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Cross Domain Optimization for Speech
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Abstract—This paper introduces five novel deep-learning ar-
chitectures for speech enhancement. Existing methods typically
use time-domain, time-frequency representations, or a hybrid
approach. Recognizing the unique contributions of each domain
to feature extraction and model design, this study investigates
the integration of waveform and complex spectrogram models
through cross-domain fusion to enhance speech feature learning
and noise reduction, thereby improving speech quality. We
examine both cascading and parallel configurations of waveform
and complex spectrogram models to assess their effectiveness
in speech enhancement. Additionally, we employ an orthogonal
projection-based error decomposition technique and manage the
inputs of individual sub-models to analyze factors affecting
speech quality. The network is trained by optimizing three specific
loss functions applied across all sub-models. Our experiments,
using the DNS Challenge (ICASSP 2021) dataset, reveal that
the proposed models surpass existing benchmarks in speech
enhancement, offering superior speech quality and intelligibility.
These results highlight the efficacy of our cross-domain fusion
strategy. We provide a demo page containing enhanced audio
clips from different models at https://wanliangdaxia.github.io/.

Index Terms—speech enhancement, waveform, time-frequency,
complex domain, cross-domain speech.

I. INTRODUCTION

SPEECH enhancement aims to improve the quality of
targeted speech signals, with broad applications including

teleconferencing, hearing aids, and other types of communi-
cations. Traditional statistical methods apply gains or filters
to noisy signals [1], but often yield suboptimal performance.
Deep learning has revolutionized audio processing, giving rise
to innovative speech enhancement methods [2]–[5] based on
data-driven supervised learning [6]. These approaches effec-
tively reduce noise, especially for non-stationary noise, gaining
significant attention.

Deep neural network (DNN)-based speech enhancement
methods are broadly divided into time-domain [7]–[9] and
time-frequency (TF) [6], [10], [11] approaches. Time domain
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strategies offer end-to-end training to predict clean speech
waveforms, without explicitly using short time Fourier trans-
form (STFT) as in TF domain methods. It is important to
acknowledge that discrete cosine transform (DCT) and wavelet
transforms can also be considered part of TF domain meth-
ods. However, STFT is selected here due to its widespread
usage and established presence. Nevertheless, this approach
might not fully harness the auditory patterns identified in TF
spectrograms, potentially compromising the overall quality of
speech enhancement.

On the other hand, TF domain approaches utilize two-
dimensional spectrograms, enhancing the differentiation be-
tween speech and noise. These methods include masking-
based and mapping-based strategies. Masking-based tech-
niques, such as the ideal binary mask (IBM) [12], ideal ratio
mask (IRM) [13], and spectral magnitude mask (SMM) [13],
focus on the magnitude discrepancies between clean and noisy
speech, often overlooking phase information. To address this,
the complex ratio mask (CRM) [14] aims to refine both the
real and imaginary components of the spectrogram, facilitating
a more accurate reconstruction of the speech signal. Mapping-
based speech enhancement [15], meanwhile, directly trans-
forms noisy speech spectrograms into their clean counterparts,
leveraging the full spectrum of information, including phase,
to achieve a higher fidelity in speech signal restoration. This
holistic approach enables a nuanced enhancement, capturing
the intricate details necessary for high-quality speech recon-
struction.

Drawing on the curriculum learning concept [16], multi-
stage mapping algorithms have emerged as a significant
concept in speech front-end tasks. These algorithms divide
the original mapping challenge into several simpler subtasks,
enabling a step-by-step enhancement in performance. This
progressive approach leads to superior solutions via an it-
erative refinement process. Tzinis et al. [17] introduced a
two-step architectural framework for source separation. Their
approach deviates from direct source separation, focusing
initially on learning a latent representation of speech. Subse-
quently, the separation task is executed within this acquired
latent embedding space, thereby refining the process. The
multi-stage self-attentive temporal convolutional network (SA-
TCN) [18] method employs a multi-stage learning paradigm
for speech enhancement, utilizing a layered structure. Each
layer comprises a self-attention block succeeded by a series
of TCN blocks with progressively increasing dilation factors.
At every stage, a refined prediction is generated, which is
further polished in subsequent stages. To ensure the retention
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of original data, a feature fusion block is incorporated at
the onset of later stages. Zhang et al. [19] proposed a dual-
stage framework in speech enhancement integrating multiple
training targets. The initial stage involves dual-branch training,
where one branch is dedicated to predicting the complex
spectrum and the other to the IRM. The next stage lever-
ages the enhanced magnitude from the first stage for prior
Signal-to-Noise Ratio (SNR) prediction. In a novel approach,
Wang and Wang [20] introduced a neural cascade architecture
(NCA) that capitalizes on the benefits of cross-domain speech
representations. The NCA consists of three distinct modules
that process the spectral magnitude, waveform, and complex
spectrogram individually. Each module not only processes the
output of its predecessor but also references the original noisy
input, ensuring a comprehensive and nuanced enhancement
process.

We contend that each domain, whether time or TF, offers
distinct information, where the time domain may capture richer
harmonic characteristics essential for speech structure while
the TF domain offers superior frequency resolution for better
speech-noise discrimination. Leveraging this complementary
information might enhance final speech enhancement perfor-
mance. Pursuing this line of thought, our work introduces
innovative strategies to fuse information from different do-
mains within both cascade and parallel architectures. This
exploration aims to ascertain which structural configuration
most effectively enhances speech quality. Concurrently, we
incorporate both waveform and complex spectrogram into
our proposed model to capitalize on their unique learning
capacities for diverse features. This combination significantly
improves the overall learning prowess of our model, enabling
a more comprehensive and nuanced approach to speech en-
hancement.

The contributions of this work are summarized as follows:
• Innovative Performance Analysis: We conducted the

first in-depth performance analysis of cascaded and paral-
lel architectures specifically designed for speech enhance-
ment. Beyond providing valuable insights into the fea-
ture propagation mechanisms of these architectures, our
study introduces a novel analytical framework that better
leverages the learning capabilities of different domain
models. This understanding allowed us to better lever-
age the strengths of different domain models, ultimately
achieving superior speech quality and advancing the field
significantly.

• New Insights into Architectures: Our research offers a
detailed investigation into the role of outputs from various
tiers of cascaded architectures and their influence on
subsequent modules’ learning efficiency. By introducing
a controlled information flow mechanism—where each
level strategically incorporates or disregards its predeces-
sor’s output—we provide a new, visual understanding of
how feature transmission affects model performance. This
analysis not only deepens our comprehension of systems
but also proposes a novel method for optimizing these
architectures for better performance in speech enhance-
ment.

• Feature Integration: We developed a novel structure

that effectively integrates distinct feature representations
from different domains—highlighting the harmonic rich-
ness of time domain features and the superior speech-
noise discrimination of TF domain features. This inno-
vative fusion of complementary domain strengths creates
a synergistic effect, significantly enhancing both noise
suppression and speech preservation capabilities. Our
approach demonstrates a new way of capitalizing on the
unique advantages of each domain, leading to a superior
performance in the speech enhancement task.

