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Abstract 
With the recent albeit limited rollout of the fifth generation of communications, 

alongside the widespread adoption of open-source networking solutions 

based on SDN and NFV technologies, opportunities to define the architecture 

of 5G over its lifetime have become a hot topic in the industry, both 

professionally and academically. Despite noticeable advances in bandwidth, 

services planned to be integrated deep within the architecture of 5G 

technologies such as Mobile Edge Computing are emerging. 

 

The successful allocation of resources is a pivotal component upon which 

effective, latency-sensitive handling of data will build on to enhance the future 

of communication. This research makes three significant contributions to the 

field of Multi-access Edge Computing (MEC). Firstly, it involves testing and 

validating various network simulation software to identify the most effective 

tools for simulating MEC environments. The efficiency of these simulators is 

evaluated to ensure they accurately replicate real-life network scenarios, which 

is crucial for constructing precise algorithms and determining simulation 

parameters. 

 

Secondly, the study implements a single-layer reinforcement learning (RL) 

algorithm within the orchestration module of the simulator to optimize network 

resource allocation. The goal of the algorithm is to reduce latency and task 

failure rates while increasing efficiency. The RL algorithm is benchmarked 

against traditional methods like Round Robin and Greedy algorithms, 

demonstrating significant improvements in network service levels and task 

success rates. 

 

Lastly, the research develops a multi-layer reinforcement learning algorithm 

based on the initial single-layer approach. This advanced algorithm 

incorporates replay memory and approximate Q functions within a neural 

network, addressing various stages of network infrastructure and leveraging 

previously generated Q tables. These enhancements ensure more efficient and 

effective network management in MEC environments. 
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Chapter 1 Introduction 
According to the 3GPP release documentation, the full evolution of 4G 

communication took almost 11 years to reach its potential, a potential that most 

urban populations in developed countries are yet to experience [1]. Naturally, 

we must learn from previous endeavours and speed up the process of 

evolution. Therefore, to ensure rapid deployment of the future of 

communication, steps must be taken to improve the process of upgrading the 

infrastructure.  

 

To this end, many corporate giants in the industry have already begun research 

and development within the sector, leveraging upcoming advancements such 

SDN and NFV. Companies such as Nokia, Huawei and NTT Docomo have 

begun developing technologies that will allow for extended service offerings 

and ‘evolved networking’ [2], [3]. With the plethora of services due to be 

introduced, innovation must accompany technology to ensure that demands of 

UEs are met.  

 

The 5th Generation of communication is looming overhead, with an initial 

expected rollout date already elapsed according to the 3GPP [4]. Along with 

improvements to latency [5] and speed requirements, 5G will bring with it a 

whole host of new technologies that will further enhance supplier’s abilities to 

offer consumers greater usability and a wider range of services[6]. Smartphone 

and desktop applications have shifted over to the cloud in recent years, and 

the number of application service providers considering cloud only hosting of 

centralised software has increased exponentially, access to the cloud will need 

to be optimised to guarantee a rich experience therefore, close collaboration 

between network operators, applications and content providers is of utmost 

importance [7].  

 

Unfortunately, this heavy reliance on links to centralised locations offering 

cloud services inevitably creates bottlenecks, hindering the overall experience 

of services and applications, despite the efforts to upgrade existing links. The 
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expected growth has been further accelerated by the unprecedented pandemic 

[8], where global growth from the previous year has been 60%. 

 

One of the sub-technologies garnering a wide interest is the concept of Edge 

Computing [9] which attempts to alleviate the heavy burden being placed on 

backhaul links, circumventing network congestion and reducing service latency 

[10]. This thesis will attempt to explore the variety of uses that Edge Computing 

offers and the possibilities of future developments. The shift to Industry 4.0 and 

Web 2.0 requires greater utilization of communications technologies [11] and 

in turn, this also increases expectations and server load.  

 

Through leverage of Edge Computing (EC), we find that systems are not only 

more connected, but more powerful than ever. The offering of offloaded 

computation enabled by MEC can offer smaller devices the ability to 

communicate and operate at a greater length. They can offer increased power, 

limited only by the latency between the nearest point of connection. 

 

Networking performance of said devices are key indicators in their usability, 

particularly where visual interaction of the real world with machines is 

concerned. The slightest amount of latency can result in loss of QoS or render 

some applications and processes invalid, e.g., robot-assisted remote surgery 

[12]. To this end, the use of offloaded computation can enable applications and 

services within devices not able to offer such applications on their own. Such 

an approach also further future-proofs devices already in circulation as well as 

offering updates that can increase rather than decrease performance over time 

with modular upgrade to the infrastructure that the computational model relies 

on.  

 

This in turn can enable image processing, whether AI assisted or not, within 

micro devices, effectively evolving a personal communications/wearable 

device into actuators and sensors that simply relay information so data can be 

processed externally. Latency requirements differ across applications, as the 

speeds of networks have increased, so have the plethora of applications 
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available for users, TABLE 1.1 contains some of the latency requirements for 

a variety of different application purposes: 

 

TABLE 1.1  
APPLICATION LATENCY REQUIREMENTS 

Wearable devices Latency Capacity  Reliability  
Possible 
specifications 

AR/VR helmets High High Low 
mm-wave cellular, 
WLAN 

Smartphones/tablets Medium Med-High Medium 
LTE, Bluetooth, mm-
wave, cellular and 

WLAN 

Medical Sensors High Low High LTE, Bluetooth 

Smart watch/glasses Medium Medium Low LTE, Bluetooth 

Smart clothing/shoes Low Low  Low Bluetooth, ZigBee 

 

The second major concern in said devices, is that of power. Despite the 

tremendous advances in processing capabilities in CPUs and GPUs, advances 

in battery life have not shown such progression.  

 

Whether due to the lack of material development or due to health and safety 

concerns, hardware manufacturers are wary of the amount of power that can 

be condensed into a battery and subsequently used in mobile devices, various 

manufacturers have experimented with the technology, but the risks can 

damage a company’s reputation hence, manufacturers, often, proceed with 

caution. 

 

This is somewhat offset by emerging techniques such as system-on-chip and 

system-in-package, which offer scaled down PCBs making it possible to 

creatively implement silicon within a range of hardware. Unfortunately, due to 

the variety of hardware being introduced such as wearables, drones etc., real 

estate (i.e., physical size) within the hardware is almost always limited and 

battery power is often relative to the size of the device and the time of release 

[12].  

 



 

 4 

This is prominent in the wearables market where bulky devices are often 

shunned by prospective markets and doomed to failure, but also carries on into 

other hardware sectors, bulky simply is not to the average consumers taste 

any longer [12]. 

 

Although EC offers up a host of benefits to industries and consumers alike, 

cost, density and health implications are a factor that can raise some concern. 

Architectural and implementational costs must be appealing to a business to 

ensure that the cost of hardware and therefore profitability is manageable. 

Thus, ensuring the prospect of competition within industrial and commercial 

application, subsequently leading to innovation across the sector.  

 

This is apparent when we compare the adoption rate of computation within 

industry spanning over the last 5 decades, now there are virtually no 

corporations that do not utilise the internet or the use of a computer in some 

form or another whereas in the past, industries wary of technology were at the 

mercy of manual methods, creating redundancy and opening the door for 

human error prone processes. 

 

The application of EC applies to both fixed line and mobile communications 

technologies, but in turn, enables a variety of software solutions that were not 

previously possible. However, despite the obvious benefits, as always, there 

are some obstacles in the adoption of new technology including those from a 

social-economic standpoint.     

 

Controversy within the launch window of 5G portrayed harmful effects of mm-

Wave technology as being above the SAR and potentially harmful to human 

beings due to containing increased PD and ensuring that OPEX and CAPEX 

requirements are met [12]. Research within a contained environment, however, 

is very different to real-life scenario testing and to fully understand the 

implications of such advancements and mitigate risks, further study is required 

within the field. 

 



 

 5 

Typically, to conduct this type of research, most solutions involve simulations 

of real-world scenarios within an open-source or academic development plan. 

A simulator is designed to conduct early research subsequently being released 

into the wild as an open-source project which is then contributed towards by 

numerous developers around the world and eventually developed enough to 

somewhat simulate a real-world scenario.  

 

Consequently, many cloud simulation applications are currently in circulation, 

giving us the opportunity to adequately test the performance of networks within 

cloud environments. On the other hand, many weaknesses have been 

identified with cloud environments such as inevitable variable network 

environments and the number of hops that applications must traverse, as well 

as single-point of-failure. There are also numerous security concerns to take 

into consideration when storing all customer data within a cloud-hosted 

internet-based platform [13].   

 

There is also unease regarding bandwidth availability, as anyone familiar with 

IoT, Big Data and machine learning surely knows, the devices on the internet 

are expected to multiply significantly and the underlying network must evolve 

to ensure that it is capable of smooth functionality meeting strict availability 

requirements under these conditions.  

 

As observed with the lack of forethought in IPv4 address space, it is pivotal to 

ensure that 5G will meet user demands and have expansibility options 

available once demand has exceeded capacity. 

 

The goal of this research is to devise an optimisation algorithm, implemented 

in software form, to find the ideal solution of resource allocation according to 

the requirements outlined by a variety of different tasks with their respective 

resource requirements. This will be achieved by determining the optimal 

solution based on Figure 2.2. The intention is to use state-of-the-art techniques 

such as Reinforcement Learning (RL) to determine the best possible solution 

to allocate resources and enable a host of applications servicing a multitude of 

tenants on an Edge Computing server.  
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• To get involved in the emerging MEC technology. 

• To create an intelligent orchestration method of resource allocation 

within MEC environment 

• Multi-layer Reinforcement Learning application within MEC 

infrastructure 

 

I extend the previous contribution by developing a multi-layer reinforcement 

learning application. This involves implementing a more sophisticated model 

that can optimize resource allocation across multiple layers of the MEC 

infrastructure, considering various factors and constraints using approximate 

Q-Learning and Experience Replay. 

1.1     Motivation 
Despite increased advancements in RAN and Cloud Computation, there are 

still many unsolved mysteries when it comes to supplemental computation for 

mobile and IoT devices that can solve challenges in a low-latency environment. 

Addressing these challenges requires a comprehensive resource allocation 

mechanism that can efficiently distribute resources, reducing network load and 

task failure rates based on latency and time to compute whilst taking into 

consideration energy usage constraints and ensuring the efficiency of the 

architecture.  

 

Although addressing all the above will inevitably take time and research, 

utilising technologies such as AI or RL within this context can greatly reduce 

the aforementioned challenges. 

 

Thus, the motivations for this research are formulated as follows:  

•     To get involved in the emerging MEC technology 

•     To create an intelligent orchestration method of resource allocation within 

MEC environment 

•     Multi-layer Reinforcement Learning application within MEC infrastructure 

  



 

 7 

1.2     Methodology 
This research utilizes an experimental method to model and simulate enhanced 

RL algorithms, aiming to improve resource allocation by employing several 

different AI techniques to optimize network efficiency for MEC environments 

using a comprehensive open-source simulation software, PureEdgeSim.  

 

The goals within the scope of this research are to simulate a larger environment 

that expands outside the realms of pure IoT/IIoT and to attempt to tackle 

consumer-facing networks within a metropolitan area. Thus, ensuring the 

correct simulation parameters were paramount to valid results. 

