

Optimising Resource Allocation for
Computational Offloading in a Mobile

Edge Environment

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

in

Department of Electronic and Computer Engineering

College of Engineering, Design and Physical Sciences

Brunel University London

by

Sarfraz Hussain

July 2024

 ii

Dedication

To everyone who supported me throughout this process and to my beautiful,

loving partner Dimitra without whom, this would not have been possible. And

to Professor Li, the man, the myth, the legend.

 iii

Declaration of Authorship

The work detailed in this thesis has not been previously submitted for a degree

in this university or at any other unless otherwise referenced. It is the author’s

own work.

 iv

Acknowledgement

First and foremost, I am immensely grateful to Prof. Maozhen Li, my esteemed

supervisor and mentor. Prof. Li's exceptional expertise in the field of 5G MEC

and his unwavering commitment to my academic growth have been

instrumental throughout this journey. His invaluable guidance, patience, and

profound insights have not only shaped the direction of this research but have

also instilled in me a deep passion for exploring the intricacies of RL resource

allocation. I am truly indebted to Prof. Li for his tireless support,

encouragement, and belief in my capabilities. I would also like to thank Dr.

Zobaa for his support throughout the appeals process and reassurance.

Furthermore, I would like to extend my heartfelt appreciation to my partner,

Dimitra Avramidou, whose unwavering support and understanding have been

the cornerstone of my perseverance. Dimitra's patience during the long hours

of research and writing have been my source of strength. Her love, care, and

understanding have kept me motivated and balanced throughout this

challenging process. I am forever grateful to Dimitra for being my rock and for

standing by my side unconditionally despite the prolonged of this research.

 i

Abstract
With the recent albeit limited rollout of the fifth generation of communications,

alongside the widespread adoption of open-source networking solutions

based on SDN and NFV technologies, opportunities to define the architecture

of 5G over its lifetime have become a hot topic in the industry, both

professionally and academically. Despite noticeable advances in bandwidth,

services planned to be integrated deep within the architecture of 5G

technologies such as Mobile Edge Computing are emerging.

The successful allocation of resources is a pivotal component upon which

effective, latency-sensitive handling of data will build on to enhance the future

of communication. This research makes three significant contributions to the

field of Multi-access Edge Computing (MEC). Firstly, it involves testing and

validating various network simulation software to identify the most effective

tools for simulating MEC environments. The efficiency of these simulators is

evaluated to ensure they accurately replicate real-life network scenarios, which

is crucial for constructing precise algorithms and determining simulation

parameters.

Secondly, the study implements a single-layer reinforcement learning (RL)

algorithm within the orchestration module of the simulator to optimize network

resource allocation. The goal of the algorithm is to reduce latency and task

failure rates while increasing efficiency. The RL algorithm is benchmarked

against traditional methods like Round Robin and Greedy algorithms,

demonstrating significant improvements in network service levels and task

success rates.

Lastly, the research develops a multi-layer reinforcement learning algorithm

based on the initial single-layer approach. This advanced algorithm

incorporates replay memory and approximate Q functions within a neural

network, addressing various stages of network infrastructure and leveraging

previously generated Q tables. These enhancements ensure more efficient and

effective network management in MEC environments.

 ii

Table of Contents

Dedication ... ii

Declaration of Authorship .. iii

Acknowledgement .. iv

Table of Contents .. ii

List of Figures .. vi

List of Tables .. viii

List of Algorithms ... ix

List of Nomenclature ... x

Chapter 1 Introduction .. 1

1.1 Motivation .. 6

1.2 Methodology ... 7

1.3 Major Contributions to Knowledge ... 8

1.4 Thesis Structure ... 10

1.5 Summary .. 10

Chapter 2 Literature Review .. 11

2.1 Concept ... 11

2.2 Literature identification ... 14

2.3 Edge Computing, Mobile Edge Computing and Cloud Computing 18

2.3.1 MEC Infrastructure and Architecture ... 25

2.3.2 Specifications in MEC ... 26

2.4 SDN and NFV ... 34

2.4.1 SDN ... 34

2.4.2 NFV ... 36

2.5 Reinforcement Learning and Deep Reinforcement Learning 37

2.5.1 Machine Learning ... 40

2.5.2 Bellman Equation ... 41

2.5.3 Markov Decision Process .. 42

 iii

2.5.4 Dynamic Programming (DP) .. 43

2.5.5 Fuzzy Logic .. 48

2.6 Resource allocation with Reinforcement Learning 52

2.6.1 A Q Learning approach ... 52

2.6.2 Cache allocation and Computational offloading 63

2.6.3 Stochastic Gradient Descent ... 66

2.7 Summary .. 67

Chapter 3 Simulator Comparison and Design ... 68

3.1 Introduction .. 68

3.2 Requirements for MEC and Simulator Selection 73

3.2.1 MEC Requirements Review .. 73

3.2.2 Simulator Selection .. 74

3.3 CloudSim ... 76

3.4 Simulation candidate 1: EdgeCloudSim ... 78

3.4.1 Hierarchy and Design ... 79

3.4.2 Modules ... 85

3.4.3 Assumptions ... 89

3.4.4 Validation ... 90

3.5 Simulation candidate 2: PureEdgeSim ... 90

3.5.1 Hierarchy and Design ... 92

3.5.2 Modules ... 93

3.5.3 Assumptions ... 99

3.5.4 Validation ... 100

3.6 The Final Selection ... 100

3.7 Final Test: PureEdgeSim .. 102

3.8 Summary .. 105

Chapter 4 Simulator Setup and Single Layer RL 106

4.1 Introduction .. 106

4.2 Simulation Environment .. 107

4.2.1 Task Modelling and Classification ... 107

 iv

4.2.2 Mobility Modelling ... 108

4.2.3 Network Modelling .. 110

4.2.4 Propagation Modelling .. 112

4.2.5 Edge Orchestration ... 119

4.2.6 Simulation Architecture ... 119

4.2.7 Simulation Hardware .. 122

4.2.8 Assumptions ... 123

4.3 Algorithm Design .. 124

4.4 Reinforcement Learning (single layer) results 126

4.4.1 Task Success Rate ... 126

4.4.2 Energy Usage ... 127

4.4.3 Average CPU Usage, All Hierarchy ... 128

4.4.4 Average Execution Delay .. 129

4.5 Summary .. 130

Chapter 5 Multi-Layer RL in Resource Allocation 131

5.1 Introduction .. 131

5.2 Multi-Stage Implementation .. 131

5.3 Multi-Layer Results ... 134

5.3.1 Task Success Rate ... 134

5.3.2 Execution Delay ... 135

5.3.3 Energy Usage ... 136

5.4 Further Enhancement ... 137

5.5 Multi-Layer Approximation Results .. 141

5.5.1 Task Success Rate ... 141

5.5.2 Execution Delay ... 141

5.5.3 Power Usage .. 143

5.6 Summary .. 143

Chapter 6 Conclusion and Future Work .. 144

6.1 Conclusion ... 144

6.2 Future Work ... 146

 v

Appendices .. 149

Appendix 1 Membership Functions ... 149

References ... 150

 vi

List of Figures

Figure 2.1. Global mobile network data traffic and growth 12

Figure 2.2. Algorithm creation flowchart ... 14

Figure 2.3. Plot of Mobile Edge Computing journal papers 19

Figure 2.4. Web diagram of use cases in Edge Computing 25

Figure 2.5. MEC Framework architecture ... 30

Figure 2.6. VNF Architecture (as proposed by ETSI) 31

Figure 2.7. Features shared between Edge, Fog, and Cloud computing 36

Figure 2.8. Deep reinforcement learning algorithm families 37

Figure 2.9. RL Trade-off .. 38

Figure 2.10. The Markov Decision Process .. 42

Figure 2.11. Value iteration diagram .. 44

Figure 2.12. Policy Iteration Diagram ... 45

Figure 2.13. Example of Discrete Data ... 47

Figure 2.14. Example of continuous data .. 47

Figure 2.15. Algorithm planning stage one ... 48

Figure 2.16. Fuzzy logic architecture .. 50

Figure 2.17. Multi-layer offloading query process 56

Figure 2.18. System model .. 57

Figure 2.19. Illustration of the state 𝑆 = (𝐶	, 𝑄, 𝑖𝜓, 𝑛𝑐, 𝑛𝑏) 58

Figure 2.20. Histogram of service times ... 59

Figure 2.21. Learning scheme for double deep q-learning model 61

Figure 2.22. General power consumption of a 'labtop' 62

Figure 2.23. Caching types compared [68] ... 65

Figure 3.1. Relationship between EdgeCloudSim modules 79

Figure 3.2. EdgeCloudSim layered architecture .. 80

Figure 3.3. Mobility simulation map .. 83

Figure 3.4. Java Class Hierarchy of EdgeCloudSim app 84

Figure 3.5. Side-by-side comparison of layered architecture 92

Figure 3.6. Relationship between EdgeCloudSim and PureEdgeSim 93

Figure 3.7. Real-time monitoring preview of PureEdgeSim simulation 99

Figure 3.8. PureEdgeSim Fuzzy Logic Orchestrator 200 devices 101

 vii

Figure 3.9. Generated against successful tasks (Fuzzy Logic) 103

Figure 3.10. Generated against successful tasks (Increase Lifetime) 104

Figure 4.1 Sample real-time mobility view .. 108

Figure 4.2. Device service request classification 115

Figure 4.3. Processing time comparison example 116

Figure 4.4. Device Distribution ... 118

Figure 4.5. Orchestration Outline ... 120

Figure 4.6. Task Success Rate Single Layer RL 126

Figure 4.7. Energy Usage Single Layer RL ... 127

Figure 4.8. Comparison of Cloud vs Energy usage 127

Figure 4.9. Avg CPU Usage Single Layer RL .. 128

Figure 4.10. Avg Execution Delay Single Layer RL 129

Figure 4.11. Task Failure Rate ... 129

Figure 5.1. Output analysis .. 131

Figure 5.2. Hierarchy of the proposed network ... 132

Figure 5.3. Task Success Rate Multi-Layer .. 135

Figure 5.4. Multi-Layer RL Execution Delay .. 135

Figure 5.5. Avg Edge Energy Consumption Multi-Layer 136

Figure 5.6. Avg Cloud Energy Consumption Multi-Layer 137

Figure 5.7. Task Success Rate Multi-Layer .. 141

Figure 5.8. Avg Execution Delay Multi-Layer .. 142

Figure 5.9. Avg Energy Consumption Multi-Layer 142

 viii

List of Tables

TABLE 1.1 APPLICATION LATENCY REQUIREMENTS 3

TABLE 2.1 KEY SEARCH TERMS ... 16

TABLE 2.2 EDGE USE CASES ... 23

TABLE 2.3 MEC COMPONENTS .. 32

TABLE 2.4 THE THREE TYPES OF MACHINE LEARNING 40

TABLE 2.5 DENOTATIONS FOR BELLMAN EQUATION 41

TABLE 2.6 MDP VARIABLE TABLE .. 42

TABLE 2.7 RL EQUATION DENOTATION TABLE 43

TABLE 2.8 ADVANTAGES OF CONTINUOUS VS DISCRETE DATA 46

TABLE 2.9 FUZZY LOGIC VS PROBABILITY .. 49

TABLE 2.10 TABLE OF RULES EXAMPLE FOR ‘FUZZIFICATION’ 52

TABLE 2.11 TOTAL COSTS FOR OFFLOADING TASKS 53

TABLE 2.12 DENOTATIONS FOR HUERISTIC DEVICE VALUES 54

TABLE 2.13 DENOTATIONS TABLE FOR Q-LEARNING ALGORITHM 55

TABLE 2.14. DENOTATION TABLE FOR FIGURE. 20 59

TABLE 3.1. DETAILED FEATURE LIST OF SIMULATION SOFTWARE 69

TABLE 3.2. FURTHER SIMULATION SOFTWARE EFFORTS 71

TABLE 3.3. COMPARING FOG AND EDGE SIMULATORS 75

TABLE 3.4 TABLE OF MODULES IN EDGECLOUDSIM 81

TABLE 3.5 SIMULATION PARAMETERS, PUREEDGESIM 96

TABLE 3.6 EXAMPLE CONSOLE LOG OF PUREEDGESIM 98

TABLE 3.7 PUREEDGESIM ASSUMPTIONS ... 99

TABLE 4.1 SIMULATION PARAMETERS .. 106

TABLE 4.2 TASK PARAMETER DENOTATION .. 107

TABLE 4.3 END USER DEVICE SPECIFICATIONS 118

TABLE 4.4 SIMULATION DEVICE SPECIFICATIONS 122

TABLE 4.5 ASSUMPTIONS TABLE ... 123

TABLE 5.1 NOTATION TABLE FOR Q POLICY EQUATION 134

 ix

List of Algorithms

ALGORITHM 4.1 SINGLE LAYER RL .. 125

ALGORITHM 5.1 MULTI-LAYER APPROXIMATION 140

 x

List of Nomenclature

4IR 4th Industrial Revolution

5G 5th Generation of Communication

AI Artificial Intelligence

API Application Programming Interface BYO

AR Augmented Reality

ASP Authorised Service Provider

BYO Bring Your Own

BSS Business support system

CAPEX Capital Expenditure

CCM Client Connection Manager

CFS Customer Facing Service

CI/CD Continuous Integration/Continuous Delivery

CoT Cloud of Things

CP Control Plane

CPE Customer Premises Equipment

CRAN Cloud Radio Access Network

D2D Device-To-Device

DASH Dynamic Adaptive Streaming over HTTP

DISBAT Display and Battery Device

DN Domain Name

DNS Domain Name System

DSL Digital Subscriber Line

DSRC Digital Short-Range Communications

DT Data Tunnel

E2E End-To-End

EAB Edge Accelerated Browser

EPC Evolved Packet Core

EPG Electronic Programme Guide

GPS Global Positioning System

GPRS General Packet Radio Service

 xi

GW Gateway

HTTP Hyper Text Transfer Protocol

HW Hardware

ICE Integrated Communications Environment

IGMP Internet Group Multicast Protocol

IM Instant Messaging

IoE Internet of Everything

IoT Internet of Things

IP Internet Protocol

IPTV Internet Protocol Television

ISP Internet Service Provider

IT Information Technology

IXP Internet Exchange Point

LAN Local Area Network

LI Lawful Interception

LOS Line of Sight

LTE Long Term Evolution (4g)

LTE Long Term Evolution

MAC Media Access Control

MADP Multiple Access Data Proxy

MAMS Multiple Access Management Services

MANO Management and Orchestration

MBS Macro Base Station(s)

ME Mobile Equipment

MEAO MEC Application Orchestrator

MEC Mobile Edge Computing

MIMO Massive Input Massive Output

MIMO Multiple Input Multiple Output

ML Machine Learning

MNO Mobile Network Operator

MPEG Moving Pictures Experts Group

MTC Machine Type Communication

 xii

NCM Network Connection Manager

NEF Network Exposure Function

NFV Network Function Virtualisation

NFVO Network Function Virtualisation Orchestrator

NOMA Non-Orthogonal Multiple Access

NTP Network Time Protocol

OPEX Operating Expenditure

OSS Operations Sub-System

OTT Over-The-Top

PBX Private Branch Exchange

PCC Policy Control and Charging

PCF Policy Control Function

PER Packet Error Rate

PHY Physical (Layer)

PIM Protocol-Independent-Multicast

POX Plain Old XML

PSS Packet Switched Streaming Service

PTP Precision Time Protocol

QCI Quality Class Indicator

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RAP Random Access Preamble

RAT Radio Access Tower

RD Retained Data

REST Representational State Transfer

RL Reinforced Learning

RNC Radio Network Controller

RNI Radio Network Information

SAND Server and Network assisted DASH

SAR Specific Absorption Rate

SBS Small Base Station(s)

 xiii

SDN Software Defined Networking

SIC Successive Interference Cancellation

SLA Service Level Agreement

SMF Session Management Function

SMS Short Message Service

SPID Subscriber Profile ID

SRS Sounding Reference Signal

STB Set Top Box

TCP Transmission Control Protocol

TEID Tunnel Endpoint ID

TEO Third-party Edge Owner

TV Television

UE User Equipment

UP User Plane

UPF User Plane Function

UTC Universal Time (Co-ordinated)

UX User Experience

V2X Vehicle-to-Everything

VEC Vehicular Edge Computing

VLC Visible Light Communication

VM Virtual Machine

VNF Virtual Network Function

VOD Video on Demand

VR Virtual Reality

WLAN Wireless Local Area Network

WCET Worst-case execution Time

 1

Chapter 1 Introduction
According to the 3GPP release documentation, the full evolution of 4G

communication took almost 11 years to reach its potential, a potential that most

urban populations in developed countries are yet to experience [1]. Naturally,

we must learn from previous endeavours and speed up the process of

evolution. Therefore, to ensure rapid deployment of the future of

communication, steps must be taken to improve the process of upgrading the

infrastructure.

To this end, many corporate giants in the industry have already begun research

and development within the sector, leveraging upcoming advancements such

SDN and NFV. Companies such as Nokia, Huawei and NTT Docomo have

begun developing technologies that will allow for extended service offerings

and ‘evolved networking’ [2], [3]. With the plethora of services due to be

introduced, innovation must accompany technology to ensure that demands of

UEs are met.

The 5th Generation of communication is looming overhead, with an initial

expected rollout date already elapsed according to the 3GPP [4]. Along with

improvements to latency [5] and speed requirements, 5G will bring with it a

whole host of new technologies that will further enhance supplier’s abilities to

offer consumers greater usability and a wider range of services[6]. Smartphone

and desktop applications have shifted over to the cloud in recent years, and

the number of application service providers considering cloud only hosting of

centralised software has increased exponentially, access to the cloud will need

to be optimised to guarantee a rich experience therefore, close collaboration

between network operators, applications and content providers is of utmost

importance [7].

Unfortunately, this heavy reliance on links to centralised locations offering

cloud services inevitably creates bottlenecks, hindering the overall experience

of services and applications, despite the efforts to upgrade existing links. The

 2

expected growth has been further accelerated by the unprecedented pandemic

[8], where global growth from the previous year has been 60%.

One of the sub-technologies garnering a wide interest is the concept of Edge

Computing [9] which attempts to alleviate the heavy burden being placed on

backhaul links, circumventing network congestion and reducing service latency

[10]. This thesis will attempt to explore the variety of uses that Edge Computing

offers and the possibilities of future developments. The shift to Industry 4.0 and

Web 2.0 requires greater utilization of communications technologies [11] and

in turn, this also increases expectations and server load.

Through leverage of Edge Computing (EC), we find that systems are not only

more connected, but more powerful than ever. The offering of offloaded

computation enabled by MEC can offer smaller devices the ability to

communicate and operate at a greater length. They can offer increased power,

limited only by the latency between the nearest point of connection.

Networking performance of said devices are key indicators in their usability,

particularly where visual interaction of the real world with machines is

concerned. The slightest amount of latency can result in loss of QoS or render

some applications and processes invalid, e.g., robot-assisted remote surgery

[12]. To this end, the use of offloaded computation can enable applications and

services within devices not able to offer such applications on their own. Such

an approach also further future-proofs devices already in circulation as well as

offering updates that can increase rather than decrease performance over time

with modular upgrade to the infrastructure that the computational model relies

on.

This in turn can enable image processing, whether AI assisted or not, within

micro devices, effectively evolving a personal communications/wearable

device into actuators and sensors that simply relay information so data can be

processed externally. Latency requirements differ across applications, as the

speeds of networks have increased, so have the plethora of applications

 3

available for users, TABLE 1.1 contains some of the latency requirements for

a variety of different application purposes:

TABLE 1.1
APPLICATION LATENCY REQUIREMENTS

Wearable devices Latency Capacity Reliability
Possible
specifications

AR/VR helmets High High Low
mm-wave cellular,
WLAN

Smartphones/tablets Medium Med-High Medium
LTE, Bluetooth, mm-
wave, cellular and

WLAN

Medical Sensors High Low High LTE, Bluetooth

Smart watch/glasses Medium Medium Low LTE, Bluetooth

Smart clothing/shoes Low Low Low Bluetooth, ZigBee

The second major concern in said devices, is that of power. Despite the

tremendous advances in processing capabilities in CPUs and GPUs, advances

in battery life have not shown such progression.

Whether due to the lack of material development or due to health and safety

concerns, hardware manufacturers are wary of the amount of power that can

be condensed into a battery and subsequently used in mobile devices, various

manufacturers have experimented with the technology, but the risks can

damage a company’s reputation hence, manufacturers, often, proceed with

caution.

This is somewhat offset by emerging techniques such as system-on-chip and

system-in-package, which offer scaled down PCBs making it possible to

creatively implement silicon within a range of hardware. Unfortunately, due to

the variety of hardware being introduced such as wearables, drones etc., real

estate (i.e., physical size) within the hardware is almost always limited and

battery power is often relative to the size of the device and the time of release

[12].

 4

This is prominent in the wearables market where bulky devices are often

shunned by prospective markets and doomed to failure, but also carries on into

other hardware sectors, bulky simply is not to the average consumers taste

any longer [12].

Although EC offers up a host of benefits to industries and consumers alike,

cost, density and health implications are a factor that can raise some concern.

Architectural and implementational costs must be appealing to a business to

ensure that the cost of hardware and therefore profitability is manageable.

Thus, ensuring the prospect of competition within industrial and commercial

application, subsequently leading to innovation across the sector.

This is apparent when we compare the adoption rate of computation within

industry spanning over the last 5 decades, now there are virtually no

corporations that do not utilise the internet or the use of a computer in some

form or another whereas in the past, industries wary of technology were at the

mercy of manual methods, creating redundancy and opening the door for

human error prone processes.

The application of EC applies to both fixed line and mobile communications

technologies, but in turn, enables a variety of software solutions that were not

previously possible. However, despite the obvious benefits, as always, there

are some obstacles in the adoption of new technology including those from a

social-economic standpoint.

Controversy within the launch window of 5G portrayed harmful effects of mm-

Wave technology as being above the SAR and potentially harmful to human

beings due to containing increased PD and ensuring that OPEX and CAPEX

requirements are met [12]. Research within a contained environment, however,

is very different to real-life scenario testing and to fully understand the

implications of such advancements and mitigate risks, further study is required

within the field.

 5

Typically, to conduct this type of research, most solutions involve simulations

of real-world scenarios within an open-source or academic development plan.

A simulator is designed to conduct early research subsequently being released

into the wild as an open-source project which is then contributed towards by

numerous developers around the world and eventually developed enough to

somewhat simulate a real-world scenario.

Consequently, many cloud simulation applications are currently in circulation,

giving us the opportunity to adequately test the performance of networks within

cloud environments. On the other hand, many weaknesses have been

identified with cloud environments such as inevitable variable network

environments and the number of hops that applications must traverse, as well

as single-point of-failure. There are also numerous security concerns to take

into consideration when storing all customer data within a cloud-hosted

internet-based platform [13].

There is also unease regarding bandwidth availability, as anyone familiar with

IoT, Big Data and machine learning surely knows, the devices on the internet

are expected to multiply significantly and the underlying network must evolve

to ensure that it is capable of smooth functionality meeting strict availability

requirements under these conditions.

As observed with the lack of forethought in IPv4 address space, it is pivotal to

ensure that 5G will meet user demands and have expansibility options

available once demand has exceeded capacity.

The goal of this research is to devise an optimisation algorithm, implemented

in software form, to find the ideal solution of resource allocation according to

the requirements outlined by a variety of different tasks with their respective

resource requirements. This will be achieved by determining the optimal

solution based on Figure 2.2. The intention is to use state-of-the-art techniques

such as Reinforcement Learning (RL) to determine the best possible solution

to allocate resources and enable a host of applications servicing a multitude of

tenants on an Edge Computing server.

 6

• To get involved in the emerging MEC technology.

• To create an intelligent orchestration method of resource allocation

within MEC environment

• Multi-layer Reinforcement Learning application within MEC

infrastructure

I extend the previous contribution by developing a multi-layer reinforcement

learning application. This involves implementing a more sophisticated model

that can optimize resource allocation across multiple layers of the MEC

infrastructure, considering various factors and constraints using approximate

Q-Learning and Experience Replay.

1.1 Motivation
Despite increased advancements in RAN and Cloud Computation, there are

still many unsolved mysteries when it comes to supplemental computation for

mobile and IoT devices that can solve challenges in a low-latency environment.

Addressing these challenges requires a comprehensive resource allocation

mechanism that can efficiently distribute resources, reducing network load and

task failure rates based on latency and time to compute whilst taking into

consideration energy usage constraints and ensuring the efficiency of the

architecture.

Although addressing all the above will inevitably take time and research,

utilising technologies such as AI or RL within this context can greatly reduce

the aforementioned challenges.

Thus, the motivations for this research are formulated as follows:

• To get involved in the emerging MEC technology

• To create an intelligent orchestration method of resource allocation within

MEC environment

• Multi-layer Reinforcement Learning application within MEC infrastructure

 7

1.2 Methodology
This research utilizes an experimental method to model and simulate enhanced

RL algorithms, aiming to improve resource allocation by employing several

different AI techniques to optimize network efficiency for MEC environments

using a comprehensive open-source simulation software, PureEdgeSim.

The goals within the scope of this research are to simulate a larger environment

that expands outside the realms of pure IoT/IIoT and to attempt to tackle

consumer-facing networks within a metropolitan area. Thus, ensuring the

correct simulation parameters were paramount to valid results.

A sophisticated model was built for an RL algorithm that optimises resource

allocation within a simulated Edge Computation network hosting a multitude of

devices including health, IoT, end-user and vehicle using a multi-stage learning

strategy, considering various factors and constraints using approximate Q-

Learning and Experience Replay.

The model pre-emptively and continuously adapts to the network, ensuring the

best QoS for users and efficient utilisation of networked resources. Measured

results include task failure rate, task initialisation time and energy

consumption. The tiers are divided into the following stages: WAN aware RL,

LAN aware RL and Edge-aware RL. In each stage, limited parameters were

provided, including historical data of utilization. Different algorithms were

employed by the three tiers based on contextual data deemed most beneficial

to each respective tier, thereby preventing unnecessary data transmission

among linked tiers.

Finally, the algorithm is be compared with other solutions and critiqued on its

efficiency. Results are analysed, and an evaluation presented. The research

work includes a detailed literature review, giving background of the topic of

MEC and its contextual application within larger network environments. This

combined with the results of the simulation show a promising outlook on how

multi-layer and tiered AI algorithms can promises enhancement of

orchestration methods.

 8

1.3 Major Contributions to Knowledge
The goal of this thesis is to prove the application of RL within resource

allocation in MEC. Existing academic efforts fail to explore the depths of the

topic, whilst disregarding the dynamic network conditions of a RAN. We will

use several techniques to simulate a 5G network realistically and monitor how

resources can be efficiently allocated whilst considering the range of

applications that MEC will be able to service.

The three major contributions of this research are:

§ Testing and validation of current available simulations for an MEC
environment:
This thesis compares the numerous network simulation software to discover

the optimal solution for simulating MECs. Each simulation software is

measured in efficiency for the various modules incorporated within the

simulator to ensure that accurate simulation results are returned, like life

implementation. Not only is this step vital to ensuring the validity of the

research conducted over the course of this thesis, but it also is an important

first step to determining how the algorithms will be constructed and

variables to take into consideration when deciding simulation parameters.

Validity of simulation software is assured through testing of the integrity of

simulation software and accountability for the various aspects of the

network infrastructure.

§ Single Layer Reinforcement Learning application for MEC resource
allocation:

A RL algorithm is used to allocate network resources within the

orchestration module of the simulator, the goal of the algorithm is to

decrease latency whilst enhancing efficiency and reduce task failure rate

due to network usage. Numerous factors are taken into consideration such

as ensuring that offloading mechanisms are utilising the available networks

to an optimal degree and ensuring that task failure rates are reduced to the

lowest amount possible. The algorithm is compared with traditional

algorithms such as Round Robin as well as Greedy and results are

produced and evaluated. The initial algorithm greatly enhances allocation

 9

efficiency of MEC networks, ensuring that networks can offer improved

service levels with lower task failure rates.

§ Multi-layer Reinforcement Learning application within MEC
infrastructure:
A multi-layer algorithm is designed from the initial algorithm, considering

various stages of network infrastructure as well as previously generated Q

tables and replay memory, the algorithm is then enhanced with replay

memory and approximate Q function embedded within the neural network.

In addition to academic contributions, the outlined research has significant

non-academic impacts.

Firstly, the focus on refining and enhancing edge computation allocation within

the industry aligns with the development of 5G solutions, leading to improved

industry standards and solutions.

Secondly, advancements in communication technology resulting from this

research benefit various sectors and contribute to technological progress.

Thirdly, enabling a multitude of XaaS (Anything as a Service) offerings by

offloading computational power enhances the capabilities of mobile user

devices, promoting performance and longevity.

Lastly, allowing IoT devices to preserve precious battery life by offloading

computational tasks that adhere to both Quality of Service (QoS) and

differentiated service models supports a wide range of services from smart

cities to video streaming for end users.