The rest of the paper is structured as follows: Section II
presents the related algorithms, which cover single domain
and multiple domain structures. In Section III, we describe
our concept, including time domain and TF domain modules,
and how we leverage different domain information, leading
to the cascaded and parallel structures. Section IV presents
the experimental results and associated discussions on the
performance of the proposed network compared with the
baseline and different models in various scenarios. Finally, we
conclude and suggest topics for future research in Section V.

II. RELATED WORK

A. Single Domain Network Architectures

Conv-Tasnet [7], renowned for its proficiency in time-
domain processing, employs 1-D convolutional layers to en-
code waveform inputs. This encoding process creates efficient
representations that are pivotal for precise speech estimation.
Subsequently, the encoded data undergoes decoding through
transposed convolutional layers, reconstructing the original
waveform. However, processing exceptionally long sequences
in the time domain presents challenges. To address this, deeper
convolutional architectures like Wave-U-Net [9] are employed,
which can compress features effectively. The Wave-U-Net ar-
chitecture synergizes elements from both Conv-Tasnet and the
U-Net architecture. Drawing inspiration from the spectrogram-
based U-Net [21], [22] methodology, Wave-U-Net uses a series
of downsampling and upsampling blocks to form predictions.
A notable aspect of this architecture is the halving of time
resolution at each network level, which is instrumental in the
model’s enhanced capability to improve speech quality. This
systematic reduction in time resolution at each stage plays a
crucial role in distilling and refining the speech signal, thereby
augmenting the overall speech enhancement process.

Speech enhancement has witnessed remarkable advance-
ments owing to carefully designed network architectures.
A notable shift in recent developments is the incorporation
of phase information in TF domain networks. Within this
spectrum, the convolution recurrent network (CRN) [23] has
emerged as a prominent convolution encoder-decoder (CED)
architecture, highly regarded for its efficacy in speech enhance-
ment tasks.

Traditionally, speech enhancement techniques primarily re-
lied on real spectrum inputs to estimate a real mask using
neural networks. Tan et al. revolutionized this approach with
the introduction of CSM [15], an innovative structure featuring
one encoder and two decoders. This advanced architecture
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facilitates the estimation of both real and imaginary com-
ponents of the spectrum, significantly improving speech en-
hancement performance. However, this method treats real and
imaginary parts as distinct input channels, utilizing a shared
real-valued convolution filter for real-valued convolution op-
erations, which does not comply with the rules of complex
multiplication. Consequently, there is a tendency for networks
to independently learn real and imaginary components without
integrating prior knowledge effectively.

Addressing these limitations, the deep complex convolu-
tion recurrent network (DCCRN) [5] introduces substantial
enhancements to the CRN model. DCCRN integrates complex
CNN and complex batch normalization layers within both
the encoder and decoder segments. Moreover, it contemplates
substituting traditional long short-term memory (LSTM) with
complex LSTM. The complex module in DCCRN adeptly
models the correlation between magnitude and phase, sim-
ulating complex multiplication. This innovative approach fa-
cilitates a more seamless integration of real and imaginary
components within the network structure. Notably, DCCRN
demonstrated exceptional performance by achieving the high-
est mean opinion score (MOS) in the subjective listening test
at the Interspeech 2020 deep noise suppression challenge [24],
underscoring its proficiency in speech enhancement.

B. Multiple Domain Network Architectures

Recent studies have focused on exploring the combination
of various speech representations to enhance speech enhance-
ment performance. For example, some approaches aim to
enhance speech through multiple stages, where each stage
operates in a specific signal domain.

Hao et al. [25] introduced a novel two-stage speech en-
hancement technique that combines binary masking with
spectrogram inpainting. Initially, a binary mask is created by
applying a hard threshold to a soft mask, designed to isolate
time-frequency points heavily influenced by intense noise.
Subsequently, the spectrogram inpainting stage utilizes a CNN
featuring partial convolution to refine the previously masked
spectrogram. Li et al. [26] proposed a dual-stage network,
where the initial stage is dedicated to estimating the magnitude
spectrum. The subsequent stage then undertakes complex
spectral mapping, leveraging both the predicted magnitude
spectrum and the original noisy spectrum. This approach
underscores the synergy between magnitude estimation and
spectral mapping in speech enhancement.

In an effort to merge different representation domains
within the loss function for enhanced results, Wang and Wang
developed a NCA. Unlike other models that focus on one
or two speech representation domains, the NCA incorporates
three training targets in DNN-based speech enhancement. The
NCA framework comprises three modules: CRN-Mask, UNet-
Time, and CRN-Complex. Each module aligns with popu-
lar design strategies from contemporary speech enhancement
research. The CRN-Mask module inputs magnitude features
and predicts the IRM. The subsequent module, UNet-Time,
processes two time-domain inputs, one from the inverse Short-
Time Fourier Transform (iSTFT) of the masked spectrogram

generated by CRN-Mask, and the other being the original
noisy waveform. This design aims to reduce estimation errors
and distortions from the preceding stage. The final module,
CRN-Complex, takes the noisy complex spectrogram and the
output of UNet-Time as inputs. All modules are optimized si-
multaneously using a triple-domain loss function. In addition,
the NCA is trained end-to-end, simplifying the training process
compared to other multi-stage models that often require com-
plex training strategies like pretraining and fine-tuning. Exper-
imental evaluations indicate that NCA significantly surpasses
previous strong baselines in speech enhancement performance,
demonstrating its effectiveness in integrating cross-domain
speech representations.

C. Projection-based Decomposition
Iwamoto introduced an innovative analysis method for de-

composing the estimation errors in speech enhancement by
using orthogonal projections [27]. This technique, previously
applied in the performance evaluation of speech enhancement
and separation tasks [28], facilitates the partitioning of errors
into two distinct components: the noise component (enoise)
and the artifact component (eartif ). These components are
derived by projecting the estimation errors onto two subspaces:
one is the speech-noise subspace formed by the speech and
noise signals, and the other is a subspace orthogonal to the
speech-noise subspace.

Denote y as the time-domain waveform of the observed
signal. This signal is modeled as y = s+n, where s represents
the source signal and n is the background noise. When the
observed signal y is input, the enhanced signal ŝ is estimated
as ŝ = SE(y), with SE(·) representing the speech en-
hancement module. The estimated signal ŝ naturally includes
estimation errors. Vincent et al. [28] suggested decomposing
the estimated signal into three components, given by

ŝ = starget + enoise + eartif , (1)

where starget is the target source component, projected on
the signal subspace, and enoise denotes the noise component,
projected on the noise subspace, and eartif represent artifact
error component.