 

A sophisticated model was built for an RL algorithm that optimises resource 

allocation within a simulated Edge Computation network hosting a multitude of 

devices including health, IoT, end-user and vehicle using a multi-stage learning 

strategy, considering various factors and constraints using approximate Q-

Learning and Experience Replay.  

 

The model pre-emptively and continuously adapts to the network, ensuring the 

best QoS for users and efficient utilisation of networked resources. Measured 

results include task failure rate, task initialisation time and energy 

consumption. The tiers are divided into the following stages: WAN aware RL, 

LAN aware RL and Edge-aware RL.  In each stage, limited parameters were 

provided, including historical data of utilization. Different algorithms were 

employed by the three tiers based on contextual data deemed most beneficial 

to each respective tier, thereby preventing unnecessary data transmission 

among linked tiers. 

 

Finally, the algorithm is be compared with other solutions and critiqued on its 

efficiency. Results are analysed, and an evaluation presented. The research 

work includes a detailed literature review, giving background of the topic of 

MEC and its contextual application within larger network environments. This 

combined with the results of the simulation show a promising outlook on how 

multi-layer and tiered AI algorithms can promises enhancement of 

orchestration methods.  
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1.3     Major Contributions to Knowledge 
The goal of this thesis is to prove the application of RL within resource 

allocation in MEC. Existing academic efforts fail to explore the depths of the 

topic, whilst disregarding the dynamic network conditions of a RAN. We will 

use several techniques to simulate a 5G network realistically and monitor how 

resources can be efficiently allocated whilst considering the range of 

applications that MEC will be able to service. 

 

The three major contributions of this research are: 

§ Testing and validation of current available simulations for an MEC 
environment: 
This thesis compares the numerous network simulation software to discover 

the optimal solution for simulating MECs. Each simulation software is 

measured in efficiency for the various modules incorporated within the 

simulator to ensure that accurate simulation results are returned, like life 

implementation. Not only is this step vital to ensuring the validity of the 

research conducted over the course of this thesis, but it also is an important 

first step to determining how the algorithms will be constructed and 

variables to take into consideration when deciding simulation parameters. 

Validity of simulation software is assured through testing of the integrity of 

simulation software and accountability for the various aspects of the 

network infrastructure. 

 

§ Single Layer Reinforcement Learning application for MEC resource 
allocation: 

A RL algorithm is used to allocate network resources within the 

orchestration module of the simulator, the goal of the algorithm is to 

decrease latency whilst enhancing efficiency and reduce task failure rate 

due to network usage. Numerous factors are taken into consideration such 

as ensuring that offloading mechanisms are utilising the available networks 

to an optimal degree and ensuring that task failure rates are reduced to the 

lowest amount possible. The algorithm is compared with traditional 

algorithms such as Round Robin as well as Greedy and results are 

produced and evaluated. The initial algorithm greatly enhances allocation 
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efficiency of MEC networks, ensuring that networks can offer improved 

service levels with lower task failure rates. 

  

§ Multi-layer Reinforcement Learning application within MEC 
infrastructure: 
A multi-layer algorithm is designed from the initial algorithm, considering 

various stages of network infrastructure as well as previously generated Q 

tables and replay memory, the algorithm is then enhanced with replay 

memory and approximate Q function embedded within the neural network. 

 

In addition to academic contributions, the outlined research has significant 

non-academic impacts.  

 

Firstly, the focus on refining and enhancing edge computation allocation within 

the industry aligns with the development of 5G solutions, leading to improved 

industry standards and solutions.  

 

Secondly, advancements in communication technology resulting from this 

research benefit various sectors and contribute to technological progress.  

 

Thirdly, enabling a multitude of XaaS (Anything as a Service) offerings by 

offloading computational power enhances the capabilities of mobile user 

devices, promoting performance and longevity. 

 

Lastly, allowing IoT devices to preserve precious battery life by offloading 

computational tasks that adhere to both Quality of Service (QoS) and 

differentiated service models supports a wide range of services from smart 

cities to video streaming for end users. 
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1.4     Thesis Structure 
The description below outlines the overall structure of the thesis and the 

purpose of each chapter: 

1.5     Summary 
This chapter provides an introduction of the topic and direction of the thesis, 

covering the motivations and goals behind the research and presenting the 

methodology that was used to cover the concept of MEC. An outline of the 

thesis is also present that visualises how the thesis will proceed henceforth.   

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 3
Simulator Design and 

Comparison

Chapter 4
Reinforcement Learning in 

Resource Allocation

Chapter 5
Multi Layer Reinforcement 

Learning in Resource Allocation

Chapter 6
Results and analysis

Chapter 7
Conclusion and Future works

We discuss the various technologies being explored over the course 
of this research in greater depth and definition, to ensure a 

fundamental understanding of the subject matter

This chapter examines key academic efforts that have been closely 
analyzed in the course of this research

We compare simulators shortlisted for this research and conclude 
with the selection of the final simulator used for the implementation 

of the algorithm

We develop and utilise an ε-greedy Q Learning algorithm to optimise 
resource allocation in edge networks, testing in our selected 

simulator, PureEdgeSim

We design and define parameters for our algorithm, pointing out the 
constraints and mathematically defining the model

We discuss the results we obtained, and the conclusions drawn, as 
well as some of the limitations of the research and what can be done 

to improve the quality of the research and extend the results

This chapter summarizes the findings from our research and their 
implications. It also offers conclusions and suggestions for future 

research
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Chapter 2 Literature Review 

2.1     Concept 
Numerous gaps were found within the literature, indicated by academics 

currently in the field as well as several articles and thesis written at the 

time[13], [14].  

 

The challenges presented below had not yet been addressed from the time of 

discovery and even now, to the point of submission, research in the area is 

lacking despite recent efforts to produce simulations, albeit their limited nature. 

Gaps in the literature included but were not limited to: 

 

• Lack of solidified specifications. 

• The secretive nature of industry due to the emerging nature of the 

technology which can hinder innovation due to lack of collaboration. 

• Lack of defined goals – MEC. 

• Lack of industrial examples. 

• Lack of resource scheduling techniques. 

• Backwards compatibility needs to be investigated, to ease the transition 

of older network type to 5G. 

• Broader definition of consumer-based services that will be available with 

the integration of MEC (what does it offer consumers). 

• Security concerns over cross-network architecture. 

• Conformation of services provided to local government bodies. 

 

Outside of academia, there are also concerns with industrial implementation 

and one of the greatest factors is cost. Despite the numerous advantages of 

MEC, there is a great amount of risk present to Mobile Network Operators 

(MNOs). On the other hand, poorly planned infrastructure with retrospective 

upgrades can significantly increase costs in any industry [15]. Contextual 

awareness and current events indicate that because of the pandemic, more 

network traffic than ever before has increased the demand for future-ready 
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infrastructure[16], which can be observed in Figure 2.1 displaying a clear 

upward trend in network data usage. 

 

In this context, optimisation of the networking infrastructure would not be 

limited to the software elements, as it is also possible to explore how 

optimisation techniques can lead to optimal placement of RATs to ensure that 

coverage is optimal, particularly where large language models can be 

integrated to assist in understanding the changes within society and pre-

emptively predict the placement of infrastructure.  

 

 
Figure 2.1. Global mobile network data traffic and growth 

 

As the implementation on the technology is still in its infancy, the issues are 

critical, but many of them stem from previous generations of communication 

that must be tackled. Thankfully, experience from previous generations gives 

us foresight into some of the obstacles that must be acknowledged and 

resolved before a standard can be fully realized despite current efforts by the 

standardisation group ETSI [4].  
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With the expected launch of the first iteration of 5G in late 2018/early 2019 

along with the introduction of release 16 (3GPP), major corporations (Huawei, 

Vodafone, Nokia, General Electric etc) with stakes in MEC technology began 

developing proof of concept and technical specifications available for both 

network providers and content developers to ensure timely release of services 

to recover the research and development efforts and investments of the 

technology as soon as possible.  

 

Some efforts have already been realized [17] within testing environments 

however, due to the upgrades that are promised with 5G, this technology is 

expected to be a large contributor to the future of networking, where devices 

can be untethered and lightweight, integrating only the use of a mobile 

networking card and subscription to a service.  

 

This approach will also split the market again, to devices that are extremely 

cheap to buy however require a subscription that can vary depending on the 

needs of a user allowing for larger varieties of products to be offered. 

 

Industry standards must also conform to end user requirements as well as 

developers and service providers creating an Integrated Communications 

Environment (ICE). 

 

Thus, to future proof this research and maintain its validity across both industry 

and academia, following a set of best practises across disciplines is necessary 

and pre-emptive research is necessary for achieving such a task. Observing 

design principles, such as those outlined in Figure 2.2. 
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2.2     Literature identification 
Ensuring selection of appropriate literature was crucial in the success of the 

project therefore, a method was devised and employed to ensure validity and 

impact of the existing literature, helping in efficient identification of appropriate 

sources, and helping to determine research questions within scope of the 

project by ensuring that requirements are met and procedures followed such 

as algorithm creation as observed in Figure 2.2.  

 

In this case, the Chambers Dictionary is used to define research as: a careful 

search; a systematic investigation towards increasing the sum of knowledge in 

a particular field of interest. With systematic being the key term here, I hoped 

to use my accumulated knowledge and experience within academia and 

industry to ensure that my approach was extensible, so that I could update the 

thesis over the duration of my PhD without formulating conclusions that were 

subject to change, but also ensure that the journey of the technology was 

accurately recorded over the course of the research to give us a better of how 

technologies mature with implementation, analogous to the construct of a large 

Figure 2.2. Algorithm creation flowchart 



 

 15 

building site, I was sure that despite the meticulous planning involved, some 

retrospective changes would have to be made. 

 

Due to the extensive amount of literature related to the research topic, it was 

important to find an effective method to filter the information required to ensure 

relevancy as well as direction. The approach used to uncover the most relevant 

information for this research was based on the “subject pearl growing” [18] 

style which identifies subjects and keywords within an electronic database 

including citations within the selected piece. This method identifies all relevant 

literature that was used to inspire and create the key literature found to be most 

valid during any research, leading to an enhanced understanding of the 

subject. The literature was then sorted based on relevancy and impact within 

the field, to ensure validity. 

 

The databases used were IEEE, Google Scholar, SAGE, Emerald Fulltext, 

Elsevier, EBSCOhost and JSTOR with a focus on IEEE as the main source of 

information regarding academic writing on the subject. Additional sources 

utilised for discovery and analysis of key literature were online industrial 

newsletters, websites containing insight from industry insiders and academic 

blogs. 

 

A Systematic review process was used, implementing colour coding for various 

aspects of a text and their contribution towards my research, by determining 

the sections that extracts of the text related most to therefore, eliminating the 

need for re-visiting previously read articles and having the ability to identify 

key elements of a text with greater efficiency and speed. 

 

To ensure up-to-date knowledge of any advances in the field, notifications were 

set upon the IEEE mobile application with relevant keywords which were also 

amended over the duration of the thesis with the formulation of new 

technologies and services that accompanied MEC. It was vital to ensure that 

changes in specifications and revisions as well as any new academic sources 

were incorporated. To this end, key words, found in TABLE 2.1 were recorded 



 

 16 

from the establishment of the thesis until the completion of the research, 

keeping up with requirements of validity and reliability of the thesis and 

contribution towards academia and industry. Some other assistive 

technologies included within the composition of this research were Mendeley 

Desktop and Web importer for storing academic sources and referencing 

purposes and versioning control, cross-referencing and bibliography 

implemented with MS Word. 