 10

1.4 Thesis Structure
The description below outlines the overall structure of the thesis and the

purpose of each chapter:

1.5 Summary
This chapter provides an introduction of the topic and direction of the thesis,

covering the motivations and goals behind the research and presenting the

methodology that was used to cover the concept of MEC. An outline of the

thesis is also present that visualises how the thesis will proceed henceforth.

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 3
Simulator Design and

Comparison

Chapter 4
Reinforcement Learning in

Resource Allocation

Chapter 5
Multi Layer Reinforcement

Learning in Resource Allocation

Chapter 6
Results and analysis

Chapter 7
Conclusion and Future works

We discuss the various technologies being explored over the course
of this research in greater depth and definition, to ensure a

fundamental understanding of the subject matter

This chapter examines key academic efforts that have been closely
analyzed in the course of this research

We compare simulators shortlisted for this research and conclude
with the selection of the final simulator used for the implementation

of the algorithm

We develop and utilise an ε-greedy Q Learning algorithm to optimise
resource allocation in edge networks, testing in our selected

simulator, PureEdgeSim

We design and define parameters for our algorithm, pointing out the
constraints and mathematically defining the model

We discuss the results we obtained, and the conclusions drawn, as
well as some of the limitations of the research and what can be done

to improve the quality of the research and extend the results

This chapter summarizes the findings from our research and their
implications. It also offers conclusions and suggestions for future

research

 11

Chapter 2 Literature Review

2.1 Concept
Numerous gaps were found within the literature, indicated by academics

currently in the field as well as several articles and thesis written at the

time[13], [14].

The challenges presented below had not yet been addressed from the time of

discovery and even now, to the point of submission, research in the area is

lacking despite recent efforts to produce simulations, albeit their limited nature.

Gaps in the literature included but were not limited to:

• Lack of solidified specifications.

• The secretive nature of industry due to the emerging nature of the

technology which can hinder innovation due to lack of collaboration.

• Lack of defined goals – MEC.

• Lack of industrial examples.

• Lack of resource scheduling techniques.

• Backwards compatibility needs to be investigated, to ease the transition

of older network type to 5G.

• Broader definition of consumer-based services that will be available with

the integration of MEC (what does it offer consumers).

• Security concerns over cross-network architecture.

• Conformation of services provided to local government bodies.

Outside of academia, there are also concerns with industrial implementation

and one of the greatest factors is cost. Despite the numerous advantages of

MEC, there is a great amount of risk present to Mobile Network Operators

(MNOs). On the other hand, poorly planned infrastructure with retrospective

upgrades can significantly increase costs in any industry [15]. Contextual

awareness and current events indicate that because of the pandemic, more

network traffic than ever before has increased the demand for future-ready

 12

infrastructure[16], which can be observed in Figure 2.1 displaying a clear

upward trend in network data usage.

In this context, optimisation of the networking infrastructure would not be

limited to the software elements, as it is also possible to explore how

optimisation techniques can lead to optimal placement of RATs to ensure that

coverage is optimal, particularly where large language models can be

integrated to assist in understanding the changes within society and pre-

emptively predict the placement of infrastructure.

Figure 2.1. Global mobile network data traffic and growth

As the implementation on the technology is still in its infancy, the issues are

critical, but many of them stem from previous generations of communication

that must be tackled. Thankfully, experience from previous generations gives

us foresight into some of the obstacles that must be acknowledged and

resolved before a standard can be fully realized despite current efforts by the

standardisation group ETSI [4].

 13

With the expected launch of the first iteration of 5G in late 2018/early 2019

along with the introduction of release 16 (3GPP), major corporations (Huawei,

Vodafone, Nokia, General Electric etc) with stakes in MEC technology began

developing proof of concept and technical specifications available for both

network providers and content developers to ensure timely release of services

to recover the research and development efforts and investments of the

technology as soon as possible.

Some efforts have already been realized [17] within testing environments

however, due to the upgrades that are promised with 5G, this technology is

expected to be a large contributor to the future of networking, where devices

can be untethered and lightweight, integrating only the use of a mobile

networking card and subscription to a service.

This approach will also split the market again, to devices that are extremely

cheap to buy however require a subscription that can vary depending on the

needs of a user allowing for larger varieties of products to be offered.

Industry standards must also conform to end user requirements as well as

developers and service providers creating an Integrated Communications

Environment (ICE).

Thus, to future proof this research and maintain its validity across both industry

and academia, following a set of best practises across disciplines is necessary

and pre-emptive research is necessary for achieving such a task. Observing

design principles, such as those outlined in Figure 2.2.

 14

2.2 Literature identification
Ensuring selection of appropriate literature was crucial in the success of the

project therefore, a method was devised and employed to ensure validity and

impact of the existing literature, helping in efficient identification of appropriate

sources, and helping to determine research questions within scope of the

project by ensuring that requirements are met and procedures followed such

as algorithm creation as observed in Figure 2.2.

In this case, the Chambers Dictionary is used to define research as: a careful

search; a systematic investigation towards increasing the sum of knowledge in

a particular field of interest. With systematic being the key term here, I hoped

to use my accumulated knowledge and experience within academia and

industry to ensure that my approach was extensible, so that I could update the

thesis over the duration of my PhD without formulating conclusions that were

subject to change, but also ensure that the journey of the technology was

accurately recorded over the course of the research to give us a better of how

technologies mature with implementation, analogous to the construct of a large

Figure 2.2. Algorithm creation flowchart

 15

building site, I was sure that despite the meticulous planning involved, some

retrospective changes would have to be made.

Due to the extensive amount of literature related to the research topic, it was

important to find an effective method to filter the information required to ensure

relevancy as well as direction. The approach used to uncover the most relevant

information for this research was based on the “subject pearl growing” [18]

style which identifies subjects and keywords within an electronic database

including citations within the selected piece. This method identifies all relevant

literature that was used to inspire and create the key literature found to be most

valid during any research, leading to an enhanced understanding of the

subject. The literature was then sorted based on relevancy and impact within

the field, to ensure validity.

The databases used were IEEE, Google Scholar, SAGE, Emerald Fulltext,

Elsevier, EBSCOhost and JSTOR with a focus on IEEE as the main source of

information regarding academic writing on the subject. Additional sources

utilised for discovery and analysis of key literature were online industrial

newsletters, websites containing insight from industry insiders and academic

blogs.

A Systematic review process was used, implementing colour coding for various

aspects of a text and their contribution towards my research, by determining

the sections that extracts of the text related most to therefore, eliminating the

need for re-visiting previously read articles and having the ability to identify

key elements of a text with greater efficiency and speed.

To ensure up-to-date knowledge of any advances in the field, notifications were

set upon the IEEE mobile application with relevant keywords which were also

amended over the duration of the thesis with the formulation of new

technologies and services that accompanied MEC. It was vital to ensure that

changes in specifications and revisions as well as any new academic sources

were incorporated. To this end, key words, found in TABLE 2.1 were recorded

 16

from the establishment of the thesis until the completion of the research,

keeping up with requirements of validity and reliability of the thesis and

contribution towards academia and industry. Some other assistive

technologies included within the composition of this research were Mendeley

Desktop and Web importer for storing academic sources and referencing

purposes and versioning control, cross-referencing and bibliography

implemented with MS Word.

TABLE 2.1
KEY SEARCH TERMS

Key Search Terms Source
From
Date

To
Date

Ongoing Research
Status

Fog
IEEE, Google

Scholar, JSTOR
21/10/18 1/3/19 Discontinued

Smart Cities
IEEE, Google

Scholar, JSTOR
21/10/18 1/3/19 Discontinued

IoT
IEEE, Google

Scholar, JSTOR
21/10/18 1/3/19 Discontinued

(Offloaded)Computing
IEEE, Google

Scholar, JSTOR
21/10/18 Present Active

Cloud
IEEE, Google

Scholar, JSTOR
21/10/18 1/3/19 Temporarily suspended

Computation
IEEE, Google

Scholar, JSTOR
18/11/18 1/3/19 Temporarily suspended

(Cache) Allocation
IEEE, Google

Scholar, JSTOR
18/11/18 Present Active

SDN
IEEE, Google

Scholar, JSTOR
18/11/18 Present Active

NFV
IEEE, Google

Scholar, JSTOR
18/11/18 Present Active

Edge
IEEE, Google

Scholar, JSTOR
2/1/18 Present Active

EC
IEEE, Google

Scholar, JSTOR
2/1/18 Present Active

MEC
IEEE, Google

Scholar, JSTOR
2/1/18 Present Active

5G
IEEE, Google

Scholar, JSTOR
2/1/18 Present Active

Orchestration
IEEE, Google

Scholar, JSTOR
3/6/18 Present Active

 17

From the conception of this research, as with any venture in cutting-edge

technologies I am sure, the solutions proposed by researchers have mutated

and evolved to consider their peers’ solution offerings and combining them to

present the best solution. This section aims to select those key pieces of

literature that contributed heavily to the final formulation of this research.

We explore the most important works’ available in this subject area and analyse

them deeply to give us a better understanding of how to approach the problems

this research is aimed at tackling.

Key literature was identified with the table above, those that contained 3 or

more of the key search terms were marked as ‘Highly Valuable’ and scrutinised

closely, each piece of literature and source was analysed and graded from 1

(considerable value) – 5 (highly valuable) indicating its value for the research.

The concept of subject pearl growing was then applied to those that were found

highly valuable to ensure that any contributing literature/references and

subsequently concepts were not neglected. This approach ensured validity of

the research and reliability, as it assessed each piece of literature individually

and attempted to learn from those found highly valuable by assessing the

source and direction of the researcher as well as any influence they may have

come across over the course of their research.

Virtualisation efforts were first introduced in computing architecture to provide

scalability and intelligence, supporting a more agile platform. It has since

grown to be an integral part of OS and dedicated platform providers alike [19]

reporting figures such as 73% reductions in time spent on routine

administrative tasks within IT. The ability to automate is one of the key offerings

of virtualisation but businesses often employ virtualised technologies to

‘dramatically lower costs’ [20]. VMware, a key operator in this industry, claims

that 92% of executives plan to increase their virtualisation efforts to benefit

from the added security, agility, and implementation of computational tasks

within businesses. The benefits of virtualisation, however, extend far beyond

business applications as we will discuss below.

 18

Orchestration, in its technical application, refers to effective management of

resources using a dedicated resource to handle incoming and outgoing

requests to applications, network slices etc. Using an orchestration module

(software based), dedicated resources can be utilised to ensure that requests

made by an application are being handled in the most optimised way, with

some level of QoS, thanks to optimisation algorithms that can be implemented

as well as integrated with ML. Academic efforts to implement optimised

orchestration within virtualised applications across various sectors have

exponentially increased in popularity, thus portraying the rapid development

prospects of virtualisation techniques [21], [10], [22], [23].

2.3 Edge Computing, Mobile Edge Computing and Cloud Computing
Despite its introduction in several forms over the previous few years, EC and

MEC has persisted as a concept that has the potential to be a fundamental cog

in the communications architecture. The technology is diverse in its

application, but it is safe to say that the core concepts have remained largely

the same and loosely encompass Distributed Computing.

The idea is to disperse larger-scale computation closer to where it is required,

i.e., closer to user entities, to enable applications to offload computational

tasks and enable a plethora of applications that would normally not be feasible

with local computation, i.e. the EU device. In turn, support for larger-scale

cloudlet computing becomes a reality for latency-sensitive applications and

settings.

It offers the ability to vend computational services, data storage and other

hardware needs of individuals and enterprises. Like any business, the cost of

the hardware and implementation of the architecture is eventually planned to

be offset by the number of customers that are available for service provider.

As the product grows in service offerings and coverage, the customer base

increases, eventually turning the loss made by network providers on

implementation into a profit accumulated from thousands of subscribers.

 19

Figure 2.3 can help visualise the focus in the subject area where the number

of publications, particularly those containing the keywords ‘Mobile Edge

Computing’, are weighed against the publication’s year of the academic journal

article, and we observe that they are exponentially increasing year by year.

Figure 2.3. Plot of Mobile Edge Computing journal papers

The prospects of the technology were discovered to be of great importance

due to the explosive growth of cloud technology, steadily becoming one of the

dominating factors in modern technology today.

Corporate giants like Google, Amazon and Microsoft started to focus on ‘x as

a Service’ technologies that would allow greater monetisation of services and

product offerings but also prevent piracy, offering legitimate consumers

constant updates and everlasting marketing from the company said software

was purchased from. The success and demand for larger cloud provider

services then branched into a range of products such as computation, storage,

and networking.

0

200

400

600

800

1000

1200

1400

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022
FR

EQ
U

EN
CY

PUBLICATION YEAR

TOTAL MOBILE EDGE COMPUTING ACADEMIC PAPERS (IEEE)

 20

According to [24], Edge Computing is an umbrella term used to refer to a family

of relevant technologies such as Cloudlet, Mobile Cloud Computing, Fog

Computing and Multi-Access Edge Computing, synonymous with Mobile Edge

Computing and mobile cloud systems (aka MEC)[25].

In addition, a concept called Industrial Edge Computing (IEC) also exists

offering a central solution for devices to work in tandem and improve inter-

communication[26]. Each of the technologies are based on the engineering

principle that computational resources are better located on the edge where

demand is physically present, and network traffic can be circumvented [24].

The authors of [27] state that Edge Computing is the control and management

of a standalone end-point device individually or through a set of software

functions in the fog domain. Bearing in mind that each of the technologies

produce their own set of advantages and are distinctly different in application.

When discussing vertical scalability, Cloud Computing can provide access from

virtually anywhere providing that the end-user has an internet connection.

Our concern with this research is on the applications that require low-latency

support that Cloud Computing does not offer due to the variable hops that are

required to reach the centralised server.

Cloud computing offered a host of advantages and benefits, especially for

smaller corporations that required larger computational tasks that they may

have lacked the budget to host in-house paving the way for SaaS solutions

[28]. Despite the abundance of cloud computing services available, there were

a few issues present that limited the applications that could be offered to users.

Network congestion

• Most IoT devices function from a sensor, actuator mechanisms where

they are expected to make actionable decisions in near real-time for

some applications, severely limited by the number of hops that data must

traverse[29]

 21

Latency

• A great limiting factor to real-time applications, where human responses

are measured and required such as cloud-gaming services or remote

operation of robots/vehicles.

Performance

• Reliance on the network can be severely restrict the QoS provided by

cloud application providers [29]

Vendor Lock-in

• Though the uptake of virtualisation within the network has become

commonplace, proprietary technologies still exist which can limit

flexibility and further increase costs.

Limited Resource Control

• Cloud computing often offers limited control over the underlying

hardware and software which can introduce issues such as resource

contention and noisy neighbour problems [29]

One of the mainstream applications of the technology was cloud gaming,

introduced back in 2004 within Japan, even though average speeds were 861

kbps at the time [30].

Naturally, the lack of a steady connection and preposterous amounts of latency

meant that the movement failed at the time, yet the industry persisted with

several attempts at cloud gaming up until the very present time with companies

like Google offering products like Google Stadia. Currently, efforts persist

within the Cloud gaming industry including offerings such as GeForce Now by

GPU manufacturer Nvidia and Boosteroid.

The difference between conventional cloud computing and the, then radical,

edge computing concepts were the fact that conventional cloud computation

occurs when a client requests a list of VMs to be created within a datacentre

which are then assigned numerous tasks to run. The tasks themselves are

considered as a bunch of operations, subsequently keeping the VMs busy for

 22

hours, making the flow of operation like renting VMs for a limited time until a

certain task has been completed.

The most notable difference is that cloud computing utilises the resources a lot

quicker and within shorter bursts of time akin to service providers in mobile

networks using OFDM on a receiving end of the transmitter [24], users also

had access to computational power far beyond that of which was cost-efficient

locally, giving vendors viable market opportunity.

To tackle some of the limitations mentioned above, researchers deployed

various systems and methodologies for traditional cloud systems including

middleware solutions such as Hadoop, Apache HAMA, StorkCloud, etc. [25].

The demand for Edge Computation emerged with the increase in popularity of

low-latency applications [13]. Service providers then began looking towards

implementation within their frameworks and architectures to meet user

requirements.

Applications of the technology vary in use but used in conjunction with the

correct infrastructure, near real-time processing of information as well as inter-

communication and limited local awareness are some of the possibilities on

offer. The industry was made aware of applications that would require rapid

communication with edge nodes for devices that were limited in computational

power.

These devices could then make decisions on how to prioritise local data

computation against data which could be offloaded to the nearest edge node

which could provide extended computational power, autonomous vehicles are

said to be one of the use cases in this scenario.

Services like Netflix then began utilising Edge Computing on a smaller scale,

using local caching to serve metropolitan areas of larger scales with their own

dedicated servers offering the capability of storing and retaining product

 23

offerings (in this case movies/shows) that a particular locale may be interested

in. Introduction of a different multiplexing method was expected; however,

some small changes were also predicted/requested from the RAT. Namely, the

inclusion of edge servers within micro base stations to offer services for a small

cell of users. Some of these future use cases can be found in TABLE 2.2:

TABLE 2.2
EDGE USE CASES

Use Case Requirements

Autonomous Vehicles
Self-driving vehicles need the ability to communicate
with servers without traversing many hops along the

network to provide real-time processing of data.

Industrial Automation

Edge computation offers the ability to create machines

that can sense, detect, and learn things without having

to be programmed.

Augmented Reality and Virtual Reality
Can be used to train employees, help those less able

and visualise new concepts.

Retail
Attract customers using technological implementation of
AR/VR/MR technologies.

Connected Homes and Offices

Due to the centralised nature of the smart home
systems, tasks take some seconds to happen as

opposed to utilising edge computing where tasks would

be in near real-time.

Predictive Maintenance

Edge computing can help detect machine faults within

an industrial setting, allowing maintenance of expensive
machinery circumventing repair and replacement.

Video Monitoring

Video cameras can collect a vast amount of data within
a very short amount of time, especially when you

consider facial monitoring and motion detection which

requires further computation and data storage.

Software Defined Networking

Even SDN requires local computation to determine best

routing path, as the decisions are made on a Virtual
Machine that hosts the SDN controller, computing

abilities are a requirement

Blockchain

Blockchain technology requires ledgers to be stored

within each device that can host the ledger. For the

blockchain application to function, computation is
required.

Fog Computing

Fog computing uses edge devices that connect to a
distributed computing model, these models can harness

underused cycles across the edge and then continue to

the cloud (zdnet edge computing uses).

 24

Each of the applications rely on low latency and transfer of high data rates,

paving the way for further opportunities and enhanced applications. Further

use cases involve situations where devices in a particular locale are

contributing towards the same goals, and an edge orchestrator can signal each

connected device to process a chunk of information which can then be

consolidated.

Use cases such as these are particularly helpful for academic efforts where a

group can leverage the combined processing power of all connected devices,

including the edge node, to achieve a set of objectives or simulate an

experiment with greater efficiency than when assigning a singular device.

The concept itself is recognised as one of the key emerging technologies

alongside NFV and SDN but can utilise both to offer enhanced services, aiding

to advance the mobile broadband network into a programmable world and

contributing to satisfying the demanding requirements of 5G in terms of

expected throughput, latency, scalability and automation [13].

MEC itself is based heavily on NFV, the primary difference however, is the fact

that the MEC framework enables applications to run at the edge of the network

whereas NFV is focused on network functions. Thus, each concept can be used

synonymously to aid and abet the other within the infrastructure subsidising

both OpEx and CapEx for organisations.

The introduction of MEC opens services to end-users as well as adjacent

industries giving them the ability to deliver their mission-critical applications

over a mobile network. Opening a host of fresh business opportunities and new

use cases across multiple sectors.

Thus, standardising the technology before implementation will benefit both the

industry and end consumers greatly as an open programmable interface will

encourage co-operation between network providers further subsidising costs

and ensuring that a vast number of customers of mobile operators can be

 25

served [13]. Use cases for Edge can branch in several sectors, in technical and

business usage as well as others, some examples can be found in Figure 2.4.

Figure 2.4. Web diagram of use cases in Edge Computing

2.3.1 MEC Infrastructure and Architecture

Taking into consideration that latency is one of the most crucial offerings of

5G, it is pivotal to ensure that MEC is correctly implemented within the network

architecture to offer maximum benefit.

To this end, it is also important for the scope of this research to understand

where MEC fits in within the infrastructure and the reasons therein.

As this research is dedicated to the implementation of MEC within a 5G

environment, we will review some of the unique elements and attributes that a

5G Mobile Network Environment (MNE) will provide access to, allowing us to

determine the difference in energy costs as well as impact on performance that

a 5G MNE will bring.

 26

2.3.2 Specifications in MEC

Notable key literature that required analysis was the official ETSI

documentation on Mobile Edge Computing, formulated because of numerous

conferences and found on etsi.org. The material was split, referring primarily

to Multi-access Edge Computing (MEC) use cases and requirements,

frameworks, and general principles for MEC Service APIs [31], [32].

Introduced to ETSI in February 2016, a portion of the ETSI website is dedicated

to what ETSI refers to as Multi-Access Edge Computing, effectively

incorporating the use of both RAN and WANs. The concept is defined as

offering application developers and content providers cloud-computing

capabilities and IT service environments at the edge of the network where the

environments are characterized by ultra-low-latency, due to being located at

the network edge, and high bandwidth as well as real-time access to radio

network information and services towards mobile subscribers, enterprises, and

vertical segments.

This section will highlight the standardisation efforts made by ETSI and 3GPP,

we will then cross-reference the changes with Key Literature found within this

chapter to make observations. Indeed, we must expect that some of the

literature identified over the course of the research itself will inevitably help to

shape the standards set out by both ETSI and 3GPP. Respectively, I will also

attempt to critically de-construct the arguments as well as implementations set

out by any identified key literature over the course of this research. To this end,

I will begin with the deconstruction of the ETSI use cases and requirements

[33] as we can safely assume that they will lay out the foundations and

frameworks for any standards that are established.

Dissemination of the specifications of MEC will also allow us to further validate

our simulation software to ensure the expectations of standards are met,

further validating our research. The specifications define the architectural

framework, application enablement framework and platform components for

 27

MEC deployments which in turn help outline the key functional components,

their interactions, and the standardised interfaces and APIs that enable

communication between MEC mechanisms for security, resource management,

and interoperability in MEC environments.

The key components tackled within the specification are as follow:

• ETSI MEC Architecture: ETSI has defined a high-level MEC architecture

that outlines the main functional components and their interactions. This

architecture provides a standardized framework for implementing MEC

solutions and enables interoperability among different vendors.

• MEC Application Enablement Framework: ETSI specifies a framework

for developing MEC applications, which are software applications that

can leverage the MEC infrastructure. This framework defines interfaces

and APIs for communication between applications and the underlying

MEC platform.

• MEC Platform: ETSI defines the MEC platform as the infrastructure that

hosts MEC applications. It includes various components such as MEC

hosts, MEC services, and MEC system management functions. The MEC

platform provides compute, storage, and networking capabilities at the

edge of the network.

• MEC Service APIs: ETSI has standardized a set of APIs that enable MEC

applications to interact with the MEC platform. These APIs cover

functions such as location, mobility management, radio network

information, context information, and media services. By using these

APIs, MEC applications can access real-time network and context

information, enabling them to make intelligent decisions and deliver low-

latency services.

• MEC Security: ETSI specifications address the security aspects of MEC

deployments. They define security mechanisms and guidelines for

protecting MEC infrastructure and applications. This includes

authentication and authorization mechanisms, secure communication

protocols, and threat mitigation strategies.

• MEC Resource Management: ETSI provides specifications for managing

the resources in the MEC environment. This includes resource

 28

discovery, allocation, and optimization mechanisms to efficiently utilize

the available compute, storage, and network resources. It also covers

aspects like load balancing, scaling, and lifecycle management of MEC

applications.

• Interoperability and Standardization: ETSI emphasizes interoperability

and standardization in MEC deployments. By defining common

interfaces, protocols, and data models, ETSI enables different MEC

components and solutions from multiple vendors to work together

seamlessly. This promotes a vibrant MEC ecosystem and facilitates the

development of innovative edge applications.

For this research, we want to ensure that our simulation environments as well

as any experimentation conducted is as true as possible to the expectations of

ETSI, we will have to bear in mind that the novel nature of the research

alongside the young, yet growing interest of the subject matter may result in

some requirements not being met.

In true ETSI fashion, specification sheets are continuously evolving and

branching out to include other subdomains of the technology. To ensure that

our simulator continued to meet the requirements as outlined by ETSI, we will

continue to monitor these changes, and this chapter will be updated to include

them.

After exploration of current requirements expected by the technology, early

implementations, either in simulation form or conceptual stages of physical

form were located on academic sites. Below, we will attempt to summarise

some of the most prominent features of the specifications released by ETSI for

MEC.

ETSI GS MEC 002 (2018-10) Use Cases and Requirements

The standards defined by ETSI in the aforementioned documents were

considered during the formulation of methods and acquisition of results

portrayed in this thesis. The goal was to ensure that any methods devised

 29

conformed to industry standards and academic standards to enhance

contribution.

ETSI GS MEC 002 contains a variety of use cases, outlining some of the finer

details and potential products that will result from Mobile Edge Computing.

Numerous key figures are presented detailing subscriber-based routing as well

as video content delivery. ETSI’s vision differs from solutions currently in place

for services such as Netflix and Amazon by taking into consideration the

5GCoreConnect.

Several future developments will be enabled/enhanced with the inclusion of

Edge Computing, including but not limited to; Autonomous Vehicles, Large

Sensor Networks, VR, AR, MR, Connected Cities, Edge-node caching etc. [1].

The main benefit of Edge Computing is the fact that information can be both

centralized and stored locally, mechanisms for preliminary processing of

information can be implemented within the edge node, filtering unnecessary

information provided by sensors and only synchronised at scheduled periods.

This removes the redundancy of having constant communication with a server

many hops away in turn decreasing latency.

This also decreases the amount of unnecessary information to be processed

before actuators can be given instructions on how to react after the information

provided by the sensors has been processed.

This approach is of particular interest to companies like General Electrical, who

have large scale sensor networks within their energy grids which must be

carefully monitored, response times to emergencies and accidents is

significantly decreased as the information can be monitored through a central

location, but an edge node can act according to information within a shorter

period of time, mitigating risks [2].

 30

ETSI GS MEC 003 (2019-01) Framework and Reference Architecture

Framework standards mentioned in ETSI MEC 003 [34] outline some of the

basic requirements regarding the expected framework of EC integration within

a variety of networks including wired and RAN. In a nutshell the MEC host is

expected to operate at a layer above the underlying network and the first port

of call for an end device will be to communicate with MEC system level

management before being directed towards the MEC host level.

Figure 2.5 portrays the basic architectural requirements of an MEC

implementation. The MEC Host Level layer contains a host and its own

orchestrator, which can be either a physical or virtual entity to provide

computing and storage resources at the edge of the network. MEC applications

can be deployed and executed at the host level, using the available resources

Figure 2.5. MEC Framework architecture

 31

to deliver EC services. Its primary purpose is to provide management and

utilisation of resources at its own individual level.

On the other hand, the MEC system level refers to the overall MEC

infrastructure that encompasses multiple hosts. As observed in Figure 2.6, the

architecture utilises elements of existing VNF and VMs to host several

applications on integrated or embedded CPUs and other computational

hardware to host several applications which can then be used to serve users.

In this case, the system level management is used to allocate resources and

direct users to appropriate services based on requirements and needs.

A variant architecture for MEC is also included which further elaborates on

functions expected to run on an MEC device, incorporating the use of

Orchestrators in both MEC applications and VNFs to enhance the utilisation of

resources and cater to user service requirements more comprehensively.

 Figure 2.6. VNF Architecture (as proposed by ETSI)

 32

Figure 2.6 also portrays the underlying functions expected to appear in MEC

including color-coded relationships, it also proposes an architecture, seen in

TABLE 2.3 [34], where the multi-access edge system will be deployed within

an NFV environment as a VNF [34]. To implement this architecture, several

orchestrator functions are strategically placed throughout the framework. A

User is referred to the operations support system (OSS), the request is then

parsed through the MEC application orchestrator (MEAO) and the NFVO.

TABLE 2.3
MEC COMPONENTS

Element Definition

MEC Host

Contains the MEC platform and virtualisation infrastructure, provides

compute, storage, and network resources for the MEC applications.

Includes a data plane that executes traffic rules received by the MEC
platform and routes traffic among applications and various network

functions.

MEC Platform

Responsible for offering an environment where MEC applications can

discover, advertise, consume, and offer MEC services. Receives traffic

rules from the MEC platform manager, applications, and services,
subsequently instructing the data plane to act on the provided

instructions.

MEC Application

Run as virtual machines atop the virtualisation infrastructure provided by

the MEC host, offering the ability to interact with MEC platform to

consume and provide MEC services. MEC applications can also interact
with MEC platform in some cases to provide support procedures related

to application lifecycles.

