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Abstract

We present an efficient method to solve numerically the equations of dissipative
dynamics of the binary phase-field crystal model proposed by Elder et al. [Phys.
Rev. B 75, 064107 (2007)] characterized by variable coefficients. Using the oper-
ator splitting method, the problem has been decomposed into sub-problems that
can be solved more efficiently. A combination of non-trivial splitting with spectral
semi-implicit solution leads to sets of algebraic equations of diagonal matrix form.
Extensive testing of the method has been carried out to find the optimum balance
among errors associated with time integration, spatial discretization, and splitting.
We show that our method speeds up the computations by orders of magnitude rel-
ative to the conventional explicit finite difference scheme, while the costs of the
pointwise implicit solution per timestep remains low. Also we show that due to its
numerical dissipation, finite differencing can not compete with spectral differencing
in terms of accuracy. In addition, we demonstrate that our method can efficiently
be parallelized for distributed memory systems, where an excellent scalability with
the number of CPUs is observed.
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1 Introduction

Continuum/field theoretical models have been used widely to address phase
transitions in complex systems, including magnetic phase transitions, con-
densation, phase separation, and crystallization [1–9]. A very promising new
field theoretical approach to crystallization of undercooled liquids is the Phase-
Field Crystal (PFC) model, which addresses freezing on the atomistic/molecular
scale [10,11]. The PFC method is a close relative of the classical density func-
tional theory (DFT) of crystallization [12]: one may derive it by making a
specific approximation for the two-particle direct correlation function of the
liquid [11] in the Ramakrishnan-Yussouff expansion of the free energy func-
tional of the crystal relative to the homogeneous liquid [12]. One arrives then
to a free energy functional of the Swift-Hohenberg (SH) kind [13]. (In two di-
mensions, a Brazovsky type free energy functional, valid for triangular lattice
emerges [14].) Unlike the original SH model, in the PFC the order parameter
is the number density, thus conserved dynamics is assumed to apply [10,11].
Remarkably, the PFC description includes automatically the elastic effects
and crystal anisotropies, while addressing interfaces, dislocations and other
lattice defects on the atomic scale [10,11,15]. It also has the advantage over
traditional atomistic simulations (such as molecular dynamics), that it works
on the diffusive time scale, i.e., processes taking place on about a million times
longer times than the ones molecular dynamics simulations are able to han-
dle can be addressed. Thermal fluctuations can be incorporated into the PFC
similarly to conventional field theory via adding fluctuation-dissipation noise
to the governing equations. Although, due to its atomistic nature, the PFC
technique cannot be easily used to model large scale crystalline structures,
it has already demonstrated its high potential for modeling dendrites, eu-
tectic structures, polycrystalline solidification, grain boundaries/dislocations,
epitaxial growth, crack formation, etc [15]. To address complex solidification
morphologies, such as dendritic and eutectic structures, one needs a mini-
mum two-component formulation of the PFC. Very recently, Elder et al. have
presented a binary version of the PFC model [15,16]. However, the numeri-
cal solution of the binary PFC model is rather demanding: even if the direct
correlation function of the liquid phase is approximated only to the fourth
order in the Fourier space, sixth order stochastic partial differential equations
(PDE) need to be solved. More accurate approximations or more complex crys-
tal strucutres yield higher-order PDEs. Numerical solution of such equations
requires advanced techniques as demonstrated for the single-component case
[10,11,17]. It is worth noting that an extra difficulty arises in the binary PFC
model: in its full formulation [16], variable coefficients appear in the equations
of motion, which cannot be efficiently handled by the numerical methods ap-
plied for the single-component case. A different approach is thus required to
model binary solidification by the PFC method. Various approaches might be
possible at this stage. For example, a combination of the coarse grained formu-
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lation based on the renormalization group technique with adaptive gridding
can certainly enhance substantially the simulation domain [18–20]. Unfortu-
nately, a coarse grained version is unavailable yet for the binary PFC. Another
possibility is to apply advanced numerical techniques to solve the binary PFC
equations.

Recently, the operator splitting techniques are considered as being among
the most efficient ones for solving complex PDEs applied in physics [21,22].
A broad range of problems has been addressed by such methods, including
the Navier-Stokes equation [23,24], the Hamilton-Jacobi equation [25,26], and
advection-diffusion problems [27,28]. In these methods, the spatial differential
operator is split into a sum of sub-operators that have simpler forms and can
be handled easier. Accordingly, the original problem is replaced by a sequence
of sub-problems solved numerically. This procedure is efficient though gives
rise to some amount of error (splitting error, whos order can be often theo-
retically estimated [29]). This error is accompanied with the error emerging
from the numerical methods used for solving the PDEs of the sub-problems
(numerical error). The interaction of these two types of errors determines the
total error of the solution. As a result, the method of discretization should
be chosen with some care to avoid order reduction and unnecessary loss of
accuracy, as investigated recently [30]. Keeping these in mind, the operator
splitting methods are considered as promising candidates for solving efficiently
the high-order, non-lidear PDEs of the binary PFC model.

In this paper, we are going to apply an advanced operator splitting technique
to solve the binary PFC equations efficiently. The rest of the paper is struc-
tured as follows. In Section 2, we briefly recall the binary PFC equiations, and
describe the numerical thechniques we find propose. In Section 3, we specify
the computational resources used, while in Section 4, we present a detailed
analysis of the accuracy/efficiency of these methods under conditions leading
typically to dendritic growth morphology. Efficiency of the applied numeri-
cal methods on parallel computers with distributed memory is also adressed.
Finally, a few concluding remarks are made in Section 5.

