 
components. The material metric and elastic net coefficient pairs were chosen by ordering negative and positive products, largest to 
smallest (Fig. 6). To estimate the evolution of fuel economy, the cumulative sum was taken of metrics, ordered in terms of the product 
of their value and elastic net coefficient, from the most negative to the least positive. The set of material metrics corresponded to those 
for which the cumulative sum first came within 5 % of the corpus. The remaining metrics were not considered material as their impact 
was less than 5 % of the observed fuel economy.

2.4. Create driving cycles and identifying the best candidates

A random walk of m steps, beginning at state 1 (or idle), is performed through the probability transition matrix. The resulting vector 
of length m is a candidate driving cycle and the absolute deviation between each material metric (Table 2) of the random walk and the 
corpus is calculated. In most studies, arbitrary 5 % or 10 % thresholds are used to determine the best random walk, or candidate driving 
cycle. This process was repeated in powers of 10, from zero (representing one walk) to five (100,000 walks) and lengths from 500 to 
5000 steps (each step is one second) in blocks of 500 steps. Evaluating candidate driving cycles across a range of repetitions and lengths 
shows how accuracy changes with varying input parameters. For each repetition and driving cycle length, we identified the five 
candidate driving cycle(s) with the smallest: 

• sum of absolute deviations across driving cycle material metrics, and
• absolute deviation from the corpus fuel economy.

Optimizing using these two dimensions tests if the candidate driving cycle with the smallest sum of absolute deviations across 

Fig. 3. Heat map of transition probability matrix representing the likelihood of the participants drivers changing speed (at one km/h granularity).
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driving cycle metrics is also the one with the smallest deviation between estimated and observed fuel economy.

3. Results and discussion

There are three main results which we present and discuss in this section. First, we show how driver variability is expressed in the 
corpus. Second, we identify the most important driving cycle metrics to estimate fuel economy by applying the elastic net process. 
Third, we run the Markov chain process and identify the best candidate driving cycle. We discuss the trade-off between meeting driving 
cycle metrics and fuel economy and the difficulty in reproducing all metrics accurately.

3.1. The corpus and driver variability

The variation in the corpus was shown in Fig. 2. Fig. 4 illustrates the variation in the magnitude of driving cycle metric by driver. 
Across the metrics, the boxes are overlapping in most cases and there is little vertical spread in the median value (red horizontal line) 
by driver. This comparison shows how similar the driving characteristics were, despite differences across driver demographics and 

Fig. 4. Variation of magnitude of driving cycle metric, by driver.
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vehicle attributes (Table 1). Therefore, we suggest each driver’s data is largely representative of the other because the effect of the 
external traffic and road network characteristics are dominant.

This dominance of exogenous conditions implies that the driving cycles we have developed will remain representative until the 
traffic and road network characteristics change materially. For example, the influence of individual driving styles may become more 
prominent in areas where road capacity improvements reduce congestion. Similarly, the influence of driver behaviour and vehicle 
attributes may be muted in areas where road closures and new traffic patterns push more vehicles onto the same route, increasing 
congestion. We did not investigate the extent of the change in external conditions, such as slope, influencing materially driving 
characteristics. Vehicle specific power is the only driving cycle metric incorporating road slope.

3.2. Identifying key driving cycle metrics to estimate fuel economy

The elastic net process excluded characteristic acceleration (coefficient of zero) from the reduced set of indicators, resulting in all 
29 driving cycle metrics being relevant for reproducing the corpus’ fuel economy accurately (Fig. 5).

Fig. 5. The set of driving cycle metrics identified by the elastic net process, with trips using petrol vehicles indicated with blue crosses and trips 
using diesel vehicles indicated with red dots.
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Table 2 illustrates the 29 driving cycle metrics and coefficients which yielded the smallest absolute deviation from the corpus fuel 
economy. The linear combination of these variables and elastic net coefficients resulted in a fuel economy of 229 MJ/100 km, which is 
0.66 % lower than the observed fuel economy of the corpus.

The materiality analysis determined the impact of each metric and elastic net coefficient pair on the estimate of fuel economy. 
Ordering the most positive and negative pairs of driving cycle metrics and corresponding elastic net coefficients identifies the material 
metrics for determining fuel economy (Fig. 6) and listed in Table 2. Therefore, while 29 metrics were identified as contributing in-
formation to the estimated of fuel economy, only 26 of them were considered material. The fuel economy predicted by the material 
driving cycle metrics, indicated by the * in the last column of Table 2, was 220 MJ/100 km, which is 4.7 % lower than the corpus fuel 
economy.