Iwamoto’s innovative analysis technique employs orthogo-
nal projection-based error decomposition to dissect and under-
stand the impact of different error types on ASR performance.
In this approach, the noise component enoise, a mixture
of speech and noise signals, represents naturally occurring
sounds. These “natural” signals might have a limited effect
on ASR performance since similar noise components are often
present in training datasets. Conversely, the artifact component
eartif consists of signals that are not a linear combination
of speech and noise. These “unnatural” signals, characterized
by their diversity and rarity in training data, are believed to
impart a sense of unnaturalness and significantly degrade per-
ceived quality. Utilizing the orthogonal projection-based error
decomposition, Iwamoto’s analysis aims to validate hypotheses
regarding the distinct impacts of these error types on ASR.
He proposes manually manipulating the balance of noise and
artifact errors in enhanced signals and conducting experiments
to observe their respective effects on ASR performance.
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TABLE I
DETAILED PARAMETERS FOR TIME DOMAIN MODULE, WHERE THE

HYPERPARAMETERS ARE ORDERED IN THE FASHION OF Kernel Size, Stride,
Number of Filters.

layer name input size hyperparameters output size
encoder1 (1 ∗N) ∗ 16384, 15, 1, 24, 24 ∗ 8192
encoder2 24 ∗ 8192 15, 1, 48 48 ∗ 4096
encoder3 48 ∗ 4096 15, 1, 72 72 ∗ 2048
encoder4 72 ∗ 2048 15, 1, 96 96 ∗ 1024
encoder5 96 ∗ 1024 15, 1, 120 120 ∗ 512
encoder6 120 ∗ 512 15, 1, 144 144 ∗ 256
encoder7 144 ∗ 256 15, 1, 168 168 ∗ 128
encoder8 168 ∗ 128 15, 1, 192 192 ∗ 64
encoder9 192 ∗ 64 15, 1, 216 216 ∗ 32
encoder10 216 ∗ 32 15, 1, 240 240 ∗ 16
encoder11 240 ∗ 16 15, 1, 264 264 ∗ 8
encoder12 264 ∗ 8 15, 1, 288 288 ∗ 4

Convolution1 288 ∗ 4 15, 1, 288 288 ∗ 4
decoder1 576 ∗ 8 5, 1, 288 288 ∗ 8
decoder2 552 ∗ 16 5, 1, 264 264 ∗ 16
decoder3 504 ∗ 32 5, 1, 240 240 ∗ 32
decoder4 456 ∗ 64 5, 1, 216 216 ∗ 64
decoder5 408 ∗ 128 5, 1, 192 192 ∗ 128
decoder6 360 ∗ 256 5, 1, 168 168 ∗ 256
decoder7 312 ∗ 512 5, 1, 144 144 ∗ 512
decoder8 264 ∗ 1024 5, 1, 120 120 ∗ 1024
decoder9 216 ∗ 2048 5, 1, 96 96 ∗ 20248
decoder10 168 ∗ 4096 5, 1, 72 72 ∗ 4096
decoder11 120 ∗ 8192 5, 1, 48 48 ∗ 8192
decoder12 72 ∗ 16384 5, 1, 24 24 ∗ 16384

Convolution2 25 ∗ 16384 1, 1, 1 1 ∗ 16384

Following Iwamoto’s approach, our work also applies this
orthogonal decomposition methodology to analyze how our
proposed model affects speech quality. By varying the signal-
to-noise ratio of the input, we aim to facilitate the model’s
ability to learn speech features and enhance speech quality.
Additionally, we will examine the individual impacts of eartif
and enoise on speech quality by adjusting their proportions.
This will be achieved through the introduction of noisy signals,
enabling a detailed investigation into how each type of error
contributes to the overall performance of speech enhancement.

III. PROPOSED METHOD
As discussed earlier, each domain provides different infor-

mation and that information need to be combined to improve
the performance. In the next subsections, we first respectively
introduce the time domain and TF domain modules used in
this work, and then we show how we fuse different domain
information either in cascade or parallel ways.

A. Time Domain Module

For the time domain module of our network, we employ a
strategy that involves the use of downsampling (DS) blocks to
extract high-level features at progressively coarser time scales.
This is achieved by gradually increasing the number of DS
blocks, which allows the network to capture a broad range of
features from different time scales. These higher-level features
are then integrated with local, high-resolution features that
were computed at earlier stages. This integration is facilitated
by upsampling (US) blocks, which serve to combine these
diverse features effectively.

Our network is structured to include a total of 12 levels, with
each subsequent level operating at half the time resolution of
its predecessor. This hierarchical structure enables the network
to process information at multiple scales, enhancing its ability
to make accurate predictions. The DS blocks play a crucial
role in this architecture by selectively discarding features at
every other time step, effectively reducing the time resolution
by half. Conversely, the US blocks work to increase the time
resolution by a factor of two, employing linear interpolation
to achieve upsampling in the time direction.

Additionally, our network incorporates Concat blocks,
which are utilized to concatenate the high-level features pro-
cessed at the current stage with more localized features. This
concatenation is critical for preserving both the global and
local characteristics of the input signal, ensuring a compre-
hensive feature representation. The specific parameters for
the time domain module are outlined in Table I, where N
denotes the number of channels in the input signal. This
detailed parameter setup is designed to optimize the network’s
performance in processing and enhancing time-domain signals.

To train the network, we employ the mean square error
(MSE) loss function to measure the estimation error from the
signal, which is given by

LMSE =MSE(S, S̃), (2)

where S represents the clean speech and S̃ is the recovered
one.

B. Complex TF Domain Module

The complex spectrogram module in our network is built
on a primarily causal Convolutional Encoder-Decoder ar-
chitecture, augmented with two unidirectional LSTM layers
strategically positioned between the encoder and the decoder.
The LSTM layers are specifically designed to capture and
effectively model temporal dependencies within the data. This
module processes waveform signals as inputs, which are
initially transformed into their real and imaginary components
using Conv-STFT. For the Conv-STFT operation, we utilize
the Hanning window, setting the window length at 400 samples
and the window shift at 100 samples. The real and imaginary
parts obtained from this process are concatenated along the
channel dimension, forming a comprehensive input for the
encoder.

The encoder itself comprises six Conv2d blocks, tasked
with extracting high-level features from the input and reducing
its resolution. The output channels for each layer in the
encoder are structured as {16,32,64,128,128,256}. We set the
kernel size and stride of the Conv2d blocks to (5,2) and
(2,1), respectively, and the LSTM units have 256 hidden
layers. Subsequently, the decoder utilizes the low-resolution
features processed by the encoder and reconstructs them to
their original size, maintaining a symmetric structure between
the encoder and decoder.

Each Conv2d block within the encoder/decoder is a se-
quence of a convolutional or deconvolutional layer, followed
by batch normalization and an activation function. The archi-
tecture also incorporates skip-connections, which are pivotal
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Fig. 1. Time domain module: Downsampling blocks compute higher-level features over coarser time scales. Upsampling blocks upsample temporally by a
factor of two via linear interpolation. Concatenation blocks concatenate current high-level features with more local features

Fig. 2. Complex TF module: The input waveform is processed via Convolutional Short-Time Fourier Transform (Conv-STFT) [29] to obtain real and
imaginary components. Convolutional and deconvolutional modules initialized with STFT kernels analyse and synthesise the waveforms before input to the
network for loss computation. The encoder blocks extract high-level features and reduce resolution; the decoder blocks upsample the features to match the
original input dimensions.

in enhancing gradient flow and establishing a linkage between
the encoder and decoder components, thus facilitating more
efficient learning and reconstruction.