2 Binary PFC equations and numerical formulation

2.1 Binary PFC theory

In deriving the binary PFC model, the starting point is the free energy func-
tional of the binary perturbative DFT, where the free energy is Taylor ex-
panded relative to the liquid state (denoted by subscript L) up to 2nd order
in density difference (up to two-particle correlations) [16]:

3
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F

kBT
=
∫

d~r

[

ρA ln

(

ρA

ρA
L

)

− ∆ρA + ρB ln

(

ρB

ρB
L

)

− ∆ρB

]

−
1

2

∫

d~r1d~r2

[

∆ρA(~r1) CAA(~r1, ~r2) ∆ρA(~r2)

+∆ρB(~r1) CBB(~r1, ~r2) ∆ρB(~r2)

+2 ∆ρA(~r1) CAB(~r1, ~r2) ∆ρB(~r2)
]

, (1)

where kB is Boltzmann’s constant, ∆ρA = ρA − ρA
L and ∆ρB = ρB − ρB

L .
It is assumed here that all two point correlation functions are isotropic, i.e.,
Cij(~r1, ~r2) = Cij(|~r1−~r2|). Taylor expanding direct the correlation functions in
Fourier space up to 4th order, one obtains Cij = [C0

ij−C2
ij∇

2+C4
ij∇

4]δ(~r1−~r2)
in real space, where ∇ differentiates with respect to ~r2 (see [16]), and ∇2 stands
for the Laplacian. The partial direct correlation functions Cij can be related
to measured or computed partial structure factors (see e.g. [31]).

Following Elder et al. [16], we introduce the reduced partial number density
differences nA = (ρA − ρA

L)/ρL and nB = (ρB − ρB
L )/ρL, where ρL = ρA

L + ρB
L .

It is also convenient to introduce the new variables n = nA + nB and δN =

(nB−nA)+
ρB

L
−ρA

L

ρL
. Then, expanding the free energy around δN = 0 and n = 0

one obtains

F

ρLkBT
=
∫

d~r
(n

2

[

BL + BS

(

2R2∇2 + R4∇4
)]

n

+
t

3
n3 +

v

4
n4 + γ(δN) +

w

2
(δN)2 +

u

4
(δN)4

+
L2

2
|~∇(δN)|2 + · · ·

)

. (2)

where BS, t, v, γ, w and u are constant model parameters, while BL(δN)
and R(δN) represent the variable coefficient part in the kinetic equations as
specified below.

Assuming a substitutional diffusion between species A and B, i.e., that the
same M mobility applies for the two species, the dynamics of the fields n
and (δN) decouple. Assuming, furthermore, that the mobility coefficient is a
constant, the respective equations of motions have the form [16]:

∂n

∂t
= Me∇

2 δF

δn
, (3)

∂(δN)

∂t
= Me∇

2 δF

δ(δN)
, (4)

where δF
δχ

= ∂I
∂χ

+
∑

i(−1)i∇i ∂I
∂∇iχ

is the first functional derivative of the free

4
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energy with respect to field χ [32], and I is the integrand of Eq. (2), i is
a positive integer, while the respective effective mobility is Me = 2M/ρL

2.
Expanding BL, BS and R in terms of (δN) with coefficients denoted as BL

i , BS
i

and Ri, assuming that only coefficient BL
0 , BL

2 , BS
0 , R0, and R1 differ from zero,

and inserting the respective form of I into Eqs. (3) and (4), one arrives at

∂n

∂t
=Me∇

2
[

n[BL
0 + BL

2 (δN)2] + tn2 + vn3

+
BS

0

2
{2[R0 + R1(δN)]2∇2 + [R0 + R1(δN)]4∇4}n

+
BS

0

2
{2∇2(n[R0 + R1(δN)]2) + ∇4(n[R0 + R1(δN)]4)}

]

, (5)

∂(δN)

∂t
=Me∇

2
[

BL
2 (δN)n2

+2BS
0 n{[R0 + R1(δN)]R1∇

2 + [R0 + R1(δN)]3R1∇
4}n

+γ + w(δN) + u(δN)3 − L2∇2(δN)
]

. (6)

Eqs. (5) and (6) will be solved numerically after adding a conservative noise
(a random flux) to them that represents the thermal fluctuations.

Finally, we briefly outline the physical meaning of the model parameters. The
driving force of crystallization can be enhanced by either lowering ∆B =
BL

0 −BS
0 (lowering the temperature), or increasing the initial number density

n (incresing the pressure), or by changing the initial composition of the liq-
uid phase δN . The magnitude of parameter t is determined by the interplay
of the appropriate Taylor coefficient of the ideal gas term in the free energy
with the 0-th order contribution from the three-particle correlation, while the
magnitude of v follows from the Taylor coefficent for the logarithmic term in
the ideal gas contribution. The interatomic distance may be tuned via param-
eters R0 and R1, of which the latter determines the composition dependence
of the interatomic spacing. The tendency towards liquid/solid phase separa-
tion can be tuned by changing w, while the lenght scale of phase separation
is determined by the interplay of L, w, and u.

2.2 The numerical scheme

In order to simplify the complex equations of motion [Eqs. (5) and (6)], we
apply differential splitting prior to discretization.