MAEO

Multi-access edge orchestrator provides core functionality of the MEC

system level management. It is responsible for maintaining an overall

view of the MEC system, providing a platform for application packages,
selecting appropriate MEC host(s) for application instantiation based no

hardware constraints and triggering applications.

OSS

Operating Support System receives requests via the CFS portal and

device applications and acts according to instructions. Can also receive

and act on requests for relocation of applications between external clouds
and MEC systems.

User application
lifecycle

management proxy

A UA is an MEC application instantiated in the MEC system to respond to

a user request via application running on a user device.

 33

ETSI GS MEC 009 V2.1.1 (2019-01) General principles for MEC Service APIs

The general principles conference paper, ETSI GS MEC 009, delves into

further detail regarding communication protocols and other guidelines industry

and developers should follow to meet the requirements of standardisation as

defined by ETSI. The standards share many similarities with existing TCP

framework between Representational State Transfer (REST) clients and REST

servers. Communication of API is handled using HTTP protocols and methods,

utilising HTTP headers and simplifying communication between server and

client.

An important point to be noted here is that subscription types and statuses can

be updated and posted. This also assists in centralization as a component in a

distributed system must keep all involved components informed of any changes

of state within a component at any given time.

All HTTP functionality is not necessarily included, rather a subset is used for

simplified commands such as the POST method, 204 NO CONTENT method

etc. Lists are represented in JavaScript Object Notation (JSON).

Further detail is included on how naming conventions should be handled as

well as error codes however, in this research this will not be explored in depth.

It will be touched upon further in the research to ensure that any development

work conducted conforms to industry expectations to future-proof the research

rather than backdating to meet requirements and standards for any further work

conducted.

ETSI GS MEC 003 V2.2.1 (2020-12)

The final version of the reference architecture and framework explored for this

research was the most recent iteration of the framework. The expected model

of the framework itself largely retains the same expectations where Figure 2.5

portrays the structure. The framework is grouped into system level, host level

and network level entities. New clauses introduced to the document highlight

 34

the addition of new architectural assumptions; the MEC is deployed as a VNF,

MEC applications appear as VNFs towards the ETSI NFV MANO components,

the Virtualisation infrastructure is deployed as an NFVI and is managed by a

VIM as defined by ETSI GS NFV 002, the MEC Platform Manager (MEPM) is

replaced by a MEC Platform Manager.

NFV (MEPM-V) that delegates the VNF lifecycle management to one or more

VNF managers (VNFM), and the MEC Orchestrator (MEO) is replaced by a

MEC Application Orchestrator (MEAO) that relies on the NFV Orchestrator

(NFVO) for resources orchestration and for orchestration of the set of MEC

application VNFs as one or more NFV Network Services (NSs).

In summary, the MEC functionality is expected to be entirely virtualised is

nature, including the orchestration methods however, they are now further

divided in sub-components to ease organisation and implementation.

2.4 SDN and NFV

2.4.1 SDN

Originating from OpenFlow, SDN was introduced as a framework or a set of

solutions for enhancing networking speeds as well as offering a standardised

method of future-proofing networks for greater efficiency, programmability,

centralisation, and open-standards [35].

Explosive growth in the use of online services and net based application has

exponentially increased network traffic and demands. Network operators need

to focus on minimising costs whilst increasing efficiency. In addition, MNOs are

also focusing on increased efforts to implement the technology and offload to

non-dedicated hardware managed systems thus enabling virtual network

functions such as firewalls and load balancers to be software oriented [36].

Unfortunately, legacy network architectures and their management tools were

not designed to cope with such highly elastic demand which ultimately limits

 35

the operator’s ability to cost-effectively respond to the scale, performance, and

user experience requirements of today’s dynamic environments, or to roll out

differentiated services.

It is a framework that reduces dependency on underlying hardware, offering

separate control and data planes, which allows for greater control and

manipulation of the routing protocols and all packet forwarding functions. This

means that for hardware life cycles have been drastically improved, where

clients can now purchase a service that provides constant updates to the

firmware and software rather than purchasing new hardware after longer

periods of time.

This allows for the rapid amplification in the time it takes to apply network

upgrades, both for intranets and the internet. Companies can purchase

solutions knowing that they will not be outdated in performance within a short

time frame, which in turn allows for a greater range of services to be offered.

5G will be leveraging SDN technologies within the network backbone to

maximize network performance and by doing so, it will enable many more

services that the network providers can then offer to the user.

MEC will be using the extremely low latencies offered by 5G services to provide

an unprecedented network experience that can be utilised by many different

industries and sectors around the world including but not limited to, public and

private health services, emergency services, disaster control, city-wide

management services, local governments etc.

For the reasons previously mentioned, research is well under way to provide

the best foundations for 5G communication and accelerate deployment. The

following issues have yet to be tackled in the context of MEC and integration

of Edge Computing within the wider network environment [7].

 36

A useful distinction between the technologies can be found in Figure 2.7,

indicating the different uses for each respective technology as well as the

relationship between them[27] as well as the features they share.

Figure 2.7. Features shared between Edge, Fog, and Cloud computing

2.4.2 NFV

NFV also plays a critical role in enabling said technologies, virtualising network

functions brings greater control to network operators and industries alike,

paving way for 5G networking and improved network management. Some of

the features expected with the utilisation of NFV include agnostic network

access, mobile edge computing, and 5G network slicing where grouped

subscriber or machine-to-machine (M2M) and IoT devices are service by

separate, virtualised core networks.

5G will merge IT and Cloud into mobile core networks methods for accessing

subscriber information efficiently via the use of edge networks to reduce data

latency and intelligently place network resources for reduced backhaul.

This will be achieved by placing subscriber profiles as close as possible to the

user, thus making services and profiles almost as mobile as the subscriber and

device [37]. Various key components function as one to enable these services

such as established anchor points that can be defined for a specific network

Cloud

 37

slice of common subscriber’s devices. Subsequently, anchor switches provide

network traffic routing between SDN anchor points [37].

2.5 Reinforcement Learning and Deep Reinforcement Learning
As we attempt to explore the most effective solution to optimise resource

allocation within an EC environment, it is important to understand the most

effective techniques being utilised today.

Figure 2.8. Deep reinforcement learning algorithm families

One such instance is RL, which provides software-defined agents the ability to

learn the best actions possible in virtual environments to attain their goals. This

is achieved by uniting function approximation and target optimisation, mapping

state-action pairs to expected rewards and aiming to achieve the highest

reward to the desired objective[38] [39].

In RL, a learning agent is not told which actions to take but instead, attempts

to yield the highest reward, according to [40], ‘trial-and-error search and

delayed reward’ are the two most important distinguishing features of

reinforcement learning, more examples of which are depicted in Figure 2.8.

 38

Reinforcement learning distinguishes itself from both, supervised and

unsupervised learning as it does not conform to requiring a dataset of trained

examples before the learning process begins (supervised learning), nor does

it adhere to finding structure hidden in collections of unlabelled data

(unsupervised learning).

Appropriate to the problem at hand, reinforcement learning tackles issues

where a problem is interactive, and the environment and data is constantly

evolving. This kind of learning appropriately fits the issues presented with

ongoing optimisation solving and provides the algorithm with the tools

necessary to continuously respond to changes within the environment and

optimise for them [41].

The concept of Reinforcement Learning combines artificial neural networks

with a reinforcement learning architecture to enable software-defined agents

to learn the best approach to take in a virtual environment to achieve set goals

[39].

As observed in the popular Netflix documentary about achievements and

breakthroughs in AI, neural networks can combine computer vision, machine

translation and time series prediction whilst utilising reinforcement learning to

enable algorithms that can achieve superhuman abilities and outperform even

the best of human abilities in complex games like Go[42], where complex

ExplorationExploitation

Figure 2.9. RL Trade-off

 39

decision-making skills and considering all future moves are vital to ensure

victory.

RL algorithms start off with minimum configuration, essentially a blank state,

and continue to develop the best approach, incorporating deep neural

networks, by using a reward-based points system to encourage what is defined

as a good decision and penalise what is defined as a bad one as shown in

Figure 2.9.

According to [39], there are numerous industrial applications for the technology

which are already being used in industrial operations and supply chains to

optimise factories and warehouse logistics.

Arising from the human interaction with the physical world, RL can be

analogised as an infant using trial and error to understand the implications of

their actions within the natural world, using a learning approach to understand

good practises within the environment, with no explicit teacher present to teach

right from wrong [40].

Unfortunately, this does present a trade-off between exploration and

exploitation, where the learning agent inevitably fails as it must explore a

variety of approaches and actions before it can begin to favour those which

yield the best reward.

It is emphasised in [40], that RL is different from ‘unsupervised learning’, which

usually consists of finding structure hidden in collections of unlabelled data.

RL instead, attempts to maximise the reward signal instead of attempting to

find hidden structures, therefore one the primary drawbacks for RL is that it

can take a significantly long period of time to train an algorithm from the

beginning [43], take for example the case of learning an Atari game, where an

RL agent can take the equivalent of weeks of playing to reach the performance

of a human counterpart that has played only 15 minutes. Naturally, in the

context of this research.

 40

Any undue delays within formulating the best approach in resource allocation

would be highly unwelcome as efficiency and speed are highly important

factors when optimisation is an objective.

2.5.1 Machine Learning

Considered a sub-field of AI, Machine Learning (ML) is one of the leading types

of AI, it is designed around the question of how to develop software agents that

improve automatically with experience, enabling more accurate prediction of

results without specific programming and is broken down into the following

categories found in TABLE 2.4 [44]:

TABLE 2.4
THE THREE TYPES OF MACHINE LEARNING

Type of ML Description

Supervised
Learning

Learns from a set of training data of labelled examples
provided by a domain expert who has the role of an external
supervisor in the learning process. Learns by using the

provided data set to generalise responses to cases not
included in the training set.

Unsupervised

Learning

Learns by finding hidden patterns and knowledge in a

dataset without an external supervisory application present.

Reinforcement

Learning

Learns by using guided methods defined by a specific

objective that the application requires to meet an end. It’s
analogous to how a child learns using a trial-and-error

method by using their observational skills by attempting and
subsequently observing the consequences of each action.

A grading/points-based system is then used to score a
positive/negative action for subsequent responses.

Efforts in Machine Learning have increased significantly, particularly in

infrastructure and back-end implementations such as MEC, SDN and NFV [45].

Some common algorithms that define a prediction model are Decision tree,

 41

Neural networks, Gaussian Processes, Hidden Markov models, Dynamic

Bayesian network, etc. that are discussed within the literature review sections

of this research.

2.5.2 Bellman Equation

The Bellman equation, Eq. (2.1), is a fundamental concept in the field of

dynamic programming and reinforcement learning. It provides a recursive

relationship for calculating the optimal value function in a Markov decision

process (MDP).

The Bellman equation captures the principle of optimality, stating that the

optimal value of a state can be expressed in terms of the optimal values of its

successor states. By iteratively applying the Bellman equation to all states in

the MDP, the optimal value function can be computed.

𝑉(𝑠) = 𝑚𝑎𝑥
!
(𝑅(𝑠, 𝑎) + 𝛾-𝑃(𝑠, 𝑎, 𝑠")𝑉(𝑠")

#!
 (2.1)

TABLE 2.5
DENOTATIONS FOR BELLMAN EQUATION

Denotation Description

𝑽(𝒔)
The value of being in a particular

state

𝒔 A particular state

𝒂 An action

𝒔! Next state (from s)

𝜸 Discount factor

𝑹(𝒔, 𝒂) Reward function

The Bellman equation is a foundational concept used in various algorithms,

such as value iteration and policy iteration, to solve MDPs and determine the

optimal policy. It provides a mathematical framework for reasoning about

 42

decision-making problems under uncertainty and forms the basis for many

reinforcement learning algorithms.

2.5.3 Markov Decision Process

Reinforcement learning algorithms are typically modelled as Markov Decision

Process (MDP), a mathematical framework based off the Markov Chain, for

describing stochastic control processes.

The goal, as outlined in Figure 2.10. Mathematically, a Markov decision

process can be defined as the 4-tuple 𝑀 =	 〈𝑆, 𝐴, 𝑃, 𝑅〉 with the following

attributes, further elaborated in TABLE 2.6:

TABLE 2.6
MDP VARIABLE TABLE

Denotations

𝑺 The State Space, a finite set of all possible
states of the system.

𝑨 The Action Space, a finite set of actions that the
agent can perform.

𝑨𝒔 The set of actions available from the state 𝑠.

𝑷 The set of transition probabilities from one state

to another for any given action

𝑷𝒂(𝒔, 𝒔!)
The probability to go to state 𝑠! from state 𝑠 by

action 𝑎.

𝑹

The reward function to determine the value of
the immediate reward obtained after transition

from state 𝑠 to state 𝑠 by action 𝑎, denoted by

𝑅"(𝑠, 𝑠!).

𝝅
Policy, a mapping from the state space to the

probabilities of choosing a different state.

Figure 2.10. The Markov Decision Process

𝑆$

𝐴$

𝑅$

 43

From state 𝑠$ at time slot 𝑡, the agent will select the action 𝑎$ to change state

𝑠$%&	according to 𝜋 to receive reward 𝑟$%&. The goal of the MDP is to find the

optimal policy 𝜋 ∗ to maximise the cumulative 𝑅. The cumulative reward of state

𝑠$	can be defined as the sum of the geometrically discounted future state

rewards using the 𝛾 factor (0	 ≤ 𝛾	 ≤ 1) as defined below in the general RL

equation(2.2) [46]:

																𝑅$ =-𝛾$𝑟1𝑥(𝑡), 𝑎(𝑡)3
%

$&'

 (2.2)

TABLE 2.7

RL EQUATION DENOTATION TABLE

Denotation

𝛄 Discount factor

𝒓 Reward

𝒙 Task

𝒂 Agent

𝒕 Timeslot

2.5.4 Dynamic Programming (DP)

DP is a technique or solving complex problems by breaking it up into simple

subproblems and computing then subsequently storing the solutions. If a

subproblem re-occurs, the stored solution is used.

Policy iteration and value iteration are both dynamic programming methods

used to solve Markov Decision Processes (MDPs) to find the optimal policy.

While they both aim to achieve the same goal, they differ in their approaches

and computational processes.

 44

Value Iteration
Begin with a random value function and then optimise it iteratively.

Figure 2.11. Value iteration diagram

Breakdown of the value iteration algorithm as seen above in Figure 2.11:

• Initialization: Initialize the value function 𝑉(𝑠) arbitrarily for all states 𝑠	 ∈ 𝑆.

Commonly, 𝑉(𝑠) is initialized to zero for all states.

• Iterative Update: For each state𝑠, update the value function using the

Bellman equation:

𝑉()*(𝑠) = 	
𝑚𝑎𝑥
𝑎 -𝑃(𝑠" ∣ 𝑠, 𝑎) 5	𝑅(𝑠, 𝑎, 𝑠") + 	𝛾𝑉(+#!,6

#!
 (2.3)

Here, 𝑉'(𝑠) is the value function at iteration 𝑘 , 𝑉'%&(𝑠) is the updated value

function and 𝛾 is the discount factor, as seen in the general policy iteration Eq.

2.3.

• Convergence Check: Check if the value function has converged, i.e., if the

maximum change in the value function across all states is less than a small

threshold 𝜃. If not, repeat iterative update.

Start Initialise random
value function V (s)

For each state,
calculate Q (s,a)

Since V(s) = Max
Q(s,a) update the

value function with
max value of Q(s,a)

If V(s) is optimalStop Yes

No

 45

• Policy Extraction: Once the value function converges, extract the optimal

policy 𝜋 ∗	by choosing the action that maximizes the expected value as seen in

Policy Extraction Eq. 2.4:

𝜋∗(#) = arg𝑚𝑎𝑥𝑎 -𝑃(𝑠" ∣ 𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠") + 	𝛾𝑉(𝑠)]
#!

(2.4)

Policy Iteration
Decide which actions the agents need to take or initialise first, create a value

table according to policy viewed in Figure 2.12.

Figure 2.12. Policy Iteration Diagram

The data fed to the algorithm can be either continuous or discrete. This

research can benefit from the culmination of both data types and use the FDT

logic to return discrete variables or perform more finite data analysis from

continuous data monitoring.

The added complexity of monitoring a continuous data stream would increase

the time taken to implement and perform tasks in our implementation of the

optimisation algorithm but deciding where and when to use the different types

Start Initialise random
policy (𝜋)

calculate value
function V(S) for the

policy

If V(S) is optimalFind improved policyStop No

Yes

 46

of data was imperative to ensure that maximum operational efficiency of the

final algorithm.

As observed in [47], an FDT model uses classification of data to label a

category of data giving the algorithm a chance to interpret the data using real-

world variables and effectively reducing the dataset into types as allocated by

the FDT.

TABLE 2.8
ADVANTAGES OF CONTINUOUS VS DISCRETE DATA

Continuous Data Discrete Data

Inferences can be made with few data points –

valid analysis can be performed with small
samples.

More data points (a larger sample) needed to

make an equivalent inference.

Smaller samples are usually less expensive to
gather.

Larger samples are usually more expensive to
gather

High sensitivity (how close to or far from a
target)

Low sensitivity (good/bad, pass/fail)

Variety of analysis options that can offer insight
into the sources of variation

Limited options for analysis, with little indication
of sources of variation

As observed in TABLE 2.8, continuous data monitoring has numerous

advantages over its counterpart and provides detailed insight and can prove

beneficial for industrial applications as demonstrated by the comparison

presented in Figure 2.15.

Despite the obvious advantages of using a continuous model, more data will

inevitably impact the efficiency of the algorithm and impede its ability to make

rapid decisions whilst taxing the computational resources more. Therefore, a

balance between the use of continuous and discrete data must be used where

a centralised controller that can host and monitor the continuous data,

portrayed in Figure 2.14, to provide a base or template for the RL algorithm

would be the best approach to use in this case.

Using a system that can leverage the greater amount of detail provided by the

continuous data to supply finite control over the algorithm would give the

 47

algorithm the ability to rapidly take actions from discrete data (as shown in

Figure 2.13) received in real-time, adjusting to the networks needs dynamically

whilst always learning from the continuous data to enhance efficiency of the

RL model and use transfer learning to share this across all nodes giving them

the opportunity to benefit from the detailed insights provided.

Placement of the respective data models would be crucial in visualising and

developing the ideal algorithm therefore, planning was crucial at this stage to

understand the process of how it would be implemented.

Figure 2.14. Example of continuous data

Figure 2.13. Example of Discrete Data

 48

 Non-rapid turnover Macro parameters Rapid turnover

E
xa

m
pl

es

Link speed

Routing tables

Other network

conditions

Closest serving

cloud/exchange for

service types

Fuzzification results

of devices

connected

of services active

D
es

cr
ip

tio
n

Includes parameters

that require a lower

refresh rate and will

generally be

retained longer

Parameters that will be

occasionally re-assessed

to ensure that the

algorithm is functioning at

its optimum

Parameters that will

require constant

redress to ensure

that algorithm is

optimal

Figure 2.15. Algorithm planning stage one

2.5.5 Fuzzy Logic

Despite its introduction, or at least conception by Prof. Lotfi Zadeh in 1965 [48],

[49], the concept of Fuzzy Logic did not gain traction within academia until

1993. The professor himself mentions that acceptance of his theory took many

years to come to fruition and be recognised in academia. As observed in [48],

one the earliest works based on fuzzy logic, there were barely a few

references, all based on similar timespans to cite from.

In fact, we find that fuzzy logic and its application in both ML and AI efforts

started to gain traction in the late 2000’s (based of IEEE database search

ranging from earliest publication date to current point in time). It is visibly clear

that the concept of Fuzzy Logic is beginning to play its role in modern

Rapid
successive

changes
Incremental

changes

Small
increment
al changes

 49

distributed computing, AI and Machine Learning alike effectively tripling the

popularity of the concept.

The intention of Fuzzy Logic is to model logical reasoning with imprecise

statements using vague statements to provide a determinable outcome that a

machine can then easily classify [50]. It uses a repository or set of many-valued

logics and then stipulates the truth value of logically compounded propositions.

Its core functionality is based on the concept of the ‘gray area’ between the

black and white or binary true and false values where 1 represents ‘Completely

true’ and 0 represents ‘Completely false’ mapped on the Universe of Discourse,

a set of entities where variables may range.

Fuzzy logic applies in a variety of engineering efforts, including systems in

aerospace, civil, automotive, support, chemical, natural language processing,

and modern control systems. Its goal is to mimic how a human being would

make decisions, at computational speeds (much faster), providing the ability to

use Fuzzy Logic in Neural Networks. Creating further distinction and

classification between simply true and simply false gives the machine the

ability to lean towards better decision making whilst learning from an ever-

increasing dataset. An interesting comparison found in [51], details the

difference between probability and Fuzzy Logic found in TABLE 2.9:

TABLE 2.9
FUZZY LOGIC VS PROBABILITY

Fuzzy Logic Probability

The goal of Fuzzy Logic is to try and

capture the essential concept of

vagueness

Probability is associated with events

and not facts, and those events will

either occur or not

Fuzzy Logic captures the meaning

of partial truth

Probability theory captures partial

knowledge

Fuzzy Logic takes truth degree as a

mathematical basis

Probability is a mathematical model

of ignorance

 50

A clearer example, stated by Shlomo Zilberstein [51], ‘Fuzzy logic is a

technique for representing and manipulating uncertain information. In the more

traditional propositional logic, each fact or proposition, such as ‘it will rain

tomorrow,’ must be either true or false.

Like probability theory, fuzzy logic attaches numeric values between 0 and 1

to each proposition to represent uncertainty. But whereas probability theory

measures how likely the proposition is to be correct, fuzzy logic measures the

degree to which the proposition is correct, as noted in TABLE 2.9

FUZZY LOGIC VS PROBABILITY.

The architecture, shown in Figure 2.16, has the following format to ‘fuzzify’

crisp inputs to an output format that can follow conventional rules, giving AI, or

other applications, logical reasoning according to rules applied to parameters

[52].

Therefore, we can conclude that Fuzzy sets are used to gain degrees of truth

in a variable data set within a Universe of Discourse. The outputted data can

be implemented within AI and ML applications alike to provide learning

mechanisms within applications for perpetual improvement. Unfortunately,

Fuzzy Logic does come with some disadvantages such as:

Intelligence

Rules

DefuzzifierFuzzifierCRISP

INPUT

CRISP

OUTPUT

Figure 2.16. Fuzzy logic architecture

 51

• Output data is not always accurate as the results are perceived based

on assumptions.

• Fuzzy Logic systems cannot recognise ML & neural network type

patterns.

• Setting exact fuzzy rules and membership functions is inherently difficult.

• Often confused with probability theory

It does, however, suit our application needs perfectly. Particularly when used

for orchestrated learning methods, as we will find when dissecting the

simulation software used in this research. It will ultimately provide an

automated management system using the intuition of a real-world

administrator, letting the network adapt dynamically to user’s needs [24].

Fuzzy sets are the sets of information within a universe of discourse that do

not have a defined membership property, whereas classical sets have a binary

membership value of either 1 or 0 [53]. Denoted by µΑ(x), Eq. 2.5 and 2.6

compare the difference between a classic set membership and Fuzzy Set:

The aforementioned equations portray the difference between the binary

relationships in classic set membership where there is no middle ground,

against the non-binary relationship that can be utilised with a varying degree

of membership.

Defining fuzzy variables occurs in the declared .fcl file, which the simulator

can then process to ensure flexibility within the process. This helps to make a

more readable format for the end-user as well as apply dynamic changes

according to the policy parameters. Rules can be applied using Fuzzy Logic in

χ0(𝑥)  =   ?	1, 𝑥	 = 	𝐴,
	0, 𝑥	 ≠ 	𝐴.

(2.5)

µ0 :  𝑋  →  [0,1] (2.6)

 52

the following manner, which in turn makes the process human friendly and

easier to read as seen in TABLE 2.10:

TABLE 2.10
TABLE OF RULES EXAMPLE FOR ‘FUZZIFICATION’

Rule No. Rule

Rule 1
IF wan IS low AND tasklength IS low AND destinationUsage IS

low AND delay IS low THEN offload IS edge;

Rule 2
IF wan IS low AND tasklength IS low AND destinationUsage IS

low AND delay IS medium THEN offload IS edge;

Rule N …

For our use case, fuzzification values as declared in the .fcl file can be

iteratively updated on simulation completion, thereby enhancing our initial

state. Said values can also be communicated across to a cloud orchestration

function to dedicate learning tasks acquired from local MEC hosts and adapt

to wider use case scenarios where similar environments can be provided with

initial values acquired from live usage of the system.

2.6 Resource allocation with Reinforcement Learning

2.6.1 A Q Learning approach

One of the more recent works closely related to the research proposed can be

found in Robles-Enciso, et al. [54]. Despite the focus on Task Assignment

Problem (TAP), [54] propose an RL-ML enabled technique that gives edge

agents the ability to query an upper-level agent to increase contextual

knowledge of the network environment to the actors involved, thus routing the

task in a more efficient manner and meeting the QoS requirements of the

individual tasks more accurately.

Several basic algorithms are implemented alongside a single layer and multi-

layer Q-learning algorithm to test the performance of RL with near-optimal

greedy algorithms, tasks are also offloaded to neighbouring devices for fog

offloading purposes within M2M environments. To address the TAP, [54] divide

 53

the main system into three separate layers proposed with an intermittent

connection and dynamic positioning. It is also proposed that the given layer

has the least latency but also the least computational capacity.

The subsequent layer is referred to as the Fog layer which offers both

intermediate latency and computational capacity, and finally the cloud layer

which offers the greatest computational capacity alongside the most latency.

Task characteristics are outlined with the capabilities of the simulator to define

the parameters of each task as well as the remaining characters for the network

nodes to ensure a controlled environment during simulation[47].

A device is given several options to allocate a task including local execution

(𝑎 = 0), send it to an adjacent node (𝑎 = 1), the fog layer (𝑎	 = 2) or the cloud

layer (𝑎	 = 3). A breakdown is visible in TABLE 2.11. An important point to be

noted here is that [54] do not consider a distributed computing cloud computing

model at the penultimate layer, therefore the cloud layer which consists of a

single device is the final call for a task to be executed. Additionally, a penalty

cost 𝛿 is allocated to (𝑎 = −1) should a task fail, alluding to the following

segmented function as shown in Eq. 2.7:

𝐶1,((𝑎) = 	

⎩
⎪
⎨

⎪
⎧ 𝐶1,(3 	𝑖𝑓	𝑎 = 0
𝐶1,(4 	𝑖𝑓	𝑎 = 1
𝐶1,(
5 	𝑖𝑓	𝑎 = 2

𝐶1,(6 	𝑖𝑓	𝑎 = 	3
	𝛿1	𝑖𝑓	𝑎 = 	−1	

 (2.7)

TABLE 2.11
TOTAL COSTS FOR OFFLOADING TASKS

Device Link Cost

Local N/A 𝐶!,#$ =	𝐿!,#$ +	𝛽𝛦!,#$

Edge Wireless 𝐶!,#% =	𝐿!,#% +	𝛽𝛦!,#%

Fog Wired 𝐶!,#
& =	𝐿!,#

& +	𝛽𝛦!,#
&

Cloud Wired 𝐶!,#' =	𝐿!,#' +	𝛽𝛦!,#'

 54

When a task is offloaded, the propagation times as well as latency and the

respective energy consumption is accounted for with wireless links to ensure

all costs are considered. The greedy algorithm is implemented as a control

method.

The computational complexity is 𝑂U|𝐷(| + Y𝐷)Y + |𝐷*|Z respectively, where 𝑑 =

	Device where the task originates, 𝐷(= Nearest Edge Device Set, 𝐷) =	Fog

server device set, 𝐷* =	Cloud device set, accordant tasks are denoted as 𝑡.

Ultimately, the heuristic value of each device is calculated using the following

formula where 𝛽 is defined as a weighting parameter to regulate the trade-off

between latency and consumption:

𝑚𝑖𝑛 = 𝜔7 	× 	
𝑡	49:#	. 𝑑$;
𝑑49:#

	× 	𝜙𝑑6:< (2.8)

TABLE 2.12

DENOTATIONS FOR HUERISTIC DEVICE VALUES

Denotations

𝝎𝒙 Different weighting constant for each set (𝜔(, 𝜔)	𝑎𝑛𝑑	𝜔*)

𝝓 Trade off constant between actual CPU usage and running tasks

The algorithm is constructed to offload the task assignment decision according

to the greedy policy as outlined, subsequently, two other algorithms are

constructed, a single layer reinforcement learning algorithm and a multi-layer

reinforcement learning algorithm based off the Markov Decision Process (MDP)

that we will explore further later over the course of this research.