TABLE 2.1 
KEY SEARCH TERMS 

Key Search Terms Source 
From 
Date 

To 
Date 

Ongoing Research 
Status 

Fog 
IEEE, Google 

Scholar, JSTOR 
21/10/18 1/3/19 Discontinued 

Smart Cities 
IEEE, Google 

Scholar, JSTOR 
21/10/18 1/3/19 Discontinued 

IoT 
IEEE, Google 

Scholar, JSTOR 
21/10/18 1/3/19 Discontinued 

(Offloaded)Computing 
IEEE, Google 

Scholar, JSTOR 
21/10/18 Present Active 

Cloud 
IEEE, Google 

Scholar, JSTOR 
21/10/18 1/3/19 Temporarily suspended 

Computation 
IEEE, Google 

Scholar, JSTOR 
18/11/18 1/3/19 Temporarily suspended 

(Cache) Allocation 
IEEE, Google 

Scholar, JSTOR 
18/11/18 Present Active 

SDN 
IEEE, Google 

Scholar, JSTOR 
18/11/18 Present Active 

NFV 
IEEE, Google 

Scholar, JSTOR 
18/11/18 Present Active 

Edge 
IEEE, Google 

Scholar, JSTOR 
2/1/18 Present Active 

EC 
IEEE, Google 

Scholar, JSTOR 
2/1/18 Present Active 

MEC 
IEEE, Google 

Scholar, JSTOR 
2/1/18 Present Active 

5G 
IEEE, Google 

Scholar, JSTOR 
2/1/18 Present Active 

Orchestration 
IEEE, Google 

Scholar, JSTOR 
3/6/18 Present Active 
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From the conception of this research, as with any venture in cutting-edge 

technologies I am sure, the solutions proposed by researchers have mutated 

and evolved to consider their peers’ solution offerings and combining them to 

present the best solution. This section aims to select those key pieces of 

literature that contributed heavily to the final formulation of this research.  

 

We explore the most important works’ available in this subject area and analyse 

them deeply to give us a better understanding of how to approach the problems 

this research is aimed at tackling.  

 

Key literature was identified with the table above, those that contained 3 or 

more of the key search terms were marked as ‘Highly Valuable’ and scrutinised 

closely, each piece of literature and source was analysed and graded from 1 

(considerable value) – 5 (highly valuable) indicating its value for the research. 

The concept of subject pearl growing was then applied to those that were found 

highly valuable to ensure that any contributing literature/references and 

subsequently concepts were not neglected. This approach ensured validity of 

the research and reliability, as it assessed each piece of literature individually 

and attempted to learn from those found highly valuable by assessing the 

source and direction of the researcher as well as any influence they may have 

come across over the course of their research. 

 

Virtualisation efforts were first introduced in computing architecture to provide 

scalability and intelligence, supporting a more agile platform. It has since 

grown to be an integral part of OS and dedicated platform providers alike [19] 

reporting figures such as 73% reductions in time spent on routine 

administrative tasks within IT. The ability to automate is one of the key offerings 

of virtualisation but businesses often employ virtualised technologies to 

‘dramatically lower costs’ [20]. VMware, a key operator in this industry, claims 

that 92% of executives plan to increase their virtualisation efforts to benefit 

from the added security, agility, and implementation of computational tasks 

within businesses. The benefits of virtualisation, however, extend far beyond 

business applications as we will discuss below. 
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Orchestration, in its technical application, refers to effective management of 

resources using a dedicated resource to handle incoming and outgoing 

requests to applications, network slices etc. Using an orchestration module 

(software based), dedicated resources can be utilised to ensure that requests 

made by an application are being handled in the most optimised way, with 

some level of QoS, thanks to optimisation algorithms that can be implemented 

as well as integrated with ML. Academic efforts to implement optimised 

orchestration within virtualised applications across various sectors have 

exponentially increased in popularity, thus portraying the rapid development 

prospects of virtualisation techniques [21], [10], [22], [23]. 

2.3     Edge Computing, Mobile Edge Computing and Cloud Computing 
Despite its introduction in several forms over the previous few years, EC and 

MEC has persisted as a concept that has the potential to be a fundamental cog 

in the communications architecture. The technology is diverse in its 

application, but it is safe to say that the core concepts have remained largely 

the same and loosely encompass Distributed Computing.  

 

The idea is to disperse larger-scale computation closer to where it is required, 

i.e., closer to user entities, to enable applications to offload computational 

tasks and enable a plethora of applications that would normally not be feasible 

with local computation, i.e. the EU device. In turn, support for larger-scale 

cloudlet computing becomes a reality for latency-sensitive applications and 

settings.   

 

It offers the ability to vend computational services, data storage and other 

hardware needs of individuals and enterprises. Like any business, the cost of 

the hardware and implementation of the architecture is eventually planned to 

be offset by the number of customers that are available for service provider. 

As the product grows in service offerings and coverage, the customer base 

increases, eventually turning the loss made by network providers on 

implementation into a profit accumulated from thousands of subscribers.  
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Figure 2.3 can help visualise the focus in the subject area where the number 

of publications, particularly those containing the keywords ‘Mobile Edge 

Computing’, are weighed against the publication’s year of the academic journal 

article, and we observe that they are exponentially increasing year by year. 
 

 

Figure 2.3. Plot of Mobile Edge Computing journal papers 
 

The prospects of the technology were discovered to be of great importance 

due to the explosive growth of cloud technology, steadily becoming one of the 

dominating factors in modern technology today.  

 

Corporate giants like Google, Amazon and Microsoft started to focus on ‘x as 

a Service’ technologies that would allow greater monetisation of services and 

product offerings but also prevent piracy, offering legitimate consumers 

constant updates and everlasting marketing from the company said software 

was purchased from. The success and demand for larger cloud provider 

services then branched into a range of products such as computation, storage, 

and networking.  
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According to [24], Edge Computing is an umbrella term used to refer to a family 

of relevant technologies such as Cloudlet, Mobile Cloud Computing, Fog 

Computing and Multi-Access Edge Computing, synonymous with Mobile Edge 

Computing and mobile cloud systems (aka MEC)[25].   

 

In addition, a concept called Industrial Edge Computing (IEC) also exists 

offering a central solution for devices to work in tandem and improve inter-

communication[26]. Each of the technologies are based on the engineering 

principle that computational resources are better located on the edge where 

demand is physically present, and network traffic can be circumvented [24].  

 

The authors of [27] state that Edge Computing is the control and management 

of a standalone end-point device individually or through a set of software 

functions in the fog domain. Bearing in mind that each of the technologies 

produce their own set of advantages and are distinctly different in application. 

When discussing vertical scalability, Cloud Computing can provide access from 

virtually anywhere providing that the end-user has an internet connection.  

 

Our concern with this research is on the applications that require low-latency 

support that Cloud Computing does not offer due to the variable hops that are 

required to reach the centralised server.  

 

Cloud computing offered a host of advantages and benefits, especially for 

smaller corporations that required larger computational tasks that they may 

have lacked the budget to host in-house paving the way for SaaS solutions 

[28]. Despite the abundance of cloud computing services available, there were 

a few issues present that limited the applications that could be offered to users. 

 

Network congestion 

• Most IoT devices function from a sensor, actuator mechanisms where 

they are expected to make actionable decisions in near real-time for 

some applications, severely limited by the number of hops that data must 

traverse[29] 
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Latency  

• A great limiting factor to real-time applications, where human responses 

are measured and required such as cloud-gaming services or remote 

operation of robots/vehicles. 

Performance 

• Reliance on the network can be severely restrict the QoS provided by 

cloud application providers [29] 

Vendor Lock-in 

• Though the uptake of virtualisation within the network has become 

commonplace, proprietary technologies still exist which can limit 

flexibility and further increase costs.  

Limited Resource Control 

• Cloud computing often offers limited control over the underlying 

hardware and software which can introduce issues such as resource 

contention and noisy neighbour problems [29] 

 

One of the mainstream applications of the technology was cloud gaming, 

introduced back in 2004 within Japan, even though average speeds were 861 

kbps at the time [30].  

 

Naturally, the lack of a steady connection and preposterous amounts of latency 

meant that the movement failed at the time, yet the industry persisted with 

several attempts at cloud gaming up until the very present time with companies 

like Google offering products like Google Stadia. Currently, efforts persist 

within the Cloud gaming industry including offerings such as GeForce Now by 

GPU manufacturer Nvidia and Boosteroid.  

 

The difference between conventional cloud computing and the, then radical, 

edge computing concepts were the fact that conventional cloud computation 

occurs when a client requests a list of VMs to be created within a datacentre 

which are then assigned numerous tasks to run. The tasks themselves are 

considered as a bunch of operations, subsequently keeping the VMs busy for 
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hours, making the flow of operation like renting VMs for a limited time until a 

certain task has been completed.  

 

The most notable difference is that cloud computing utilises the resources a lot 

quicker and within shorter bursts of time akin to service providers in mobile 

networks using OFDM on a receiving end of the transmitter [24], users also 

had access to computational power far beyond that of which was cost-efficient 

locally, giving vendors viable market opportunity.  

 

To tackle some of the limitations mentioned above, researchers deployed 

various systems and methodologies for traditional cloud systems including 

middleware solutions such as Hadoop, Apache HAMA, StorkCloud, etc. [25]. 

 

The demand for Edge Computation emerged with the increase in popularity of 

low-latency applications [13]. Service providers then began looking towards 

implementation within their frameworks and architectures to meet user 

requirements.  

 

Applications of the technology vary in use but used in conjunction with the 

correct infrastructure, near real-time processing of information as well as inter-

communication and limited local awareness are some of the possibilities on 

offer. The industry was made aware of applications that would require rapid 

communication with edge nodes for devices that were limited in computational 

power.  

 

These devices could then make decisions on how to prioritise local data 

computation against data which could be offloaded to the nearest edge node 

which could provide extended computational power, autonomous vehicles are 

said to be one of the use cases in this scenario.  

 

Services like Netflix then began utilising Edge Computing on a smaller scale, 

using local caching to serve metropolitan areas of larger scales with their own 

dedicated servers offering the capability of storing and retaining product 



 

 23 

offerings (in this case movies/shows) that a particular locale may be interested 

in. Introduction of a different multiplexing method was expected; however, 

some small changes were also predicted/requested from the RAT. Namely, the 

inclusion of edge servers within micro base stations to offer services for a small 

cell of users. Some of these future use cases can be found in TABLE 2.2: 

TABLE 2.2  
EDGE USE CASES 

Use Case Requirements 

Autonomous Vehicles 
Self-driving vehicles need the ability to communicate 
with servers without traversing many hops along the 

network to provide real-time processing of data. 

Industrial Automation 

Edge computation offers the ability to create machines 

that can sense, detect, and learn things without having 

to be programmed.  

Augmented Reality and Virtual Reality 
Can be used to train employees, help those less able 

and visualise new concepts. 

Retail 
Attract customers using technological implementation of 
AR/VR/MR technologies. 

Connected Homes and Offices 

Due to the centralised nature of the smart home 
systems, tasks take some seconds to happen as 

opposed to utilising edge computing where tasks would 

be in near real-time. 