The details of the parameter setup for this complex TF
module are presented in Table II, where N denotes the number
of channels in the input signal. This setup is carefully designed
to optimize the processing and representation of complex
spectrogram data, ensuring efficient feature extraction and
reconstruction within the module.

During training, the complex spectrogram module esti-
mates the CRM and optimizes it using signal approximation
(SA) [30]. Based on the complex-valued STFT spectrograms
of clean speech S and noisy speech Y , the CRM is

CRM =
YrSr + YiSi

Yr
2 + Yi

2 + j
YrSi − YiSr

Yr
2 + Yi

2 , (3)

where Yr and Yi denote the real and imaginary parts of the
noisy complex spectrogram, respectively. Similarly, the real
and imaginary parts of the clean complex spectrogram are
represented by Sr and Si. By multiplying the spectrogram of
noisy speech Y = Yr + Yi with the estimated mask M =
Mr + Mi, we obtain the enhanced spectrogram in the form
of: S̃ = YrMr–YiMi + i(YrMi +XiMr), which is converted
back to the waveform using iSTFT, given by

s̃ = iSTFT (S̃). (4)

The loss function of complex spectrogram module is
the well-known Scale-Invariant Signal-to-Noise Ratio (SI-
SNR) [7], given below

starget := (< s̃, s > ·s)/ ∥ s ∥22,
enoise := s̃− starget,

SI-SNR = 10 log10

(
∥starget∥2

2

∥enoise∥2
2

)
,

(5)

where s and s̃ are the clean and estimated time-domain
waveform, respectively, < ·, · > denotes the dot product
between two vectors and ∥ · ∥2 is Euclidean norm (ℓ2-norm),
∥starget∥22 is the energy of the target signal, and ∥enoise∥22
is the energy of the noise error. By computing the ratio of
the these two and taking the logarithm, we obtain the SI-SNR
value. SI-SNR measures the quality of the estimated signal
by comparing the energy of the target signal to the energy
of the noise error. A higher SI-SNR value indicates a higher
similarity between the estimated signal and the clean signal,
implying better noise removal.

C. Cascaded Architectures

With the development of both time and TF domain modules,
we are now equipped to construct a cross-domain fusion model
for speech enhancement. Figure 3 illustrates three distinct
cascaded structures.
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(a) Cascade structure 1

(b) Cascade structure 2

(c) Cascade structure 3

Fig. 3. Three different cascaded structures. In Cascade 1, three modules are simply concatenated, with the output of each module serving as the input to the
next module. In Cascade 2, original noisy is concatenated along the channel dimension with the original input from Cascade 1. In Cascade 3, the output of
the first module is concatenated along the channel dimension with the input of the third module from Cascade 2.

TABLE II
DETAILED PARAMETERS FOR COMPLEX TF MODULE, WHERE THE

HYPERPARAMETERS FOR THE ENCODERS AND DECODER ARE ORDERED IN
THE FASHION OF Kernel Size, Stride, Number of Filters, AND FOR

UNIDIRECTIONAL LSTM, IT IS THE Hidden Size.

layer name input size hyperparameters output size
encoder1 (2 ∗N) ∗ 256 ∗ 163 5 ∗ 2, (2, 1), 16 16 ∗ 128 ∗ 163
encoder2 16 ∗ 128 ∗ 163 5 ∗ 2, (2, 1), 32 32 ∗ 64 ∗ 163
encoder3 32 ∗ 64 ∗ 163 5 ∗ 2, (2, 1), 64 64 ∗ 32 ∗ 163
encoder4 64 ∗ 32 ∗ 163 5 ∗ 2, (2, 1), 128 128 ∗ 16 ∗ 163
encoder5 128 ∗ 16 ∗ 163 5 ∗ 2, (2, 1), 128 128 ∗ 8 ∗ 163
encoder6 128 ∗ 8 ∗ 163 5 ∗ 2, (2, 1), 256 256 ∗ 4 ∗ 163
LSTM1 256 ∗ 4 ∗ 163 256 256 ∗ 4 ∗ 163
LSTM2 256 ∗ 4 ∗ 163 256 256 ∗ 4 ∗ 163
decoder1 512 ∗ 4 ∗ 163 5 ∗ 2, (2, 1), 128 128 ∗ 8 ∗ 163
decoder2 256 ∗ 8 ∗ 163 5 ∗ 2, (2, 1), 128 128 ∗ 16 ∗ 163
decoder3 256 ∗ 16 ∗ 163 5 ∗ 2, (2, 1), 64 64 ∗ 32 ∗ 163
decoder4 128 ∗ 32 ∗ 163 5 ∗ 2, (2, 1), 32 32 ∗ 64 ∗ 163
decoder5 64 ∗ 64 ∗ 163 5 ∗ 2, (2, 1), 16 16 ∗ 128 ∗ 163
decoder6 32 ∗ 128 ∗ 163 5 ∗ 2, (2, 1), 2 2 ∗ 256 ∗ 163

In the first cascaded structure, we align three modules
sequentially, hence its designation as a cascaded structure. This
particular arrangement consists of two complex TF modules
with a time-domain module sandwiched in between. The
sequence of the modules is as follows: a complex TF mod-
ule, followed by the time-domain module, and then another
complex TF module. The first complex spectrogram module
receives the noisy signal as its input. The output of this initial
complex TF module then serves as the input for the ensuing
time-domain module. Subsequently, the output of the time-

domain module is fed into the second complex TF module.
For each of these modules, specific loss functions are applied
to optimize their performance. The loss function employed
for the complex TF modules is SI-SNR, which is particularly
suited for handling complex spectrograms. Meanwhile, the
time-domain module utilizes the MSE as its loss function.
This dual approach in applying loss functions is designed to
effectively enhance the speech quality by addressing different
aspects of signal processing inherent to each module. This
cascaded structure, with its strategic sequence and tailored loss
functions, aims to leverage the strengths of both time and TF
domain modules for superior speech enhancement.

In cascaded structure 2, we evolve from the foundational
design of cascaded structure 1 by integrating both the noisy
signal and the output of the preceding module along the
channel dimension. This integration serves as the input for
the subsequent module. Our hypothesis is that the inclusion of
the original noisy signal can significantly boost the robustness
of the following modules, effectively reducing the distortion
that might be introduced by the outputs of earlier modules.
Consistent with cascaded structure 1, the complex spectrogram
modules in this structure continue to utilize SI-SNR as their
loss function, while the time-domain module retains MSE as
its loss function.