This fuel economy estimate is farther away from the corpus value than the estimate using 29 metrics. However, the error is marginal 
and the reduction of complexity of the reduced set is an advantage in terms of computation, for practical implementation, and for ease 
of communication. These 26 metrics were used to identify the best candidate driving cycle.

3.3. Understanding the distribution of errors

To illustrate the varying degrees of accuracy of candidate driving cycles we use the case of 100,000 random walks through the 
transition probability matrix. Fig. 7 displays how well the candidate driving cycles met both the corpus driving dynamics, represented 
by driving cycle metrics, and fuel economy. Fig. 7a shows the number of driving cycle metrics met to within 5 % of the corpus, with the 
vertical line at 29 driving cycle metrics, indicating where all metrics are within 5 %. The distribution shows that 91 % of cycles met up 
to only five driving cycle metrics to within 5 %. Fig. 7b shows the distribution of fuel economy for the same candidate driving cycles, 
with the solid vertical line indicating the corpus fuel economy value, and the dotted vertical lines showing the corpus value ±5 %. 
Now, almost 3500 candidate cycles reproduce the observed fuel economy accurately. There are two important conclusions from this 
analysis. First, many more candidate driving cycles reproduced observed fuel economy accurately than the corpus driving cycle 
metrics. Secondly, there may not be a single, ‘best’ candidate, suggesting that drive cycle analysis should be looking for a family of 
cycles of equal or similar accuracy.

3.4. Identifying the best candidate driving cycles

Each best candidate cycle for the combination of repetitions and duration has a corresponding fuel economy. Relating the driving 
cycle metrics to observed fuel economy allows evaluation of the accuracy of a candidate driving cycle on this dimension and test if 
reproducing the driving cycle metrics closely translated into an accurate estimate of fuel economy.

Choosing the five best candidate cycles for one to 100,000 repetitions across driving cycles ranging from 500 s to 5000 s duration 
yielded a family of 300 cycles. There was one candidate cycle of length 4500 s with 19 metrics met to within 5 % of the corpus, 
illustrated in Fig. 8a. Our method returned candidate driving cycles with the three VSP metrics to within 5 % of the corpus, implying 
slope did not have a material impact on the accuracy of our approach. This observation aligns with (Desineedi et al., 2020) who found 
candidate driving cycle accuracy improved for durations longer than 2000 s. Fig. 8b indicates how the number of metrics met to within 
5 % evolved with cycle length. Accuracy increased with driving cycle length, from fewer than five metrics for 500 s to over 10 metrics 
met to within 5 % at 5000 s. In general, accuracy did not increase after 2000 s. Accuracy improved quickly with the number of 

Fig. 6. Product of metric and elastic net coefficients, ordered by most positive/negative to least positive/negative. The vertical dotted line indicates 
the number of material driving cycle metrics.
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repetitions, from less than five metrics for a single run to over 10 metrics at 100,000 repetitions (Fig. 8c). The candidate cycle with 19 
driving cycle metrics met to 5 % yielded estimated fuel economy of 293 MJ/100 km, equivalent to 27 % higher than the corpus. Fig. 8d 
and Fig. 8e indicate how the best candidate cycles based on driving cycle metrics yielded significant over- and under- estimates of fuel 
economy, relative to the corpus (black dashed line). The spread of fuel economy estimates tended to decrease with increasing cycle 
length and increasing repetition settling to a value which was higher than the corpus. Finally, Fig. 8f and Fig. 8g show that the variation 
in the sum absolute error between candidate driving cycles and the corpus decreased slightly with cycle length, and more substantially 
with the number of repetitions.

In contrast, 107 candidate cycles delivered fuel economy to within one decimal place of the observed value. Two of the 107 
candidate cycles are illustrated in Fig. 9a, confirming our earlier conclusion that it is easier to reproduce the corpus fuel economy than 
its driving cycle metrics. Fig. 9b and Fig. 9c indicate that relative few metrics are met to within 5 % of the corpus despite increasing 
cycle duration and number of repetitions, respectively. Optimizing for fuel economy shows less spread (over- and under-estimations) 
for increasing cycle duration, while decreasing substantially with increasing number of repetitions (Fig. 9d and Fig. 9e, respectively). 
Despite this accuracy for fuel economy, these candidate driving cycles reproduce fewer than five metrics to within 5 % of the corpus, 
implying that most cycles have characteristics differing substantially from the corpus.