Predictive Maintenance 

Edge computing can help detect machine faults within 

an industrial setting, allowing maintenance of expensive 
machinery circumventing repair and replacement. 

Video Monitoring 

Video cameras can collect a vast amount of data within 
a very short amount of time, especially when you 

consider facial monitoring and motion detection which 

requires further computation and data storage. 

Software Defined Networking 

Even SDN requires local computation to determine best 

routing path, as the decisions are made on a Virtual 
Machine that hosts the SDN controller, computing 

abilities are a requirement 

Blockchain 

Blockchain technology requires ledgers to be stored 

within each device that can host the ledger. For the 

blockchain application to function, computation is 
required. 

Fog Computing 

Fog computing uses edge devices that connect to a 
distributed computing model, these models can harness 

underused cycles across the edge and then continue to 

the cloud (zdnet edge computing uses). 
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Each of the applications rely on low latency and transfer of high data rates, 

paving the way for further opportunities and enhanced applications. Further 

use cases involve situations where devices in a particular locale are 

contributing towards the same goals, and an edge orchestrator can signal each 

connected device to process a chunk of information which can then be 

consolidated.  

 

Use cases such as these are particularly helpful for academic efforts where a 

group can leverage the combined processing power of all connected devices, 

including the edge node, to achieve a set of objectives or simulate an 

experiment with greater efficiency than when assigning a singular device. 

 

The concept itself is recognised as one of the key emerging technologies 

alongside NFV and SDN but can utilise both to offer enhanced services, aiding 

to advance the mobile broadband network into a programmable world and 

contributing to satisfying the demanding requirements of 5G in terms of 

expected throughput, latency, scalability and automation [13].  

 

MEC itself is based heavily on NFV, the primary difference however, is the fact 

that the MEC framework enables applications to run at the edge of the network 

whereas NFV is focused on network functions. Thus, each concept can be used 

synonymously to aid and abet the other within the infrastructure subsidising 

both OpEx and CapEx for organisations. 

 

The introduction of MEC opens services to end-users as well as adjacent 

industries giving them the ability to deliver their mission-critical applications 

over a mobile network. Opening a host of fresh business opportunities and new 

use cases across multiple sectors.  

 

Thus, standardising the technology before implementation will benefit both the 

industry and end consumers greatly as an open programmable interface will 

encourage co-operation between network providers further subsidising costs 

and ensuring that a vast number of customers of mobile operators can be 
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served [13]. Use cases for Edge can branch in several sectors, in technical and 

business usage as well as others, some examples can be found in Figure 2.4. 

 
Figure 2.4. Web diagram of use cases in Edge Computing 

 

2.3.1 MEC Infrastructure and Architecture 

Taking into consideration that latency is one of the most crucial offerings of 

5G, it is pivotal to ensure that MEC is correctly implemented within the network 

architecture to offer maximum benefit.  

 

To this end, it is also important for the scope of this research to understand 

where MEC fits in within the infrastructure and the reasons therein.  

 

As this research is dedicated to the implementation of MEC within a 5G 

environment, we will review some of the unique elements and attributes that a 

5G Mobile Network Environment (MNE) will provide access to, allowing us to 

determine the difference in energy costs as well as impact on performance that 

a 5G MNE will bring. 
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2.3.2 Specifications in MEC 

Notable key literature that required analysis was the official ETSI 

documentation on Mobile Edge Computing, formulated because of numerous 

conferences and found on etsi.org. The material was split, referring primarily 

to Multi-access Edge Computing (MEC) use cases and requirements, 

frameworks, and general principles for MEC Service APIs [31], [32].  

 

Introduced to ETSI in February 2016, a portion of the ETSI website is dedicated 

to what ETSI refers to as Multi-Access Edge Computing, effectively 

incorporating the use of both RAN and WANs. The concept is defined as 

offering application developers and content providers cloud-computing 

capabilities and IT service environments at the edge of the network where the 

environments are characterized by ultra-low-latency, due to being located at 

the network edge, and high bandwidth as well as real-time access to radio 

network information and services towards mobile subscribers, enterprises, and 

vertical segments. 

 

This section will highlight the standardisation efforts made by ETSI and 3GPP, 

we will then cross-reference the changes with Key Literature found within this 

chapter to make observations. Indeed, we must expect that some of the 

literature identified over the course of the research itself will inevitably help to 

shape the standards set out by both ETSI and 3GPP. Respectively, I will also 

attempt to critically de-construct the arguments as well as implementations set 

out by any identified key literature over the course of this research. To this end, 

I will begin with the deconstruction of the ETSI use cases and requirements 

[33] as we can safely assume that they will lay out the foundations and 

frameworks for any standards that are established.  

 

Dissemination of the specifications of MEC will also allow us to further validate 

our simulation software to ensure the expectations of standards are met, 

further validating our research. The specifications define the architectural 

framework, application enablement framework and platform components for 
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MEC deployments which in turn help outline the key functional components, 

their interactions, and the standardised interfaces and APIs that enable 

communication between MEC mechanisms for security, resource management, 

and interoperability in MEC environments.  

The key components tackled within the specification are as follow:  

• ETSI MEC Architecture: ETSI has defined a high-level MEC architecture 

that outlines the main functional components and their interactions. This 

architecture provides a standardized framework for implementing MEC 

solutions and enables interoperability among different vendors. 

• MEC Application Enablement Framework: ETSI specifies a framework 

for developing MEC applications, which are software applications that 

can leverage the MEC infrastructure. This framework defines interfaces 

and APIs for communication between applications and the underlying 

MEC platform. 

• MEC Platform: ETSI defines the MEC platform as the infrastructure that 

hosts MEC applications. It includes various components such as MEC 

hosts, MEC services, and MEC system management functions. The MEC 

platform provides compute, storage, and networking capabilities at the 

edge of the network. 

• MEC Service APIs: ETSI has standardized a set of APIs that enable MEC 

applications to interact with the MEC platform. These APIs cover 

functions such as location, mobility management, radio network 

information, context information, and media services. By using these 

APIs, MEC applications can access real-time network and context 

information, enabling them to make intelligent decisions and deliver low-

latency services. 

• MEC Security: ETSI specifications address the security aspects of MEC 

deployments. They define security mechanisms and guidelines for 

protecting MEC infrastructure and applications. This includes 

authentication and authorization mechanisms, secure communication 

protocols, and threat mitigation strategies. 

• MEC Resource Management: ETSI provides specifications for managing 

the resources in the MEC environment. This includes resource 
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discovery, allocation, and optimization mechanisms to efficiently utilize 

the available compute, storage, and network resources. It also covers 

aspects like load balancing, scaling, and lifecycle management of MEC 

applications. 

• Interoperability and Standardization: ETSI emphasizes interoperability 

and standardization in MEC deployments. By defining common 

interfaces, protocols, and data models, ETSI enables different MEC 

components and solutions from multiple vendors to work together 

seamlessly. This promotes a vibrant MEC ecosystem and facilitates the 

development of innovative edge applications. 

 

For this research, we want to ensure that our simulation environments as well 

as any experimentation conducted is as true as possible to the expectations of 

ETSI, we will have to bear in mind that the novel nature of the research 

alongside the young, yet growing interest of the subject matter may result in 

some requirements not being met. 

 

In true ETSI fashion, specification sheets are continuously evolving and 

branching out to include other subdomains of the technology. To ensure that 

our simulator continued to meet the requirements as outlined by ETSI, we will 

continue to monitor these changes, and this chapter will be updated to include 

them.  

 

After exploration of current requirements expected by the technology, early 

implementations, either in simulation form or conceptual stages of physical 

form were located on academic sites. Below, we will attempt to summarise 

some of the most prominent features of the specifications released by ETSI for 

MEC. 

 

ETSI GS MEC 002  (2018-10) Use Cases and Requirements 

The standards defined by ETSI in the aforementioned documents were 

considered during the formulation of methods and acquisition of results 

portrayed in this thesis. The goal was to ensure that any methods devised 
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conformed to industry standards and academic standards to enhance 

contribution. 

 

ETSI GS MEC 002 contains a variety of use cases, outlining some of the finer 

details and potential products that will result from Mobile Edge Computing. 

Numerous key figures are presented detailing subscriber-based routing as well 

as video content delivery. ETSI’s vision differs from solutions currently in place 

for services such as Netflix and Amazon by taking into consideration the 

5GCoreConnect. 

 

Several future developments will be enabled/enhanced with the inclusion of 

Edge Computing, including but not limited to; Autonomous Vehicles, Large 

Sensor Networks, VR, AR, MR, Connected Cities, Edge-node caching etc. [1]. 

The main benefit of Edge Computing is the fact that information can be both 

centralized and stored locally, mechanisms for preliminary processing of 

information can be implemented within the edge node, filtering unnecessary 

information provided by sensors and only synchronised at scheduled periods. 

This removes the redundancy of having constant communication with a server 

many hops away in turn decreasing latency.  

 

This also decreases the amount of unnecessary information to be processed 

before actuators can be given instructions on how to react after the information 

provided by the sensors has been processed.  

 

This approach is of particular interest to companies like General Electrical, who 

have large scale sensor networks within their energy grids which must be 

carefully monitored, response times to emergencies and accidents is 

significantly decreased as the information can be monitored through a central 

location, but an edge node can act according to information within a shorter 

period of time, mitigating risks [2]. 
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ETSI GS MEC 003 (2019-01) Framework and Reference Architecture 

 

Framework standards mentioned in ETSI MEC 003 [34] outline some of the 

basic requirements regarding the expected framework of EC integration within 

a variety of networks including wired and RAN. In a nutshell the MEC host is 

expected to operate at a layer above the underlying network and the first port 

of call for an end device will be to communicate with MEC system level 

management before being directed towards the MEC host level.  

 

Figure 2.5 portrays the basic architectural requirements of an MEC 

implementation. The MEC Host Level layer contains a host and its own 

orchestrator, which can be either a physical or virtual entity to provide 

computing and storage resources at the edge of the network. MEC applications 

can be deployed and executed at the host level, using the available resources 

Figure 2.5. MEC Framework architecture 
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to deliver EC services. Its primary purpose is to provide management and 

utilisation of resources at its own individual level.  

 

On the other hand, the MEC system level refers to the overall MEC 

infrastructure that encompasses multiple hosts. As observed in Figure 2.6, the 

architecture utilises elements of existing VNF and VMs to host several 

applications on integrated or embedded CPUs and other computational 

hardware to host several applications which can then be used to serve users. 

In this case, the system level management is used to allocate resources and 

direct users to appropriate services based on requirements and needs.  

 

A variant architecture for MEC is also included which further elaborates on 

functions expected to run on an MEC device, incorporating the use of 

Orchestrators in both MEC applications and VNFs to enhance the utilisation of 

resources and cater to user service requirements more comprehensively.  

 Figure 2.6. VNF Architecture (as proposed by ETSI) 
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Figure 2.6 also portrays the underlying functions expected to appear in MEC 

including color-coded relationships, it also proposes an architecture, seen in 

TABLE 2.3 [34], where the multi-access edge system will be deployed within 

an NFV environment as a VNF [34]. To implement this architecture, several 

orchestrator functions are strategically placed throughout the framework. A 

User is referred to the operations support system (OSS), the request is then 

parsed through the MEC application orchestrator (MEAO) and the NFVO. 