Building further upon this concept, cascaded structure 3
adds an additional layer of complexity to the design of cas-
caded structure 2. In this structure, we incorporate the output
of the first complex spectrogram module alongside the channel
dimension into the input of the third module. Our rationale is
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that the output from the initial module could provide valuable
prior information for the third module, thereby augmenting
its learning capabilities and enhancing overall model per-
formance. The loss functions for each module in cascaded
structure 3 remain consistent with the previous structures, with
SI-SNR for the complex spectrogram modules and MSE for
the time-domain module.

D. Parallel Architectures

The cascaded structures discussed offer a sequential ap-
proach to domain fusion, effectively combining different do-
mains in a linear fashion. An alternative solution for domain
fusion is the use of parallel structures. Figure 4 illustrates two
distinct parallel structures.

In a parallel architecture, our goal is to fuse the output
features of the time-domain module and the TF module in
a manner that is both scientifically sound and reasonable.
This fusion allows the subsequent module to access a more
diverse array of speech features, which is expected to result
in enhanced speech enhancement performance.

To facilitate this channel feature fusion in the parallel struc-
ture, we propose two distinct methodologies: Concatenation
and Channel Attention.

1) Concatenation: This approach involves directly combin-
ing the features from both the time-domain and Complex
TF modules along the channel dimension. By doing so,
the model is able to concurrently process and utilize the
information present in both sets of features.

2) Channel Attention [31]: In this approach, an attention
mechanism is leveraged to calculate the importance
or weights of each channel’s features. This weighting
enables the model to focus more on channels that con-
tribute significantly to speech enhancement, thereby po-
tentially improving the quality of the enhanced speech.

In parallel structure 1, our network architecture integrates
parallel connections with a subsequent sequential connection.
This structure consists of two parts: a parallel component fea-
turing both a complex TF module and a time-domain module,
and a sequential component for processing the fused output.
While concatenation can merge information from different
domains (Figure 4), we hypothesize that a more effective
strategy would allow each domain to contribute uniquely.
To achieve this, we developed an attention mechanism that
assigns weights to different domains, enabling the network to
autonomously determine the optimal fusion method.

The attention mechanism, depicted in Figure 5, includes
several key components: Global Average Pooling (GAP) to
discern the global context of channels, and a 2D convolution
(Conv2d) with a kernel size of 1x1 to apprehend the local
channel context. This approach uses a bottleneck structure
to compute two types of channel contexts: the global chan-
nel context G(X) ∈ RC∗T∗F and the local channel context
L(X) ∈ RC∗T∗F , where C, T, and F respectively represent the
dimensions of channel, time, and frequency. The calculations
are

G(X) = β(Conv2(ReLU(β(Conv1(g(X)))))), (6)

L(X) = β(Conv2(ReLU(β(Conv1(X))))), (7)

where Conv1 and Conv2 represent convolution with the
number of channels changing from C to C

r and from C
r to

C; β means Batch Normalization(BN); g(X) is the global
average pooling (GAP); ReLU denotes the Rectified Linear
Unit. By combining the global channel context G(X) and the
local channel context L(X), the refined feature X̂ is computed
as

X̂ = X ⊗ Sig(G(X) ⊕ L(X)), (8)

where Sig is the Sigmoid function, ⊕ is the broadcasting
addition and ⊗ denotes the element-wise multiplication. The
loss function for the complex TF modules is SI-SNR, while
the loss function for the time-domain module is MSE.

Parallel structure 2 builds on structure 1 by integrating
the STFT-transformed noisy input signal. We combine this
with outputs from both the parallel complex spectrogram
and time-domain networks, feeding the composite into a
sequential complex TF module. As in Parallel 1, we also
use concatenation and attention operations to explore and
utilize information from different domains. This approach aims
to enhance speech enhancement robustness and efficacy by
leveraging each domain’s distinct strengths.

IV. EXPERIMENTAL RESULTS

A. Dataset

The clean speech and noise datasets from the DNS Chal-
lenge (ICASSP 2021) [32] are used for our experiments.
The clean speech set includes over 500 hours of clips from
2150 speakers and the noise set includes over 180 hours of
clips from 150 classes and 65,000 noise clips. We generate a
training set comprising 500 hours of samples and a validation
set consisting of 50 hours. To make a full use of the dataset,
speech and noise signals are paired randomly, and the SNR is
randomly selected between -5 dB and 20 dB. It is important to
note that before mixing, all speech and noise signals are ran-
domly truncated to 10 seconds. Additionally, we utilize the test
set provided by the DNS Challenge for evaluation. To further
evaluate the performance of speech enhancement models on
unseen datasets, we have specifically chosen two demanding
noise types, babble and factory1, from the NOISEX92 [33]
dataset. Our testing protocol includes five distinct SNRs: {-6, -
3, 0, 3, 6} dB. For each SNR condition, we have generated 150
pairs of noisy and clean speech samples. This experimental
design allows us to assess the generalization capabilities of
various speech enhancement techniques under challenging and
realistic conditions.

B. Experimental Settings and Baselines

For the training of our model, we employed PyTorch frame-
work, and the optimization of the model was conducted using
the Adam optimizer. We began with an initial learning rate
of 0.001, which was programmed to decay by 50% whenever
there was an increase in the validation loss. The training was
spread over 100 epochs, and we used a batch size of 200. All
audio samples in our dataset were sampled at a rate of 16 kHz.
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(a) Parallel structure 1

(b) Parallel structure 2

Fig. 4. Two different parallel structures. Parallel 1 consists of two components: a parallel part and a cascade part. The parallel part consists of a complex TF
module and a time module. The cascade part is a complex TF module, with its input being the output of the parallel part. In parallel 2, based on parallel 1,
noisy is first transformed using STFT and then concatenated along the channel dimension with the original input.

Fig. 5. The structure of Channel Attention (Att), where C represents the
number of channel inputs from different modules.

To assess the performance improvement of our model,
we utilized two types of Perceptual Evaluation of Speech
Quality (PESQ) metrics - wide-band PESQ (WP) and narrow-
band PESQ (NP) [34], along with the Short-Term Objective
Intelligibility (STOI) [35] metric. WP and NP are used to
evaluate the speech quality and have a range from -0.5 to
4.5, where higher values signify better quality. STOI, on the
other hand, assesses speech intelligibility on a scale from 0 to
1 (100%), where higher values indicate better intelligibility,
akin to the percentage of correctness.

In addition to these standard metrics, we also employed

DNSMOS1 [36] as an evaluation metric on the DNS Challenge
development test set. DNSMOS is a Deep Neural Network-
based non-intrusive metric that assesses speech quality.

Furthermore, we compare eight state-of-the-art speech
enhancement methods using their original implementations
alongside the proposed method as follows.

1) TSTNN [37]: it is a time-domain speech enhancement
approach based on a two-stage Transformer network. It
employs four stacked two-stage transformer blocks to
progressively extract local and global information from
the speech latent representation.