The authors state their intention to use the Q-Learning algorithm, which

focuses on the optimisation of the action-value function (Q) using an iterative

update based on previous values and temporal difference as:

 55

𝑄(𝑠!, 𝑎!) = 𝑄(𝑠!, 𝑎!) + 𝛼[𝑅!"# + 𝛾	𝑚𝑎𝑥$(𝑄(𝑠!"#, 	𝑎%) − 𝑄(𝑠!, 𝑎!)] (2.9)

TABLE 2.13

DENOTATIONS TABLE FOR Q-LEARNING ALGORITHM

Denotations

𝒔𝒕 Current state

𝒂𝒕 Current action

𝜸 Discount factor

𝒂" Learning rate = {	0	 → 1}

Ultimately, a piecewise function is defined as where the second function

indicates the action to take in the event of a task failure, multiplying the defined

penalty by the given task’s parameters:

𝐶(=	 $
(𝑇)*+(−	𝑇,(-.(() + 𝛽𝑇)*)./0(

𝛿	 ∙ -(𝑇)*+(− 𝑇,(-.(() + 𝛽𝑇)*)./0(.

𝑇)*+(−	𝑇,(-.((< 	𝑇+1(
otherwise

(2.10)

Finally, a multi-layer algorithm is introduced where offloading decisions made

can also be transferred across to the overarching Fog/Mist layer, where

available computational power is greater. Using the previous algorithm

introduced[54], each device works independently using aggregated global

information with local information to make allocation decisions, however, the

biased view of the environment and lack of knowledge in the early stages of Q

Table generation was displaying lower performance in complex situations.

To address this shortcoming, the following approach is proposed for a multi-

layered algorithm that provides contextual global knowledge to the secondary

layer with the following structure:

 56

An additional action (𝐴 ∪ {4}) is introduced which denotes the offloading

process for a query in 𝐴	 ∈ 𝐴. As a result, each device manages its own

independent Q-Table which is locally trained and the upper layer agent will

subsequently be able to take advantage of the interactions with devices to

update and maintain a ‘global state’ as highlighted in Figure 2.17.

Results gathered portray that the multi-layered algorithm improves energy

consumption when compared to the control greedy algorithm whilst increasing

performance across the board including adding significantly to the success rate

of tasks completed when compared to the fixed and stable behaviour due to

the lack of dynamic components. As a result, the authors find that as the device

density increases, the multi-layered approach improves performance.

A Deep Q-network is proposed by Xiong, et al. [55] where multiple replay

memories are applied to enhance the learning process on each iteration of the

algorithm. Furthermore, action spaces are separated into two subspaces to

reduce the action space size. Their implementation is tested within a simulation

environment where an MEC system is deployed at the base station in a single-

cell cellular network as can be viewed in Figure 2.18.

Figure 2.17. Multi-layer offloading query process

 57

Resources are allocated to items in the job queue at each time slice, the

actions taken by the host are then passed on to the host level management

where a reinforcement learning algorithm can refine the allocation process and

assign rewards using the DQN algorithm devices by the team. This research is

limited to a single mobile-edge application within an industrial IoT environment

to optimise low-latency performance of resource allocation.

IoT devices are randomly deployed and are tasked to upload sensor data to

the network over M2M connectivity, where a single application is deployed for

simplicities sake, and the tests are focused on resource allocation.

Their research is based off [46], where Q learning is used for resource

allocation and tackling the offloading decision problem in an IoT edge network.

[56], where DQN-based strategic computation offloading algorithm for MEC

environment is used to minimise the long-term weighted sum of execution

delay.

To better understand resource allocation, it is imperative to comprehend how

tasks are queued at the orchestrator, as observed in Figure 2.19, provided by

Xiong, et al. explains how time-based resource allocation can be portrayed in

diagram coupled with its denotations.

Figure 2.18. System model

 58

To ensure minimum latency, Xiong, et al. propose dividing the action space in

two, and only observing earlier-arriving jobs to decrease long waiting times for

job scheduling derived from early research within resource management with

deep reinforcement learning [57].

It is further clarified that the allocation of computing resources 𝐶 is formulated

as a 𝑛* 	× 	𝑛$ matrix, where 𝑛* is the number of total computing resources on

the mobile edge host and 𝑛$ portrays the number of time slices in the sliding

window. Incidentally, each row of 𝐶 represents a computing resource 𝑐,! , 𝑖* 	 ∈

{	1,2, … , 𝑛*	} scheduled for allocation starting from the current time slice and

looking ahead 𝑛$ time slices into the future.

Additionally, each computing unit can hold a value of {	−1, 0, 1} representing

three different states: unavailable, available, or allocated. States are updated

accordingly when computing units are requested by the job waiting in the

queue.

Figure 2.19. Illustration of the state 𝑆 = (𝐶	, 𝑄, 𝑖#, 𝑛.$, 𝑛.%)

 59

TABLE 2.14.
DENOTATION TABLE FOR FIGURE. 20

To efficiently identify the multitude of use case scenarios within their simulation

software, [58] compare the use of ML in VEC against a multitude of different

competitor algorithms such as SMA, MAB and game-theory based vehicular

edge orchestration.

Tasks are offloaded to the target server in a probabilistic manner where the

probability of selecting all targets is the same. Although the use case in [58] is

applied in VEC, the usage of an ML based algorithm portrays improvement

within orchestration with the utilisation of reinforcement learning, particularly

when the service time of the task is greater than one second as can be viewed

in Figure 2.20.

Denotations

𝑪 Allocation of computing resources to jobs

𝑸 Observation part of job queue

𝒊𝝍 Adjusting indicator

𝒏k𝒄 Number of computing resources requested in the next timestep

𝒏k𝒃 Number of jobs in the backlog part of job queue

Figure 2.20. Histogram of service times

 60

The efficiency of the algorithm increases as the ecpected service time

increases over the number of tasks, particularly where service times are

greater than a second. This effect in the TAP is commonly seen across a

number of research efforts where ML is introduced to improve task

orchestration and resource allocation[45], [57], [59].

The authors observe however, that the evaluator can be misled in delay-loss

systems, so to ensure that an adequate service time is provided without loss

of successful tasks, a quality of experience formula Eq.(2.11, is defined which

considers both the service time and task loss. Thus, tasks that meet the service

time and yet fail are not considered succesful.

𝑄𝑜𝐸9 =	\

0,

]1 −
𝑇9 	− 	𝑅9
𝑅9

_ . (1 −	𝑆9),

1,

if 𝑇9 	≥ 2𝑅9

if 𝑅9 	< 𝑇9 	< 	 2𝑅9

if 𝑇9 	≤ 𝑅9

(2.11)

One of the notable works that aided in the earlier direction of my research was

[60], my initial approach was to discover literature that had utilised the

simulator that I intended to use for research purposes so that I could further

understand it’s implementation and limitations.

This led me to Zhang, et al.’s proposed research using a double deep Q-

Learning model applied in EdgeCloudSim and focusing heavily on energy-

efficient scheduling. Unfortunately, I was yet to understand the heavy

implications of energy-efficiency when integrating EC into the 5G network

architecture, however, it was apparent that this study was of vital importance

when considering the implications of efficient scheduling.

Numerous academic articles as well as research has been conducted utilising

EdgeCloudSim as a framework for further testing of algorithmic implementation

in various modules as included in EdgeCloudSim.

 61

Literature to be noted in this case is the aforementioned Deep Q-Learning by

Zhang, et al. [3] which attempts to implement an energy-efficient solution for

resource allocation utilising deep learning. Despite the research’s emphasis on

energy consumption, the authors attempt to implement an energy-efficient

algorithm that utilises less power when a task is allocated by measuring

frequency and voltage using DVFS as proposed in the following diagram by

Zhang, et al.[60]:

The proposed involves creating and testing a learning algorithm that stores and

reacts to every action processed and carried out, it then optimises the task for

efficient energy consumption, utilising less power as a result and using 2%-

2.4% less energy. This improved efficiency can be applied to always-on IoT

devices or indeed, as in this case, be used to prolong battery life for user

devices.

The premises of the research begin with the analysis and exploration of how

computation is completed, Zhang, et al. propose that within a lab environment,

the following portrays the energy consumption of a single end-user ‘labtop’

[60].

These figures, though general in nature, must be taken as an approximation,

despite the article being dated 2018, power efficiency within the ECE industry

Figure 2.21. Learning scheme for double deep q-learning model

 62

as well as adoption of more efficient technologies such as SSD, as well as

omission of the RAM modules within a device prove that our authors have not

taken all aspects of the energy consumption in a single device, into

consideration.

As this was one of the earlier academic articles approached over the course of

this research, it was apparent that energy-efficiency was to become an integral

part of this research over its duration. The use of DVFS algorithms suggested

that the goal was to optimise for energy-efficiency rather than a scalable

network environment. During their testing, Zhang, et al. broke down the key

components that utilise power within a device as seen in Figure 2.22.

Research aims are to tackle limitations in energy consumption on both user

and client ends and it is indicated that serious implications apply when edge

servers reach capacity and begin to fail tasks, especially in government or

time-sensitive applications[60]. However, when considering that 5G will offer

the ability to produce layers that differentiated services can operate on, some

of the main concerns posed in the research are alleviated [61].

The algorithm proposed in this research is being applied at the infrastructure

level as seen in although not explored within the scope of their research,

Zhang, et al. indicate the identification of QoS requirements posted by UEs

using EC, such as worst-case execution times WCET, and subsequently

DVD
7% LCD

8%

HDD
11%

CPU
31%

GPU
20%

FAN
11%

WiFi
12%

Figure 2.22. General power consumption of a 'labtop'

 63

completing the tasks using an energy-efficient approach. The research is built

on existing literature but uses a combined learning model that overcomes

limitations within discrete system states, allowing for continuous adaptation of

the network model without having to expand the Q-table size to recompute

optimum performance values.

To formulate the algorithm, Zhang, et al. use the following approach to define

the task and energy models [60]. To keep this research on track, the energy

model, including CMOS based processor energy consumption of 70nm

technology will be intentionally omitted, primarily to avoid constrained variables

and secondly, at the time of writing, current-gen technology utilises a 14nm

process and power-consumption values have changed significantly. This does

not however, undermine the research presented by Zhang, et al. as MNOs do

not upgrade their infrastructure yearly, but as this research is exploring

architecture that is yet to be installed/leveraged, it is safe to assume that it

won’t be done on outdated technology [62].

The variables collected from the models discussed above are supplied as

inputs to the Q-Learning model, where double deep Q-learning method is

applied to the variables to generate two Q-network models: the generated Q-

network U𝑄(𝑠, 𝑎 ∶ 	𝜃)Zand the target Q-network U𝑄(𝑠, 𝑎 ∶ 	 𝜃1)Z. A rectified linear

units (ReLU) function is used as the activation function as it is more efficient

for gradient propagation.

2.6.2 Cache allocation and Computational offloading

In their research, Ndikumana et, al. present two scenario’s that they wish to

tackle; drones used in large swarms to broadcast professional sport activities,

and send live stream videos and medical imaging, where edge-hosted

resources allow rapid access [63]. Their proposed model suggests a lone MEC

server, restricted from other network resources, which must maximise resource

utilisation in a contained network environment, akin to models within an

industrial setting aim to optimise usage without relying on additional, external

resources.

 64

The system model used [63], consisted of MEC servers located at the RAT’s

which are then linked to each other and finally synchronised to a centralised

data centre. They also suggest that each MEC hosts a RAT (Resource

Allocation Table). Each table stores information of resources available to the

architecture, and continuously update at regular time intervals.

This static approach works well where workloads and expectations of streams

of data are predictable within the scope of its applications. In the case scenario

described by [63], the key factor in the research is that the Edge Servers

collaborate to process requests and update one another using RATs (Resource

Allocation Tables). The weighted payment framework allows the MNO to further

classify requests from the UE by exchanging updated RAT at 𝛥$.

This works well for organisations and establishments where repeatability of

tasks is greater however, does not fit a dynamic metropolitan model that can

serve as underlying architecture for a 5G environment offered to the public. Its

implementation is also limited by the complexity of the model and becomes

unsuitable for true optimisation where constraints are not only limited to cache

size and computational resources.

A further point to be noted is the redundancy introduced in line 2 of the

algorithm where values are initialised upon each update, no doubt to pave way

for convergence [64] and remove unpredictability from the results of the

algorithm however, use of such techniques may introduce latency if each

update calls for re-initialisation of values and losing key information that could

assist with a ML approach coupled with continuous data acquisition methods

[45].

One means to circumvent this loss of data, could be to find the difference

between the values and log said information, forming a trend chart over time

allowing the system to pre-emptively estimate network conditions. [65], where

such techniques are employed, employ the use of such a predictive model

within their IDTM algorithm using augmented backlogs as an input variable,

 65

giving the system the ability to pre-empt the backlog queue, offering to solve

for a worst-case scenario.

To facilitate this methodology, an anomaly detection mechanism, amongst

other challenges, must also be overcome to ensure that the system is not

acting on false or anomalous figures [66] introducing complexity and in turn,

latency into the functionality. The approach taken by [63] also lacks the

advantages gained from concepts such as Reinforcement Learning (RL)

providing MNOs perpetual systems that require less maintenance and

management and encourage the network to learn from past interactions to

ensure that the network is always operating at its peak potential [67].

The methods outlined by [63] and [68] both function on the same underlying

principle, neighbouring nodes adapt to frequently requested content according

to location and attempt to duplicate content fewer hops away from the UE. This

in turn leads to reduced delay when accessing content, and reduced traffic load

on the network [68].

Figure 2.23. Caching types compared [68]

The method used by [63] works well but not as intended by the research.

Despite the advantages offered when resources are cached, the goal of MEC

is to offload computation to servers a single hop away to service low-latency

applications and turnover data in rapid succession.

 66

This doesn’t mean however, that the authors of [63] were wrong in their

approach, collaborative caching has contributed to QoS offered by many ‘as-

a-service’ companies including Netflix [69]. In fact, according to [68], caching

in both UMTS and LTE networks has been proven to reduce mobile traffic by

one to two thirds, comparisons of which can be seen in Figure 2.23, where

cache types are compared in different locations in the network, and CCN

caching reduces network load and drastically increases performance with

greater utilisation whilst reducing delays.

2.6.3 Stochastic Gradient Descent

The authors of [70] explicitly and comprehensively tackle the application of ML

within dynamic resource allocation, also bearing into account the impact of the

learning algorithm within the simulated delay. Of further interest, is the fact that

the author’s make it a point to question the efficiency and performance of the

algorithm as a standalone ML algorithm as opposed to solely when it is applied

within context.

This approach is particularly useful as within any realm, there is always room

for improvement and the authors acknowledge that the quality of each

component involved, directly affects the quality of the outcome. Opting to use

a supervised learning method, a Stochastic Gradient Descent (SGD), used for

large-scale and sparse machine learning problems, is implemented on the

edge server, as found below:

𝑄(𝑤) =
1
𝑛
-𝑄9(𝑤)
=

9&*

 (2.12)

𝑤 ∶= w− η∇𝑄(ω) = ω −
η
𝑛
-∇𝑄9(ω)
=

9&*

 (2.13)

 67

SGD is primarily an optimisation technique used to train models where training

steps (also known as learning rate in machine learning) are dictated by 𝜂, and

steps can be limited to avoid taking into consideration the entire dataset

therefore, decreasing the time taken for the algorithm to produce a response

in exchange for accuracy.

To avoid looping through the same data, a shuffle of the dataset is introduced

within the first stage of the algorithm, and the algorithm is repeated to provide

a convergence to produce the output.

The network model used to test the efficiency of the algorithm consists of a

single edge server located at P which is in turn connected to sensors(K) and

the model used is stochastic in nature, leveraging the use of Lyapunov

optimisation without assuming any prior knowledge of data.

2.7 Summary
Determining the correct algorithm was of vital importance in the formulation of

this research. We explored the use of Reinforcement Learning (RL) to provide

and subsequent key concepts.

This chapter examined key academic efforts that were closely analysed during

this research. These efforts encompassed foundational discoveries and

technologies that underpinned the intelligence of current technologies, as well

as potential enhancements to the network infrastructure and hardware we used

in our daily lives.

The chapter also delved into pertinent literature, past and present, to guide the

research direction and the selection of the most suitable technologies for our

optimization algorithm.

 68

Chapter 3 Simulator Comparison and Design
The following chapter contains detailed comparison of the simulators

shortlisted for this research and concludes with the selection of the final

simulator used for the implementation of the algorithm formulated over the

course of this research.

3.1 Introduction
As proposed by [71], the use of a simulator was the most advantageous

approach to take for the purpose of this research, namely due to the high costs

involved that would stop most students in their tracks, and the convenience of

conducting real-time tests with rapid turnover on any modifications that may be

required. Thus, ensuring that the research had a good starting point meant that

several simulation software had to be compared of which one would emerge

the victor in operability and academic viability.

Advantages of simulation include:

Controlled

• Ensuring that our study does risk or damage any live/active systems.

Reproducible

• Where we can easily reproduce our scenarios and conduct them under

the same conditions.

Cost-effective

• Ensuring that our study is not costly to conduct and therefore can be

refined as many times as required. Additionally, no proprietary hardware

is required.

Time efficient
• Simulation times can be increased to multiples of real-time

implementation, providing results over longer time periods without the

wait.

Flexible
• Can adapt to numerous testing scenarios rapidly.

 69

TABLE 3.1.
DETAILED FEATURE LIST OF SIMULATION SOFTWARE

Software: Features:

Network Simulation 3

Mature application capable of simulating numerous network environments

Advantages:

• Free for research and educational use

• Aligned with the simulation needs of modern development

Disadvantages:
o Code based development, which in turn makes it harder to

visualize a network and implement changes

CloudSim

Provides a generalized and extensible framework to simulate cloud-based

environments.

Advantages:

• Provides a generalized and extensible framework that enables

seamless modelling, simulation and experimentation of Cloud
computing infrastructures and application services

Disadvantages:

o Limited set of tools and applications

iFogsim

Designed to simulate Fog and Edge environments and created as an

enhancement of CloudSim.

Advantages:

• Specialized for modelling fog environments and for evaluation of

resource management and scheduling policies

Disadvantages:

o Complex interface and clunky controls

GNS3

Network simulation tool that provides a Graphical User Interface.

Advantages:

• Allows for quick modification of network elements

Disadvantages:

o Low integration with other applications

Qualnet

Network simulation tool with a GUI.
Advantages:

• Comprehensive modelling and simulation of real-world scenarios

• Both wired and wireless networks can be easily built using GUI

Disadvantages:

o Not an open-source software
o Paid license

Due to the ever-increasing popularity of the subject, possibly owed to the

limited roll-out of 5G, a number of scholars, hobbyists and even some

corporations have been working on or funding open-source initiatives for

 70

developers around the globe to contribute to while enhancing their own

research or meeting their ends (no doubt to monetise on them once the time

comes) [72].

Several companies began and continue development of open-source network

simulation software, all which lack Edge Computing features but are mature in

their network simulation capabilities. Many of the simulators mentioned in

TABLE 3.1 have a GUI along with their CLI to accommodate ease of use.

Unfortunately, for the purpose of this research however, they do not support or

offer dedicated cloud-based simulation.

After the initial intention of utilising GNS3 for simulating an edge computing

environment, further research revealed that a purpose made simulator had

been created by researchers from Bogazici University, Istanbul [73]. This was

acknowledged to be an ideal simulator to build upon for the purpose of my

research by the review conducted by [11].

The works conducted by Svorobej, et al. compare 7 different edge/fog

simulation tools, their synonymous nature paves way for comparison between

the tools as fog computing was the term originally coined by Cisco for cloud

computation at the edge of the network [11].

Svorobej, et al. found that EdgeCloudSim contains the most accurate

simulation tools for recreation of an MEC environment yet lacks scalability.

Naturally, over the course of the literature and due to the open-source nature

of the software created by Sonmez, et al. [73] the simulator is constantly being

improved and contributed to by researchers.

Thus, in its current state, scalability features have been implemented allowing

for the test of several hundred devices in a simulated edge environment where

each UE simulated by the software is allocated a random task that is offloaded

to the network edge [73]. In an update to my research, a simulator based on

the initial findings of [73] was subsequently released[74] which will be

discussed later in this research.

 71

TABLE 3.2.
FURTHER SIMULATION SOFTWARE EFFORTS

Simulator Features Interface License

Antidote (NRE Labs)

Combines a network

emulator with a

presentation

framework

CLI and GUI Open source

Cloonix

Simple network

emulator with FTP

abilities, can spawn

QEMU-KVM

CLI Open source

CORE
Network emulator and

virtualization platform
CLI Open source

EVE-NG
Network emulation

platform with GUI
GUI Open source

IMUNES

Integrated

Multiprotocol Network

Emulator/Simulator

CLI and GUI Open source

Kathara
Lightweight network

emulation tool
CLI Open source

Mininet

Emulator for rapid

prototyping of SDN

networks

CLI Open source

NS-3
Discrete-event network

simulator
CLI Open source

VNX and VNUML

Virtual Network

experimentation and

Network User Mode

Linux

CLI Open source

Containernet
Fork of mininet, allows

for the use of docker
containers

CLI Open source

Knet network simulator

Uses docker containers
to build network nodes

and Open vSwitch to

create switches. Has a
CLI and web interface

and incorporates SDN

CLI Open source

 72

Educational Network
Simulator

Simple network

simulator designed for

educating young adults

 Open source

Labtainers

Uses Docker

containers and has
many prepared labs for

cybersecurity

CLI Open source

Cnet network simulator

Enables development

and experimentation

with a variety of
network protocols like

WAN, LAN, and WLAN

CLI Open beta

NetMirage

Allows real time code

testing for IP

applications

CLI Open beta

ESCAPE (Extensible

Service ChAin

Prototyping
Environment)

Supports development

of several parts of the
service chaining

architecture including

VNF

CLI Open source

OMNeT++

Discrete event

simulator and INET
Framework simulator

for both wireless and

mobile networks

CLI Open source

Netsim
Network simulator for

Rust programmers
CLI Licensed

VIMINAL
Linux based network

simulator
CLI Open source

5GPy

Python based 5G

simulator with Fog
Computing

CLI Open source

TABLE 3.2 outlines several efforts to simulate containerised network

applications. These were worth a mention due to the sudden surge in industry

efforts to implement VNFs into application development. There are several

advantages to this approach, not only does it simplify repeatability and

modification of VMs that can be scaled easily, but it also allows software

updates in a shorter time span. Applications such as Docker and Kubernetes

have become accepted in wide stream web-applications and SaaS services

[75], [76], [77], [78].

 73

As highlighted above, the purpose of this research was to use a dynamic

approach in the discovery of research software, where a testing scenario was

devised but did not rely heavily on the simulation software being used. By using

an approach akin to SDN and VNF concepts of decoupling [79] the variables

to be tested from the simulation software, I was given the freedom to implement

my approach on the highest bidder, or in this case the best simulator, available

at the time of testing.

To achieve this, I ensured that I had devised a testing scenario that would

largely remain unchanged over the course of this thesis until I was ready to

discover results. Instead, my time and efforts were spent on researching the

literature on my subject area.

This approach gave me the opportunity to discover improved simulation

software along the course of this research, which in turn were implemented

within the thesis after simple and repeatable tests were conducted on said

simulators.

Unfortunately, this approach did also have drawbacks, namely that I would

have to test every simulator and compare their features to find what would work

best for this research project.

3.2 Requirements for MEC and Simulator Selection

3.2.1 MEC Requirements Review

To form the simulator selection, requirements must first be reviewed for MEC:

• Low/Intermittent connectivity

o Bandwidth and associated high cost of transferring data to the

cloud

o Low latency, such as closed loop interaction between machine

insights and actuators

o Immediacy of analysis

o Access to temporal data for real-time analytics

o Compliance, regulation, or cyber security constraints

 74

• Business Implications

• Predictive Maintenance

o Reducing costs

o Security assurance

o Product-to-service extension (new revenue streams)

• Energy efficient management

o Lower energy consumption

o Lower maintenance costs

o Higher reliability

• Smart Manufacturing

o Increased customer demands mean product service life is

dramatically reduced

• Customization of production modes

• Small quantity and multi-batch modes are beginning to replace high-

volume manufacturing

• Flexible device replacement

o Flexible adjustments to production plan

o Rapid deployment of new processes and models

3.2.2 Simulator Selection

TABLE 3.3 highlights open-source software that portrays good examples for

the framework of this research and can be manipulated to provide the

groundwork to create the proposed application capable of meeting the

requirements.

Further research conducted over the course of the thesis, paved way for the

discovery of more suitable applications that were in development stages with

incremental updates being introduced to add new features.

 75

Attributes FogNetSim++ iFogSim FogTorchII EdgeCloudSim IOTSim EmuFog Fogbed 5GPy PureEdgeSim

Computing

paradigm

Fog computing

(general)

Fog computing

(general)

Fog computing

(general)

Edge computing

(IoT)

Edge

computing
(IoT)

Fog

computing
(general)

Fog computing

(general)

5G Simulation PHY

layer

Edge

Computing(IoT)

Infrastructure and

network level

modelling

Distributed data

centres

Sensors
Fog nodes

Broker

Network links

Delay
Handovers

Bandwidth

Cloud data

centres
Sensors

Actuators

Fog devices

Network links
Delay

Network usage

Energy
consumption

Latency

Bandwidth

Cloud data centres

Network links

Edge servers

WLAN and LAN
delay

Bandwidth

Cloud data

centre

Latency
Bandwidth

Network links

Fog nodes

Routers

Virtual nodes

Switches

Instance API
Network links

PHY layer
simulation

Modular

Fronthaul

communication
support

Fog and Cloud

modules

Cloud data centres
Network links

Edge servers

WLAN and LAN

delay
Bandwidth

Enhanced

Orchestration

Application-level
modelling

Fog network

Data stream

Stream-

processing

Fog applications Mobile edge IoT Fog Fog network Fog, Cloud
Mobile, Cloud,
Edge, Fog, Mist

Resource
management

modelling

Resource
consumption

(RAM and CPU)

Resource
consumption

Power

consumption
Allocation

policies

Resource
consumption

(RAM and CPU)

Resource

consumption (RAM
and CPU)

Failure due to

mobility

Resource

consumption

(RAM, CPU,
and storage)

Workload

Resource
consumption

(RAM and CPU)

Bandwidth
Workload

Full infrastructure
including power

simulation

Ram, CPU, Energy,
Mobility, Network

conditions

Mobility Yes No No Yes No No No Yes Yes

Scalabil ity Yes No No No
Yes

(MadReduce)
No No Yes Yes

Date released Jan 2019 Oct 2016 Apr 2018 Sep 2018 Feb 2016 Sep 2017 Nov 2016 2020 2019 - current

Forked 3 83 3 127 Not available 7 2 2 60

Last updated Jan 2019 May 2017 Apr 2018 Nov 2020 Not available Sep 2020 Nov 2018 Apr 2020 December 2022

TABLE 3.3.
COMPARING FOG AND EDGE SIMULATORS

 76

3.3 CloudSim
As previously discussed, the introduction of any new software technologies

brings with it a host of simulators that can help to alleviate issues before real-

world implementation and deployment of said technology. Good engineering

practises dictate that a better understanding of a new solution can lead to rapid

evolution of technology and within networking applications, costs of

deployment can escalate quickly.

Simulation software can help encourage better understanding and

implementation of new solutions by giving software engineers the ability to

simulate their solution within a containerised environment designed to mimic

real-world implementation dependant on the amount of detail engineers wish

to determine. One such simulation solution developed to understand the

implementation of cloud technologies is CloudSim; a framework for modelling

and simulation of cloud computing infrastructures and services [80].

An initiative going as far back as 2002, CloudSim is an open-source cloud

environment simulation tool, formerly known as GRIDS Lab, developed by the

School of Computing and Information Systems, University of Melbourne,

Australia.

It has since been used for several academic articles and publications, research

efforts etc. which have undoubtedly led to numerous industrial implementations

over the years including sponsors the likes of Microsoft, Samsung, Huawei,

Lockheed Martin, Sun Microsystems, European Union etc. It has also led to a

few forks such as one of the simulation software’s that will be discussed in-

depth in later chapters.

In more recent and ongoing efforts, there have also been attempts to utilise

the simulator to tackle the ongoing COVID-19 pandemic [81] using Fog

Computing indicating the versatility and applicability of the technology as well

as its current and future relevance.

 77

The main functionalities, as listed on the website dedicated to the project are:

• Support for modelling and simulation of large-scale Cloud computing

data centres

• Support for modelling and simulation of virtualized server hosts, with

customizable policies for provisioning host resources to virtual machines

• Support for modelling and simulation of application containers

• Support for modelling and simulation of energy-aware computational

resources

• Support for modelling and simulation of data-center network topologies

and message-passing applications

• Support for modelling and simulation of federated clouds

• Support for dynamic insertion of simulation elements, stop and resume

of simulation.