Fig. 10 illustrates the significant increase in computation time for 100,000 repetitions, for a marginally larger number driving cycle 
metrics to within 5 % and improvement in fuel economy estimates.

3.5. Assessing the trade-off between meeting driving cycle metrics and fuel economy

The trade-off in accuracy between driving cycle metrics and fuel economy is seen in Fig. 11. The solid vertical line indicates corpus 
fuel economy and the solid horizontal line indicates 26 driving cycle metrics met to within 5 %. The closer the candidate driving cycles 
are to the intersection of the two lines indicated, the more accurate they are in both dimensions.

Only one candidate cycles met 19 metrics to within 5 % of the corpus. In Fig. 11, we illustrate the trade-off between meeting driving 
cycle metrics and fuel economy more clearly by showing the 36 cycles which met at least 15 driving cycle metrics to within 5 % of the 
corpus. The blue crosses indicate the horizontal spread of fuel economy accuracy, from 201 MJ/100 km up to 386 MJ/100 km, for at 
least 15 metrics met to within 5 % of the corpus. The orange circles demonstrate that the best candidate cycles (based on fuel economy 
only) meet fuel economy accurately, but with only seven or fewer metrics matching the corpus to within 5 % in general.

The conclusion is choosing a candidate driving cycle based on number of metrics met to within 5 % can yield accurate fuel 
economy; however, choosing a candidate cycle based on fuel economy is unlikely to yield a large number of driving cycle metrics met 
to within 5 % of the corpus. There are families of best candidate cycles depending on which dimension is optimized. However, 
compared to the corpus, the two best candidate driving cycles overall meets 15–16 driving cycle metrics to within 5 % and fuel 

Fig. 7. Distribution of errors in driving cycle metrics and fuel economy across the combinations of sequence length (from 500 s to 5000 s) and 
repetitions (from 1 to 100,000). Subplots a) and b) indicate absolute values.
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economy to within 5 % (two blue crosses within the vertical lines of Fig. 11. Our approach reduced the 29 initial metrics to a set of 26, 
material to predicting fuel economy. However, only 19 of the 26 material metrics (or 17 of the initial 29 driving cycle metrics as 
illustrated by the blue crosses in Fig. 11) are met to within 5 % in the family of best candidate driving cycles.

There were some metrics which were difficult to reproduce accurately. To illustrate, we show the 36 candidate driving cycles which 
met at least 15 metrics to within 5 %. Fig. 12a and Fig. 12b highlight how well these candidate cycles met each metric. The cycles 
meeting the most metrics to within 5 % of the corpus are to the left, with accuracy decreasing towards the right. This change in ac-
curacy is illustrated by the appearance of more yellow and red squares, indicating errors of greater than 5 % and greater than 10 %, 
respectively. Errors greater than 10 % persist across all cycles for: the number of accelerations and decelerations per km, average 
acceleration, average deceleration, and the IQR of acceleration. Some of these metrics are present in the material set (Fig. 12b).

The number of accelerations and decelerations per km reflects the number of speed changes per km travelled. As the transition 
probability matrix views transitions at resolution of 1 km/h, a transition from 50 km/h to 49 km/h and back to 50 km/h in a single km 
will influence this metric, even if the driver was intending to drive at a constant speed of 50 km/h. This jitter (statistical noise) might 
arise from small dips and bumps (or potholes) in the road surface, or the driver shifting their foot slightly on the accelerator pedal. The 
corpus shows an average of 4.0 acceleration and deceleration events per kilometre. Therefore, one or two additional changes per 

Fig. 8. Best candidate driving cycles based on driving metrics.
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kilometre in a candidate driving cycle represents a significant error relative to the corpus, but not a material change in driving 
behaviour. For example, the number of acceleration and deceleration event per kilometre in two best candidate cycles in Fig. 8a is 
6.4–6.6 per km.

The other metrics which are consistently unmet are, or are derived from, acceleration e.g. jolt. Average acceleration and decel-
eration across the corpus is 0.45 m/s2 and − 0.45 m/s2, respectively. Therefore, reproducing these metrics, and those derived from 
them, may be difficult based on their relatively low magnitude.