 

TABLE 2.3  
MEC COMPONENTS 

Element  Definition 

MEC Host 

Contains the MEC platform and virtualisation infrastructure, provides 

compute, storage, and network resources for the MEC applications. 

Includes a data plane that executes traffic rules received by the MEC 
platform and routes traffic among applications and various network 

functions. 

MEC Platform 

Responsible for offering an environment where MEC applications can 

discover, advertise, consume, and offer MEC services. Receives traffic 

rules from the MEC platform manager, applications, and services, 
subsequently instructing the data plane to act on the provided 

instructions. 

MEC Application 

Run as virtual machines atop the virtualisation infrastructure provided by 

the MEC host, offering the ability to interact with MEC platform to 

consume and provide MEC services. MEC applications can also interact 
with MEC platform in some cases to provide support procedures related 

to application lifecycles. 

MAEO 

Multi-access edge orchestrator provides core functionality of the MEC 

system level management. It is responsible for maintaining an overall 

view of the MEC system, providing a platform for application packages, 
selecting appropriate MEC host(s) for application instantiation based no 

hardware constraints and triggering applications.  

OSS 

Operating Support System receives requests via the CFS portal and 

device applications and acts according to instructions. Can also receive 

and act on requests for relocation of applications between external clouds 
and MEC systems. 

User application 
lifecycle 

management proxy 

A UA is an MEC application instantiated in the MEC system to respond to 

a user request via application running on a user device. 
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ETSI GS MEC 009 V2.1.1 (2019-01) General principles for MEC Service APIs 

The general principles conference paper, ETSI GS MEC 009, delves into 

further detail regarding communication protocols and other guidelines industry 

and developers should follow to meet the requirements of standardisation as 

defined by ETSI. The standards share many similarities with existing TCP 

framework between Representational State Transfer (REST) clients and REST 

servers. Communication of API is handled using HTTP protocols and methods, 

utilising HTTP headers and simplifying communication between server and 

client.  

 

An important point to be noted here is that subscription types and statuses can 

be updated and posted. This also assists in centralization as a component in a 

distributed system must keep all involved components informed of any changes 

of state within a component at any given time. 

 

All HTTP functionality is not necessarily included, rather a subset is used for 

simplified commands such as the POST method, 204 NO CONTENT method 

etc. Lists are represented in JavaScript Object Notation (JSON).  

 

Further detail is included on how naming conventions should be handled as 

well as error codes however, in this research this will not be explored in depth. 

It will be touched upon further in the research to ensure that any development 

work conducted conforms to industry expectations to future-proof the research 

rather than backdating to meet requirements and standards for any further work 

conducted.  

 

ETSI GS MEC 003 V2.2.1 (2020-12) 

The final version of the reference architecture and framework explored for this 

research was the most recent iteration of the framework. The expected model 

of the framework itself largely retains the same expectations where Figure 2.5 

portrays the structure. The framework is grouped into system level, host level 

and network level entities. New clauses introduced to the document highlight 
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the addition of new architectural assumptions; the MEC is deployed as a VNF, 

MEC applications appear as VNFs towards the ETSI NFV MANO components, 

the Virtualisation infrastructure is deployed as an NFVI and is managed by a 

VIM as defined by ETSI GS NFV 002, the MEC Platform Manager (MEPM) is 

replaced by a MEC Platform Manager. 

 

NFV (MEPM-V) that delegates the VNF lifecycle management to one or more 

VNF managers (VNFM), and the MEC Orchestrator (MEO) is replaced by a 

MEC Application Orchestrator (MEAO) that relies on the NFV Orchestrator 

(NFVO) for resources orchestration and for orchestration of the set of MEC 

application VNFs as one or more NFV Network Services (NSs). 

 

In summary, the MEC functionality is expected to be entirely virtualised is 

nature, including the orchestration methods however, they are now further 

divided in sub-components to ease organisation and implementation.  

2.4     SDN and NFV 

2.4.1 SDN 

Originating from OpenFlow, SDN was introduced as a framework or a set of 

solutions for enhancing networking speeds as well as offering a standardised 

method of future-proofing networks for greater efficiency, programmability, 

centralisation, and open-standards [35].  

 

Explosive growth in the use of online services and net based application has 

exponentially increased network traffic and demands. Network operators need 

to focus on minimising costs whilst increasing efficiency. In addition, MNOs are 

also focusing on increased efforts to implement the technology and offload to 

non-dedicated hardware managed systems thus enabling virtual network 

functions such as firewalls and load balancers to be software oriented [36]. 

 

Unfortunately, legacy network architectures and their management tools were 

not designed to cope with such highly elastic demand which ultimately limits 



 

 35 

the operator’s ability to cost-effectively respond to the scale, performance, and 

user experience requirements of today’s dynamic environments, or to roll out 

differentiated services.  

 

It is a framework that reduces dependency on underlying hardware, offering 

separate control and data planes, which allows for greater control and 

manipulation of the routing protocols and all packet forwarding functions. This 

means that for hardware life cycles have been drastically improved, where 

clients can now purchase a service that provides constant updates to the 

firmware and software rather than purchasing new hardware after longer 

periods of time.  

 

This allows for the rapid amplification in the time it takes to apply network 

upgrades, both for intranets and the internet. Companies can purchase 

solutions knowing that they will not be outdated in performance within a short 

time frame, which in turn allows for a greater range of services to be offered.  

 

5G will be leveraging SDN technologies within the network backbone to 

maximize network performance and by doing so, it will enable many more 

services that the network providers can then offer to the user.  

 

MEC will be using the extremely low latencies offered by 5G services to provide 

an unprecedented network experience that can be utilised by many different 

industries and sectors around the world including but not limited to, public and 

private health services, emergency services, disaster control, city-wide 

management services, local governments etc.  

 

For the reasons previously mentioned, research is well under way to provide 

the best foundations for 5G communication and accelerate deployment. The 

following issues have yet to be tackled in the context of MEC and integration 

of Edge Computing within the wider network environment [7]. 
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A useful distinction between the technologies can be found in Figure 2.7,  

indicating the different uses for each respective technology as well as the 

relationship between them[27] as well as the features they share. 

 
Figure 2.7. Features shared between Edge, Fog, and Cloud computing 

2.4.2 NFV 

NFV also plays a critical role in enabling said technologies, virtualising network 

functions brings greater control to network operators and industries alike, 

paving way for 5G networking and improved network management. Some of 

the features expected with the utilisation of NFV include agnostic network 

access, mobile edge computing, and 5G network slicing where grouped 

subscriber or machine-to-machine (M2M) and IoT devices are service by 

separate, virtualised core networks.  

 

5G will merge IT and Cloud into mobile core networks methods for accessing 

subscriber information efficiently via the use of edge networks to reduce data 

latency and intelligently place network resources for reduced backhaul.  

 

This will be achieved by placing subscriber profiles as close as possible to the 

user, thus making services and profiles almost as mobile as the subscriber and 

device [37]. Various key components function as one to enable these services 

such as established anchor points that can be defined for a specific network 

Cloud 
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slice of common subscriber’s devices. Subsequently, anchor switches provide 

network traffic routing between SDN anchor points [37]. 

2.5     Reinforcement Learning and Deep Reinforcement Learning 
As we attempt to explore the most effective solution to optimise resource 

allocation within an EC environment, it is important to understand the most 

effective techniques being utilised today.  

Figure 2.8. Deep reinforcement learning algorithm families 

 

One such instance is RL, which provides software-defined agents the ability to 

learn the best actions possible in virtual environments to attain their goals. This 

is achieved by uniting function approximation and target optimisation, mapping 

state-action pairs to expected rewards and aiming to achieve the highest 

reward to the desired objective[38] [39].  

 

In RL, a learning agent is not told which actions to take but instead, attempts 

to yield the highest reward, according to [40], ‘trial-and-error search and 

delayed reward’ are the two most important distinguishing features of 

reinforcement learning, more examples of which are depicted in Figure 2.8. 
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Reinforcement learning distinguishes itself from both, supervised and 

unsupervised learning as it does not conform to requiring a dataset of trained 

examples before the learning process begins (supervised learning), nor does 

it adhere to finding structure hidden in collections of unlabelled data 

(unsupervised learning).  

 

Appropriate to the problem at hand, reinforcement learning tackles issues 

where a problem is interactive, and the environment and data is constantly 

evolving. This kind of learning appropriately fits the issues presented with 

ongoing optimisation solving and provides the algorithm with the tools 

necessary to continuously respond to changes within the environment and 

optimise for them [41].  

 

The concept of Reinforcement Learning combines artificial neural networks 

with a reinforcement learning architecture to enable software-defined agents 

to learn the best approach to take in a virtual environment to achieve set goals 

[39].  

 

As observed in the popular Netflix documentary about achievements and 

breakthroughs in AI, neural networks can combine computer vision, machine 

translation and time series prediction whilst utilising reinforcement learning to 

enable algorithms that can achieve superhuman abilities and outperform even 

the best of human abilities in complex games like Go[42], where complex 

ExplorationExploitation

Figure 2.9. RL Trade-off 



 

 39 

decision-making skills and considering all future moves are vital to ensure 

victory. 

 

RL algorithms start off with minimum configuration, essentially a blank state, 

and continue to develop the best approach, incorporating deep neural 

networks, by using a reward-based points system to encourage what is defined 

as a good decision and penalise what is defined as a bad one as shown in 

Figure 2.9. 

 

According to [39], there are numerous industrial applications for the technology 

which are already being used in industrial operations and supply chains to 

optimise factories and warehouse logistics.  

 

Arising from the human interaction with the physical world, RL can be 

analogised as an infant using trial and error to understand the implications of 

their actions within the natural world, using a learning approach to understand 

good practises within the environment, with no explicit teacher present to teach 

right from wrong [40].  

 

Unfortunately, this does present a trade-off between exploration and 

exploitation, where the learning agent inevitably fails as it must explore a 

variety of approaches and actions before it can begin to favour those which 

yield the best reward.  

 

It is emphasised in [40], that RL is different from ‘unsupervised learning’, which 

usually consists of finding structure hidden in collections of unlabelled data. 

RL instead, attempts to maximise the reward signal instead of attempting to 

find hidden structures, therefore one the primary drawbacks for RL is that it 

can take a significantly long period of time to train an algorithm from the 

beginning [43], take for example the case of learning an Atari game, where an 

RL agent can take the equivalent of weeks of playing to reach the performance 

of a human counterpart that has played only 15 minutes. Naturally, in the 

context of this research.  
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Any undue delays within formulating the best approach in resource allocation 

would be highly unwelcome as efficiency and speed are highly important 

factors when optimisation is an objective.  

 

2.5.1 Machine Learning 

Considered a sub-field of AI, Machine Learning (ML) is one of the leading types 

of AI, it is designed around the question of how to develop software agents that 

improve automatically with experience, enabling more accurate prediction of 

results without specific programming and is broken down into the following 

categories found in TABLE 2.4 [44]: 

 

TABLE 2.4  
THE THREE TYPES OF MACHINE LEARNING 

Type of ML Description 

Supervised 
Learning 

 

Learns from a set of training data of labelled examples 
provided by a domain expert who has the role of an external 
supervisor in the learning process. Learns by using the 

provided data set to generalise responses to cases not 
included in the training set. 

Unsupervised 

Learning 
 

Learns by finding hidden patterns and knowledge in a 

dataset without an external supervisory application present. 