2) DTLN [38]: it combines a stacked-network approach
that incorporates an STFT and a learned analysis and
synthesis basis. This combination allows DTLN to effec-
tively extract information from magnitude spectra while
also incorporating phase information from the learned
feature basis, resulting in robust speech enhancement
performance.

3) TFT-Net [39]: it is a cross-domain framework that
utilizes time-frequency spectra as input. It utilizes six
dual-path attention blocks, which efficiently capture
long-range temporal and frequency correlations while
maintaining low computational costs. These blocks are
responsible for generating time-domain waveforms as
the output of the model in the context of speech en-
hancement.

4) DPT-FSNet [40]: it integrates the FullSubNet method,
which combines full-band and sub-band fusion, with
the DPTNet. The dual-path Transformer model in
DPT-FSNet handles full-band and sub-band information
through its inter and intra parts, respectively.

5) TSCN-PP [41]: it is a multi-stage model, which ranked
first in 2021 DNS Challenge. Specifically, in the first

1https://github.com/microsoft/DNS-Challenge/tree/master/DNSMOS
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stage, only the magnitude is estimated, which is then
combined with the noisy phase to obtain a coarse estima-
tion of the complex spectrum. To enhance the previous
estimation, in the second stage, an auxiliary network acts
as a post-processing module to further suppress residual
noise and effectively modify the phase information.

6) DPRNN [42]: it employs 6 DPRNN blocks with 128
hidden units in each direction of bidirectional LSTM
(BLSTM) in the time-domain audio separation network
(TasNet). The TasNet consists of a linear 1-D convolu-
tional encoder, a separator, and a linear 1-D transposed
convolutional decoder.

7) FullSubNet [43]: it is a model that combines full-band
and sub-band fusion to capture both full-band spectral
information and long-distance cross-band dependencies.
It retains the ability to model signal stationarity and
attend to local spectral patterns. The full-band network
consists of three LSTM layers, each with 512 hidden
units, while the sub-band model includes two LSTM
layers (with 384/256 units) and one dense layer.

8) DCCRN [5]: designed for complex preprocessing, this
model employs complex-valued operations in both CNN
and RNN structures. It uses a causal CED architecture
with two complex LSTM layers between the encoder
and decoder. DCCRN ranked first in the 2020 DNS
Challenge.

TABLE III
SPEECH ENHANCEMENT PERFORMANCE COMPARISON ON

THE DNS CHALLENGE DATASET WITHOUT REVERBERATIONS.

Model Cau. WP NP STOI SISDR(dB)
Unprocessed - 1.56 2.45 91.2 9.07

TSTNN - 2.55 2.61 91.9 10.92
DPRNN × 2.57 2.68 92.5 11.05
TFT-Net - 2.60 2.74 92.7 11.64
DTLN ✓ - 3.04 94.7 16.34

DCCRN ✓ 2.64 3.17 92.9 12.21
FullSubNet × 2.72 3.28 95.3 16.17
DPT-FSNet - 2.72 3.28 95.3 16.17
TSCN-PP ✓ 2.94 3.42 96.6 17.99
Cascade 1 ✓ 2.88 3.41 96.9 19.20
Cascade 2 ✓ 3.08 3.54 97.4 20.20
Cascade 3 ✓ 3.08 3.54 97.5 20.27

Parallel1(Cat) ✓ 3.03 3.51 97.3 19.98
Parallel1(Att) ✓ 3.10 3.55 97.5 20.16
Parallel2(Cat) ✓ 3.03 3.52 97.4 20.15
Parallel2(Att) ✓ 3.10 3.56 97.6 20.31

C. Comparisons with Other Models

The proposed method is evaluated on the DNS challenge
benchmark and compared against state-of-the-art methods. The
experimental results, including the averaged SI-SDR, STOI
(%), WP and NP performances, are presented in Table III.
During the training stage, the noisy mixtures are generated
with a random SNR ranging from -5 to 20 dB.

Fig. 6. Illustrations of OPD with the proposed models, where starget1,
enoise1, and eartif are OPD decomposition components of original signal,
starget2 and enoise2 are OPD decomposition components after adding the
noisy input.

It can be observed from Table III that cascaded structures
and parallel structures offer a better speech enhancement
performance on the DNS challenge dataset. This is because
our proposed cascaded and parallel models utilize sub-models
from different domains for joint modeling. As a result, our
models have better learning capabilities compared to single-
domain models. By integrating features from different do-
mains, our proposed models demonstrate improved gener-
alization performance across different datasets. Specifically,
the Cascade 3 and Parallel2(Att) deliver similar results, with
Parallel2(Att) performing slightly better, which indicates the
different roles played by different domains.

To further investigate the reasons for this improvement,
we employ orthogonal projection-based error decomposition
(OPD). From Figure 6, we observe that ŝ can be decomposed
into enoise1, eartif , and starget1. From Table III, it is evident
that Cascade 3 exhibits a significant improvement in speech
quality compared to other state-of-the-art models, with WP,
NP, STOI, and SI-SDR, increased by 0.14, 0.12, 0.09, and
2.28, respectively.

Analyzing Cascade 1 and Cascade 2, we can observe
from Figure 3 that Cascade 2 builds upon Cascade 1 by
concatenating the noisy with the inputs of the last two modules
along the channel dimension. Table III shows that Cascade
2 exhibits a 0.2 improvement in WP, a 0.13 improvement
in NP, a 0.5 improvement in STOI and a 1.0 improvement
in SI-SDR, compared to Cascade 1. In Figure 6, we utilize
the OPD to explain why introducing noisy signals leads to
a significant improvement in speech quality. By combining
ŝ and noisy inputs, we obtain a new vector ŝnew. From the
figure, we can see that starget1/enoise1 > starget2/enoise2,
which means the ratio between starget and enoise decreases
due to the introduction of noisy signal. However, we also have
starget1/eartif < starget2/eartif , which indicates the share of
eartif in the signal decreases as well, containing less artifacts.
Seeing the performance boost brought by Cascade 2, we can
conclude that reducing artifacts indeed leads to a significant
improvement in speech quality because eartif as the unnatural
signal presents the most negative impact on the final perfor-
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mance. In contrast, speech quality is affected much less by
adding the noise error component. This also explains why
Cascade 1, despite the increasing starget to enoise ratio, does
not outperform Cascade 2 in terms of speech enhancement
performance. While Cascade 1’s increased starget to enoise
ratio comes with the cost of the introduction of eartif , it
is observed that artifacts have a greater impact on speech
enhancement compared to noise. Consequently, the speech
quality achieved after processing with Cascade 1 is lower than
that of Cascade 2.

For Cascade 3, it simply concatenates the output of the
first sub-model to the input of the third module, as observed
in Table III, its speech enhancement performance is nearly
identical to Cascade 2. This similarity is due to the fact that
while incorporating the output of the first module into the
input of the third module increases starget to enoise ratio, it
also introduces the eartif generated by the first module into
the third module. As a result, the speech quality achieved
after processing with Cascade 3 is almost the same as that
of Cascade 2.