• Support for user-defined policies for allocation of hosts to virtual

machines and policies for allocation of host resources to virtual

machines

Some of the additional characteristics, as indicated by [82] are as follow:

• Developed in Java, a widely used programming language

• Open source in nature, enabling contributions from the developer

community

• The first open-source specialised cloud simulation framework

• Provides great flexibility to create simulated scenarios, where each

scenario is modelled using Java

CloudSims biggest attraction, however, lies in its potential for extensibility

which has not gone unnoticed by researchers around the globe who have

successfully implemented it into academic projects with varying subjects that

may require simulation of cloud computing scenarios and subsequent

technologies such as Mist, Edge, and Fog.

Due to the modular nature of the library, it can be implemented in any way that

the user chooses, where the developer is free to call upon libraries contained

 78

therein and extend them to their hearts content which can be observed in [83],

[84], [22], [47]. Due to its early introduction, it has also become one of the

academic go-to simulation software for research purposes and still retains

funding from large technology corporations.

3.4 Simulation candidate 1: EdgeCloudSim
After analysis of the available simulators, EdgeCloudSim was one of the

candidates shortlisted as one of the finalists, with good feedback from the

community as well as some validation provided by members of the community

and the developer. To simplify matters, we will only be analysing the two most

suitable simulation software’s in-depth.

Originally based off the CloudSim [4] simulation tool, which is currently on its

5th iteration, EdgeCloudSim uses the framework from CloudSim and

implements a 3D Edge simulation model implementing use of wireless

technologies that are currently not offered by CloudSim including WLAN and

WAN, mobile nodes and mobility support and realistic Virtual Machine

implementation.

The researchers for [4] decided to base their simulator on CloudSim due to its

modular nature and its simplistic development when compared to other

simulators or network modelling tools.

One the of key functions of EdgeCloudSim is the multi-tier approach for

scenarios where multiple Edge servers can be run in coordination with upper

layer cloud solutions.

To offer this functionality, EdgeCloudSim uses an orchestrator module to

simulate orchestration actions of assigned tasks and actions which arise in

Edge Computing scenarios.

The researchers then leveraged the extensive code base for modelling of

computational tasks which has long been established and regularly contributed

to, by developers of CloudSim due to its open-source nature.

 79

3.4.1 Hierarchy and Design

Whilst developing EdgeCloudSim, the authors considered multiple approaches

to designing the multi-tiered simulation environment. One of which was to

utilise Hu et, al [5] optimisation method where mobile users offload computing.

Access point and remote clouds utilise a heuristic algorithm by considering

both the communication and computation resources and thereby taking into

consideration of the a RAN environment as a whole rather than considering

only the data or computation oriented process and disregarding the mobile

communications which will inevitably play a role, offering the possibility of

further enhancements by working alongside the Edge computational model as

opposed to being present as a separate entity [5].

The application is designed in the following order with each subset of

applications functioning within their own designated layer and modules working

with the following relationships as seen below [4]:

Figure 3.1. Relationship between EdgeCloudSim modules

Figure 3.1 outlines the relationship between the modules implemented by [73]

utilising the CloudSim library as a base. Custom modules are introduced using

CloudSims Global Cloud and Edge Serer classes as a base to implement a

 80

custom Edge Orchestration as well as user mobility modules to produce the

simulation output.

The remaining modules customise their CloudSim counterparts to further

enhance the specific application of EdgeCloudSim as an Edge Simulation tool,

utilising modified modules that can implement core functionality of edge

simulation and orchestration. The authors also introduce a custom networking

module that gives access to both WLAN and WAN link with customisation

options for the user to shape the speed and bandwidth of said links to the

simulation requirements.

Figure 3.2. EdgeCloudSim layered architecture

Furthermore, Figure 3.2 portrays the various modules position within the

simulator’s architecture and the specific layer that they reside in. The mature

modules from CloudSim supply the VM structures and services as well as

define the network parameters to ensure that a simulation environment is as

accurate as possible. EdgeCloudSim then supplies dedicated modules that

tackle our particular use case scenario, giving users the ability to provide

custom models for any module and fine-tuning their unique simulation

environment.

 81

The primary objective when designing the java-based simulator was to provide

extensibility, therefore the authors created something called a scenario factory,

a module within the simulator that orchestrates other modules to interact and

have awareness of other modules as observed in Figure 3.2, orchestrates tasks

to be sent to the VM for computational offloading.

The following modules are responsible for the tasks as detailed in TABLE 3.4:

TABLE 3.4

TABLE OF MODULES IN EDGECLOUDSIM
Module Task

Core simulation

module

Responsible for loading and running the entire application using the scenarios
from the combination of XML and Java files. It also offers the ability to log and

store results of the simulations.

Networking

Module

Handles transmission delay and both WLAN and WAN scenarios, an

improvement to the solution offered by CloudSim, as there were only static

options available which were fixed for all users, the network link module makes
a more accurate calculation based on several variables introducing dynamic

scenarios and allows users to introduce their own network behaviours.

Edge

Orchestrator

Module

The edge orchestrator is akin to the backbone of the system as it directs and

manages how tasks are handled by the Edge system. The authors claim that

the orchestrator is very basic however, it allows for a more complex system to
be integrated, extending functionality and optimising efficiency.

Mobility Module

The mobility module tracks the movement of the user within a 3-dimensional

space using x and y co-ordinates. A hash table is used to store user co-

ordinates where locations are dynamically updated.

Load Generator

Module

The load generator module allocates tasks to the Edge Server which are then

managed by the Edge Orchestrator and subsequently remaining modules. It
utilises a Poisson distribution to assign tasks to various aspects of the edge

server. The load generator coupled with the Mobility module are the main

components as they provide input to other components.

To ease configuration and optimise task-flow for simulation purposes, an XML

configuration file is used that can be changed on the fly to introduce any

changes in the simulation. The parameters available in the XML file can

manipulate usage for the four different types of applications available including

variables such as delay sensitivity, data upload/download rates and individual

VM utilisation per application. Other XML files can manipulate and modify the

 82

amount of computing power available to the VM’s available on the network

edge.

These can range from multi-core processors to single-core devices, which can

help find the most cost-effective solution to apply network resources. Further

thought is also required when applying said solutions, as populated

metropolitan areas are bound to request more resources than their

counterparts based in the countryside, which would inevitably serve fewer

users.

The greatest difference between CloudSim [84] and EdgeCloudSim [73] is the

modular structure that EdgeCloudSim uses as well as the implementation of

network modelling, device mobility modelling and a realistic load generator.

EdgeCloudSim also supports multi-tier scenarios that can accurately determine

the kind of workload that an Edge Server can expect [83].

As an extension of CloudSim, EdgeCloudSim was developed to implement

features found in Edge Computing and make use of the architecture of Cloud

Simulation that had already been provided by CloudSim.

A key omission from EdgeCloudSim was its lack of Mist computing features

and for the purpose of this research, its lack of cellular access network model.

The author(s) also acknowledged that Task Migration amongst the Edge or

Cloud VMs, as previously observed in [63] was lacking, therefore a single

identifiable MEC Server was responsible to manage as many tasks as possible

whilst conforming to bandwidth and latency restrictions.

As the research was conducted in 2017, when the technology as well as the

specifications were still in their infancy, the mobility model used by [73] was

simplistic in its implementation which is also visualised during the simulation

and can be seen in Figure 3.3.

 83

The blue dots indicate end users moving around within the simulated cell space

and the simulator accurately reproduces attenuation to ensure a realistic

simulation by leveraging some of the developed class modules from CloudSim.

When compared to [74], which dynamically generates UEs and defines their

position using x and y co-ordinates within a defined coverage area as observed

below. Mist computing simulation was also added in [74] as well as an example

file dedicated to comparing mist, edge, and cloud computing capabilities.

The software class hierarchy can be seen in Figure 3.4, which details how the

different classes within the simulator work together to provide the output.

The MainApp Class calls upon ScenarioFactory which in turn ties into several

subclasses to gather variables from XML files which are used to organise and

declare different environmental variables such as Edge Device specifications

as well as Client Device specifications.

The simulator itself leans heavily on the CloudSim library, often utilising

functions, and methods on underlying layers to provide key functionality.

Figure 3.3. Mobility simulation map

 84

Figure 3.4. Java Class Hierarchy of EdgeCloudSim app

 85

3.4.2 Modules

The simulator consists of several modules that work in conjunction to provide

simulated network events which are as outlined below:

MAIN APP

The main application (MainApp) class in the model is contains and references

various variables that draw dynamic variables such as directories and

configuration files from other documents. It invokes the use of other supporting

classes to start the simulation with the parameters required and produces the

SimLogger data to the console.

SCENARIO FACTORY

The scenario factory invokes the remaining classes that can then use the

configuration files in XML format to apply settings and resources for VM, UE’s

and Cloud applications. The scenario factory is responsible for invoking

classes from CloudSim and instantiating them to the simulator.

EDGE ORCHESTRATOR

The edge orchestrator module administrates the system, it is responsible to

assign and allocate incoming requests using a probabilistic approach. The

edge orchestrator module deploys a WLAN located in a stable physical place

with a predetermined wireless coverage area.

MOBILE DEVICE MANAGER

The MobileDeviceManager class invokes the CpuUtilisationModel. Its role is to

ensure and simulate the mobile devices being simulated within the software,

which are each connected to the network and portrayed as using one of the

applications that have their own utilisation requirements.

NETWORK MODEL

The NetworkModel class is responsible for providing the number of mobile

devices as well as the simulation scenario.

 86

EDGE SERVER MANAGER

The EdgeServerManager contains specifications for the Edge Servers

including their detail hardware specifications. Modifying this file can reflect on

the simulation.

CLOUD SERVER MANAGER

Contains the parameters of the Cloud server should they need modification to

match today’s standards.

TASK GENERATOR MODULE
The load generator module uses an XML configuration file modifying variables

found throughout the code to simplify access and enable quick scenario

deployment. Load distribution is handled using a Poisson distribution, a traffic

model that is most used in the communications industry, that distributes

computational traffic to the Virtual Machines, after tasks have been allocated

the by end user devices. The tasks that can be created by the simulation are

unlimited in amount and in typical usage, it takes 20 minutes to create and

simulate 50k tasks using a core i7-5600u processor and 8GB DDR3 RAM [83].

Offloaded tasks technique:

P(𝑋 = 𝑥) =
λ7𝑒>?

𝑥!

(3.1)

The default approach of the task generator is to use poisson distribution as

seen above in Eq. (3.1 where l is the mean number of occurrences in the

interval and 𝑒 denotes the Euler constant.

A generic model is applied for the purpose of the research, portraying the

simple requirements of the system without any complex functionality, but

providing a strong foundation of what researchers and the industry can further

enhance. In essence, the module attempts to recreate a Wireless Local Area

Network (WLAN) environment as opposed to a Mobile Radio Access Network

 87

(MRAN) environment, and therefore discounts propagation of radio waves in

long distance communication along with accompanying delays incurred and

other variables that need to be taken into consideration.

The simulation environment used for testing purposes by the authors is one

that reflects the state of a university campus, where users transition between

a less frequented space (i.e., the administration building) to a greater

frequented space (i.e. the library). This is then applied to a two-tier architecture

and the Edge Orchestrator Module is responsible for handover between the

two spaces, considering network traffic load.

Application models

The load generator module uses a combination of scripted use-cases to

simulate a variable environment for load testing purposes. There are four

application classes used by EdgeCloudSim[85]; Augmented Reality, Health

(automation, smart devices, monitoring), Compute Intensive (computationally

heavy tasks, simulations, renders etc.) and Infotainment Applications. Each

application class varies in its application of task arrival distribution, delay

tolerance and task length.

There are several features that are missing from EdgeCloudSim including

advanced and calculated cache allocation methods, despite this several

researchers have attempted to tackle the issue albeit in theoretical form [63],

[22], [60], [83].

Mobility Model

A simplistic nomadic mobility model is used to plot x and y coordinates of

clients. This is periodically updated according to the dynamically managed

hash table, by default, a nomadic mobility model is used.

Requested Features for EdgeCloudSim

Needed features found on their GitHub page [86] indicate that the simulator

requires the following features:

 88

• Mist computing features (executes task on mobile devices via ad-hoc

networking)

• Incorporating cellular access network model into EdgeCloudSim

(3G/4G/5G)

• Task migration among the Edge or Cloud VMs

• Energy consumption model for the mobile and edge devices as well as

the cloud datacentres

• Adding probabilistic network failure model by considering the congestion

or other parameters such as the distance between mobile devices and

the Wi-Fi access point (geolocation or local based location profiling)

• Graphical User Interface to interact with the simulator and display

network topology

Ensuring the optimal use of resources is vital to any project. To ensure that the

thesis accounted for any changes within the simulation software that could

produce clearer and better results, I was adamant on keeping up with any

changes made to the simulator over the course of its existence. As the project

had been made open source to allow for public contribution [86], I expected

that frequent changes to the simulation software were to be likely and

therefore, always referred to the GitHub page of the project to ensure that my

version of the simulator was always up to date.

Despite the increase of academic and industrial research efforts within MEC

over the course of this thesis, I found that only minor changes were being

implemented and those were usually orchestrated by the original author(s) of

the software itself. This does not rule out the usage of the simulator however,

as over 15 academic articles from the years 2018 to 2019 utilised or cited the

simulator as part of their research [22], [60], [73], [83], [87], [88], [24], [89],

[11], [22], [74].

In most cases, [22], [60], [83], researchers opted to extend the base

functionality provided by the simulator in efforts to cater the software to their

 89

individual needs. One of the key requirements that the software lacks is the

integration of an energy model, particularly because of the importance of

Mobile Edge Computing within IoT environments [90] which can affect the

battery life of sensors and actuators located at the network edge. Maximising

battery life potential, or indeed utilising perpetual energy methods to constantly

power sensors [91], [92], can ensure that vital Edge Devices (EDs) remain

powered, whether that be using wireless power transfer [92] or using solar-

powered methods [91].

EdgeCloudSim was initially uploaded on the 18th of Feb 2017 and seemingly

updated until the 22nd of July 2019 with the following changelog [86]. Additional

works include [93] who aim to address the shortcomings of both the mobility

module and the load generator module.

Freymann, et al. [93] state that the mobility module is predetermined in nature,

and therefore provides unrealistic results with predictable outcomes.

Additionally, the load generator module initially creates the task queue as

opposed to generating each task or a list of tasks progressively which can

cause memory overloads.

3.4.3 Assumptions

Unfortunately, the main repository itself, apart from the academic research

efforts made, lacks accessibility to those unfamiliar with some aspects of

software development. When forking the repository or cloning from GitHub, it

can prove tedious to run the included example applications depending on the

IDE being used. Simulation software is often run within a containerised

environment or an IDE. This has several advantages for anyone simply wishing

to modify some parameters within four sample scenarios included within the

simulation software.

As aforementioned, EdgeCloudSim relies heavily on the CloudSim library for

key background components such as VM integration and network backbone

integration. Due to the extensible framework however, new features can be

 90

constantly added without reworking the foundation of the application itself. On

October 31st 2020, a major update was released [94] implementing the use

Machine Learning for Vehicular Edge Computing. Despite the initial

functionality and the class hierarchy largely retaining their form, a major update

in the form a machine-orchestration edge orchestration model was

implemented for multi-tier multi-access to the Vehicular Edge Computing (VEC)

architecture [58].

VEC, as noted by Sonmez, et al. is an emerging technology offering in-vehicle

applications the ability offload computational tasks to an edge infrastructure

that has been streamlined for vehicular applications [94], there is a similar

possibility of a future where connected services offered to vehicles via Edge

Computing may make on-board applications redundant [95]. Sonmez, et al.

incorporate the use of a two-stage ML based orchestration method that can

intelligently identify the ideal location to offload tasks to maximise success.

The first stage is set to predict the chances of success, and the second stage

predicts the expected service time. Their model is simulated in EdgeCloudSim,

and findings published [94]

3.4.4 Validation

To ensure the integrity of the simulator and its results, a simple test of

validation to confirm that the individual components react as expected, was

held. The first validation method was to ensure that the simulator was acquiring

the correct properties as defined by the XML file for its properties, a test

simulation was then conducted, and results plotted for comparison and analysis

purposes.

3.5 Simulation candidate 2: PureEdgeSim
Like its predecessor, [73], PureEdgeSim is an event-driven simulator based on

a variant, or independent fork, of CloudSim called CloudSim Plus taking

advantage of features including native support for discrete events simulation

used during the communication between its components [74].

 91

Scouring the documentation of CloudSim Plus explains that despite its close

following of the original CloudSim, CloudSim Plus has a plethora of additional

features that were a cornerstone in the development of PureEdgeSim.

Comprehensive documentation is included with PureEdgeSim that outlines the

details of the simulator and its respective modules as well as core functionality.

Each modules core functionality and extensibility is explained in detail by the

author as well as intricate instructions on how to create a new example by

extending its mainApplication class.

Despite the advantages of CloudSim, the authors of [82] decided that they

wanted to pursue their own take on the popular simulation software due to the

following shortcomings:

• Limited documentation.

• Amount of duplicated code that jeopardised maintainability, extensibility,

and testing.

• Absence of functional/integration tests to ensure simulators correctness

and validity.

• Absence of design patterns.

• Lack of conformance to some software engineering practises and

recommendations such as SOLID principles.

• Lack of a more organised package structure paving the way for a better

understanding and modularity of the project.

• Lack of a better class structure to allow third-party developers to

implement missing features into the framework without needing to

change core classes.

To tackle these issues, CloudSim Plus indicates that its main contributions are:

• Improved class hierarchy and code.

• Increased application of reusability principles.

• Overall review and improvement of code documentation.

 92

• Re-structuring of project modules and packages to simplify usage and to

improve separation of concerns (SoC) principles.

• Addition of integration tests to cover overall simulation scenarios.

• Completely new set of features described in detail on the official web site.

Like [80], the authors of [82] also continued to make the project an open-source

initiative and there is still an active interest in the project. This observation

further pertains that comprehensive and detailed documentation efforts within

open-source software can help ensure the project remains valid and actively

contributed to over the course of its lifetime [82].

Several key changes in formatting as well as many improvements over its

predecessor, including (i) Extensibility improvements, (ii) Reduced code

duplication, (iii) Tests and code coverage. In addition, extra features were

implemented such as (i) Dynamic arrival of cloudlets and VMs, (ii) New

datacentre brokers, (iii) Re-engineered network module and new set of

interfaces, (iv) Event listeners, (v) Builder classes, (vi) Integration tests, (vii)

Software design quality metrics [82].

3.5.1 Hierarchy and Design

Figure 3.5. Side-by-side comparison of layered architecture

Figure 3.5 portrays the differences in architecture between the two-simulation

software, a notable difference here is the custom Network Model used by

 93

CloudSim Plus. CloudSim Plus drops usage of the heavy modules to ensure a

more streamlined simulation process without drastic overheads, more suitable

for academic purposes where many use cases can be observed without as

much computational investment.

The author in this case has created a custom network model rather than relying

on the libraries network model. Upon closer inspection, the network module

utilised in PureEdgeSim contains integration of energy consumption monitoring

but lacks WLAN integration, as the link in question over this research does not

really on a WLAN connection, it is safe to say omitting that module should not

be a cause for too much concern.

The lack of WLAN in this case does not affect us greatly as our emphasis is on

resource allocation within the MEC environment. The integration of CloudSim

Plus however, included major performance enhancements over task

scheduling but most importantly, the use of multi-threading. Additionally,

CloudSim Plus builds upon the modular nature of the original, giving academics

and researchers the chance to easily implement more complex custom

modules and algorithms for testing.

3.5.2 Modules

Figure 3.6. Relationship between EdgeCloudSim and PureEdgeSim

Figure 3.6 shows us the difference between how the modules inter-operate

within the two respective simulation environments. To improve performance, it

 94

is noted that PureEdgeSim sheds the use of many core libraries of CloudSim,

instead relying on the most important to keep performance overheads low and

improve simulation speed whilst maintaining the required accuracy.

The simulator consists of several modules that work in conjunction to provide

simulated network events which are as outlined below:

SIMULATION MANAGER

The Simulation manager module represents the core of the simulation by co-

ordinating tasks between all the modules involved within the simulator. It also

handles the interfacing between CloudSim Plus and the PureEdgeSim

modules. It consists of two main classes: 1) Simulation Manager, responsible

for initialising the simulation, starting it, and scheduling its end. It also

schedules the tasks generation, displays the simulation progress, and prints

the results. 2) Simulation Logger, computes the results and displays them at

the end of every iteration, subsequently saving them in a CSV format.

DATA CENTRES MANAGER

The data centres manager module extends CloudSim Plus by extending the

Datacentre simple class. It contains the properties of edge devices and their

corresponding methods such as location, mobility, energy source and the

battery capacity. It also contains the Server Manager class which generates

the different servers and devices, their hosts, and their virtual machines

according to the configuration files modified by the user.

TASK GENERATOR

This module is responsible for generating tasks eventually processing by

allocated computational resources. A collection of three example applications

are used for reference; e-health, smart-home, and augmented-reality. Each

application has specific parameters which can be modified by editing the

configuration files. The example provided in [74] and therefore suitable for

demonstration purposes.

 95

LOCATION MANAGER

This module enables mobility by assigning users with x and y co-ordinates

which can then be manipulated according to the mobility model the user wishes

to utilise. This is particularly useful when simulating environments such as

connected vehicles, each vehicle can be assigned an initial location and then

modified over the course of the simulation.

NETWORK MODULE

Consists primarily of the network model. The author in this case created a

custom module to consider the network load at each instant of the simulation

and changes the allocated bandwidth for each task being transferred

according. In essence, it improves upon the standard network module included

with CloudSim Plus is its ability to adapt to network bandwidth availability and

adjust the amount of bandwidth available per user/application. It also bears

network load into account. A load balancer sample has not been included in

the simulation.

TASK ORCHESTRATION MODULE

Like the previous module, a custom Task Orchestration Module has been

designed for simulation purposes. The Orchestrator contained in the module

has the task of the decision maker.

It decides whether to offload the task or execute it locally and where to offload

it depending on the algorithm in question and the architecture that is used. It

also can be extended by the user utilising the Orchestrator class. Several

classes of tasks are available within the simulator which have been generified

to test the performance of the simulator.

Here, we have not manipulated the task creation process but there are some

assumptions that have been made such as the size of the data and the number

of instructions required to complete the given task.

SCENARIO MANAGER

 96

The scenario manager module is responsible for loading parameters from the

custom configuration files within the simulator and parsing them to be used by

the Tasks Generator module. It also loads the cloud data centres; the fog data

centres and the edge device characteristics that are used by the Data centres

manager module.

Finally, it loads the network settings used by the Network Module, the

architectures and algorithms used by the task’s orchestration module and other

simulation parameters including simulation delay, log parameters, etc. required

by the Simulation manager. It consists of two important classes: the File parser

and the Simulation parameters.

Simulation Input Parameters

As with the previous simulator, [47] have made it relatively simple to input

parameters for the simulation using an XML file where variables are contained

and extracted to specify to the simulator the various parameters used to run

the simulation shown in TABLE 3.5:

TABLE 3.5
SIMULATION PARAMETERS, PUREEDGESIM

Parameter Description

Simulation_time The simulation duration (in minutes)

Initialisation_time
The time required to generate the different simulation

entities

Parallel_simulation Enable or disable parallel simulations

Update_interval The interval between simulation events (in seconds)

Pause_length The pause between iterations (in seconds)

Display_real_time_charts To display or not the simulation results in real-time

Auto_close_real_time_charts Auto close real-time charts after the end of each iteration

Charts_update_interval The interval of refreshing real-time charts (in seconds)

Save_charts Save charts in “.png” format

Wait_for_all_tasks
Wait until all tasks get executed or stop the simulation on
time (when the simulation time set by the user finishes)

Save_log_file Save the log file

Clear_output_folder Delete the output folder at the beginning of each simulation

Deep_log_enabled Enable deep logging

 97

Location Manager Parameters

Length The simulation area length (in meters)

Width The simulation area width (in meters)

Edge_range The transmission range of Edge devices (in meters)

Fog_coverage The radius of area covered by each Fog server (in meters)

Speed The speed of mobile devices (in meters/second)

The servers manager settings

Min_number_of_Edge_devices
The number of Edge devices at the beginning of the

simulation

Max_number_of_Edge_devices The number of Edge devices at the end of the simulation

Edge_device_counter_size
The growth rate in the number of devices between

iterations

The network model settings

Wlan_bandwidth The local area network bandwidth (in Mbps)

Wan_bandwidth The backhaul network bandwidth (in Mbps)

Wan_propogation_delay
The propagation delay (when sending data/task to the

Cloud) (in seconds)

Network_update_interval The network model refresh interval (in seconds)

The tasks orchestrator settings

Enable_registry
If enabled, a container will be pulled from the registry (by

default) before the execution of the offloaded task

Containers_deployment
The containers deployment strategy that is defined by the

user

Enable_orchestrators
Deploy the orchestrator to a physical device, If disabled,

each device will orchestrate his tasks.

Deploy_orchestrator
To deploy the orchestrator to the Cloud, Fog, or any custom

location

Tasks_generation_rate
The number of tasks generated by each device every

minute

Orchestration_architectures The computing paradigms that will be used

Orchestration algorithms The orchestration algorithms that will be used/evaluated

Energy model parameters

Consumed_energy_per_bit The energy consumed when transferring 1 bit (in wh)

Amplifier_dissipation_free_space
The energy consumed by the amplifier in free space

channel (in wh)

Ampilifier_dissipation_multipath
The energy consumed by the amplified in a multipath

channel (in wh)

The above simulation parameters can be set before starting the simulation, a

build takes places using the newly provided simulation parameters and the

 98

simulation is then run according to the parameters provided. This simple text

entry method simplifies changing the parameters and simulating different

scenarios without having to configure or modify the source-code of the

simulation software.

As observed in TABLE 3.5, many of the parameters provided rely on smaller

modules, hence giving a modular approach to simulation which in turn works

out perfectly for the scope of this research as the core focus is to improve the

orchestration of the edge server.

Output Format

A key reason to transition to PureEdgeSim was the availability of pre-formatted

files that contained the simulation logs in a CSV format. Additionally, during

simulation, the authors of [74] have scripted in a graphical real-time analysis

of the simulator running as seen in Figure 3.7, indicating the kind of data that

will be received as a result, a log of the output can be seen in TABLE 3.6:

TABLE 3.6
EXAMPLE CONSOLE LOG OF PUREEDGESIM

Timestamp Simulation
Time Source Message

2020/11/03
17:51:53 0 (s) ServersManager Datacenters and devices were

generated

2020/11/03
17:51:53 0 (s) SimulationManager

Orchestration algorithm=
ROUND_ROBIN - Architecture=
ALL - number of edge devices= 100

2020/11/03
17:51:53 0 (s) SimulationManager Simulation: 1, iteration: 4

PureEdgeSim also contains real-time monitoring on the simulations progress,

giving researchers the ability to view a particular simulation play out in real-

time as seen in Figure 3.7, though this may be somewhat limited to non-parallel

execution.

 99

Execution times were also drastically improved in version 5.2, due to some

major changes made by the author to accommodate for greater tasks to be

scheduled on a greater number of devices[47].

Figure 3.7. Real-time monitoring preview of PureEdgeSim simulation

3.5.3 Assumptions

Default modules include assumed and static parameters for the models, as

seen in TABLE 3.7, but it must also be considered that the extensibility of

PureEdgeSim allows for integration of custom modules to almost any aspect,

allowing the replication of real-world event simulation using custom mobility

and attenuation models.

TABLE 3.7
PUREEDGESIM ASSUMPTIONS

ASSUMPTIONS

COMPUTING RESOURCES
End devices are assumed to have CPI, memory, storage and

depletable batteries to process data and execute applications

NETWORKING

CONNECTIVITY

We assume that all discoverable devices are connected to the

network and are requesting resources in some form or manner

 100

APPLICATION EXECUTION

Assumption that applications can be executed on edge devise,

and that the application execution time and resource usage can
be modelled.

WORKLOAD GENERATION
Assume that we can generate the workload according to the given
distribution model, which helps to simulate the behaviour of the

edge computing system under various conditions.

ENERGY CONSUMPTION

We assume that the energy consumption of devices is

proportional to the amount of computation and data transmission

performed by the device.

TASK SCHEDULING

Assume that tasks can be scheduled to edge devices based on

different task categories as well as criteria such as proximity to
the source, resource availability and energy consumption.

MOBILITY
We assume the position of the mobile devices as well as their
travel trajectory.

3.5.4 Validation

Initial tests were run using [47] to ensure simulator validity. Both simulators

came pre-installed with basic algorithms such as Round Robin and Random

task allocation. The results produced were equivalent however, PureEdgeSim

showed increased simulation speed of 50%.

3.6 The Final Selection
Based on the comparisons conducted above, it was clear that the more modern

simulator with improved extensibility and greater performance was the final

choice. When given similar scenarios, PureEdgeSim greatly outperformed

EdgeCloudSim in performance and accuracy whilst further allowing for greater

customisation. Though initial set-up required some configuration with

PureEdgeSim due to the use of Maven, the result paid off in ease of use and

drastically improved overall simulation times, allowing more simulations to be

run.