Reinforcement 

Learning 

Learns by using guided methods defined by a specific 

objective that the application requires to meet an end. It’s 
analogous to how a child learns using a trial-and-error 

method by using their observational skills by attempting and 
subsequently observing the consequences of each action. 

A grading/points-based system is then used to score a 
positive/negative action for subsequent responses. 

 

Efforts in Machine Learning have increased significantly, particularly in 

infrastructure and back-end implementations such as MEC, SDN and NFV [45]. 

Some common algorithms that define a prediction model are Decision tree, 
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Neural networks, Gaussian Processes, Hidden Markov models, Dynamic 

Bayesian network, etc. that are discussed within the literature review sections 

of this research. 

2.5.2 Bellman Equation 

The Bellman equation, Eq. ( 2.1 ), is a fundamental concept in the field of 

dynamic programming and reinforcement learning. It provides a recursive 

relationship for calculating the optimal value function in a Markov decision 

process (MDP). 

 

The Bellman equation captures the principle of optimality, stating that the 

optimal value of a state can be expressed in terms of the optimal values of its 

successor states. By iteratively applying the Bellman equation to all states in 

the MDP, the optimal value function can be computed.  

 

𝑉(𝑠) = 𝑚𝑎𝑥
!
(𝑅(𝑠, 𝑎) + 𝛾-𝑃(𝑠, 𝑎, 𝑠")𝑉(𝑠")

#!
 ( 2.1 ) 

 

TABLE 2.5  
DENOTATIONS FOR BELLMAN EQUATION 

Denotation Description 

𝑽(𝒔) 
The value of being in a particular 

state 

𝒔 A particular state 

𝒂 An action 

𝒔! Next state (from s) 

𝜸 Discount factor 

𝑹(𝒔, 𝒂) Reward function 

 

The Bellman equation is a foundational concept used in various algorithms, 

such as value iteration and policy iteration, to solve MDPs and determine the 

optimal policy. It provides a mathematical framework for reasoning about 
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decision-making problems under uncertainty and forms the basis for many 

reinforcement learning algorithms. 

2.5.3 Markov Decision Process 

Reinforcement learning algorithms are typically modelled as Markov Decision 

Process (MDP), a mathematical framework based off the Markov Chain, for 

describing stochastic control processes.  

 

The goal, as outlined in Figure 2.10. Mathematically, a Markov decision 

process can be defined as the 4-tuple 𝑀 =	 〈𝑆, 𝐴, 𝑃, 𝑅〉  with the following 

attributes, further elaborated in TABLE 2.6: 

TABLE 2.6  
MDP VARIABLE TABLE 

Denotations 

𝑺 The State Space, a finite set of all possible 
states of the system. 

𝑨 The Action Space, a finite set of actions that the 
agent can perform. 

𝑨𝒔 The set of actions available from the state 𝑠. 

𝑷 The set of transition probabilities from one state 

to another for any given action 

𝑷𝒂(𝒔, 𝒔!) 
The probability to go to state 𝑠! from state 𝑠 by 

action 𝑎. 

𝑹 

The reward function to determine the value of 
the immediate reward obtained after transition 

from state 𝑠 to state 𝑠 by action 𝑎, denoted by 

𝑅"(𝑠, 𝑠!). 

𝝅 
Policy, a mapping from the state space to the 

probabilities of choosing a different state. 

Figure 2.10. The Markov Decision Process 

𝑆$ 

𝐴$ 

𝑅$ 
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From state 𝑠$ at time slot 𝑡, the agent will select the action 𝑎$ to change state 

𝑠$%&	according to 𝜋 to receive reward 𝑟$%&. The goal of the MDP is to find the 

optimal policy 𝜋 ∗ to maximise the cumulative 𝑅. The cumulative reward of state 

𝑠$	can be defined as the sum of the geometrically discounted future state 

rewards using the 𝛾  factor (0	 ≤ 𝛾	 ≤ 1) as defined below in the general RL 

equation( 2.2 )  [46]: 
 

																𝑅$ =-𝛾$𝑟1𝑥(𝑡), 𝑎(𝑡)3
%

$&'

 ( 2.2 ) 

  

TABLE 2.7  

RL EQUATION DENOTATION TABLE  
  

Denotation 

𝛄 Discount factor 

𝒓 Reward 

𝒙 Task 

𝒂 Agent 

𝒕 Timeslot 

 

2.5.4 Dynamic Programming (DP) 

DP is a technique or solving complex problems by breaking it up into simple 

subproblems and computing then subsequently storing the solutions. If a 

subproblem re-occurs, the stored solution is used. 

 

Policy iteration and value iteration are both dynamic programming methods 

used to solve Markov Decision Processes (MDPs) to find the optimal policy. 

While they both aim to achieve the same goal, they differ in their approaches 

and computational processes. 
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Value Iteration  
Begin with a random value function and then optimise it iteratively.

 
 

Figure 2.11. Value iteration diagram 

 

Breakdown of the value iteration algorithm as seen above in Figure 2.11:  

•  Initialization: Initialize the value function 𝑉(𝑠) arbitrarily for all states 𝑠	 ∈ 𝑆. 

Commonly, 𝑉(𝑠) is initialized to zero for all states. 

•  Iterative Update: For each state𝑠, update the value function using the 

Bellman equation: 

𝑉()*(𝑠) = 	
𝑚𝑎𝑥
𝑎 -𝑃( 𝑠" ∣ 𝑠, 𝑎 ) 5	𝑅(𝑠, 𝑎, 𝑠") + 	𝛾𝑉(+#!,6

#!
 ( 2.3 ) 

Here, 𝑉'(𝑠) is the value function at iteration 𝑘 , 𝑉'%&(𝑠) is the updated value 

function and 𝛾 is the discount factor, as seen in the general policy iteration Eq. 

2.3. 

•  Convergence Check: Check if the value function has converged, i.e., if the 

maximum change in the value function across all states is less than a small 

threshold 𝜃. If not, repeat iterative update. 

Start Initialise random 
value function V (s)

For each state, 
calculate Q (s,a)

Since V(s) = Max 
Q(s,a) update the 

value function with 
max value of Q(s,a)

If V(s) is optimalStop Yes 

No 
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•  Policy Extraction: Once the value function converges, extract the optimal 

policy 𝜋 ∗	by choosing the action that maximizes the expected value as seen in 

Policy Extraction Eq. 2.4: 

 

𝜋∗(#) = arg𝑚𝑎𝑥𝑎 -𝑃(𝑠" ∣ 𝑠, 𝑎 )[	𝑅(𝑠, 𝑎, 𝑠") + 	𝛾𝑉(𝑠)]
#!

 
 

( 2.4 ) 

 

Policy Iteration 
Decide which actions the agents need to take or initialise first, create a value 

table according to policy viewed in Figure 2.12. 

 
Figure 2.12. Policy Iteration Diagram 

 

The data fed to the algorithm can be either continuous or discrete. This 

research can benefit from the culmination of both data types and use the FDT 

logic to return discrete variables or perform more finite data analysis from 

continuous data monitoring.  

 

The added complexity of monitoring a continuous data stream would increase 

the time taken to implement and perform tasks in our implementation of the 

optimisation algorithm but deciding where and when to use the different types 

Start Initialise random 
policy (𝜋)

calculate value 
function V(S) for the 

policy

If V(S) is optimalFind improved policyStop No 

Yes 
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of data was imperative to ensure that maximum operational efficiency of the 

final algorithm.  

 

As observed in [47], an FDT model uses classification of data to label a 

category of data giving the algorithm a chance to interpret the data using real-

world variables and effectively reducing the dataset into types as allocated by 

the FDT. 

TABLE 2.8  
ADVANTAGES OF CONTINUOUS VS DISCRETE DATA 

Continuous Data Discrete Data 

Inferences can be made with few data points – 

valid analysis can be performed with small 
samples. 

More data points (a larger sample) needed to 

make an equivalent inference. 

Smaller samples are usually less expensive to 
gather. 

Larger samples are usually more expensive to 
gather 

High sensitivity (how close to or far from a 
target) 

Low sensitivity (good/bad, pass/fail) 

Variety of analysis options that can offer insight 
into the sources of variation 

Limited options for analysis, with little indication 
of sources of variation 

 

As observed in TABLE 2.8, continuous data monitoring has numerous 

advantages over its counterpart and provides detailed insight and can prove 

beneficial for industrial applications as demonstrated by the comparison 

presented in Figure 2.15. 

 

Despite the obvious advantages of using a continuous model, more data will 

inevitably impact the efficiency of the algorithm and impede its ability to make 

rapid decisions whilst taxing the computational resources more. Therefore, a 

balance between the use of continuous and discrete data must be used where 

a centralised controller that can host and monitor the continuous data, 

portrayed in Figure 2.14, to provide a base or template for the RL algorithm 

would be the best approach to use in this case. 

 

Using a system that can leverage the greater amount of detail provided by the 

continuous data to supply finite control over the algorithm would give the 
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algorithm the ability to rapidly take actions from discrete data (as shown in 

Figure 2.13) received in real-time, adjusting to the networks needs dynamically 

whilst always learning from the continuous data to enhance efficiency of the 

RL model and use transfer learning to share this across all nodes giving them 

the opportunity to benefit from the detailed insights provided.  

 

Placement of the respective data models would be crucial in visualising and 

developing the ideal algorithm therefore, planning was crucial at this stage to 

understand the process of how it would be implemented.  

Figure 2.14. Example of continuous data 

Figure 2.13. Example of Discrete Data 
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Figure 2.15. Algorithm planning stage one 

2.5.5 Fuzzy Logic 

Despite its introduction, or at least conception by Prof. Lotfi Zadeh in 1965 [48], 

[49], the concept of Fuzzy Logic did not gain traction within academia until 

1993. The professor himself mentions that acceptance of his theory took many 

years to come to fruition and be recognised in academia. As observed in [48], 

one the earliest works based on fuzzy logic, there were barely a few 

references, all based on similar timespans to cite from.  

 

In fact, we find that fuzzy logic and its application in both ML and AI efforts 

started to gain traction in the late 2000’s (based of IEEE database search 

ranging from earliest publication date to current point in time). It is visibly clear 

that the concept of Fuzzy Logic is beginning to play its role in modern 
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Incremental 
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Small 
increment
al changes
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distributed computing, AI and Machine Learning alike effectively tripling the 

popularity of the concept. 

 

The intention of Fuzzy Logic is to model logical reasoning with imprecise 

statements using vague statements to provide a determinable outcome that a 

machine can then easily classify [50]. It uses a repository or set of many-valued 

logics and then stipulates the truth value of logically compounded propositions. 

Its core functionality is based on the concept of the ‘gray area’ between the 

black and white or binary true and false values where 1 represents ‘Completely 

true’ and 0 represents ‘Completely false’ mapped on the Universe of Discourse, 

a set of entities where variables may range. 