5
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2.2.1 Operator splitting

We decompose the spatial differential operator in the sum of two operators as
follows:

∂n

∂t
=(A1 + A2)n, (7)

∂(δN)

∂t
=(B1 + B2)(δN). (8)

while sub-operators A1, A2, B1 and B2 have the form:

A1n =∇2{[Me{B
L
0 + BL

2 (δN)2} − C1]n} (9)

+∇2{[MeB
S
0 {R0 + R1(δN)}2 − C2/2]∇2n}

+∇2{[Me

BS
0

2
{R0 + R1(δN)}4 − C3/2]∇4n}

+∇4{[MeB
S
0 {R0 + R1(δN)}2 − C2/2]n}

+∇6{[Me

BS
0

2
{R0 + R1(δN)}4 − C3/2]n}

+∇2{Me[tn
2 + vn3]},

A2n = C1∇
2n + C2∇

4n + C3∇
6n, (10)

B1(δN) = Me∇
2
[

BL
2 (δN)n2 (11)

+ 2BS
0 n{[R0 + R1(δN)]R1∇

2 + [R0 + R1(δN)]3R1∇
4}n

+ γ + u(δN)3
]

,

B2(δN) = Me[w∇2(δN) − L2∇4(δN)], (12)

where C1, C2 and C3 are constants to be defined later.

The motivation for this specific choice of split operators is that, with appropri-
ate spatial discretization schemes, it leads to algebraic equations of a diagonal
matrix form, which can be solved very easily and efficiently in a pointwise
manner. To achieve this, we collect the problematic (non-linear/variable co-
efficient) terms into sub-operators A1 and B1, which can be then solved by
explicit FD or spectral schemes (we will present results for the fully spectral
approach), while the rest (sub-problems corresponding to sub-operators A2

and B2) will be handled by implicit spectral methods. As it will be shown,
this specific combination of operator splitting with spectral schemes enables

6
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us to use time steps that are substantially larger than those allowed by the ex-
plicit fomulation, and also the accuray of the solution is significantly improved
relative to the finite difference spatial discretization.

2.2.2 Splitting procedure and discretization

There exist several splitting procedures [21,22,29,30,33–35]. In solving the
problem, in this work, we rely on the simplest sequential splitting procedure
[29,30]. Combining sequential splitting with the explicit time integration for
A1 and B1 and implicit time integration for A2 and B2 yielding the following
equations:

n∗ =nt + ∆tA1n
t, (13)

nt+∆t =n∗ + ∆tA2n
t+∆t, (14)

(δN)∗ =(δN)t + ∆tB1(δN)t, (15)

(δN)t+∆t =(δN)∗ + ∆tB2(δN)t+∆t, (16)

where n∗ and (δN)∗ are the solutions of the split sub-problems corresponding
to sub-operators A1 and B1.

Note that Eqs. (13) and (15) contain nonlinear terms and terms of variable co-
efficient. In their spatial discretization we have repeatedly applied fast Fourier
transformations (FFTs), differentiation in the spectral space, and inverse fast
Fourier transformations (IFFTs). This approach leads to a numerical formu-
lation that is free of numerical dissipation, and to a solution that is far more
accurate than the solution relying on the finite difference technique. In 2D
Fourier space, the discretized Laplacian coresponds to a multiplication by
−4π2(k2

x + k2
y), where kx and ky are the discrete wavenumbers. Note, further-

more, that the explicit time integration applied for Eqs. (13) and (15) yields
algebraic equations that can be directly written into a diagonal matrix form
and solved thus pointwise via simple back-substitution.

In the case of sub-operators containing only constant coefficient terms (A2 and
B2), the 2D spatial discretization has been made using a spectral differencing
scheme:

ñt+∆t
(kx,ky) = ñ∗

(kx,ky){1 − ∆t(C12
2π2(−k2

x − k2
y)

+C22
4π4(k4

x + 2k2
xk

2
y + k4

y)

7
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+C32
6π6(−k6

x − 3k4
xk

2
y − 3k2

xk
4
y − k6

y)}
−1, (17)

(̃δN)
t+∆t

(kx,ky) = (̃δN)
∗

(kx,ky){1 + ∆tMew22π2(k2
x + k2

y)

+∆tMeL
224π4(k4

x + 2k2
xk

2
y + k4

y)}
−1, (18)

where ñ(kx,ky) and (̃δN)(kx,ky) stand for the discrete Fourier transforms of n(r)

and (δN(r)) at the discrete wave vector k = (kx, ky).

We emphasize that in a fully explicit treatment the stepsize one may use for
time integration is seriously limited. In contrast, in the present mixed explicit-
implicit formulation, we have some freedom to tune the stability criteria to
our favour, via a proper choice of the constants C1, C2 and C3, while retaining
the diagonal matrix form of the the algebraic equations. While the stability
of time stepping with the individual sub-operators is a necessary condition,
due to a possible interaction of errors this does not neccessarily guarantee the
overall stability of the scheme [30]. We find though in practice that for the
splitting of the PFC equations described above, it is sufficient to ensure the
stability of stepping with the operators individually. Next, we are going to
examine the stability of the steppings with the indiviual operators, and give
suggestions for the proper choice of the splitting constants C1,C2 and C3.