Additionally, the ease of use when translating output data to a more usable

format proves formidable for EdgeCloudSim, as the process is entirely manual

in nature and the application requires that log files are extracted and imported

into an external CSV/log parser before any meaningful conclusions can be

 101

drawn from the data generated. Simulation times are severely lower, where a

sample scenario containing 200 devices takes approximately 5 minutes on the

same hardware as opposed to < 10 seconds on PureEdgeSim.

Some of the sample modules within the simulation includes a test use case of

a Fuzzy Logic Orchestration algorithm, the results of which can be viewed in

Figure 3.8 where the task success rate can be seen fluctuating over the course

of the simulation.

Additionally, building on the research of [47] implementing the reinforcement

learning algorithm using some of the fundamentals provided ensured a

smoother transition process where we were able to test algorithms more

efficiently.

Ultimately, the simulators used in this project were academic in nature,

therefore no GUIs were provided with either of them, so knowledge of Java

was required to implement our algorithms.

Figure 3.8. PureEdgeSim Fuzzy Logic

Orchestrator 200 devices

 102

Despite this, the ease of use offered by PureEdgeSim showed that it was the

most suitable candidate for the purposes of this research and hence, it was

ultimately chosen as the simulator that we would go ahead with.

Parameterisation using XML files is used to hard code most of the environment

variables within the simulator increasing ease of use.

3.7 Final Test: PureEdgeSim
To initially test our simulator, we will use the predefined examples in

PureEdgeSim to run an algorithm based on Fuzzy Decision Tree from [47] This

example is provided within the library of PureEdgeSim and can be for

comparison purposes when testing our proposed algorithm.

The example provided within the simulation uses a 3-tier classification

approach for the data output from the Fuzzy Logic generator, namely the data

is classified within either ‘low’, ‘high’ or ‘medium’ settings.

Although fewer tiers in this system helps to enhance the speed of the algorithm,

there is a trade-off between optimum performance and speed which will

unfortunately require a trial-and-error approach however, my theory is that

giving the system classification and applying Fuzzy Logic within the learning

process will help to improve overall performance of the systematic approach.

Transfer learning will prove to be a key concept within the design of this

algorithm as communication between edge-nodes will be particularly useful for

providing an awareness about the network environment to the nodes. To

enable a transfer of what has been learnt by the Edge Network (EN), the

system will attempt to use dynamic variables acquired through each Edge Node

and communicate parameters on a sporadic basis.

Retaining our simulation parameters as outlined above, a test was conducted

to ensure to determine the performance of competing algorithms as devised by

Winner PureEdgeSim

 103

[47] to sample the application on install and to generate control data for our

manipulated parameters.

Figure 3.9. Generated against successful tasks (Fuzzy Logic)

Figure 3.9 and Figure 3.10 portray the effectiveness of utilising a Fuzzy Logic

approach included as one of the examples within the simulator. It applies a

simple approach to dictating variables based on input variables, applying

vague classification within a group of strict variables.

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5

Ta
sk

s

Simulation Time (minutes)

FUZZY LOGIC ALGORITHM

Generated tasks

Tasks successfully executed

 104

Figure 3.10. Generated against successful tasks (Increase Lifetime)

The Fuzzification process in the supplied use case is broken into two, where

one is responsible for the output RULES and the other for determining the

classification of variables within the fuzzy scope. The above approach is

touched upon in [74] where the authors simulate a Fuzzy Decision Tree and

State of the Art approach that offers improved functionality using Deep

Reinforcement Learning and Transfer Learning.

As seen above however, the number of successful tasks completed by the

simulator using a Fuzzy logic approach improves drastically, resulting in a

much lower failure rate. The module in this case is implemented based of

research conducted by the authors of [96], a library that implements Fuzzy

Logic, fittingly called jFuzzyLogic.jar, is simply integrated and referenced

within the code and provides most of the functionality.

Parameters are then passed on to the simulation in the Orchestration module,

taking advantage of the Fuzzy approach, and then utilised to gain better

efficiency in the simulation.

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5

Ta
sk

s

Simulation Time

INCREASE LIFETIME ALGORITHM

Generated tasks

Tasks successfully executed

 105

The figures shown above can be easily acquired running one of the examples

provided within the simulation bundle but are restricted in the sense that they

only compare to one other algorithm which is the increase lifetime.

The Fuzzy Logic simulation also uses increase lifetime algorithm as a base,

but instead feeds it fuzzy variables which in turn improves system performance.

In a similar fashion, over the course of this research, we wish to utilise the

fuzzy output of the fuzzification process to give the algorithm the ability to

‘understand’ the rough definition the action that it will be taking to improve the

optimisation process.

3.8 Summary
The advantages of using a simulator verified by the community meant that we

could focus on the research with tested and validated contributing factors to

recreate an accurate testing environment, rather than theoretical

implementation of the devised algorithm.

A comparison of simulation software led to PureEdgeSim being the right

selection for the purpose of this research. Although the frameworks are based

on similar architecture, PureEdgeSims purpose made nature for Edge networks

and increased efficiency of up to 40% as well as increased support for granular

control made it the better choice.

It also came with well written examples incorporating fuzzy logic as

orchestration algorithms, helping to understand how modules work in

conjunction and providing a strong foundational basis to build the improved

algorithm.

 106

Chapter 4 Simulator Setup and Single Layer RL

4.1 Introduction
In this chapter, we will develop and utilise an 𝜀-greedy Q Learning algorithm to

optimise resource allocation in edge networks, testing in our selected

simulator, PureEdgeSim. To ensure comprehensive coverage of all aspects

within the simulator, each module was individually chosen and dissected,

applying real-world scenarios, and ensuring that each element was carefully

thought through before an allocation algorithm could be designed.

Firstly, we will go through the various modules involved that will ensure our

simulation will cover the major areas that need to be addressed over the course

of this research. This will include real-world figure implementation of hardware

capabilities and estimation of population and their mobility over time.

The modules that require addressing in the simulator will be portrayed one-by-

one, exploring in-depth analysis of each one and its role within the model.

TABLE 4.1
SIMULATION PARAMETERS

TABLE 4.1 contains some of the most crucial simulation parameters that define

the control of the research. Over the course of the remaining chapters, we will

Simulation Parameters Value

Simulation duration 30 mins

Min number of edge devices 100

Max number of edge

devices
1000

Simulation area 2000 × 2000

Edge and fog bandwidth 1300 Mbps

Cloud bandwidth 10000 Mbps

Edge devices range 200

 107

consistently retain the parameters to ensure that simulations are comparable

in respect to each simulation run.

4.2 Simulation Environment

4.2.1 Task Modelling and Classification

Additional metadata was implemented in the tasks following the changes made

by [54] to increase network awareness of the of tasks requested by the device

𝑑. Ensuring these parameters were accessible by the system was paramount

to the algorithm recognising the requirements of the task and thus the

capabilities required by the chosen offloading device to ensure adequate QoS.

The comprehensive task creation module tracks the size of each task created

during the course of the simulation run, values from the respective tasks are

then used to populate QTables to feed the RL algorithm. The parameters that

are tracked from each task can be found in TABLE 4.2:

TABLE 4.2
TASK PARAMETER DENOTATION

Parameter Variable

Task Start Time start

Task End Time end

Deadline for task dl

Incoming data size size

Instructions needed to process the task mi

Introduction of the metadata also made it possible to further identify the tasks

to supplement the reinforcement learning algorithm with provided parameters.

Each round of RL introduced metadata that provided contextual information of

rewards and priority to each task. This made recognition of previously allocated

𝑇1,(= {	𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑑𝑙, 𝑠𝑖𝑧𝑒,𝑚𝑖}

(4.1)

 108

rewards and priorities identifiable by the algorithm to accurately construct Q

Tables and implement RL.

As the Q-learning algorithm requires a finite state space, discretising the

continuous values is necessary, thus we use Fuzzy Logic to define the

following membership functions; taskLength, taskMaxLatency, localCPU,
localMIPS, avgEdgeCPU and avgCloudCPU in the following manner in

piecewise linear functions using Centre of Gravity (COG) method [97]:

taskLength:

1. Low:

𝜇&'((𝑥) = 	3

1 𝑖𝑓	𝑥	 ≤ 0

1 −	
𝑥

20000
𝑖𝑓	0 < 𝑥 ≤ 20000

0 𝑖𝑓	𝑥 > 20000

(4. 2)

Remaining membership functions can be found in Appendix A that define

membership logic retained throughout all algorithms implemented in Chapters

4 and 5.

4.2.2 Mobility Modelling

For the most accurate results, a mobility model was required to ensure that

client devices are not simply static within the cell.

Figure 4.1 Sample real-time mobility view

 109

The mobility model included in the simulator addresses the user device’s

mobility within a period and how that affects network conditions. From our

knowledge in networking and routing tables, we infer that once a user is out of

range from its nearest access node, a handover is conducted to the next node

that the user is within range of. Figure 4.1, depicts how mobility simulation is

visualised over the course of simulation time, where users are travelling around

the cell space.

Often, this means that the node must re-establish its routing table. The method

applies to any type of connected device that uses an AP to gain access to a

wider network, including the RF domain.

The handover process ensures a smooth, and often unnoticeable transition of

a user from one access point to another within a given domain, removing the

need for re-authentication should any be required.

Continual adaptation of the network is paramount to a good user experience.

Although it must be heralded that mobility is only of the reasons that a network

should be continuously adapting to its network environment, other variables to

consider are battery life, the disconnection of a device.

For example, an access point that is based in the city centre for public use

must perform drastically different to an access point located within an industrial

site as the industrial site is likely to have repeat visitors from the employees

that work there, therefore to ensure optimisation, a network administrator or an

orchestration algorithm must be optimised to continuously authenticate and de-

authenticate the gradual change of users as opposed to the public access point

which must be dynamic at all times.

Performance expectations of an access point contained within a company,

however, are very different those within the public domain, users in a company

expect rapid access to higher bandwidth services such as teleconferencing or

uploading large files whereas those within a public domain wouldn’t have the

 110

same expectations of a public hotspot (though that doesn’t mean they wouldn’t

appreciate them).

It is to be understood that 5G aims to tackle these real-world issues by offering

low-latency, high-bandwidth access to all users but an orchestration algorithm

must be dynamic and adaptive to its network environment as these conditions

are subject to change in the blink of an eye.

Despite the setback on the data model obtained, the visualised scenario was

still viable and would be the one used, namely, a dense metropolitan area

providing 5G connectivity for a vast number of users within a limited space

within rapid handover expectations.

Due to its growing popularity, and the interesting challenge it would pose, I

believed that the city centre or high-street would be the ideal situation to base

my simulation in however, this would also cater for another specific type of

application, autonomous vehicular communication[98]. Introducing this

application within the mobility module would mean that the algorithm designed

had to be adaptive to the network environment, and inter-communicate with

peer nodes rapidly.

This also meant taking into consideration the toll on computation in short bursts

from node-to-node within a limited area however, the amount of space the

simulation would take place in was now to be much larger than initially

expected.

For the extents and purposes of this research, the default mobility model was

lightly customised to ensure that simulated devices were randomly moved

around the environment.

4.2.3 Network Modelling

The network will simulate a 5G environment as much as possible. This will

include integration of the specifications devised by ETSI, including those that

 111

may have been released post-simulator. Any Classes or Modules that may

need adding as a result, will be devised, and developed to ensure that the

simulator meets the needs of the research.

Each sample application simulated different environments using different

variables. For this thesis, the most relevant was sample_app4 which used

fuzzy logic on the Edge Orchestrator module to allocate resources where they

were most required.

The weighting system was applied on the Edge Orchestration module to

emulate a ‘human’ approach to administration and allocation of tasks [85].

There is, however, a limitation to the approach used by [73] which co-ordinated

tasks using the three-tiered fuzzy logic approach. The orchestrator in their case

is aware of the network resources available as well as the status of the edge

server, yet a protocol of discovery has not been outlined.

The final tier is the global cloud server that can then be communicated with to

back information up as required. Despite this being the most-recognised

approach, the system must also co-ordinate the backup process.

Additionally, to ensure that no resources are wasted, edge servers must

manage downtimes on uplink and downlink to ensure that no redundancy is

introduced to the system, making it both energy and cost-efficient.

Not omitting the fact that certain applications leverage the use of the GPU

which can significantly impact some applications that we will be addressing

such as VR/AR applications, we must also consider the implication on battery

life when both CPU and GPU are engaged.

The two branches are generated in conducting this research are tasks

offloaded to conserve battery life for the UE which can handle the task in

question, employing a heuristic approach we can assume that there will be

certain classifications of devices that will be looking to offload tasks based on

lack of resources and latency requirements.

 112

4.2.4 Propagation Modelling

Weighting parameter
To fine-tune trade-off value between latency and power consumption, we use

𝛽 as a constant throughout all cost calculation formulas.

Local

Given the task parameters, and device specifications, provided 𝑇2,
3,' ≤ 𝐷2,563 ,

the given task can be processed locally, with the latency 𝐿7 defined as the

following:

𝐿1,(3 =	
𝑇49
1,(

𝐷49:#1

Additionally, we define the power consumption, 𝐸3,'7 as:

𝐸1,(3 =	𝑇49
1,(∙ 	𝐷@@1 	

The combined cost, 𝐶3,'7 is therefore defined as, where 𝛽 is a weighting

parameter the regulated trade-off between latency and consumption:

𝐶1,(3 =	𝐿1,(3 ∙ 	𝛽𝐸1,(3 	 (4. 3)

Edge Processing
If task requirements exceed local computational specifications, the task is

subsequently offloaded to be handled by the appropriate network device. To

achieve this, task data must also be sent to the edge device, therefore total

costs must take into consideration propagation of task data, we first define the

latency 𝐿3,'2 :

𝐿1,(4 =	
𝑇#9A@
1,(

𝑅1,1!
	+ 	

𝑇49
1,(

𝐷49:#1!

 113

Where 𝑅3,3" is the maximum bit rate of the network between devices 𝑑 and 𝑑!

according to the Shannon-Hartley theorem. The channel noise is assumed to

be white Gaussian noise with its variance as 𝜎8 and signal power S depends

on path loss propagation model.

𝑅1,1! = 𝐷@B1 	 logC]	1 +	
𝑆
𝜎C
	_

Energy consumption is also impacted by the cost of transmitting data between

device 𝑑 to device 𝑑!:

𝐸1,(4 = 𝑇#9A@
1,(∙ 𝐷$@1 + 𝑇49

1,(∙ 𝐷@@1
!

 Ultimately, the total cost for energy is the weighted sum the processing time

𝐿3,'2 and power consumption 𝐸2:

𝐶1,(4 = 𝐿1,(4 + 𝛽𝐸1,(4 	 (4. 4)

Fog Processing

As above, we model the processing time, 𝐿3,'
) :

𝐿1,(
5 =	

𝑇#9A@
1,(

𝑅1,5
	+ 	

𝑇49
1,(

𝐷49:#
5

Where 𝑅)3 is defined as:

𝑅1,5 = 𝐷5B1 	 logC(1 +	
𝑆
𝜎C
)

Additionally, we model the energy consumption 𝐸3,'
) :

𝐸1,(
5 = 𝑇#9A@

1,(∙ 𝐷$@1 + 𝑇49
1,(∙ 𝐷@@

5

 114

Finally, the total cost for fog is defined as:

𝐶1,(
5 = 𝐿1,(

5 + 𝛽𝐸1,(
5 	 (4. 5)

Cloud Processing
If task parameters exceed local, edge and fog computation, devices can also

offload tasks for cloud processing. Once again, we establish the latency taking

propagation into consideration:

𝐿1,(6 =	
𝑇#9A@
1,(

𝑅1,6
+	

𝑇49
1,(

𝐷49:#6

𝑅1,6 = 𝐷6B1 	 logC]	1 +	
𝑆
𝜎C
	_

The energy consumption of task 𝑘 of device 𝑑 then depends on the cost of

processing at cloud server 𝑐 and the cost of transmitting the data from device

𝑑 to the cloud server 𝑐:

𝐸1,(6 = 𝑇#9A@
1,(∙ 𝐷$@1 + 𝑇49

1,(∙ 𝐷@@6

And total cloud processing cost is:

𝐶1,(6 = 𝐿1,(6 + 𝛽𝐸1,(6 	 (4. 6)

 115

Figure 4.2. Device service request classification

Service Request (MEC Server)
Service request received

Resource-restriction Driven
UE does not have necessary
computation resources to
complete requested task

Display and networking
capabilities

Device can utilise the higher
bandwidth and lower latencies

provided by MEC to remove
dedicated componenets, thus
significantly reduscing price

Low-mid end device/older model
Lacking the power to keep up with

current standards but has the
networking abiliy to offloac to MEC

Latency Driven
UE has the necessary resources to

complete requested task but
requires a low latency service for

real-time application

Mid-high end devices
Able to run applications with

extensive features disabled, still
suffering a significant impacto

battery life

High end devices
Able to run applications

completely with some impact to
battery life therefore utilise MEC

to maximise mobility

 116

As portrayed by Figure 4.2, we can classify UE by their service request types,

assuming a future where display and battery (DisBat) devices can leverage 5G

networking capabilities to give MNOs the chance to offer Mobile Devices as a

Service with differentiating service plans and SLAs according to the

requirements of the user. For now, unfortunately, we can assume that IoT

sensors and devices can occupy the ‘display and networking capabilities’

section.

Differentiating service types using flags or identifiers will help MNOs achieve

SLAs and help any learning models implemented on the MEC servers to

respond with greater speed and accuracy. Each class of device will be able to

identify it is needs and requirements according to the application request and

determine its urgency. The request can then be actioned according to its

requirements in latency, battery life implication, as well as other variables.

Processing time is a factor that must be heavily considered, especially when

the cost of integrating MEC Servers within 5G is considered. The figure below

details the average processing times when an application is processed solely

on the network edge as opposed to a mobile device, Figure 4.3, where 200

devices were simulated for 30 minutes, and processing time recorded to test

the initial run of the simulation.

Figure 4.3. Processing time comparison example

Figure 4.3 plots our control simulation, the processing time of a mixture of

computational tasks against number of mobile devices, operating solely on the

 117

mobile device, solely on the edge device and using a hybrid method of both.

The processing time of tasks is several times lower when the edge device is

utilised to accomplish the task. The above plot was a quick simulation run, with

up to a maximum of 200 mobile devices. The plot portrays an average of all

application use case scenarios.

Theoretically, it makes perfect sense that the edge device would handle tasks

at a blinding rate when compared to its counterpart. Unfortunately, the issue

presents itself when other factors are considered such as network latency to

return data back to the user. Despite the apparent benefit of being able to

handle more intensive tasks that the mobile device may be incapable of

handling, other advantages of offloading tasks include less consumption of

battery life, less heat generated by the UE, faster response times for various

applications and greater mobility options for UE owners.

Parameters for Edge Devices
To ensure that the tests were regulated, an end user was defined with the

following specifications using average device specifications from the year

2023, the device specifications listed below do not consolidate laptops, TVs,

and any other smart devices, they are strictly limited to smartphones accessible

globally alongside average expected specifications [99], [100].

The specifications applied for consumer devices have been outlined in

Figure 4.4 portrays the device distribution over all simulation runs, each device

has its own subset of applications that can be assigned with their own QoS.

TABLE 4.3 and Figure 4.4, where the distribution of the various devices we will

be simulating is portrayed alongside the parameters assigned to each device,

the device parameters specifically indicate computational power of user end

devices.

Characteristics of devices within the simulator are defined by the following

vector:

𝐷1 = {	𝑐𝑝𝑢, 𝑡𝑟,𝑚𝑖𝑝𝑠, 𝑒𝑒, 𝑡𝑒, 𝑒𝑏, 𝑓𝑏, 𝑐𝑏	}

 118

Where 𝑐𝑝𝑢 is the current % of CPU usage, 𝑡𝑟 is the number of tasks being

executed, 𝑚𝑖𝑝𝑠 is the maximum computational capacity, 𝑒𝑒 is the energy

consumption per million instructions, 𝑡𝑒 is the energy consumption per

transmitted bit, 𝑒𝑏 is the bandwidth of the edge device in bits per second (bps),

𝑓𝑏 is the bandwidth of the fog device in bps and 𝑐𝑏 is the bandwidth of the cloud

in bps.

Figure 4.4 portrays the device distribution over all simulation runs, each device

has its own subset of applications that can be assigned with their own QoS.

TABLE 4.3
END USER DEVICE SPECIFICATIONS

User End Device Specifications

 SMARTPHONE LAPTOP
IoT
DEVICE

IoT ACTUATOR

Processor 8 cores 8 cores 2

MIPS 25K 110K 16K 0

Storage 64GB 1TB N/A

RAM 4GB 8GB N/A

Battery
Life

3,000 Mah
5,620
Mah

 N/A

Mobility True True False False

30%

10%

20%

40%

End Device Distribution

Smartphone

Laptop

IoT Device

IoT Actuator

Figure 4.4. Device Distribution

 119

4.2.5 Edge Orchestration

The orchestrator within the simulator is responsible for the effective allocation

of resources and judging where the appropriate resources must be allocated.

In this case, the simulator uses the fixed parameters as input variables to

decide accordingly, how resources should be applied. To correctly insert our

algorithm within the simulation software, the orchestrator itself will be

manipulated to respond to the needs of the network environment dynamically,

using the RL algorithm devised over the course of this research.

4.2.6 Simulation Architecture

A unique approach studied for optimisation policies, found in [101], detailed a

method of implementing multiple stages in a deep learning algorithm for

optimal control which reflected what I intended to do with my algorithm.

Hypothetically, giving the system an overall understanding within a centralised

location would mean operating in a distributed manner, hence introducing

latency, not of data concerned being transferred, but of computational

parameters exchanged between the central and edge servers.

Although this would provide the opportunity of greater computational resources

allocated to solve the optimisation algorithm of a control network, the number

of requests being served may introduce unnecessary complexities in

computing the best approach for resource allocation. Decoupling the

involvement of a central system, however, would give granular control to each

sub-network, thus using [101]’s multiple stage approach to have differing action

spaces, environmental model dynamics and reward signals.

The approach illustrated in Figure 4.5 portrays the movement of the

environmental variables such as model dynamics, as communicated across the

network at sporadic periods. This would enable the core network to not only

understand the environment, but also predict usage shifts across all connected

edge nodes and could be adapted to multiple stages dependant on network

hierarchy.

 120

Thus, computational time would be reduced, as the model can predict the best

optimisation algorithm according to data shifts and given enough learning data,

and supply control parameters to the entire network.

Figure 4.5. Orchestration Outline

Having browsed the literature, the best approach for the algorithm was to

introduce a Fuzzy Logic approach which could then be interpreted by Deep

Reinforcement Learning to optimise approach and further elaborate from non-

definitive output of the Fuzzification process.

This meant first running a pass of Fuzzification, supplying observations to the

Deep reinforcement learning algorithm and analysing output using a reward

and punishment system to ensure that the system continued to function

optimally under any changes in the network environment after a short learning

process. Unfortunately, as someone well versed with the concepts being used

in this research would immediately realise, this meant that each pass of the

 121

algorithm would have to re-acquire all parameters such as network

environment should those be included within the scope, introducing

unnecessary re-calculation time, and lengthening the process.

As introducing unnecessary redundancy within the network optimisation

algorithm may be the opposite of the goal of this research, it was probably a

wise decision to establish some limitations on the frequency that parameters

were refreshed within the algorithm depending on a layered approach that

could prioritise each parameter contained within on the urgency and impact on

the algorithm to ensure rapid return of learning results. This would in turn give

some structure to the algorithm and ensure that response times were not

affected.

This approach however meant that some definitive limitations had to be set

within the Deep Reinforcement Learning approach to ensure all parameters

were not established from the beginning but rather took a layered approach.

This approach could then be readdressed taking all factors into consideration

according to the historical time data that the algorithm could acquire, allocating

re-assessment time of the entire algorithm according to when the best

time/down-time of the network occurred.

As planning was required in understanding the direction and intention of the

optimisation algorithm the initial plan of the layered approach was to ensure

that the layered approach was divided amongst tasks that needed periodical

refresh times.

Figure 2.15 was then devised as a preliminary approach. The final approach

had to be compatible with end-goal of reduced latency therefore it was

imperative to the research that algorithm calculation, or any variables output

by the RL method were not introducing any unnecessary latency into the

network. Categorising the initial variables was just the first stage however, this

also meant that multiple algorithms would have to be put into effect and run at

variable intervals to check the consistency of their counterparts.

 122

The goal is to create an optimisation algorithm, therefore, considering the

Bellman equation, classified as a functional equation, and solving it means

finding the unknown function V. The formula below corresponds to discrete-

time optimisation problems, namely, those that have a set value rather than a

complex number. It is also referred to as the basic building block of solving

reinforcement learning by some authors [102]. The goal of the function is to

find the optimum value function to yield optimal rates, decreased energy usage

balanced with least task failures.

4.2.7 Simulation Hardware

For transparency purposes, I have outlined the device that I used for simulation

purposes and will be keeping a log of simulation times as well as other factors

that portray my findings. The device used to run the simulations has the

following specifications as found in TABLE 4.4:

TABLE 4.4
SIMULATION DEVICE SPECIFICATIONS

 Devices used to run simulations

Model MacBook Pro

OS MacOS Sonoma 14.5

SYSTEM TYPE ARM 64

IDE Visual Studio Code

IDE dependencies jFuzzyLogic.jar

CPU M2 Max

CPU Cores 12

GPU M2 Max 38 Core

RAM 32GB DDDR5 UNIFIED

Storage 1TB SSD

For simplification purposes, I have omitted the operational frequency as well

as dynamic frequencies of the CPU as well as the operational speeds of other

components such as the SSD and RAM. I will also avoid monitoring the CPU

and GPU temperatures whilst running simulations as I believe that they portray

the functionality/optimisation of the simulator rather than having any effect on

the results gathered. These details are not being recorded as they will have

little to no consequence on real-world implementation of any optimisation

algorithms used or discovered over the course of the research.

 123

Although it must be acknowledged that CPUs and GPUs approach tasks in an

assumed manner (even with equivalent specifications). The only change I

believe that will occur on another device is that the time taken to complete

simulation will be different and as I will be going through several simulations,

this can only impact my research negatively.

4.2.8 Assumptions

There were numerous assumptions made over the course of this research as

we could not account for every possible variable, however, to ensure that

results were valid within the scope of the research and well-rounded, the

following concrete assumptions were used as seen in TABLE 4.5:

TABLE 4.5
ASSUMPTIONS TABLE

ASSUMPTIONS

COMPUTING RESOURCES
End devices are assumed to have CPU, RAM, storage and
depletable batteries to process data and execute applications

NETWORKING
CONNECTIVITY

We assume that all discoverable devices are connected to the
network and are requesting resources in some form or manner

APPLICATION EXECUTION
Assumption that applications can be executed on edge devise,
and that the application execution time and resource usage can

be modelled.

WORKLOAD GENERATION

Assume that we can generate the workload according to the given

distribution model, which helps to simulate the behaviour of the

edge computing system under various conditions.

ENERGY CONSUMPTION

We assume that the energy consumption of devices is

proportional to the amount of computation and data transmission
performed by the device.

TASK SCHEDULING

Assume that tasks can be scheduled to edge devices based on

different task categories as well as criteria such as proximity to

the source, resource availability and energy consumption.

MOBILITY
We assume the position of the mobile devices as well as their

travel trajectory.

 124

4.3 Algorithm Design
The value function of the state 𝑠 under policy 𝜋 is defined as follows:

𝑉D =	𝔼D[𝑅$|	𝑠$ = 𝑠] = 	𝔼D 	�-𝛾(𝑟$)*)(

%

(&'

|𝑠$ = 𝑠� (4.7)

The quality of action 𝑎 under policy 𝜋 is then expressed as the expected value

of the cumulative reward starting from the state 𝑠 , acting on 𝑎 , and then

following the policy 𝜋:

𝑄D(𝑠, 𝑎) = 	𝔼D[𝑅$|
𝑠$ = 𝑠
𝑎$ = 𝑎] = 	𝔼D 	�-𝛾(𝑟$)*)(

%

(&'

�
𝑠$ = 𝑠
𝑎$ = 𝑎� (4.8)

As aforementioned, the task of the MDP agent is to find the best possible policy

by comparing value functions. 𝜋! is considered better than another policy 𝜋

only if each state transition yields a higher value. Subsequently, the value and

quality functions can be rewritten in accordance with the Bellman optimality

equations as outlined above:

Value 𝑉∗(𝑠) = 𝑚𝑎𝑥
𝜋 	𝑉:(𝑠) = 	𝑚𝑎𝑥𝑎 |𝒫;(𝑠, 𝑠!)[ℛ;(𝑠, 𝑠!) + 𝛾𝑉∗(𝑠!)]