TABLE IV
DNSMOS ON THE DNS CHALLENGE DATASET WITHOUT

REVERBERATIONS.

Model Singing Tonal Emotion Non-Eng Eng Overall
Noisy 2.96 3.00 2.67 2.96 2.80 2.86

TSCN-PP 3.14 3.44 2.92 3.50 3.49 3.38
Cascade1 3.15 3.51 2.99 3.56 3.65 3.42
Cascade2 3.15 3.54 3.00 3.59 3.67 3.42
Cascade3 3.15 3.55 3.00 3.60 3.69 3.43

Parallel1(Cat) 3.12 3.54 2.92 3.58 3.67 3.41
Parallel1(Att) 3.15 3.56 3.00 3.59 3.69 3.42
Parallel2(Cat) 3.13 3.55 2.93 3.58 3.68 3.41
Parallel2(Att) 3.16 3.55 3.01 3.60 3.71 3.43

We also conducted MOS evaluations for the proposed
models, with MOS calculated using DNSMOS, and the test
results are shown in Table IV. Furthermore, we compared
the MOS results of our proposed model with the first ranked
model (TSCN-PP) in 2021 DNS Challenge. From the Table
III and Table IV, we can observe that the parallel models with
feature fusion using Concatenation tend to slightly underper-
form compared to the cascaded models in terms of speech
quality metrics such as PESQ, STOI, and MOS. However, the
parallel structure with feature fusion using Channel Attention
outperforms slightly the cascaded structure in terms of speech
quality metrics. The superiority of the parallel structure with
Channel Attention feature fusion method over the cascaded
structure indicates that information from different domains
plays distinct roles in speech enhancement models. By em-
ploying a proper fusion approach, the model can learn a
wider range of speech features. Additionally, when comparing
Parallel 1 to Parallel 2, the latter achieves slightly better results
because it incorporates the noisy input into the input of the
final model. This finding supports our earlier analysis that
introducing the noisy input helps reduce the dominance of
eartif , resulting in improved speech enhancement effects. In
comparison of concat and attention based parallel structures,

it is evident that attention mechanism gives one the ability
to automatically assign different weights to different domain
representations, leading to a better learning capability.

To demonstrate the generalization ability of different mod-
els, we use the unseen noises from NOISEX92 to conduct
inference and the results are presented in Table VI. This
result also highlights the superior performance of the parallel
structure with Channel Attention feature fusion in terms of
speech quality metrics such as NP and STOI, in unseen noise
conditions, demonstrating the model generalization capability.
It is evident that the attention mechanism provides the ability
to assign varying weights to different domain representations
automatically, thereby enhancing the model’s learning capa-
bility.

To further investigate how the time module and the complex
TF module interact in speech enhancement, we display the fea-
ture outputs of the time module and the complex TF modules
in both Cascade 3 and Parallel 2 structures for analysis. Figure
7 illustrates the spectrograms of the first complex TF module,
time module, and second complex TF module in the order
of the structure. From the representations, it is seen that the
time module and complex TF module exhibit differences in
learning speech features. The time module presents a richer
harmonic characteristics. On the other hand, the complex TF
module demonstrates a better discrimination between speech
and noise. However, the complex TF module introduces signif-
icant distortions in the frequency domain, resulting in a loss of
harmonic details. From the spectrogram of the second complex
TF module, by fusing the output features of both the time
module and the first complex TF module, the second complex
TF module produces a spectrogram with enhanced frequency
harmonics compared to the first complex TF module. This
richer representation of speech features in the frequency do-
main results in a more refined output. Furthermore, the second
complex TF module better discriminates between speech and
noise, yielding a cleaner speech output. This showcases the
different domain information indeed complement each other,
producing a better harmonics representation while suppressing
the noise.

Finally, we tested the enhanced audios with Whisper (small)
model to evaluate the word error rate (WER) performance
and results are in Table V. It is expected that the enhanced
audios generally did not improve the ASR performance and
even degraded the WER due to the distortions introduced.
However, to further enhance ASR performance, it is advised
to retrain/finetune the ASR system with the denoised data.

D. Ablation Studies
To verify the design choices of the proposed cross domain

concept, in this section, we conducted a series of ablation
studies to demonstrate the performance.

We first conducted an experiment to verify the performance
gain of the cross-domain approach over the single-domain
approach, and the results are provided in Table VII. As
observed, the proposed structures, either Cascade or Parallel,
deliver superior performance compared to the single-domain
approach, indicating the benefits of cross-domain fusion. How-
ever, we also want to ensure that the performance gain is not
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TABLE V
COMPARISON OF SPEECH RECOGNITION PERFORMANCE OF DIFFERENT MODELS.

Model Noisy DPRNN DCCRN FullSubNet Cascade 3 Parallel2(Att)
WER 23.5 31.2 27.7 28.1 25.3 25.1

TABLE VI
OBJECTIVE RESULT COMPARISONS AMONG DIFFERENT MODELS IN TERMS OF NP AND STOI FOR THE UNSEEN BABBLE AND

FACTORY1 NOISES.

Model NP STOI
SNR -6 -3 0 3 6 Avg. -6 -3 0 3 6 Avg.

B
ab

bl
e

Noisy 1.49 1.64 1.82 2.01 2.23 1.84 24.33 31.51 39.66 48.21 57.74 40.29
LSTM 1.72 1.98 2.25 2.46 2.67 2.22 41.97 52.33 61.63 68.89 75.60 60.09

CRN [23] 1.67 2.01 2.31 2.56 2.80 2.27 42.63 53.82 63.48 71.20 78.01 61.83
GCRN [44] 1.88 2.25 2.58 2.83 3.05 2.52 48.41 59.77 69.09 75.78 80.87 66.78

DCCRN 1.84 2.21 2.55 2.81 3.07 2.49 45.86 57.71 67.61 75.39 81.51 65.62
ConvTasNet [7] 1.89 2.21 2.50 2.73 2.94 2.45 53.87 64.37 72.61 78.63 83.49 70.59

TSCN-PP 2.10 2.51 2.83 3.06 3.26 2.75 56.75 68.57 76.35 81.89 85.88 73.89
Parallel2(Cat) 2.17 2.55 2.91 3.12 3.29 2.80 57.91 70.67 79.32 83.67 87.52 75.81
Parallel2(Att) 2.33 2.67 2.95 3.18 3.37 2.90 60.13 73.26 81.25 85.37 90.65 78.13

Fa
ct

or
y1

Noisy 1.36 1.55 1.75 1.96 2.17 1.76 23.67 31.97 41.13 50.32 59.78 41.37
LSTM 1.83 2.12 2.36 2.56 2.73 2.32 42.13 53.50 62.75 70.09 75.89 60.87
CRN 1.84 2.16 2.42 2.66 2.86 2.39 42.39 54.21 64.03 71.92 78.18 62.15

GCRN 2.00 2.39 2.68 2.90 3.09 2.61 45.73 59.37 68.85 75.70 80.52 66.03
DCCRN 2.07 2.42 2.70 2.93 3.13 2.65 46.73 59.50 68.92 76.16 81.81 66.62

ConvTasNet 2.02 2.32 2.56 2.79 2.99 2.54 51.72 63.48 72.07 78.36 82.97 69.72
TSCN-PP 2.29 2.62 2.86 3.09 3.25 2.82 56.50 67.90 75.49 81.25 85.12 73.25

Parallel2(Cat) 2.30 2.67 2.91 3.12 3.29 2.85 59.01 68.16 77.23 83.21 87.27 74.97
Parallel2(Att) 2.31 2.76 2.97 3.15 3.37 2.91 65.05 71.19 80.92 85.31 92.79 79.05

TABLE VII
PERFORMANCE COMPARISON OF CROSS DOMAIN APPROACHES OVER SINGLE DOMAIN, WHERE MACS ARE CALCULATED BY

FUNCTION ’PROFILE’.