As a result of sequential operator splitting, and of the spectral implicit treat-
ment of the fourth order term in Eq. (6), the maximum stable time step is
proportional to (∆x)2 that compares favorably to the ∆t ∝ (∆x)4 dependence
of a fully explicit scheme.

The stability of time stepping for Eq. (5) is a more complicated issue, and we
also need to address the consistency of the explicit-implicit stepping.

After some manipulation of our equations it can be shown that we have added
the terms ∆tMe[C1(∇

2nt+1−∇2nt)+C2(∇
4nt+1−∇4nt)+C3(∇

6nt+1−∇6nt)]
to the fully explicit discretization of the equation. For ∆t → 0 this extra term
converges to zero, so the consistency of the scheme is indeed ensured.

Next we specify the coefficients C1, C2 and C3 of the sub-operator A1 [Eq.
(9)] in a way that ensures the stability of time-steppings.

C1 = |Me{B
L
0 + BL

2 (δN)2}|max, (19)

C2 = |2MeB
S
0 {R0 + R1(δN)}2|max, (20)

C3 = |MeB
S
0 {R0 + R1(δN)}4|max (21)

8
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For every ∆t timestep and ∆x mesh spacing one may chose these constants
so that the explicit terms with linear variable coefficients are stable. Proper
choices of these constants modify the stability criteria. In fact, they push the
maxima of the variable coefficients of the second and the sixth order terms into
the range, where the differencing terms are stable at a given ∆t and ∆x. Note
that all the variable coefficients are positive in practice, therefore, splitting
of the fourth order term is not required to ensure the stability of the explicit
stepping. The stability of the explicit stepping can be assured by setting C1

and C3 as in Eq. (19) and Eq. (21).

However, stability has to be ensured for the implicit stepping too. The respec-
tive stability criterion depends on the wavenumber k and can be formulated
as ∆tMe[C12

2π2(k2
x + k2

y) − C22
4π4(k2

x + k2
y)

2 + C32
6π6(k2

x + k2
y)

3] > −1, a
condition that restricts the value of C2.

Regarding the splitting error, we have found that mixing of the explicit and
implicit terms within the numerical scheme should be avoided as much as
possible. Here, we may utilize the fact that the realative variation of the co-
efficients of the equations is small, since the change of R = R0 + R1(δN) that
represents the composition dependence of the interatomic spacing, is small
itself (a few percent typically). Then, if C2 is chosen as specified by Eq. (20),
the variable coefficient terms are treated dominantly in an implicit manner,
while the explicit part represents just a small correction. For our particular
case the value of C2 given by Eq. (20) statisfies also the stability criterion for
implicit stepping.

When applying the above scheme to Eq. (5), the overall stability is limited by
the nonlinear terms, a restriction, which is usually much less severe than the
explicit time integration of the higher order derivatives present in the equation.
In practice, the timestep is limited by the accuracy of time integration.

Due to the highly non-linear nature of the equations of motion, nonlinear insta-
bility of the numerical solution might appear and indeed occurs under various
choices of the model parameters. To handle this, we have used a spherical
spectral filter [36] on the non-linear terms in Eq. (6). The filtering has been
done by cancelling the frequency components that statisfy the k2

x + k2
y > K2

inequality, where K is a constant defined empirically so as to avoid a catas-
trophic accumulation of errors at high frequencies.

In Section 4, we are going to compare our method [which we name henceforth a
semi-implicit spectral (SIS) approach] to the explicit FD discretization (EFD)
in terms of accuracy, stability and the overall computational efficiency in a
massively parallel environment. For the FD discretization of the Laplacian,
we have used the compact formula below [11]:

9
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∇2fi,j = [(fi+1,j + fi−1,j + fi,j+1 + fi,j−1)/2,

+ (fi+1,j+1 + fi−1,j+1 + fi+1,j−1 + fi−1,j−1)/4 − 3fi,j]/(∆x)2. (22)

2.3 Treatment of noise

We have added a conservative Gaussian noise colored in space to the governing
equations in the Fourier space [37], whos amplitude scales with the time step
and the cut-off wavelength [38]. In order to avoid the appearance of unphys-
ically small wavelengths, we have applied a cut-off in the Fourier space that
removed the wavelengths shorter than the interatomic distance.

3 Numerical implementation/computing

Parallel C codes relying on the MPI protocol have been developed to solve the
governing equations numerically on an N ×N rectangular grid, using both the
SIS and the EFD schemes. To optimize the performance, we have developed
a parallel FFT code based on the FFTW3 library [39]. We have prescribed
periodic boundary conditions.

The initial conditions for simulations of binary solidification have been cre-
ated as follows. First, the simulation window has been filled uniformly with
appropriate total number density n = n and number density difference values
(δN) = δN specified in Table 1, representing the initial undecooled liquid.
Next, in the case of dendritic structures, we have placed a small crystalline
cluster of 13 density peaks to the center on a hexagonal lattice (central atom
+ first and second neighbor shells) of suitable interactomic spacing, that has
acted as a crystal seed. In the case of eutectic solidification, we have used two
seeds of different compositions [(δN) = −0.3 and 0.3, respectively] containing
6 density peaks each (central atom + first neighbor shell), placed in contact
with each other at the center of the simulation window.