We distinguish between the noise from the naturally occurring brief changes in speed when trying to maintain a target and the less 
frequent, but prolonged, acceleration or deceleration events implying driver intent. Fig. 13 shows the number of seconds of consec-
utive accelerations and/or decelerations in the corpus: more than 90 % of events are shorter than four seconds in duration, with 51 % of 
events lasting one second only. Therefore, we can conclude most of the speed transitions are noise, with the tail of the distribution more 
indicative of driver intent. The volume of noise arises, in part, because we use a 1 km/h resolution transition probability matrix. A less 
granular transition probability matrix would smooth the noise and may represent driver intent more explicitly but deliver a less useful 
candidate driving cycle.

The test vehicles received type approval under the NEDC, with the combined fuel use in litres/100 km which was converted to MJ/ 

Fig. 9. Best candidate driving cycles based on fuel economy.
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100 km (Table 1). The median fuel-use observed in our experiments was 26 % higher than expected under the NEDC combined cycle, 
ranging from 10 % higher for the 2012 Ford Focus (vehicle 5) to 137 % higher for the 2013 Ford Focus (vehicle 4) (Table 3). Although 
we do not have comprehensive driving data for every vehicle, this experiment confirms the observations by Dornoff et al. (2024) that 
type-approval tests, particularly the NEDC, do not reflect real-world fuel use accurately.

4. Conclusion

We introduced a real-world driving cycle generated using a Markov chain method which reproduced accurately the two dimensions 
of metrics and fuel economy of a natural driving experiment (corpus). We identified 1) a reduced set of metrics which influenced fuel 
economy materially, 2) trade-offs in accuracy between reproducing vehicle dynamics and fuel economy, and 3) and the impact of 
natural driving variability (noise) on the accuracy of candidate cycles.

A large set of driving cycle metrics have been used by other studies; we systematically rationalized our set from the initial 29 
metrics to a set of 26 material to predicting fuel economy accurately. The elastic net assessment of the materiality of driving cycle 
metrics is an important contribution to the field of driving cycle development. To date, driving cycle metrics have been used to describe 
the corpus, with little discussion as to which, if any, were important.

Selecting candidate cycles based on accuracy of reproducing driving cycle metrics or predicted fuel economy yielded different 
results. In general, it was more difficult to reproduce accurately the driving cycle metrics of the corpus, illustrated by only one 
candidate cycle meeting 19 driving cycle metrics to within 5 % of the corpus. However, 107 candidate cycles delivered fuel economy 

Fig. 10. Evolution of computer time with number of repetitions.

Fig. 11. Trade-off between candidate cycles meeting driving cycle metrics and the fuel economy of the corpus.
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within one decimal place of what was observed in the corpus, indicating a trade-off in accuracy, depending on the dimension being 
optimized.

We found it was difficult for the Markov chain to reproduce accurately the corpus acceleration and acceleration-derived metrics. 
These acceleration properties have small absolute values, meaning that significant error can arise from immaterial changes in driving 
behaviour. In general, we found noise dominated the acceleration and deceleration events, masking driver intent. However, as metrics 
are generally distance- or time-based, this noise is smoothed-out in the aggregation. Investigating the impact of noise is beyond the 
scope of our work but could be an interesting future study.

The driver-vehicle pairs represent a range of gender, age, extent of driving experience, and vehicle capability. Although the main 
limitations of this work are number of drivers and the overall sample size, in most cases, the observed driving style was similar across 
the participants. It transpires that the slope of the roads in our study was unimportant, but this could be addressed in a study with 
greater topographical diversity. The Markov approach is flexible to accommodate new data and ensures the most common behaviours, 
captured as observed transitions, are reflected in the candidate cycles. It remains an open question as to the minimum quantity of data 
to reproduce real-world driving cycles. We suggest that the real-world driving behaviour is determined more by the road topology and 
presence of other drivers, than the performance potential of the vehicles. This reversion to the mean is useful when considering the 

Fig. 12. For the 36 candidate cycles accuracy of meeting a) full set of driving cycle metrics and b) material set of driving cycle metrics. Green 
illustrates errors of up to 5 %, yellow indicates errors of 5–10 % and red indicates errors greater than 10 %.

J.D.K. Bishop and C.J. Axon                                                                                                                                                                                        Transportation Research Part D 137 (2024) 104507 

15 



design of future studies.
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