 

Fuzzy logic applies in a variety of engineering efforts, including systems in 

aerospace, civil, automotive, support, chemical, natural language processing, 

and modern control systems. Its goal is to mimic how a human being would 

make decisions, at computational speeds (much faster), providing the ability to 

use Fuzzy Logic in Neural Networks. Creating further distinction and 

classification between simply true and simply false gives the machine the 

ability to lean towards better decision making whilst learning from an ever-

increasing dataset. An interesting comparison found in [51], details the 

difference between probability and Fuzzy Logic found in TABLE 2.9: 

 

TABLE 2.9  
FUZZY LOGIC VS PROBABILITY 

Fuzzy Logic Probability 

The goal of Fuzzy Logic is to try and 

capture the essential concept of 

vagueness 

Probability is associated with events 

and not facts, and those events will 

either occur or not 

Fuzzy Logic captures the meaning 

of partial truth 

Probability theory captures partial 

knowledge 

Fuzzy Logic takes truth degree as a 

mathematical basis 

Probability is a mathematical model 

of ignorance 
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A clearer example, stated by Shlomo Zilberstein [51], ‘Fuzzy logic is a 

technique for representing and manipulating uncertain information. In the more 

traditional propositional logic, each fact or proposition, such as ‘it will rain 

tomorrow,’ must be either true or false.  

 

Like probability theory, fuzzy logic attaches numeric values between 0 and 1 

to each proposition to represent uncertainty. But whereas probability theory 

measures how likely the proposition is to be correct, fuzzy logic measures the 

degree to which the proposition is correct, as noted in TABLE 2.9  

FUZZY LOGIC VS PROBABILITY. 

 

The architecture, shown in Figure 2.16, has the following format to ‘fuzzify’ 

crisp inputs to an output format that can follow conventional rules, giving AI, or 

other applications, logical reasoning according to rules applied to parameters 

[52].  

 

 

 

 

 

 

 

 

Therefore, we can conclude that Fuzzy sets are used to gain degrees of truth 

in a variable data set within a Universe of Discourse. The outputted data can 

be implemented within AI and ML applications alike to provide learning 

mechanisms within applications for perpetual improvement. Unfortunately, 

Fuzzy Logic does come with some disadvantages such as: 

 

Intelligence

Rules

DefuzzifierFuzzifierCRISP 

INPUT 

CRISP 

OUTPUT 

Figure 2.16. Fuzzy logic architecture 
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• Output data is not always accurate as the results are perceived based 

on assumptions. 

• Fuzzy Logic systems cannot recognise ML & neural network type 

patterns. 

• Setting exact fuzzy rules and membership functions is inherently difficult. 

• Often confused with probability theory 

 

It does, however, suit our application needs perfectly. Particularly when used 

for orchestrated learning methods, as we will find when dissecting the 

simulation software used in this research. It will ultimately provide an 

automated management system using the intuition of a real-world 

administrator, letting the network adapt dynamically to user’s needs [24].  

 

Fuzzy sets are the sets of information within a universe of discourse that do 

not have a defined membership property, whereas classical sets have a binary 

membership value of either 1 or 0 [53]. Denoted by µΑ(x), Eq. 2.5 and 2.6 

compare the difference between a classic set membership and Fuzzy Set:  

The aforementioned equations portray the difference between the binary 

relationships in classic set membership where there is no middle ground, 

against the non-binary relationship that can be utilised with a varying degree 

of membership. 

 

Defining fuzzy variables occurs in the declared .fcl file, which the simulator 

can then process to ensure flexibility within the process. This helps to make a 

more readable format for the end-user as well as apply dynamic changes 

according to the policy parameters. Rules can be applied using Fuzzy Logic in 

χ0(𝑥)  =   ?	1, 𝑥	 = 	𝐴,
	0, 𝑥	 ≠ 	𝐴. 

( 2.5 ) 

 
 

µ0 :  𝑋  →  [0,1] ( 2.6 ) 
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the following manner, which in turn makes the process human friendly and 

easier to read as seen in TABLE 2.10:  

TABLE 2.10  
TABLE OF RULES EXAMPLE FOR ‘FUZZIFICATION’ 

Rule No. Rule 

Rule 1 
IF wan IS low AND tasklength IS low AND destinationUsage IS 

low AND delay IS low THEN offload IS edge; 

Rule 2 
IF wan IS low AND tasklength IS low AND destinationUsage IS 

low AND delay IS medium THEN offload IS edge; 

Rule N … 

 

For our use case, fuzzification values as declared in the .fcl file can be 

iteratively updated on simulation completion, thereby enhancing our initial 

state. Said values can also be communicated across to a cloud orchestration 

function to dedicate learning tasks acquired from local MEC hosts and adapt 

to wider use case scenarios where similar environments can be provided with 

initial values acquired from live usage of the system. 

2.6     Resource allocation with Reinforcement Learning 

2.6.1 A Q Learning approach 

One of the more recent works closely related to the research proposed can be 

found in Robles-Enciso, et al. [54]. Despite the focus on Task Assignment 

Problem (TAP), [54] propose an RL-ML enabled technique that gives edge 

agents the ability to query an upper-level agent to increase contextual 

knowledge of the network environment to the actors involved, thus routing the 

task in a more efficient manner and meeting the QoS requirements of the 

individual tasks more accurately.  

 

Several basic algorithms are implemented alongside a single layer and multi-

layer Q-learning algorithm to test the performance of RL with near-optimal 

greedy algorithms, tasks are also offloaded to neighbouring devices for fog 

offloading purposes within M2M environments. To address the TAP, [54] divide 
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the main system into three separate layers proposed with an intermittent 

connection and dynamic positioning. It is also proposed that the given layer 

has the least latency but also the least computational capacity.  

 

The subsequent layer is referred to as the Fog layer which offers both 

intermediate latency and computational capacity, and finally the cloud layer 

which offers the greatest computational capacity alongside the most latency. 

Task characteristics are outlined with the capabilities of the simulator to define 

the parameters of each task as well as the remaining characters for the network 

nodes to ensure a controlled environment during simulation[47]. 

 

A device is given several options to allocate a task including local execution 

(𝑎 = 0), send it to an adjacent node (𝑎 = 1), the fog layer (𝑎	 = 2) or the cloud 

layer (𝑎	 = 3).  A breakdown is visible in TABLE 2.11. An important point to be 

noted here is that [54] do not consider a distributed computing cloud computing 

model at the penultimate layer,  therefore the cloud layer which consists of a 

single device is the final call for a task to be executed. Additionally, a penalty 

cost 𝛿  is allocated to (𝑎 = −1) should a task fail, alluding to the following 

segmented function as shown in Eq. 2.7:  

𝐶1,(	(𝑎) = 	

⎩
⎪
⎨

⎪
⎧ 𝐶1,(3 	𝑖𝑓	𝑎 = 0
𝐶1,(4 	𝑖𝑓	𝑎 = 1
𝐶1,(
5 	𝑖𝑓	𝑎 = 2

𝐶1,(6 	𝑖𝑓	𝑎 = 	3
	𝛿1	𝑖𝑓	𝑎 = 	−1	

 ( 2.7 ) 

 

TABLE 2.11  
TOTAL COSTS FOR OFFLOADING TASKS 

 

Device Link Cost 

Local N/A 𝐶!,#$ =	𝐿!,#$ +	𝛽𝛦!,#$  

Edge Wireless 𝐶!,#% =	𝐿!,#% +	𝛽𝛦!,#%  

Fog Wired 𝐶!,#
& =	𝐿!,#

& +	𝛽𝛦!,#
&  

Cloud Wired 𝐶!,#' =	𝐿!,#' +	𝛽𝛦!,#'  
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When a task is offloaded, the propagation times as well as latency and the 

respective energy consumption is accounted for with wireless links to ensure 

all costs are considered. The greedy algorithm is implemented as a control 

method.  

 

The computational complexity is 𝑂U|𝐷(| + Y𝐷)Y + |𝐷*|Z respectively, where 𝑑 =

	Device where the task originates, 𝐷( = Nearest Edge Device Set, 𝐷) =	Fog 

server device set, 𝐷* =	Cloud device set, accordant tasks are denoted as 𝑡. 

Ultimately, the heuristic value of each device is calculated using the following 

formula where 𝛽 is defined as a weighting parameter to regulate the trade-off 

between latency and consumption:  

𝑚𝑖𝑛 = 𝜔7 	× 	
𝑡	49:#	. 𝑑$;
𝑑49:#

	× 	𝜙𝑑6:< ( 2.8 ) 

TABLE 2.12  

DENOTATIONS FOR HUERISTIC DEVICE VALUES 

Denotations 

𝝎𝒙 Different weighting constant for each set (𝜔(, 𝜔)	𝑎𝑛𝑑	𝜔*) 

𝝓 Trade off constant between actual CPU usage and running tasks 

The algorithm is constructed to offload the task assignment decision according 

to the greedy policy as outlined, subsequently, two other algorithms are 

constructed, a single layer reinforcement learning algorithm and a multi-layer 

reinforcement learning algorithm based off the Markov Decision Process (MDP) 

that we will explore further later over the course of this research.  

 

The authors state their intention to use the Q-Learning algorithm, which 

focuses on the optimisation of the action-value function (Q) using an iterative 

update based on previous values and temporal difference as: 
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𝑄(𝑠!, 𝑎!) = 𝑄(𝑠!, 𝑎!) + 𝛼[𝑅!"# + 𝛾	𝑚𝑎𝑥$( 	𝑄(𝑠!"#, 	𝑎%) − 𝑄(𝑠!, 𝑎!)] ( 2.9 )  

  

TABLE 2.13  

DENOTATIONS TABLE FOR Q-LEARNING ALGORITHM 

Denotations 

𝒔𝒕 Current state 

𝒂𝒕 Current action 

𝜸 Discount factor 

𝒂" Learning rate = {	0	 → 1} 
 

 

Ultimately, a piecewise function is defined as where the second function 

indicates the action to take in the event of a task failure, multiplying the defined 

penalty by the given task’s parameters: 

 

𝐶( =	 $
(𝑇)*+( −	𝑇,(-.(( ) + 𝛽𝑇)*)./0(

𝛿	 ∙ -(𝑇)*+( − 𝑇,(-.(( ) + 𝛽𝑇)*)./0( .
 
𝑇)*+( −	𝑇,(-.(( 	< 	𝑇+1(  
otherwise 

( 2.10 ) 

 

Finally, a multi-layer algorithm is introduced where offloading decisions made 

can also be transferred across to the overarching Fog/Mist layer, where 

available computational power is greater. Using the previous algorithm 

introduced[54], each device works independently using aggregated global 

information with local information to make allocation decisions, however, the 

biased view of the environment and lack of knowledge in the early stages of Q 

Table generation was displaying lower performance in complex situations.  

 

To address this shortcoming, the following approach is proposed for a multi-

layered algorithm that provides contextual global knowledge to the secondary 

layer with the following structure: 
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An additional action (𝐴 ∪ {4})  is introduced which denotes the offloading 

process for a query in 𝐴	 ∈ 𝐴.  As a result, each device manages its own 

independent Q-Table which is locally trained and the upper layer agent will 

subsequently be able to take advantage of the interactions with devices to 

update and maintain a ‘global state’ as highlighted in Figure 2.17. 

   

Results gathered portray that the multi-layered algorithm improves energy 

consumption when compared to the control greedy algorithm whilst increasing 

performance across the board including adding significantly to the success rate 

of tasks completed when compared to the fixed and stable behaviour due to 

the lack of dynamic components. As a result, the authors find that as the device 

density increases, the multi-layered approach improves performance.  

 

A Deep Q-network is proposed by Xiong, et al. [55] where multiple replay 

memories are applied to enhance the learning process on each iteration of the 

algorithm. Furthermore, action spaces are separated into two subspaces to 

reduce the action space size. Their implementation is tested within a simulation 

environment where an MEC system is deployed at the base station in a single-

cell cellular network as can be viewed in Figure 2.18. 