The numerical investigations presented in this paper have been performed
using two PC clusters: (i) One at the Research Institute for Solid State Physics
and Optics (RISSPO), Budapest, Hungary, that consists of 24 PCs, equipped
with two 2.33 GHz Intel processors of 4 CPU cores (192 CPU cores in all on the
24 nodes), 8 GB memory/node, and is equipped with 10 Gbit/s (InfiniBand)
communication, and (ii) another hosted by the Brunel Centre for Advanced
Solidification Technology (BCAST), Brunel University, West London, UK,
which consists of 20 similar nodes (160 CPU cores), however, with 1 Gbit/s
(standard GigaBit Ethernet) communication in between.

10
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4 Results and discussion

The proposed SIS method will be compared with EFD discretization under
conditions that lead to dendritic solidification, a case that clearly demon-
strates the potential of the PFC method. Dendritic and eutectic structures
grown using the SIS approach are shown in Fig. 1. The respective choices of
parameters are given in Table 1. Here ζ0 is the amplitude of the conservative
Gaussian colored noise added to the equations of motion, while a cut-off for
wavelengths smaller than λ = 7∆x has been made in Fourier space. The same
spatial steps and 32 times larger time steps have been chosen than in [16],
where ∆x0 = 1.1 and ∆t0 = 0.05. (We note here that at the time and spatial
steps used in [16] the EFD computations are just stable.) The computations
for dendritic structures [Figs. 1(a) and 1(c)] have been performed on 20×4×2
= 160 CPU cores of the RISSPO cluster equipped with 10 Gbit/s communi-
cation, and took about 4 days each. The eutectic computation [Fig. 1(c)] has
been performed on 40 CPU cores with 1 Gbit/s communication, and took ∼
10 days.

Note that in Figs. 1(a) and 1(c) the primary dendrite arms show an almost
perfect six-fold symmetry: the lengths of the six dendite arms differ by only ∼
0.1 %. Using the SIS scheme, the anisotropy induced by the discretization on
a rectangular lattice is negligible, which enables us to predict the morphology
of dendritic/eutectic self-organizanized structures accurately.

4.1 Analysis of the numerical solution

We are unaware of any non-trivial analitical solution for the binary PFC
equations that could be used as a reference in computing the numerical er-
ror. Because of the practical difficulties [the EFD computations are severely
restricted by the fact that the stability criterion for explicit discretization
requires ∆t ∝ (∆x)6], one can neither obtain a sufficiently accurate EFD so-
lution that could serve as reference. Therefore, first we perform an empirical
convergence test (see e.g., [41]) to investigate whether there exists a limiting
solution, to which the SIS solutions converge for decreasing ∆x and ∆t. Find-
ing such a behavior, we use the limiting solution as reference in defining the
numerical error. We also attempt to clarify whether the SIS and EFD methods
converge to each other for decreasing spatial and time steps in the ∆x and ∆t
domain available for numerical simulations.

Along these lines, first, we investigate the effect of spatial and time resolution
on the numerical solutions obtained by the SIS method. Since we are interested
in a quantitative comparison between computations made with different time

11
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Fig. 1. Illustrative phase-field crystal simulations for solidification in binary alloys.
(a) Number density difference (δN) map of a solutal dendrite. (b) Total number
density n map of the small square area of black border on the right hand side of
the downward pointing arm of the dendrite shown in panel (a). (c) A more compact
dendritic structure grown at a higher driving force achieved by increasing the initial
liquid density relative to panel (a). (d) Eutectic structure obtained by reducing the
initial number density n and number density difference δN relative to panel (a). The
snapshots shown have been taken after (a),(b) 92,160, (c) 55,000, and (d) 498,000
time steps. The model parameters used in these simulations are listed in Table 1.

and spatial steps and wish to avoid differences of stochastic origin, in all
the following simulations, we have switched off the noise that represents the
thermal fluctuations. To explore the resolution dependence, we have performed
a series of simulations with the proposed numerical scheme on a relatively
small physical domain of dimensionless area 281.6×281.6 (consisting of about
6,600 atoms). This size is a result of a compromise: It is big enough to have bulk
crystalline properties at the center of the growing crystallite at dimensionless
time t = 768, and is small enough to allow a few refinement steps in the
spatial resolution even for the EFD method: For our study, we have chosen
the spatial steps ∆x = (1/4, 1/3, 1/2, 2/3, 3/4, and 1) × ∆x0. For each of
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Table 1
Parameters used in computing Fig. 1

(a), (b) (c) (d)

n 0.0092 0.0096 0.0

δN 0.0904 0.0904 10−6

BL
0 1.04 1.04 1.0248

BL
2 −1.8 −1.8 −1.8

BS
0 1.0 1.0 1.0

R0 1.0 1.0 1.0

R1 0.25 0.25 0.25

t −0.6 −0.6 −0.6

v 1.0 1.0 1.0

γ 0.0 0.0 0.0

w 0.088 0.088 0.0

u 4.0 4.0 4.0

L 1.2 1.2 1.2

∆x/∆x0 1.0 1.0 1.0

∆t/∆t0 32.0 32.0 32.0

ζ0 10−6 10−6 10−5

N 8, 192 8, 192 2, 048

these spatial steps SIS simulations have been performed with the time steps
∆t = 2j ×∆t0, where j = 0, 1, 2, ..., 8. For comparison, we have made explicit
FD computations with the same spatial steps, however, with the largest time
steps, allowed by the numerical stability of the explicit scheme. Unfortunately,
due to the limited computational capacity available and the very small time
steps occuring due to the high order differential operators, we were unable to
perform the EFD simulation for the finest mesh spacing.