6"
 (4.9)

Quality 𝒬(𝑠, 𝑎) = 𝑚𝑎𝑥
𝜋 	𝒬)(𝑠, 𝑎) = 	1𝒫*(𝑠, 𝑠+) 3ℛ*(𝑠, 𝑠+) + 𝛾

𝑚𝑎𝑥
𝑎+ 𝒬

∗(𝑠+, 𝑎+)6
-#

 (4.10)

To ensure the correct balance of exploitation and exploration, off-policy

techniques are used to separate the policy searched from the one used to make

decisions, the learning process focuses on optimisation of the action-value

function (𝑄) using an iterative update based on previous values and temporal

difference.

𝒬(𝑠!, 𝑎!) = 𝒬(𝑠!, 𝑎!) + 𝛼 ?𝑅!"# + 𝛾
𝑚𝑎𝑥
𝑎 	𝒬(𝑠!"#, 𝑎) − 𝒬(𝑠!, 𝑎!)@ (4.11)

 125

Single-layer 𝜀-greedy Q-Learning Algorithm

Parameters: discount factor 𝛾, learning rate 𝛼, exploration rate 𝜀, penalty factor 𝛿, query reward

factor 𝜌, and query use penalty 𝜔

1.
2.

3.

4.

5.
6.

7.

8.
9.

10.

11.
12.

13.

14.
15.

16.

17.
18.

19.

20.
21.

22.

23.
24.

25.

26.

27.
28.

29.

30.
31.

32.

33.
34.

35.

36.
37.

38.

39.

begin

for each step 𝑡 do

Observe actual state 𝑠𝑡

Determine feasible action set 𝐴' from 𝐴

𝑠𝑄𝑢𝑒𝑟𝑦 ← 𝑓𝑎𝑙𝑠𝑒

𝑒 ← random number from [0,1]

 # Exploration vs. Exploitation

 if 𝑒 < 𝜀 then

 𝑎𝑡 ← randomly select an action from 𝐴'
 else

 𝑎𝑡 ← arg min 𝑎∈𝐴' 𝑄(𝑠𝑡, 𝑎)

 end

 # Offloading Decision

 if 𝑎𝑡 is to offload to a fog server then

 𝑖𝑠𝑄𝑢𝑒𝑟𝑦 ← 𝑡𝑟𝑢𝑒

 Send the offloading request to a fog server

 𝑎𝑡 ← get the fog server decision

 end

 Execute or send the offloading action 𝑎𝑡

 Wait for the task to be completed

 Observe new state 𝑠𝑡+1

 # Calculate Reward

 Calculate reward 𝐶𝑡 using (15)

 # Apply Query Reward and Penalty

 if 𝑖𝑠𝑄𝑢𝑒𝑟𝑦 then

 𝐶𝑡 ← 𝜌 ⋅ 𝐶𝑡

 𝐶𝑞𝑡 ← 𝜔 ⋅ 𝑡 ⋅ 𝐶𝑡

 # Update Q-value for Query Action (4)

 Update 𝑄(𝑠𝑡, 4) using (14) with 𝐶𝑞𝑡

 # Update Q-value for the selected action 𝑎𝑡

 Update 𝑄(𝑠𝑡, 𝑎𝑡) according to (14) with 𝐶𝑡

end

ALGORITHM 4.1
SINGLE LAYER RL

 126

4.4 Reinforcement Learning (single layer) results
Against our control algorithms, Round Robin and Random Allocation, we ran

our initial 𝜀-greedy Q-Learning Algorithm. The following results were obtained:

4.4.1 Task Success Rate

Using our control algorithms, random assignment and round robin as

comparison, initially, task success starts similar to round robin and already

provides a vast improvement over random assignment.

As devices increase however, we observe in Figure 4.6 that the efficiency rate

of the 𝜀-greedy Q-Learning Algorithm begins to ascend and shows signs of

further improvement. Towards the end of our simulation run, with 1000 devices

being serviced, we observe an almost 20% increase in efficiency with task

success.

Initially, Round Robin and RL begin at similar success rates, which eventually

is superseded by the RL algorithm as it continues to develop intelligence and

more efficiently allocates resources. The algorithm meets expectation and task

success rate continues on an upward trend as the number of edge devices

increases over iteration count.

Figure 4.6. Task Success Rate Single Layer RL

 127

4.4.2 Energy Usage

The large trade-off here comes with the computational power energy

requirements made by the RL algorithm as seen above in Figure 4.7, where

power usage is required to keep latency levels low and task success rate high.

A drastic increase in energy consumption across the architecture is observed

with the use case of 1000 devices on an untrained network.

It is expected that RL will be slightly higher in energy usage, largely due to the

computational requirements as the CPU load is increased when completing ML

tasks. We see that task success rate in Random allocation is almost below 5%

which is significantly lower than desired QoS rate. Due to constraints in

computational capacity applied to the edge node, offloading decisions in the

control algorithm RANDOM are handled immediately and primarily by Edge as

opposed to being offloaded to the cloud as seen in Figure 4.8.

Figure 4.7. Energy Usage Single Layer RL

Figure 4.8. Comparison of Cloud vs Energy usage

 128

4.4.3 Average CPU Usage, All Hierarchy

The energy usage as depicted in Figure 4.7 also correlated directly with the

CPU utilisation of the RL tasks, however, the higher value in task success is

worth the trade-off as a round robin requires an equal amount of energy usage.

Despite the greater computational requirements of the RL algorithm, we

observe that CPU utilisation across the entire hierarchy is equivalent when

compared with the Round Robin algorithm as seen in Figure 4.9.

The increase in task success rate is worth the trade off when considering that

an increase of 80% is observed. This shows that the RL algorithm operates

efficiently within the context of the requirements but leaves room for

improvement with typical energy usage across the network hierarchy.

Further considerations include that lack of an ML optimised Edge device that

would improve the results of computation efficiency and decrease energy

usage; however, constraints are largely subject to the network HW and

infrastructure simulated within the environment.

Figure 4.9. Avg CPU Usage Single Layer RL

 129

4.4.4 Average Execution Delay

One aspect where the RL implementation portrays efficiency is in the execution

delay, hence our task latency requirements are met as observed in Figure 4.10.

Execution delays continue on a downward trend as number of devices scale

up and the RL algorithm builds its Qtable.

We observe a decrease in initial latencies whereas the Random algorithm

continuously grows as devices increase, each taking into consideration latency

requirements per task. Bearing in mind that the execution delay is averaged

Figure 4.10. Avg Execution Delay Single Layer RL

Figure 4.11. Task Failure Rate

 130

across all tasks and initial tasks bear the brunt of the RL algorithm build-up as

clarified in Figure 4.11.

4.5 Summary
Over the course of this chapter, we discover that our RL algorithm provides

great increases in task efficiency and success rate, ensuring that more tasks

meet latency requirements. The obvious negative aspect, however, lies in the

power usage requirements that intelligence on the network edge requires.

Despite this, the simulation does not consider recent advances in neural

network processing capabilities, where newer chipsets are being produced to

handle CPU intensive tasks more efficiently, it also does not utilise GPUs

effectively, as our measurement in the simulation is only conducted on average

CPU usage.

 131

Chapter 5 Multi-Layer RL in Resource Allocation

5.1 Introduction
This chapter consists of the design and implementation of our multi-layer

algorithm in an attempt to improve learning and subsequently task success

rate, at the end of which we will discuss the results. Using the parameters from

Chapter 4, we can expand on our RL algorithm to use Multiple tiers to further

optimise our Learning mechanism. Thus, theoretically improving the results of

the algorithm.

Our QTables will then contribute to the next learning phases, which in this case

must be done manually upon each iteration. Though out of the scope of this

research, the QTables generated by the algorithm can then further be refined

using a broader dataset of historical QTables, using granular environmental

variables to ensure optimum performance for their respective environment.

5.2 Multi-Stage Implementation

Figure 5.1. Output analysis

Designing a multi-tiered reinforcement learning (RL) algorithm involves

developing a system that can operate at multiple levels of abstraction and

decision-making, allowing for more efficient and effective learning. Further

implementing Fuzzy Logic for output analysis as seen in Figure 5.1 provides

abstraction when observing task states, supplementing task state and

allocation.

Thus, a tiered system can be introduced along multiple levels within the

network to ensure maximum efficiency, effectively allocating tasks within

multiple layers of the network stack.

Tier 1: Low-Level Control

Machine Learning Outputs Fuzzy Logic analysis

 132

At the lowest level, the agent interacts directly with the environment and takes

actions based on the current state. The goal of this tier is to learn the basic

skills and actions required to perform the task.

This tier can be trained using a simple RL algorithm such as Q-learning or

SARSA. The agent receives a reward signal based on the outcome of its

actions, and the algorithm updates its policy accordingly as seen in Figure 5.2.

Tier 2: Mid-Level Control
The second tier involves a higher-level controller that supervises the low-level

agent and provides it with guidance and context. The mid-level controller is

responsible for setting goals and sub-tasks, coordinating actions, and

monitoring progress.

The mid-level controller can be trained using a hierarchical RL algorithm such

as the MAXQ framework [103] or the options framework. These algorithms

decompose the task into a hierarchy of sub-tasks, allowing the agent to learn

to perform complex tasks by combining simpler skills.

Tier 3: High-Level Control
The top tier involves a meta-controller that supervises the mid-level controller

and coordinates its behaviour. The meta-controller is responsible for selecting

appropriate sub-tasks and adjusting the mid-level controller's parameters.

Figure 5.2. Hierarchy of the proposed network

 133

The meta-controller can be trained using a meta-RL algorithm such as the

model-based RL or the population-based RL. As gathered from [55], we wish

to ensure that the action space for any given subspace within our architecture

is minimised to reduce-delay.

Further enhancements can be made by ensuring that the targeted action

space’s algorithm is catered to the delay sensitivity of its function. The last

algorithm design is improved upon by including the continued. The value

function of the state 𝑠 under policy 𝜋 is defined as follows:

𝑉D =	𝔼D[𝑅$|	𝑠$ = 𝑠] = 	𝔼D 	�-𝛾(𝑟$)*)(

%

(&'

|𝑠$ = 𝑠� (5.1)

The quality of action 𝑎 under policy 𝜋 is then expressed as the expected value

of the cumulative reward starting from the state 𝑠 , acting on 𝑎 , and then

following the policy 𝜋:

𝑄D(𝑠, 𝑎) = 	𝔼D[𝑅$|
𝑠$ = 𝑠
𝑎$ = 𝑎] = 	𝔼D 	�-𝛾(𝑟$)*)(

%

(&'

�
𝑠$ = 𝑠
𝑎$ = 𝑎� (5.2)

The task of the MDP agent is to find the best possible policy by comparing

value functions. 𝜋! is better than another policy 𝜋 only if each state transition

yields a higher value. The value and quality functions can be rewritten in

accordance with the Bellman optimality equations as outlined above:

Value 𝑉∗(𝑠) = 𝑚𝑎𝑥
𝜋 	𝑉:(𝑠) = 	𝑚𝑎𝑥𝑎 |𝒫;(𝑠, 𝑠!)[ℛ;(𝑠, 𝑠!) + 𝛾𝑉∗(𝑠!)]

6"

(5.3)
Quality 𝒬(𝑠, 𝑎) = 𝑚𝑎𝑥

𝜋 	𝒬:(𝑠, 𝑎) = 	|𝒫;(𝑠, 𝑠!) �ℛ;(𝑠, 𝑠!) + 𝛾
𝑚𝑎𝑥
𝑎! 𝒬

∗(𝑠!, 𝑎!)�
6"

To ensure the correct balance of exploitation and exploration, off-policy

techniques are used to separate the policy searched from the one used to make

 134

decisions, the learning process focuses on optimisation of the action-value

function (q) using an iterative update based on previous values and temporal

difference.

𝒬(𝑠!, 𝑎!) = 𝒬(𝑠!, 𝑎!) + 𝛼 ?𝑅!"# + 𝛾
𝑚𝑎𝑥
𝑎 	𝒬(𝑠!"#, 𝑎) − 𝒬(𝑠!, 𝑎!)@ (5.4)

TABLE 5.1
NOTATION TABLE FOR Q POLICY EQUATION

Denotations

𝒔𝒕 Current state

𝒂𝒕 Current action

𝜸 Discount factor

𝜶 Learning rate = { 0	 → 1}

5.3 Multi-Layer Results

5.3.1 Task Success Rate

As seen in Figure 5.3, the implementation of a multi-layered algorithm varied

in its success initially, for reference, RL_MULTILAYER_EMPTY portrays an RL

algorithm without QTables loaded, where QTables are initialised from the

beginning, and built across the duration of the algorithm.

It is clear from the results gained that on initialisation, the algorithm performs

poorly when compared to non-intelligent methods such as Round Robin, but as

devices increase, which is the expected for an MEC node serving in an end-

user environment, Multi-Layer RL provides an improved output of efficiency.

A similar trend is observed across all generated results, where output largely

depends on the number of nodes. Figure 5.3 further portrays the relationship

between the RL algorithm when QTables have been previously populated,

clearly demonstrating the superiority over the ROUND_ROBIN algorithm,

where task success rate immediately decreases once the edge device count

begins to rise above 100.

 135

Initial values show that with fewer devices, the single layered algorithm shows

improved performance but once devices increase, so does the efficiency of the

multi-layer algorithm.

5.3.2 Execution Delay

A similar observation is made for execution delay as seen above in Figure 5.4,

as nodes increase, the ‘intelligent’ algorithms begin to outperform their non-

intelligent counterparts by exponential increases, once again, when

Figure 5.3. Task Success Rate Multi-Layer

Figure 5.4. Multi-Layer RL Execution Delay

 136

implemented in a multi-stage fashion, execution delays begin to decrease

greatly.

This affects tasks with latency requirements, as more tasks can be successfully

executed when start-up time of the tasks is lower, particularly helping in the

fields of mobile health or robotic surgery.

5.3.3 Energy Usage

As with the single layer RL algorithm, we find that multi-layer RLs added

complexity requires more computational power, therefore increased energy

usage is incurred.

Once again, computational decisions are increasingly handled by the cloud,

however a pattern emerges where decision-making, which is now handled

across the entire hierarchy using the tier system, is more evenly distributed,

thus tasks can be effectively handled at the network edge once intelligence

peaks (800 device mark, as seen in Figure 5.5).

Figure 5.5. Avg Edge Energy Consumption Multi-Layer

 137

Inconsistency is observed around the 800-device mark, where we notice a

sharp increase in Edge consumed energy due to the offloading decision being

allocated to edge. Despite the energy increase across both cloud and edge,

average execution delay is reduced significantly once QTables have been

loaded within the Multilayer algorithm.

5.4 Further Enhancement
Using an approximation Q function to enhance success rate of tasks as seen

in Eq. 5.5	 𝜀-greedy algorithm uses exploration vs exploitation to maximise

reward gaining advantages as implemented in Eq. 5.5, where using the

parametrised function 𝑄(𝑠, 𝑎; 𝜃) and 𝜃 are the parameters of the function

approximator:

θ	 ← 𝜃 + 𝛼	[𝑟!"# + 𝛾	𝑄(𝑠!"#, 𝑎; 𝜃) − 𝑄(𝑠!, 𝑎!; 𝜃)]	∇)𝑄(𝑠!, 𝑎!; 𝜃) (5.5)

TABLE 5.2

NOTATION TABLE FOR Q FUNCTION APPROXIMATION

Denotations

θ Model parameters (weights)

α Learning rate (ranges from 0 to 1)

Figure 5.6. Avg Cloud Energy Consumption Multi-Layer

 138

γ Discount factor (ranges from 0 to 1)

𝒓𝒕%𝟏 Reward at the next time step

𝒔𝒕 Current state

𝒔𝒕%𝟏 Next state

𝒂𝒕 Current action

𝑸(𝒔𝒕, 𝒂𝒕; 	𝜽) Estimated Q-value for current state-action pair

𝑸(𝒔𝒕%𝟏, 𝒂; 	𝜽) Estimated Q-value for next state and action

This equation is an update rule used in reinforcement learning to adjust the

parameters of a function approximator, such as a neural network, in order to

improve its performance. This type of update is commonly seen in algorithms

like Q-learning with function approximation (e.g., Deep Q-Networks (DQN)).

𝜃	 ← 	𝜃	 + 	𝛼	[…]𝛻>𝑄(𝑠$, 𝑎$; 	𝜃)

θ: The parameters (weights) of the function approximator, typically a neural

network.

α: The learning rate, a scalar that controls how much the parameters are

adjusted in each update step.

𝜵𝜽𝑸(𝒔𝒕, 𝒂𝒕; 	𝜽) : The gradient of the Q-value function with respect to the

parameters θ. This tells us how to change the parameters to maximize the Q-

value.

𝑟$%& 	+ 	𝛾	𝑄(𝑠$%&, 𝑎; 	𝜃) − 	𝑄(𝑠$, 𝑎$; 	𝜃)

𝒓𝒕%𝟏: The immediate reward received after acting 𝑎$ in state	𝑠$.

𝜸 (gamma): The discount factor, which determines the importance of future

rewards.

𝑸(𝒔𝒕%𝟏, 𝒂; 	𝜽): The estimated maximum future Q-value for the next state 𝑠$%&.

This represents the best possible future cumulative reward starting from 𝑠$%&.

𝑸(𝒔𝒕, 𝒂𝒕; 	𝜽): The current Q-value estimate for taking action 𝑎$ in state 𝑠$.

 139

The term 𝑟$%& + 𝛾𝑄(𝑠$%&, 𝑎; 𝜃) − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃) represents the temporal-difference

(TD) error. It measures how far off the current Q-value estimate is from the

"true" target value 𝑟$%& + 𝛾𝑄(𝑠$%&, 𝑎; 𝜃).

The update rule 𝜃 ← 𝜃 + 𝛼[𝑇𝐷	𝑒𝑟𝑟𝑜𝑟]𝛻>𝑄(𝑠$, 𝑎$; 𝜃) uses this TD error to adjust the

parameters 𝜃. The gradient term 𝛻>𝑄(𝑠$, 𝑎$; 𝜃) guides the direction of the update

to minimize this error.

Purpose of the Update
The goal is to iteratively adjust 𝜃 so that the Q-value function 𝑄(𝑠, 𝑎; 𝜃)

becomes a better approximation of the true action-value function. By applying

this update repeatedly, the model learns to predict the expected cumulative

reward for any given state-action pair more accurately.

 140

ALGORITHM 5.1
MULTI-LAYER APPROXIMATION

Algorithm 2: 𝜀-greedy Multilayer Q-Learning Algorithm

Parameters: discount factor 𝛾, learning rate 𝛼, exploration rate 𝜀, penalty factor 𝛿, query reward

factor 𝜌 and query use penalty 𝜔

1.

2.

3.
4.

5.

6.
7.

8.

9.
10.

11.

12.
13.

14.

15.
16.

17.

18.

19.
20.

21.

22.
23.

24.

25.
26.

27.

28.
29.

30.

31.
32.

33.

34.
35.

36.

begin

for each step 𝑡 do

 Observe actual state 𝑠$

 Determine feasible action set A' from A

 isQuery ← false

 e ← random number from [0, 1]

 if e < ε then

 𝑎$ ← randomly select an action from A'

 else

 𝑎$ ← arg min_{a ∈ A'} Q(𝑠$, a; θ)

 end

 if 𝑎$ is to ask a fog server then

 isQuery ← true

 Send the offloading request to a fog server

 𝑎$ ← get the fog server decision

 end

 Execute or send the offloading action 𝑎$

 Wait for the task to be completed

 Observe new state 𝑠$%&

 Calculate reward 𝐶$ by (15)

 if isQuery then

 𝐶$ ← ρ ⋅ 𝐶$

 C_q_t ← ω ⋅ t ⋅ 𝐶$

 δ = C_q_t + γ max_{a'} Q(s_{t+1}, a'; θ) - Q(𝑎$, 𝑎$; θ)

 θ ← θ + α δ ∇_θ Q(s_t, a_t; θ)

 end

 δ = 𝐶$ + γ max_{a'} Q(s_{t+1}, a'; θ) - Q(𝑠$, 𝑎$; θ)

 θ ← θ + α δ ∇_θ Q(𝑠$, 𝑎$; θ)

end

 141

5.5 Multi-Layer Approximation Results
We will now compare only the RL algorithms below, with round robin and

random allocation once again as our control algorithms. The approximation

algorithm often outperforms the multilayer algorithm in the previous section in

regard to energy usage and also shows promising results over greater number

of edge devices.

5.5.1 Task Success Rate

Using the function approximation algorithm, we notice a marginal increase in

task success rate that once again, scales over time. We can rule out the

RANDOM algorithm as being the least performant which is on par with

expectations.

It is noticeable however, that the ROUND ROBIN algorithm almost performs

equivalently but as we will notice in the next section, there is a sharp increase

in average execution delay which indicates that as devices increase, task

failure rate will begin to decline sharply.

5.5.2 Execution Delay

Figure 5.7. Task Success Rate Multi-Layer

 142

Results in execution delay are varied, as there is a noticeable dip at the 600-

device mark for our previous RL_MULTILAYER algorithm, although on

conclusion of the simulation, we find that once again, a marginal increase is

provided by our improved algorithm.

This is largely due to the distribution of the task generator, as each task has

its own specific requirements which are then allocated to the orchestrator.

Despite the anomaly observer in the 600-device mark, the approximation

algorithm outperforms the Multilayer algorithm across the board.

Figure 5.8. Avg Execution Delay Multi-Layer

Figure 5.9. Avg Energy Consumption Multi-Layer

 143

5.5.3 Power Usage

Test results stand, that with great intelligence, comes great power usage, and

as the approximation algorithm is using more calculations, more CPU power is

required to complete resource allocation.

Unfortunately, despite addressing the computational distribution for resource

allocation, we continue with similar performance with energy usage without

overhauling the entire edge architecture and changing simulation parameters.

Another observation indicates that RANDOM assignment continuously declines

in energy usage, however as the task failure rate is not sufficient and certainly

does not meet QoS requirements for most applications, despite the

Due to the nature of simulation, at the time of writing results, the expected

computational power available at the network edge has increased several fold,

which in turn would also decrease execution delay as well as overall latency,

ensuring more tasks are successful and meeting latency requirements.

Despite the anomalies observed where figures rise or dip sharply due to the

nature of the task allocation and its random assignment when building task

loads, we find that the latest improved algorithm consistently outperforms the

multilayer algorithm without too great of an impact on performance.

5.6 Summary
This chapter portrayed that usage of a multi-layer approach within resource

allocation can greatly increase efficiency of task success whilst reducing

energy usage as the number of devices increases. There is a slight trade-off

however, when it comes to task execution time, where RL can cause initial

start-up delays. CPU usage also increases slightly, however as the algorithm

matures, this also decreases with greater number of devices.

 144

Chapter 6 Conclusion and Future Work
Over the course of this research, we dove into the resource allocation and

MEC, compared simulation software and implemented our 𝜀 – greedy single

layer and multi-layer algorithms that portrayed improvements at each stage.

6.1 Conclusion
This research covered many aspects of resource allocation within MEC

environments. From the single layer implementation to the multi-layer,

increases in efficiency were observed across all resource allocation as

expected, however they did come with major disadvantages in energy usage,

despite this, we must consider that our network configuration, particularly the

configuration of the edge devices, was sourced from technology that began at

the start of the thesis and therefore, does not take into account improvements

in efficiency within silicone and neural network enabled processing.

Implementation of further enhancements, such as replay memory and

approximate Q functions allowed more tasks to be successfully executed but

once again, came at a cost in energy consumption. Simulating these

environments gave us a chance to offset real-world implications and fine-tune

our algorithm to respond to allocation tasks with greater efficiency, ensuring

that once fully realised, gains in efficiency and QoS requirements for individual

tasks could be met within industrial application.

As noted above, exponential increases in optimisation were observed in task

success across all algorithmic implementations, and minor improvements could

be made to return major gains in efficiency. Due to time implications, further

improvements utilising neural network-based solutions could not be

implemented as various research and software-based packages were

introduced whilst this research was being conducted, such as ND4J, that could

help us further integrate a neural network-based algorithm. Reward allocations

could also be further refined to ensure the system is penalised for higher

energy usage ensuring energy efficiency goals are met for resource allocation.

 145

On the other hand, we successfully compared and discovered an optimum

solution for the implementation and simulation for MEC environments that can

apply to a cross-network architecture. We also developed and iterated upon

intelligent resource allocation and subsequently multi-tiered resource

allocation within the network edge, thereby increasing success rate of allocated

tasks exponentially.

Some limitations were encountered within the simulation that constrained our

simulation environment to fewer devices, issues such as this have since been

addressed in PureEdgeSim but come at the cost of major architectural changes

which require a rewrite of the custom edge orchestration modules and

algorithms used over the course of the thesis.

To ensure validation, edge server specifications were maintained throughout

the thesis and once decided, were not updated as new hardware was

announced for the network environment. Though this may require addressing

for the purpose of this research, luckily, we are just a parameter change away

to being able to model and simulate any network environment with high

accuracy.

Iteratively improving the resource allocation can lead to significant results over

a larger number of devices, which would be the case when addressing

individual cells within an Edge network or indeed a mobile network. We find

that usage a RL can quickly and efficiently improve network operation but there

is much to be gained in iterating QTables in a more efficient manner without

overloading them with overheads and thus ensuring redundant information is

omitted.

Thus, utilising methods like Experience Replay can help improve data

efficiency and stability in training, particularly for off-policy algorithms such as

the ones implemented in this research.

 146

To conclude then, it is clear from the research we conducted that there is much

to be gained with intelligence in resource allocation within the entire network

stack, but as latency requirements become a major limitation in service

provider offerings, including generative AI, we have just touched upon some of

the many challenges that NPs face when implementing new architecture.

Thus, simulation and optimal resource allocation can help to provide the best

route when it comes to intelligent service offerings at the network edge,

readying us for 6G and beyond.

6.2 Future Work
As network connected devices increase alongside generative AI such as

ChatGPT, ensuring that resources are allocated efficiently in both power usage

and QoS becomes paramount to utilisation of technology. Despite the

increases in bandwidth and speed in future technologies such as 6G,

computational power must also be taken into consideration.

Technologies such as VR and AR have yet to see their full potential in

application and will be further enhanced by MEC technology, but optimal

resource allocation will prove to be a cornerstone in meeting QoS requirements

for the vast variety of services expected to be handled by the network edge.

Despite our extensive coverage of optimal resource allocation, including the

in-depth review of simulation software, implementation in real-world scenarios

prove challenging and require consideration of numerous variables considering

projected computation growth at the network edge with cost projections for

MNOs to upgrade the technology.

Our multi-layered algorithm covered three layers however, there is potential for

a ‘context aware’ MEC platform, that is able to dynamically identify its

environment and select an appropriate allocation algorithm depending on

projected usage from a historical context, as well as considering information

on future network usage, adapting to use cases such as large events.

 147

One major disadvantage was the lack of GPU implementation usage or more

efficient, neural network enabled silicon that can more accurately gauge and

drastically reduce the energy requirements for intelligence in the network edge.

The above would have greatly impacted task execution delay, as RL tasks

would have been handled more efficiently utilising GPU.

Unfortunately, as the testing was conducted using local computation with local

hardware (and cost restraints), the number of edge devices was largely limited

without the simulator simply giving up due to computational taxation. To further

gauge the efficacy of the proposed algorithm in this research, it would be ideal

to test the algorithm on a computational cluster via Elastic Compute (EC2) or

Google Cloud Engine (GCE) using a computational cluster which would provide

the added benefit of GPU based computation on NVIDIA architecture. This

would remove the single device limitation and provide a more accurate

representation of serving a greater number of devices of single edge nodes.

Considering that computational prowess continues to increase, newer

technologies continue to emerge [104] [105], and energy efficiency has

become a pivotal focus within both industry and academia, not only would we

gauge a better idea of how the proposed algorithm would function in real-world

application, but we could also understand the limitations and the trade-off

between intelligent and non-intelligent resource allocation methods. In an ideal

world, utilising AI based and simple allocation interchangeably until QTables

are generated would be a greater solution, especially when considering initial

deployment of edge nodes.

Additionally, with the advancement of AI, using Retrieval-Augmented

Generation (RAG) to supplement and enhance contextual knowledge of the

network during deployment and discovery of nodes would further bolster the

success of the algorithm, ensuring that networks can pre-emptively and

intelligently allocate resources efficiently whilst taking network conditions into

consideration and using predictive pre-emptive measures to adjust accordingly

when traffic is expected to fluctuate due to real-world conditions.

 148

Intelligence in the network edge provides the kind of dynamicity required to

keep up with growing demands and meeting with net-zero targets for

organisations, specifically MNOs. As we enter industry 4.0, accompanied by

the advancements and adoption of AI on a wider scale, an intelligent

communication network is paramount to future-proof success.

Despite the focus and products of the research, it is important to consider how

hierarchical continuous processes can enhance and optimise AI intelligence

outside of LLMs. The natural progression of this research, with some lateral

thinking, is determining how can infer contextual variables to adapt trained

algorithms to new environments without incurring the same overhead, thus

reducing TtE (Time to Efficiency). This will not only help to enhance

optimisation in the communications space, but also ensure that continuous

models can iteratively adapt to any use case.