Model WP NP STOI SISDR(dB) Para. (M) MACs(G/s)
Time module 2.21 2.65 92.1 11.10 10.13 2.45
TF module 2.66 3.21 93.2 12.27 2.66 3.21
TF module+ 2.81 3.36 96.5 18.34 22.42 15.05
Cascade 1 2.88 3.41 96.9 19.20 17.94 11.29
Cascade 2 3.08 3.54 97.4 20.20 17.94 11.33
Cascade 3 3.08 3.54 97.5 20.27 17.94 11.36

Parallel1(Cat) 3.03 3.51 97.3 19.98 17.94 11.32
Parallel1(Att) 3.10 3.55 97.5 20.16 18.19 11.75
Parallel2(Cat) 3.03 3.52 97.4 20.15 17.94 11.36
Parallel2(Att) 3.10 3.56 97.6 20.31 18.19 11.79

TABLE VIII
PERFORMANCE COMPARISON OF DIFFERENT POSITIONS OF

THE TIME DOMAIN MODULE.

Model Position WP NP STOI SISDR(dB)
Cascade 3 Beginning 3.03 3.55 97.2 20.20
Cascade 3 Middle 3.08 3.54 97.5 20.27

merely due to the increased model parameters. To this end, we
increased the model size of the TF domain module, termed
as TF module+, to match that of the cross-domain models.
The results show that while increasing the model size does

improve the metrics, its performance still falls short of the
proposed models. This shortfall is attributed to the lack of
complementary information provided by different domains.

To investigate the influence of the order of sub-modules, in
Cascade 3, we place the time module at the beginning instead
of in the middle, as in our current design. The results, provided
in Table VIII, show that both designs yield similar perfor-
mance. This indicates that cross-domain optimization can ef-
fectively fuse information from different domains regardless of
the time module’s position. However, placing the time module
in the middle does offer a slight performance improvement. In
addition, we are also able to provide evaluations of different
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(a) Spectrogram of noisy signal (WP=1.56, NP=1.45,
STOI=91.2, SDR=9.07)

(b) Spectrogram of clean signal

(c) Spectrogram of Cascade 3 (WP=2.82, NP=3.37,
STOI=96.6, SDR=18.34)

(d) Spectrogram of Parallel 2 (WP=2.78, NP=3.35,
STOI=92.0, SDR=18.35)

(e) Spectrogram of Cascade 3 (WP=2.25, NP=3.01,
STOI=94.2, SDR=12.65)

(f) Spectrogram of Parallel 2 (WP=2.30, NP=3.15,
STOI=94.7, SDR=12.71)

(g) Spectrogram of Cascade 3 (WP=3.08, NP=3.54,
STOI=97.5, SDR=20.27)

(h) Spectrogram of Parallel 2 (WP=3.10, NP=3.56,
STOI=97.6, SDR=20.31)

Fig. 7. The different layer representations of different modules from different structures. First row: Noisy and clean speeches; Second row: Output of first
complex TF module; Third row: Output of time domain module; Fourth row: Output of second complex TF module.

stages to see the impact of each sub-module, summarized in
Table IX. One interesting phenomenon is that the performance
of the time module is usually worse than that of the TF
module, likely due to the inefficient learning capacity of the
time module. This observation is consistent with the output
in Figure 7. However, the final performance is improved by
effectively fusing information from different domains. Overall,
it is concluded that the final performance is less dependent on
the order of each module, and each stage may not necessarily
generate incremental gains over the previous stage. Instead, the

final performance improvement is primarily due to the fusion
of cross-domain information, highlighting the significance of
our design in leveraging multiple-domain information.

In our designs, we also leverage the original noisy inputs to
be used in the system. To show the benefits of doing so, we
conducted another ablation study where we add different levels
of original noisy inputs in Cascade structure, i.e., ŝ + w ∗ y
with w = 0, 0.5, 1, where y is the noisy speech. Note that
when w = 0, it is Cascade 1, and when w = 1, it is Cascade
3. From Table X, it is seen that gradually adding original
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TABLE IX
PERFORMANCE METRICS OF DIFFERENT STAGES.

Model TF module 1 Time module TF module 2
Metrics WP NP STOI SDR WP NP STOI SDR WP NP STOI SDR

Cascade 3 2.82 3.37 96.6 18.34 2.25 3.01 94.2 12.65 3.08 3.54 97.5 20.27
Parallel 2(Att) 2.78 3.35 92.0 18.35 2.30 3.15 94.7 12.71 3.10 3.56 97.6 20.31

TABLE X
PERFORMANCE COMPARISON OF ADDING DIFFERENT

LEVELS OF ORIGINAL NOISY INPUTS.

w WP NP STOI SISDR(dB)
0 2.88 3.41 96.9 19.20

0.5 2.91 3.47 97.1 19.93
1 3.08 3.54 97.5 20.27

noisy input indeed improves the final performance due to the
increased combination of clean and noisy speech features and
the decreased noise artifact eartif . As we increase the weight
w, the performance metrics WP, NP, STOI, and SISDR all
show a noticeable improvement. Specifically, at w = 1, the
WP improves to 3.08, NP to 3.54, STOI to 97.5, and SISDR
to 20.27 dB, indicating that incorporating the noisy input
effectively enhances the overall performance. This result is
consistent with the our early OPD analysis.

V. CONCLUSION

In this work, to utilize different domain information, we
developed five structures to investigate how each domain
contributes to the final results. First, we design standalone
time domain and complex TF domain modules for fusion
purposes. Second, to leverage cross-domain information, we
mainly design cascade and parallel structures, three cascade
and two parallel structures, to be exact. The experimental
results show that the developed Cascade 3 and Parallel 2 with
attention produces superior results, indicating that information
flows provide more complementary ability to each other and
attention is able to determine which domain learns a better
representation. Compared with other methods, the proposed
models outperform them, suggesting that leveraging multiple
domains indeed benefits the final performance. In our cur-
rent study, the cascade and parallel structures are manually
designed, however, in the future, we would like to explore
the possibility of using neural architecture search (NAS) to
identify the best model given the dataset and constraints.
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