This analysis of the numerical solution has been performed with the model pa-
rameters used in computing the dendritic struture shown in Fig. 1(a), however,
without adding noise to the equations of motion (ζ0 = 0).

Characterization of the solution: We find that crystallization is fairly isotropic
on this size scale [Fig. 2(a)]. Accordingly, we use the diameter of the crystal
d at dimensionless time t = 768 as a measure of the average growth rate, a
quantity that not only characterizes the solution on a mesoscopic scale, but

13
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Fig. 2. High resolution SIS solution used as reference: (a) Snapshot of the total
number density at time t = 768 for a simulation performed on a 1024 × 1024
grid with ∆x = ∆x0/4 and ∆t = ∆t0; (b) the respective total number density n
distribution along the horizontal centerline. The level n = 0.075 chosen to define
the diameter of the crystalline particle is marked by the dashed horizontal line.

also reflects the time evolution of the solution. Due to the atomistic nature of
the crystal structure and the gradual transition between the crystal and the
homogeneous liquid, the diameter of the crystalline particles has to be defined
with some care. Various methods can be devised to deduce the linear size of a
crystalline particle. In this work, the diameter of the roughly circular particles
has been calculated by connecting the maxima of the neighboring total num-
ber density peaks along the horizontal centerline of the particle (lying on a
crystal plane) by straight lines, and then taking the intersection of the result-
ing ”peak envelope” with the arbitrary threshold of n = 0.075 chosen as the
limit between the solid and liquid phases. [See Fig. 2(b). Note also the diffuse
solid-liquid interface and the close similarity to the number density profiles
obtained from molecular dynamics simulations [42–45].] Since the uncertainty
of the peak positions is ∼ 2∆x on both ends of the diameter, which in turn is
∼ 175∆x0, the relative error of the diameter is ±2∆x/(175∆x0) that varies in
the ± 0.3 % to ± 1.1 % range. Besides the particle diameter, we use the inter-

atomic distance a (distance between the neighboring number density peaks)
to characterize the periodic nature of the solution in the crystal, probing it
on the atomic scale. It has been determined by measuring the total length of
10 density waves in a crystal plane (10a ≈ 68∆x0). Here the reading error is
about 2∆x for the whole length, 10a. So the relative error is ∼ ±∆x/(68∆x0),
which ranges between ±0.4 % and ±1.5 %. We note that the investigated quan-
tities (a and d) have physical significance: the interatomic distance reflects the
effective atomic interaction the approximate direct correlation function of the
PFC model realizes, while the average growth rate monitors the kinetics of
the phase transition.

Results: The time and spatial step dependencies of these quantities are pre-
sented in a normalized form in Fig. 3. Remarkable features of the SIS results

14
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Fig. 3. Effect of the spatial and time resolution on the numerical results obtained
with the semi-implicit spectral (SIS) and explicit finite difference (EFD) methods:
(a) Normalized interatomic distance (a/a0) vs. ∆x; (b) normalized diameter (d/d0)
vs. ∆x; (c) normalized diameter (d/d0) vs. ∆t. Here a0 = 7.438× (1.0± 0.004), and
d0 = 192.0 × (1.0 ± 0.003). The error bars are explained in the text. In panel (a),
however, for the SIS results we have taken the value and error corresponding to the
smallest ∆x, as the SIS solutions for different spatial steps fall virtually on top of
each other (see Fig. 4), and thus the solution with the highest spatial resolution can
be regarded as the best interpolation scheme.

observed in the investigated ∆t and ∆x ranges are as follows:

(i) The interatomic distance [a0 = 7.438×(1.0±0.004)] is virtually independent
from both the spatial and time steps [Fig. 3(a)];

(ii) The diameter of the crystalline particle at dimensionless time t = 768
converges to d0 = 192.0 × (1.0 ± 0.003) for ∆t → 0, independently of the
spatial step [see Figs. 3(b) and (c)].

The virtual independence of the interatomic distance from ∆x is a direct con-
sequence of the fact that the solutions obtained at different spatial resolutions
fall on top of each other with a high accuracy (see Fig. 4). This independence
of the SIS solution of spatial steps (in the investigated range) implies conver-
gency for ∆x → 0, as might be expected from the exponential convergence of
the Fourier-spectral spatial discretization [46]. Indeed, if ∆x > ∆x0 is used,
we see deviations from the closely matching solutions shown in Fig. 4. The
particle diameter at fixed time (or the average growth rate) seems to be also
independent of the spatial step in the ∆x ∈ [1/4, 1]∆x0 range. However, it
depends on the time step, and converges to a limiting value for ∆t → 0: the
difference of diameters obtained with the smallest two time steps is ∼ 0.1 %.
Remarkably, even for a time step as large as ∆t = 32×∆t0, the average growth
rate is only ∼ 3.3 % less than this limiting value. These findings suggest the
convergence of the SIS solutions to a limiting solution for ∆x → 0 and ∆t → 0.
We note here that the Fourier-spectral spatial discretization is highly accurate,
and in our solutions the numerical error originating from the time stepping
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Fig. 4. Cross-sectional profiles (t = 768) for the solid-liquid interface in SIS sim-
ulations performed using three different mesh spacings and ∆t = ∆t0: (a) Total
number density n, and (b) number density difference (δN). Note that the results
are fairly independent of the mesh spacing.
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Fig. 5. Cross-sectional profiles (t = 768) for the solid-liquid interface in EFD simu-
lations performed using three different mesh spacings and the maximum time steps
that ensure numerical stability: (a) Total number density n, and (b) number den-
sity difference (δN). These EFD results refer to similar spatial resolutions and the
same region of the crystalline particle as those in Fig. 4. Note that the EFD results
depend on the mesh spacing considerably.

seems to dominate. This is hardly surprising considering that the backward
Euler time stepping is accurate only to the first order. It is thus expected that
the application of time stepping methods that are accurate to higher orders
could further improve the accuracy/efficiency of the SIS approach.