 149

Appendices

Appendix 1

Membership Functions
Variable Fuzzy Term Range Start Range End

taskLength Low 0 20000

 Medium 20000 100000

 High 100000

taskMaxLatency Low 0 6

 Medium 6 15

 High 15

localCPU Low 0 25

 Medium 25 50

 Busy 50 75

 High 75

localMips Low 0 30000

 Medium 30000 130000

 High 130000

avgEdgeCPU Low 0 25

 Medium 25 50

 Busy 50 75

 High 75

avgCloudCPU Low 0 25

 Medium 25 50

 Busy 50 75

 High 75

 150

References

[1] ‘Individuals using the Internet (% of population) | Data’. Accessed: Jul.
22, 2024. [Online]. Available:
https://data.worldbank.org/indicator/IT.NET.USER.ZS?end=2022&skipR
edirection=true&start=2022&view=map

[2] ‘5G today | Nokia’. Accessed: May 25, 2020. [Online]. Available:
https://www.nokia.com/networks/5g/?did=d000000002hq&gclid=CjwKCA
jw2a32BRBXEiwAUcugiBDdodmGfUorZjRLEvmEIBMIi1VYBkZ6tvJ6D1w
5ojpuAbDSGYhOaRoCu8kQAvD_BwE

[3] ‘Press Releases : NTT DOCOMO to Launch 5G Service in Japan on
March 25 | News & Notices | NTT DOCOMO’. Accessed: May 25, 2020.
[Online]. Available:
https://www.nttdocomo.co.jp/english/info/media_center/pr/2020/0318_00
.html

[4] Ethem Alpaydın, ‘View on 5G Architecture’, Version 3.0, June 2019, no.
June, pp. 21–470, 2019, [Online]. Available: https://5g-ppp.eu/wp-
content/uploads/2019/07/5G-PPP-5G-Architecture-White-
Paper_v3.0_PublicConsultation.pdf

[5] ‘How fast is 5G - 5G speeds and performance’. Accessed: Nov. 02,
2020. [Online]. Available: https://5g.co.uk/guides/how-fast-is-5g/

[6] Kris Beevers, ‘Why 5G is bringing edge computing and automation front
and center | Network World’. Accessed: Jul. 14, 2019. [Online].
Available: https://www.networkworld.com/article/3255426/why-5g-is-
bringing-edge-computing-and-automation-front-and-center.html

[7] ETSI White Paper No. 11, ‘Mobile edge computing—A key technology
towards 5G. ETSI White Paper’, ETSI White Paper, vol. 11, no. 11, pp.
1--16., 2015.

[8] ‘Keeping the Internet up and running in times of crisis’. Accessed: Mar.
28, 2021. [Online]. Available: https://www.oecd.org/coronavirus/policy-
responses/keeping-the-internet-up-and-running-in-times-of-crisis-
4017c4c9/

[9] S. Yadav, ‘Six Important Questions to Ask Your Edge Computing
Provider | GE Digital’. Accessed: Nov. 01, 2020. [Online]. Available:
https://www.ge.com/digital/blog/six-important-questions-ask-your-edge-
computing-provider

 151

[10] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, ‘Fast Adaptive
Task Offloading in Edge Computing Based on Meta Reinforcement
Learning’, IEEE Transactions on Parallel and Distributed Systems, vol.
32, no. 1, pp. 242–253, 2021, doi: 10.1109/TPDS.2020.3014896.

[11] S. Svorobej et al., ‘Simulating fog and edge computing scenarios: An
overview and research challenges’, Future Internet, vol. 11, no. 3, pp.
1–15, 2019, doi: 10.3390/fi11030055.

[12] H. Sun, Z. Zhang, R. Q. Hu, and Y. Qian, ‘Wearable communications in
5g: Challenges and enabling technologies’, IEEE Vehicular Technology
Magazine, vol. 13, no. 3, pp. 100–109, 2018, doi:
10.1109/MVT.2018.2810317.

[13] Y. C. Hu, M. Patel, D. Sabella, and V. Young, ‘ETSI White Paper #11
Mobile Edge Computing - a key technology towards 5G’, 2015.
Accessed: Jul. 15, 2019. [Online]. Available: www.etsi.org

[14] R. Vilalta et al., ‘Control and Management of a Connected Car Using
SDN/NFV, Fog Computing and YANG data models’, 2018 4th IEEE
Conference on Network Softwarization and Workshops, NetSoft 2018,
pp. 344–346, 2018, doi: 10.1109/NETSOFT.2018.8460131.

[15] J. Marshall, ‘Poorly planned infrastructure could cost UK £23bn, Mace
reveals | News | Building’. Accessed: Feb. 28, 2021. [Online]. Available:
https://www.building.co.uk/news/poorly-planned-infrastructure-could-
cost-uk-23bn-mace-reveals/5109591.article

[16] ‘Mobile network traffic update – Mobility Report - Ericsson’. Accessed:
Feb. 28, 2021. [Online]. Available:
https://www.ericsson.com/en/mobility-report/dataforecasts/mobile-
traffic-update

[17] S. Antipolis, ‘ETSI Plugtests Report’, Jun. 2020.

[18] P. Dolan, R. Shaw, A. Tsuchiya, and A. Williams, ‘QALY maximisation
and people’s preferences: a methodological review of the literature.’,
Health Econ, vol. 14, no. 2, pp. 197–208, Feb. 2005, doi:
10.1002/hec.924.

[19] V. Socialcast and M. U. Guide, ‘No Title’, no. December, 2016.

[20] ‘Virtualization Essentials’. Accessed: Nov. 07, 2020. [Online]. Available:
http://www.gartner.com/newsroom/id/1472714

 152

[21] S. Vittal, M. K. Singh, and A. Antony Franklin, ‘Adaptive network slicing
with multi-site deployment in 5G core networks’, Proceedings of the
2020 IEEE Conference on Network Softwarization: Bridging the Gap
Between AI and Network Softwarization, NetSoft 2020, pp. 227–231,
2020, doi: 10.1109/NetSoft48620.2020.9165512.

[22] A. F. Aljulayfi and K. Djemame, ‘Simulation of an augmented reality
application for driverless cars in an edge computing environment’, 5th
International Symposium on Innovation in Information and
Communication Technology, ISIICT 2018, vol. 2019-Janua, 2019, doi:
10.1109/ISIICT.2018.8651268.

[23] F. Alvarez et al., ‘An Edge-to-Cloud Virtualized Multimedia Service
Platform for 5G Networks’, IEEE Transactions on Broadcasting, vol. PP,
pp. 1–12, 2019, doi: 10.1109/TBC.2019.2901400.

[24] C. Sonmez, A. Ozgovde, and C. Ersoy, ‘Fuzzy Workload Orchestration
for Edge Computing’, IEEE Transactions on Network and Service
Management, vol. 4537, no. i, pp. 1–14, 2019, doi:
10.1109/TNSM.2019.2901346.

[25] N. Tziritas et al., ‘Data Replication and Virtual Machine Migrations to
Mitigate Network Overhead in Edge Computing Systems’, IEEE
Transactions on Sustainable Computing, vol. 2, no. 4, pp. 320–332,
2017, doi: 10.1109/tsusc.2017.2715662.

[26] ‘Industrial Edge | Topic areas | Siemens Global’. Accessed: Apr. 02,
2021. [Online]. Available:
https://new.siemens.com/global/en/products/automation/topic-
areas/industrial-
edge.html?gclid=CjwKCAjwgZuDBhBTEiwAXNofRKfDbS0hBvpFLoyz2M
ERwVxdeQQsQUWX_glm6vZVENlR6JegFsJ1mhoCwgEQAvD_BwE

[27] Nebbiolo Technologies Inc., ‘Fog vs Edge Computing’, p. 8, 2016,
[Online]. Available: https://www.nebbiolo.tech/wp-
content/uploads/whitepaper-fog-vs-edge.pdf

[28] J. Pan and J. McElhannon, ‘Future Edge Cloud and Edge Computing for
Internet of Things Applications’, IEEE Internet Things J, vol. 5, no. 1,
pp. 439–449, 2018, doi: 10.1109/JIOT.2017.2767608.

[29] M. Armbrust et al., ‘A View of Cloud Computing Clearing the clouds
away from the true potential and obstacles posed by this computing
capability’, Commun ACM, vol. 53, no. 4, 2010, doi:
10.1145/1721654.1721672.

 153

[30] newzoo, ‘Newzoo | Games & Esports Analytics and Market
Research’. Accessed: Jun. 29, 2019. [Online]. Available:
https://newzoo.com/

[31] A. Nadeem, ‘Performance Comparison of Data’, Measurement, pp. 84–
89, 2005, doi: 10.1109/VETECF.2008.422.

[32] MTR, ‘ETSI GS MEC 002 V2.1.1’, 2018. Accessed: May 23, 2019.
[Online]. Available:
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

[33] sdxcentral, ‘What is the ETSI MEC ISG’s Role in Defining Edge
Computing?’ Accessed: Apr. 10, 2019. [Online]. Available:
https://www.sdxcentral.com/edge/definitions/what-is-etsis-role-in-
defining-mec/

[34] ETSI, ‘MEC 003 - V2.1.1 - Multi-access Edge Computing (MEC);
Framework and Reference Architecture’, vol. 1, pp. 1–21, 2019.

[35] R. Jain, ‘Introduction to Software Defined Networking (SDN)’, pp. 1–61,
2013, doi: https://dx.doi.org/10.1111/pace.13115.

[36] Y. Zhang, Network Function Virtualization: Concepts and Applicability in
5G Networks, First Edit. John Wiley & Sons, Inc., 2018.

[37] M. Li, F. R. Yu, P. Si, H. Yao, and Y. Zhang, ‘Software-Defined
Vehicular Networks with Caching and Computing for Delay-Tolerant
Data Traffic’, IEEE International Conference on Communications, vol.
2018-May, 2018, doi: 10.1109/ICC.2018.8422823.

[38] J. Wang, L. Zhao, J. Liu, and N. Kato, ‘Smart Resource Allocation for
Mobile Edge Computing: A Deep Reinforcement Learning Approach’,
IEEE Trans Emerg Top Comput, vol. 9, no. 3, pp. 1529–1541, 2021, doi:
10.1109/TETC.2019.2902661.

[39] ‘A Beginner’s Guide to Deep Reinforcement Learning | Pathmind’.
Accessed: Jan. 31, 2021. [Online]. Available:
https://wiki.pathmind.com/deep-reinforcement-learning

[40] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Second Edition. The MIT Press, 2018.

[41] ‘Types of Machine Learning - Supervised, Unsupervised, Reinforcement
- TechVidvan’. Accessed: May 10, 2021. [Online]. Available:
https://techvidvan.com/tutorials/types-of-machine-learning/

 154

[42] D. Silver et al., ‘Mastering the game of Go with deep neural networks
and tree search’, Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016,
doi: 10.1038/nature16961.

[43] B. Andre, H. Shaobo, B. Diana, S. David, and P. Doina, ‘Fast
reinforcement learning through the composition of behaviours |
DeepMind’. Accessed: Feb. 07, 2021. [Online]. Available:
https://deepmind.com/blog/article/fast-reinforcement-learning-through-
the-composition-of-behaviours

[44] M. Naeem, S. T. H. Rizvi, and A. Coronato, ‘A Gentle Introduction to
Reinforcement Learning and its Application in Different Fields’, IEEE
Access, vol. 8, pp. 209320–209344, 2020, doi:
10.1109/ACCESS.2020.3038605.

[45] M. Abderrahim, A. Ben Letaifa, A. Haji, and S. Tabbane, ‘How to use
MEC and ML to improve resources allocation in SDN networks?’,
Proceedings - 32nd IEEE International Conference on Advanced
Information Networking and Applications Workshops, WAINA 2018, vol.
2018-Janua, pp. 442–447, 2018, doi: 10.1109/WAINA.2018.00126.

[46] J. Li, H. Gao, T. Lv, and Y. Lu, ‘Deep reinforcement learning based
computation offloading and resource allocation for MEC’, IEEE Wireless
Communications and Networking Conference, WCNC, vol. 2018-April,
pp. 1–6, 2018, doi: 10.1109/WCNC.2018.8377343.

[47] C. Mechalikh, H. Taktak, and F. Moussa, ‘PureEdgeSim: A Simulation
Toolkit for Performance Evaluation of Cloud, Fog, and Pure Edge
Computing Environments’, 2019 International Conference on High
Performance Computing and Simulation, HPCS 2019, pp. 700–707,
2019, doi: 10.1109/HPCS48598.2019.9188059.

[48] R. L. de Mantaras and L. Godo, ‘From fuzzy logic to fuzzy truth-valued
logic for expert systems. A survey’, 1993 IEEE International Conference
on Fuzzy Systems, pp. 750–755, 1993, doi:
10.1109/fuzzy.1993.327536.

[49] ‘A Phenomenon in Modern Science or Who Are You Lotfi Zadeh? -
Famous people - Visions of Azerbaijan Magazine’. Accessed: Nov. 05,
2020. [Online]. Available: http://www.visions.az/en/news/49/2bbd742d/

[50] ‘Fuzzy Logic (Stanford Encyclopedia of Philosophy)’. Accessed: Nov.
05, 2020. [Online]. Available: https://plato.stanford.edu/entries/logic-
fuzzy/

 155

[51] ‘What is “fuzzy logic”? Are there computers that are inherently fuzzy
and do not apply the usual binary logic? - Scientific American’.
Accessed: Nov. 05, 2020. [Online]. Available:
https://www.scientificamerican.com/article/what-is-fuzzy-logic-are-t/

[52] ‘What is Fuzzy Logic in AI and What are its Applications? | Edureka’.
Accessed: Nov. 07, 2020. [Online]. Available:
https://www.edureka.co/blog/fuzzy-logic-ai/

[53] M. Jezewski, R. Czabanski, and J. Leski, ‘Introduction to Fuzzy Sets’, in
Theory and Applications of Ordered Fuzzy Numbers: A Tribute to
Professor Witold Kosiński, P. Prokopowicz, J. Czerniak, D.
Mikołajewski, Ł. Apiecionek, and D. Ślȩzak, Eds., Cham: Springer
International Publishing, 2017, pp. 3–22. doi: 10.1007/978-3-319-
59614-3_1.

[54] A. Robles-Enciso and A. F. Skarmeta, ‘A multi-layer guided
reinforcement learning-based tasks offloading in edge computing’,
Computer Networks, vol. 220, p. 109476, Jan. 2023, doi:
10.1016/J.COMNET.2022.109476.

[55] X. Xiong, K. Zheng, S. Member, L. Lei, S. Member, and L. Hou,
‘Resource Allocation Based on Deep Reinforcement Learning in IoT
Edge Computing’, vol. 8716, no. c, pp. 1–13, 2020, doi:
10.1109/JSAC.2020.2986615.

[56] X. Liu, J. Yu, J. Wang, and Y. Gao, ‘Resource Allocation With Edge
Computing in IoT Networks via Machine Learning’, IEEE Internet Things
J, vol. 7, no. 4, pp. 3415–3426, Apr. 2020, doi:
10.1109/JIOT.2020.2970110.

[57] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, ‘Resource
management with deep reinforcement learning’, HotNets 2016 -
Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pp.
50–56, Nov. 2016, doi: 10.1145/3005745.3005750.

[58] C. Sonmez, C. Tunca, A. Ozgovde, and C. Ersoy, ‘Machine Learning-
Based Workload Orchestrator for Vehicular Edge Computing’, IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 4, pp.
2239–2251, Apr. 2021, doi: 10.1109/TITS.2020.3024233.

[59] M. Abderrahim, A. Ben Letaifa, A. Haji, and S. Tabbane, ‘How to use
MEC and ML to improve resources allocation in SDN networks?’,
Proceedings - 32nd IEEE International Conference on Advanced

 156

Information Networking and Applications Workshops, WAINA 2018, vol.
2018-Janua, pp. 442–447, 2018, doi: 10.1109/WAINA.2018.00126.

[60] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, ‘A Double
Deep Q-learning Model for Energy-efficient Edge Scheduling’, IEEE
Trans Serv Comput, vol. 1374, no. c, pp. 1–12, 2018, doi:
10.1109/TSC.2018.2867482.

[61] Huawei Technologies Ltd., ‘5G Network Architecture-A High Level View
5G Network Architecture 5G Network Architecture A High-Level
Perspective Network Architecture-A High Level View 5G 3 5G Network
Architecture-A High Level View Contents’. Accessed: Mar. 27, 2019.
[Online]. Available:
https://www.huawei.com/minisite/hwmbbf16/insights/5G-Nework-
Architecture-Whitepaper-en.pdf

[62] ‘Intel’s new Core i9-11900K flagship processor will arrive in early 2021 -
The Verge’. Accessed: Mar. 07, 2021. [Online]. Available:
https://www.theverge.com/2021/1/11/22225541/intel-processor-11th-
gen-ces-2021-chips-specs

[63] A. Ndikumana, S. Ullah, T. LeAnh, N. H. Tran, and C. S. Hong,
‘Collaborative cache allocation and computation offloading in mobile
edge computing’, 19th Asia-Pacific Network Operations and
Management Symposium: Managing a World of Things, APNOMS 2017,
pp. 366–369, 2017, doi: 10.1109/APNOMS.2017.8094149.

[64] D. Gopi, S. Cheng, and R. Huck, ‘Comparative analysis of SDN and
conventional networks using routing protocols’, IEEE CITS 2017 - 2017
International Conference on Computer, Information and
Telecommunication Systems, pp. 108–112, 2017, doi:
10.1109/CITS.2017.8035305.

[65] X. Deng, J. Li, L. Shi, Z. Wei, X. Zhou, and J. Yuan, ‘Wireless Powered
Mobile Edge Computing : Dynamic Resource Allocation and
Throughput’, vol. 1233, no. c, 2020, doi: 10.1109/TMC.2020.3034479.

[66] S. Garg, N. Kumar, J. J. P. C. Rodrigues, and J. J. P. C. Rodrigues,
‘Hybrid deep-learning-based anomaly detection scheme for suspicious
flow detection in SDN: A social multimedia perspective’, IEEE Trans
Multimedia, vol. 21, no. 3, pp. 566–578, 2019, doi:
10.1109/TMM.2019.2893549.

[67] X. Xiong, K. Zheng, S. Member, L. Lei, S. Member, and L. Hou,
‘Resource Allocation Based on Deep Reinforcement Learning in IoT

 157

Edge Computing’, vol. 8716, no. c, pp. 1–13, 2020, doi:
10.1109/JSAC.2020.2986615.

[68] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, ‘Cache in
the air: Exploiting content caching and delivery techniques for 5G
systems’, IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139,
2014, doi: 10.1109/MCOM.2014.6736753.

[69] Netflix, ‘Rethinking Netflix’s Edge Load Balancing - Netflix TechBlog -
Medium’. Accessed: Jul. 14, 2019. [Online]. Available:
https://medium.com/netflix-techblog/netflix-edge-load-balancing-
695308b5548c

[70] V. Eudossiana, ‘DYNAMIC RESOURCE ALLOCATION FOR WIRELESS
EDGE MACHINE LEARNING WITH LATENCY AND ACCURACY
GUARANTEES Mattia Merluzzi , Paolo Di Lorenzo , Sergio Barbarossa’,
pp. 9036–9040, 2020.

[71] R. I. Tinini, M. R. P. dos Santos, G. B. Figueiredo, and D. M. Batista,
‘5GPy: A SimPy-based simulator for performance evaluations in 5G
hybrid Cloud-Fog RAN architectures’, Simul Model Pract Theory, vol.
101, no. October 2019, p. 102030, 2020, doi:
10.1016/j.simpat.2019.102030.

[72] B. Linkleter, ‘Open-Source Routing and Network Simulation | Open-
Source Network Simulators’. Accessed: Jun. 17, 2019. [Online].
Available: http://www.brianlinkletter.com/open-source-network-
simulators/

[73] C. Sonmez, A. Ozgovde, and C. Ersoy, ‘EdgeCloudSim: An environment
for performance evaluation of Edge Computing systems’, 2017 2nd
International Conference on Fog and Mobile Edge Computing, FMEC
2017, pp. 39–44, 2017, doi: 10.1109/FMEC.2017.7946405.

[74] C. Mechalikh, H. Taktak, and F. Moussa, ‘PureEdgeSim: A Simulation
Toolkit for Performance Evaluation of Cloud, Fog, and Pure Edge
Computing Environments’, 2019 International Conference on High
Performance Computing and Simulation, HPCS 2019, pp. 700–707,
2019, doi: 10.1109/HPCS48598.2019.9188059.

[75] K. V. Katsaros and V. Glykantzis, ‘Experimenting with cache peering in
multi-tenant 5G networks’, 21st Conference on Innovation in Clouds,
Internet and Networks, ICIN 2018, pp. 1–5, 2018, doi:
10.1109/ICIN.2018.8401623.

 158

[76] T. Chowdhury, ‘How Netflix uses Big Data Analytics to ensure success’,
2017, [Online]. Available: https://upxacademy.com/netflix-data-
analytics/

[77] ‘Eclipse ioFog: Evolving Toward Native Kubernetes Orchestration at the
Edge | Eclipse Foundation’. Accessed: Nov. 20, 2019. [Online].
Available: https://blogs.eclipse.org/post/mike-milinkovich/eclipse-iofog-
evolving-toward-native-kubernetes-orchestration-edge

[78] Y. C. Hsieh et al., ‘Managed edge computing on Internet-of-Things
devices for smart city applications’, IEEE/IFIP Network Operations and
Management Symposium: Cognitive Management in a Cyber World,
NOMS 2018, pp. 1–2, 2018, doi: 10.1109/NOMS.2018.8406133.

[79] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and R.
Boutaba, ‘Network function virtualization: State-of-the-art and research
challenges’, IEEE Communications Surveys and Tutorials, vol. 18, no.
1, pp. 236–262, 2016, doi: 10.1109/COMST.2015.2477041.

[80] ‘The CLOUDS Lab: Flagship Projects - Gridbus and Cloudbus’.
Accessed: Oct. 31, 2020. [Online]. Available:
http://www.cloudbus.org/cloudsim/

[81] M. Whaiduzzaman et al., ‘A Privacy-Preserving Mobile and Fog
Computing Framework to Trace and Prevent COVID-19 Community
Transmission’, IEEE J Biomed Health Inform, vol. 24, no. 12, pp. 3564–
3575, 2020, doi: 10.1109/JBHI.2020.3026060.

[82] M. C. S. Filho, R. L. Oliveira, C. C. Monteiro, P. R. M. Inácio, and M. M.
Freire, ‘CloudSim Plus: A cloud computing simulation framework
pursuing software engineering principles for improved modularity,
extensibility and correctness’, Proceedings of the IM 2017 - 2017
IFIP/IEEE International Symposium on Integrated Network and Service
Management, no. i, pp. 400–406, 2017, doi:
10.23919/INM.2017.7987304.

[83] T. Zaitoun, M. B. Issa, S. Banat, and W. Mardini, ‘Evaluation and
Enhancement of the EdgeCloudSim using Poisson Interarrival time and
Load capacity’, 2018 8th International Conference on Computer Science
and Information Technology, CSIT 2018, pp. 7–12, 2018, doi:
10.1109/CSIT.2018.8486288.

[84] R. Buyya, R. Ranjan, and R. N. Calheiros, ‘Modeling and simulation of
scalable cloud computing environments and the cloudsim toolkit:
Challenges and opportunities’, Proceedings of the 2009 International

 159

Conference on High Performance Computing and Simulation, HPCS
2009, pp. 1–11, 2009, doi: 10.1109/HPCSIM.2009.5192685.

[85] C. Sonmez, A. Ozgovde, and C. Ersoy, ‘Fuzzy Workload Orchestration
for Edge Computing’, IEEE Transactions on Network and Service
Management, vol. 4537, no. i, pp. 1–14, 2019, doi:
10.1109/TNSM.2019.2901346.

[86] ‘CagataySonmez/EdgeCloudSim: EdgeCloudSim: An Environment for
Performance Evaluation of Edge Computing Systems’. Accessed: Oct.
31, 2020. [Online]. Available:
https://github.com/CagataySonmez/EdgeCloudSim

[87] J. Skirelis and D. Navakauskas, ‘Classifier based gateway for edge
computing’, 2018 IEEE 6th Workshop on Advances in Information,
Electronic and Electrical Engineering, AIEEE 2018 - Proceedings, 2018,
doi: 10.1109/AIEEE.2018.8592162.

[88] S. Lee and H. Kim, ‘ACO-based Optimal Node Selection Method for
QoE Improvement in MEC Environment’, pp. 5–8.

[89] G. S. S. Aujla, N. Kumar, S. Garg, K. Kaur, and R. Ranjan, ‘EDCSuS:
Sustainable Edge Data Centers as a Service in SDN-enabled Vehicular
Environment’, IEEE Transactions on Sustainable Computing, vol. 3782,
no. c, pp. 1–1, 2019, doi: 10.1109/TSUSC.2019.2907110.

[90] W. Shi et al., ‘Edge Computing: Vision and Challenges’, IEEE Internet
Things J, vol. 3, no. 5, pp. 637–646, 2016, doi:
10.1109/JIOT.2016.2579198.

[91] Y. Ku and S. Dey, ‘Sustainable Vehicular Edge Computing Using Local
and Solar-Powered Roadside Unit Resources’, 2019.

[92] H. Lim and T. Hwang, ‘Energy-Efficient Computing for Wireless
Powered Mobile Edge Computing Systems’, pp. 1–5, 2019.

[93] R. Freymann, J. Shi, J.-J. Chen, and K.-H. Chen, ‘Renovation of
EdgeCloudSim: An Efficient Discrete-Event Approach’, 2021 6th
International Conference on Fog and Mobile Edge Computing, FMEC
2021, Sep. 2021, Accessed: May 20, 2023. [Online]. Available:
https://arxiv.org/abs/2109.03901v1

[94] C. Sonmez, C. Tunca, A. Ozgovde, and C. Ersoy, ‘Machine Learning-
Based Workload Orchestrator for Vehicular Edge Computing’, IEEE
Transactions on Intelligent Transportation Systems, pp. 1–13, 2020, doi:
10.1109/tits.2020.3024233.

 160

[95] R. F. Atallah, C. M. Assi, and M. J. Khabbaz, ‘Network Using Deep
Reinforcement Learning’, IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 5, pp. 1669–1682, 2019.

[96] T. Zaitoun, M. B. Issa, S. Banat, and W. Mardini, ‘Evaluation and
Enhancement of the EdgeCloudSim using Poisson Interarrival time and
Load capacity’, 2018 8th International Conference on Computer Science
and Information Technology, CSIT 2018, pp. 7–12, 2018, doi:
10.1109/CSIT.2018.8486288.

[97] M. G. Voskoglou, ‘Comparison of the COG Defuzzification Technique
and Its Variations to the GPA Index’, 2016.

[98] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, ‘On Enabling 5G
Automotive Systems Using Follow Me Edge-Cloud Concept’, IEEE
Trans Veh Technol, vol. 67, no. 6, pp. 5302–5316, 2018, doi:
10.1109/TVT.2018.2805369.

[99] ‘GSMArena.com - mobile phone reviews, news, specifications and
more...’ Accessed: May 23, 2023. [Online]. Available:
https://www.gsmarena.com/

[100] ‘TechRadar | The source for tech buying advice’. Accessed: May 23,
2023. [Online]. Available: https://www.techradar.com/uk

[101] Y. Yang, ‘A Deep Reinforcement Learning Architecture for Multi-Stage
Optimal Control’, Johns Hopkins University, 2019. Accessed: Jun. 20,
2021. [Online]. Available: https://arxiv.org/abs/1911.10684v1

[102] ‘Bellman Equation and dynamic programming | by Sanchit Tanwar |
Analytics Vidhya | Medium’. Accessed: Feb. 07, 2021. [Online].
Available: https://medium.com/analytics-vidhya/bellman-equation-and-
dynamic-programming-773ce67fc6a7

[103] J. Shen, O. Gu, and H. Liu, ‘Multi-agent hierarchical reinforcement
learning by integrating options into MAXQ’, First International Multi-
Symposiums on Computer and Computational Sciences, IMSCCS’06,
vol. 1, pp. 676–682, 2006, doi: 10.1109/IMSCCS.2006.90.

[104] D. Kim, D. Lim, K. Park, and Y. S. Ihn, ‘Quantum-correlation-based free-
space optical link with an active reflector’, Current Applied Physics, vol.
41, pp. 156–162, Sep. 2022, doi: 10.1016/J.CAP.2022.06.018.

[105] Y. Al-Karawi, R. S. Alhumaima, and H. Al-Raweshidy, ‘Quality of
Service of Quantum Entanglement in Mobile Networks’, IEEE Access,
vol. 9, pp. 167242–167251, 2021, doi: 10.1109/ACCESS.2021.3136782.