Comparison to explicit finite difference method: The total number density (n)
and normalized number density difference (δN) profiles obtained by the EFD
method for three different spatial steps (∆x0/3, ∆x0/2, and ∆x0) are shown
in Fig. 5. Remarkably, we see a rather strong dependence on the spatial res-
olution, though convergence is observed towards the smaller spatial steps.
Unfortunately, due to its prohibitively large computation time, we were un-
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able to perform the simulation for ∆x0/4 and below, even for the very small
physical domain chosen for the numerical test. (Note that in these EFD com-
putations the time step had to be varied to ensure numerical stability.) It is
remarkable, that a much finer spatial resolution would be needed to ensure
the same level of spatial accuracy as provided by Fourier spectral scheme used
in the SIS method. However, such EFD computations would only be possible
for systems of very small physical size and even then only very short physical
times could be covered.

We compare the EFD predictions for the interatomic distance and the diam-
eter to those from the SIS method in Fig. 3. In agreement with the results
in Fig. 5, the EFD data for both the a and d vary strongly with resolution.
For the interatomic distance, the EFD results approach those from the SIS
method from below: The interatomic distances predicted by the two methods
seem to converge to values that fall within the range of the combined errors.
Remarkably, at ∆x = ∆x0, the EFD computation underestimates the inter-
atomic distance by ∼ 6 %. We wish to note here that the dependence of the
EFD results on resolution is likely to be reflected in other physical properties
such as the bulk modulus, compressibility, and the free energy realized in the
numerical computations. (Note that unlike the conventional phase field meth-
ods, where thermodynamics of the bulk phases is an input whos accuracy is
usually independent from the accuracy of the applied numerical method, here
even the free energy of the bulk phases depend on the accuracy of the nu-
merical scheme applied.) The EFD results for the diameter of the crystalline
particle underestimate those from the SIS method by ∼ 7 to 15 %, though
they seem to approach the SIS limit (d0) for decreasing time steps. A linear
extrapolation of the EFD data to ∆x = 0 yields an ∼ 4 % lower limiting value
for the diameter than the corresponding SIS prediction. One cannot, however,
rule out that a better convergence would be observed eventually were the spa-
tial step decreased further. We note also that convergence in the empirical
test might be limited by the cumulative round-off error, a type of error that
becomes especially enhanced for the EFD scheme with decreasing spatial and
time steps.

In order to quantify further the differences between the solutions obtained
with the same spatial resolution by the two numerical methods, we introduce
the scaled L2 difference of the Fourier transform of the SIS solution relative
to the Fourier transform of the EFD solution, defined as

σχ =

√

〈(χSIS − χEFD)2〉

max(χEFD) − min(χEFD)
, (23)

where χ = n̂ or (̂δN), while the quantities with hat denote the Fourier trans-
form of the respective fields. Note that it is advantageous to compute the
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Table 2
Scaled L2 difference of the Fourier spectra

∆x σn̂ σ
(̂δN)

∆x0 9.8451 × 10−2 10.9165 × 10−2

3/4∆x0 9.2025 × 10−2 9.8817 × 10−2

2/3∆x0 7.6462 × 10−2 7.6462 × 10−2

1/2∆x0 5.5147 × 10−2 6.1442 × 10−2

1/3∆x0 2.3969 × 10−2 2.8141 × 10−2

scaled L2 difference for the Fourier transforms, and not for the fields them-
selves, since both fields are periodic in the solid state, and deviations in the
interatomic spacings for the SIS and EFD solutions are also observed. The
Fourier tranforms of the solutions have been obtained by 2D FFT. The re-
spective results are presented in Table 2. We find that the scaled L2 difference

decreases with decreasing spatial step for both fields [n̂ and (̂δN)].

4.2 Computational efficiency

Since these calculations are rather costly, it is of interest to compare how
efficiently the SIS and EFD methods can be parallelized. (We performed this
part of our study on the RISSPO cluster.) First, we determine the effective
computational time τ one needs to compute one time step in a grid point for
both methods, which we relate to the full computational time, tcomp needed
to solve the equations of motion on an N × N grid, and for Nt time steps
as follows: τ = tcomp/(N2Nt). The results are displayed as a function of the
number of the CPU cores in Fig. 6(a). It appears that the computational
speed (1/τ) is essentially comparable for the SIS and EFD methods, and
except for the SIS scheme for small grid sizes on large number of CPU cores,
it scales roughly linearly with the number of CPU cores. This means that the
computational cost for calculating a time step at a grid point is comparable for
SIS and EFD (the EFD cost is smaller by about a factor of ∼ 2.5 in general).

Next, we compare how fast one can obtain solutions of the same time and
spatial resolution using the SIS and EFD methods. For this, we perform com-
putations of the same physical size, up to unit physical time with different
spatial resolutions [∆x = (1/4, 1/2, 1) · ∆x0], and at the maximum time step
that is stable and accurate enough. The results are compared in Fig. 6(b).
While at a modest spatial resolution (∆x = ∆x0) the computational time for
the SIS method is about an order of magnitude smaller than for the EFD
scheme (due to the larger time step allowed), for ∆x = ∆x0/2 it grows to al-
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Fig. 6. Scaling properties of the SIS and EFD schemes: (a) Computational cost
of a single time step in a single mesh point vs. number of CPU cores; (b) total
computation time needed to perform a simulation for a given physical problem
(given linear size and physical duration) at different spatial resolutions, as a function
of the number of CPU cores.

most 3 orders of magnitude, while for ∆x = ∆x0/4 the SIS computation of the
same task is nearly 5 orders of magnitude faster. It is worth noting furthermore
that, even at the same ∆x value, the SIS computation provides a considerably
more accurate interatomic distance than the EFD scheme (see Fig. 3), sug-
gesting that the SIS method shall be even more preferable, if computations of
the same effective numerical error are compared. Considering that the same
accuracy of the interatomic distance, which the SIS scheme achieves at ∆x0

cannot be achieved by the EFD metod even at ∆x0/4, the gain by applying
the SIS method is more than 5 orders of magnitude in the computation time.
It is also remarkable that except for small grids on a large number of CPU
cores, the computation time of SIS scales with the number of the CPU cores
as well as for the EFD method (tcomp ∝ N−1

core). For example, in the case of our
largest computations (on a 16,384 × 16,384 grid), we have found this type of
scaling up to our maximum number of CPU cores, 192, connected with high
speed communication.
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4.3 A couple of practical remarks:

(a) In the SIS scheme, the addition of colored noise to the equations of motion
is fairly straightforward, and does not lead to extra calling of FFT/IFFT.

(b) We find that an accurate solution of the PFC equations is important since
the physical properties (e.g., interatomic distance, compressibility, bulk mod-
ulus, phase diagram, growth velocity, etc.) appear to depend strongly on com-
putational accuracy. It is in this high accuracy limit required for quantitative
calculations, where the proposed SIS method offers the most.

(c) The proposed SIS method is expected to be comparably efficient for equa-
tions of motions containing higher oder PDEs that emerge if higher order ap-
proximations of the two-particle direct correlation function are incorporated
into the PFC model.

5 Summary

We have presented an efficient semi-implicit spectral scheme based on a specific
operator splitting technique for solving numerically the equations of motion
of the binary phase-field crystal model. We have demonstrated the following.

(i) For decreasing time and spatial steps, the solution obtained with the pro-
posed semi-implicit scheme converges to a limiting solution.

(ii) In the range, where computations with the explicit finite difference scheme
can be performed, results from the explicit scheme approach those from the
semi-implicit spectral scheme with decreasing time and spatial steps.

(iii) Significant acceleration of the computations can be expected if the pro-
posed semi-implicit spectral scheme is used, especially if accurate solutions
are needed, in which case the new method can be several orders of magnitude
faster than the conventional explicit finite difference scheme.

(iv) Since the proposed method is implicit in the Fourier space, it can be
parallelized efficiently: in the investigated size and CPU core number ranges,
the computational time scales roughly with the inverse of the number of the
CPU cores.

We expect that by applying higher order time stepping, the efficiency of the
method can further be improved. Work is underway into this direction.
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[35] P. Csomós, I. Faragó, and Á. Havasi, Weighted sequential splittings and their
analysis, in Proceedings of NMCM-2002, Comput. Math. Appl. 50, 1017 (2005).

[36] J. G. Levin, M. Iskandarani, and D. B. Haidvogel, A spectral filtering procedure
for eddy-resolving simulations with a spectral element ocean model, J. Comput.
Phys. 137, 130 (1997).

[37] J. Garcia-Ojalvo, J. M. Sancho, and L. Remirez-Piscina, Generation of
spatiotemporal colored noise, Phys. Rev. A 46, 4670 (1992).

[38] J. M. Sancho, J. Garcia-Ojalvo, and H. Guo, Non-equilibrium Ginzburg-Landau
model driven by colored noise, Physica D 113, 331 (1998).

[39] M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proc.
of the IEEE 93, 216 (2005).

[40] M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, Image Processing with ImageJ,
Biophotonics Int. 11, 36 (2004).

[41] C. Budd, O. Koch, and E. Weinmüller, Computation of self-similar solution
profiles for the nonlinear Schrödinger equation. Computing 77, 335 (2006).

[42] R. L. Davidchack and B. B. Laird, Simulation of the hard-sphere crystal-melt
interface, J. Chem. Phys. 108, 9452 (1998).

[43] H. Ramalingam, M. Asta, A. van de Walle, and J. J. Hoyt, Atomic-scale study
of equilibrium solute adsorption at alloy solid-liquid interfaces, Interface Sci.
10, 149 (2002).

[44] D. Y. Sun, M. Asta, and J. J. Hoyt, Crystal-melt free energies and mobilitites
in fcc and bcc Fe, Phys. Rev. B 69, 174103 (2004).

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[45] J. R. Morris, Complete mapping of the anisotropy of the crystal-melt interface
in Al, Phys. Rev. B 66, 144104 (2002).

[46] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory

and Application (SIAM-CBMS, Philadelphia, PA, 1977).

24