 

Figure 2.17. Multi-layer offloading query process 
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Resources are allocated to items in the job queue at each time slice, the 

actions taken by the host are then passed on to the host level management 

where a reinforcement learning algorithm can refine the allocation process and 

assign rewards using the DQN algorithm devices by the team. This research is 

limited to a single mobile-edge application within an industrial IoT environment 

to optimise low-latency performance of resource allocation.  

 

IoT devices are randomly deployed and are tasked to upload sensor data to 

the network over M2M connectivity, where a single application is deployed for 

simplicities sake, and the tests are focused on resource allocation.  

 

Their research is based off [46], where Q learning is used for resource 

allocation and tackling the offloading decision problem in an IoT edge network. 

[56], where DQN-based strategic computation offloading algorithm for MEC 

environment is used to minimise the long-term weighted sum of execution 

delay.  

 

To better understand resource allocation, it is imperative to comprehend how 

tasks are queued at the orchestrator, as observed in Figure 2.19, provided by 

Xiong, et al. explains how time-based resource allocation can be portrayed in 

diagram coupled with its denotations.  

 

Figure 2.18. System model 
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To ensure minimum latency, Xiong, et al. propose dividing the action space in 

two, and only observing earlier-arriving jobs to decrease long waiting times for 

job scheduling derived from early research within resource management with 

deep reinforcement learning [57]. 

 

It is further clarified that the allocation of computing resources 𝐶 is formulated 

as a 𝑛* 	× 	𝑛$ matrix, where 𝑛* is the number of total computing resources on 

the mobile edge host and 𝑛$ portrays the number of time slices in the sliding 

window. Incidentally, each row of 𝐶 represents a computing resource 𝑐,! , 𝑖* 	 ∈

{	1,2, … , 𝑛*	} scheduled for allocation starting from the current time slice and 

looking ahead 𝑛$ time slices into the future.  

 

Additionally, each computing unit can hold a value of {	−1, 0, 1} representing 

three different states: unavailable, available, or allocated. States are updated 

accordingly when computing units are requested by the job waiting in the 

queue. 

Figure 2.19. Illustration of the state 𝑆 = (𝐶	, 𝑄, 𝑖#, 𝑛.$ , 𝑛.%) 
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TABLE 2.14.  
DENOTATION TABLE FOR FIGURE. 20 

 

To efficiently identify the multitude of use case scenarios within their simulation 

software, [58] compare the use of ML in VEC against a multitude of different 

competitor algorithms such as SMA, MAB and game-theory based vehicular 

edge orchestration.  

 

Tasks are offloaded to the target server in a probabilistic manner where the 

probability of selecting all targets is the same. Although the use case in [58] is 

applied in VEC, the usage of an ML based algorithm portrays improvement 

within orchestration with the utilisation of reinforcement learning, particularly 

when the service time of the task is greater than one second as can be viewed 

in Figure 2.20.  

 

Denotations 

𝑪 Allocation of computing resources to jobs 

𝑸 Observation part of job queue 

𝒊𝝍 Adjusting indicator 

𝒏k𝒄 Number of computing resources requested in the next timestep 

𝒏k𝒃 Number of jobs in the backlog part of job queue 

Figure 2.20. Histogram of service times 
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The efficiency of the algorithm increases as the ecpected service time 

increases over the number of tasks, particularly where service times are 

greater than a second. This effect in the TAP is commonly seen across a 

number of research efforts where ML is introduced to improve task 

orchestration and resource allocation[45], [57], [59].  

  

The authors observe however, that the evaluator can be misled in delay-loss 

systems, so to ensure that an adequate service time is provided without loss 

of successful tasks, a quality of experience formula Eq.( 2.11, is defined which 

considers both the service time and task loss. Thus, tasks that meet the service 

time and yet fail are not considered succesful. 

 

𝑄𝑜𝐸9 =	\

0,

]1 −
𝑇9 	− 	𝑅9
𝑅9

_ . (	1 −	𝑆9),

1,

 

if 𝑇9 	≥ 2𝑅9 

if 𝑅9 	< 𝑇9 	< 	 2𝑅9 

if 𝑇9 	≤ 𝑅9 
 

( 2.11 ) 

 

One of the notable works that aided in the earlier direction of my research was 

[60], my initial approach was to discover literature that had utilised the 

simulator that I intended to use for research purposes so that I could further 

understand it’s implementation and limitations.  

 

This led me to Zhang, et al.’s proposed research using a double deep Q-

Learning model applied in EdgeCloudSim and focusing heavily on energy-

efficient scheduling. Unfortunately, I was yet to understand the heavy 

implications of energy-efficiency when integrating EC into the 5G network 

architecture, however, it was apparent that this study was of vital importance 

when considering the implications of efficient scheduling. 

 

Numerous academic articles as well as research has been conducted utilising 

EdgeCloudSim as a framework for further testing of algorithmic implementation 

in various modules as included in EdgeCloudSim.  
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Literature to be noted in this case is the aforementioned Deep Q-Learning by 

Zhang, et al. [3] which attempts to implement an energy-efficient solution for 

resource allocation utilising deep learning. Despite the research’s emphasis on 

energy consumption, the authors attempt to implement an energy-efficient 

algorithm that utilises less power when a task is allocated by measuring 

frequency and voltage using DVFS as proposed in the following diagram by 

Zhang, et al.[60]: 

 

 

The proposed involves creating and testing a learning algorithm that stores and 

reacts to every action processed and carried out, it then optimises the task for 

efficient energy consumption, utilising less power as a result and using 2%-

2.4% less energy. This improved efficiency can be applied to always-on IoT 

devices or indeed, as in this case, be used to prolong battery life for user 

devices. 

 

The premises of the research begin with the analysis and exploration of how 

computation is completed, Zhang, et al. propose that within a lab environment, 

the following portrays the energy consumption of a single end-user ‘labtop’ 

[60].  

 

These figures, though general in nature, must be taken as an approximation, 

despite the article being dated 2018, power efficiency within the ECE industry 

Figure 2.21. Learning scheme for double deep q-learning model 
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as well as adoption of more efficient technologies such as SSD, as well as 

omission of the RAM modules within a device prove that our authors have not 

taken all aspects of the energy consumption in a single device, into 

consideration. 

 

As this was one of the earlier academic articles approached over the course of 

this research, it was apparent that energy-efficiency was to become an integral 

part of this research over its duration. The use of DVFS algorithms suggested 

that the goal was to optimise for energy-efficiency rather than a scalable 

network environment. During their testing, Zhang, et al. broke down the key 

components that utilise power within a device as seen in Figure 2.22. 

 

Research aims are to tackle limitations in energy consumption on both user 

and client ends and it is indicated that serious implications apply when edge 

servers reach capacity and begin to fail tasks, especially in government or 

time-sensitive applications[60]. However, when considering that 5G will offer 

the ability to produce layers that differentiated services can operate on, some 

of the main concerns posed in the research are alleviated [61].  

 

The algorithm proposed in this research is being applied at the infrastructure 

level as seen in although not explored within the scope of their research, 

Zhang, et al. indicate the identification of QoS requirements posted by UEs 

using EC, such as worst-case execution times WCET, and subsequently 

DVD
7% LCD

8%

HDD
11%

CPU
31%

GPU
20%

FAN
11%

WiFi
12%

Figure 2.22. General power consumption of a 'labtop' 
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completing the tasks using an energy-efficient approach. The research is built 

on existing literature but uses a combined learning model that overcomes 

limitations within discrete system states, allowing for continuous adaptation of 

the network model without having to expand the Q-table size to recompute 

optimum performance values. 

 

To formulate the algorithm, Zhang, et al. use the following approach to define 

the task and energy models [60]. To keep this research on track, the energy 

model, including CMOS based processor energy consumption of 70nm 

technology will be intentionally omitted, primarily to avoid constrained variables 

and secondly, at the time of writing, current-gen technology utilises a 14nm 

process and power-consumption values have changed significantly. This does 

not however, undermine the research presented by Zhang, et al. as MNOs do 

not upgrade their infrastructure yearly, but as this research is exploring 

architecture that is yet to be installed/leveraged, it is safe to assume that it 

won’t be done on outdated technology [62]. 

 

The variables collected from the models discussed above are supplied as 

inputs to the Q-Learning model, where double deep Q-learning method is 

applied to the variables to generate two Q-network models: the generated Q-

network U𝑄(𝑠, 𝑎 ∶ 	𝜃)Zand the target Q-network  U𝑄(𝑠, 𝑎 ∶ 	 𝜃1)Z. A rectified linear 

units (ReLU) function is used as the activation function as it is more efficient 

for gradient propagation.  

2.6.2 Cache allocation and Computational offloading 

In their research, Ndikumana et, al. present two scenario’s that they wish to 

tackle; drones used in large swarms to broadcast professional sport activities, 

and send live stream videos and medical imaging, where edge-hosted 

resources allow rapid access [63]. Their proposed model suggests a lone MEC 

server, restricted from other network resources, which must maximise resource 

utilisation in a contained network environment, akin to models within an 

industrial setting aim to optimise usage without relying on additional, external 

resources. 
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The system model used [63], consisted of MEC servers located at the RAT’s 

which are then linked to each other and finally synchronised to a centralised 

data centre. They also suggest that each MEC hosts a RAT (Resource 

Allocation Table). Each table stores information of resources available to the 

architecture, and continuously update at regular time intervals. 

 

This static approach works well where workloads and expectations of streams 

of data are predictable within the scope of its applications. In the case scenario 

described by [63], the key factor in the research is that the Edge Servers 

collaborate to process requests and update one another using RATs (Resource 

Allocation Tables). The weighted payment framework allows the MNO to further 

classify requests from the UE by exchanging updated RAT at 𝛥$. 

 

This works well for organisations and establishments where repeatability of 

tasks is greater however, does not fit a dynamic metropolitan model that can 

serve as underlying architecture for a 5G environment offered to the public. Its 

implementation is also limited by the complexity of the model and becomes 

unsuitable for true optimisation where constraints are not only limited to cache 

size and computational resources.   

 

A further point to be noted is the redundancy introduced in line 2 of the 

algorithm where values are initialised upon each update, no doubt to pave way 

for convergence [64] and remove unpredictability from the results of the 

algorithm however, use of such techniques may introduce latency if each 

update calls for re-initialisation of values and losing key information that could 

assist with a ML approach coupled with continuous data acquisition methods 

[45]. 

 

One means to circumvent this loss of data, could be to find the difference 

between the values and log said information, forming a trend chart over time 

allowing the system to pre-emptively estimate network conditions. [65], where 

such techniques are employed, employ the use of such a predictive model 

within their IDTM algorithm using augmented backlogs as an input variable, 
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giving the system the ability to pre-empt the backlog queue, offering to solve 

for a worst-case scenario.  

 

To facilitate this methodology, an anomaly detection mechanism, amongst 

other challenges, must also be overcome to ensure that the system is not 

acting on false or anomalous figures [66] introducing complexity and in turn, 

latency into the functionality. The approach taken by [63] also lacks the 

advantages gained from concepts such as Reinforcement Learning (RL) 

providing MNOs perpetual systems that require less maintenance and 

management and encourage the network to learn from past interactions to 

ensure that the network is always operating at its peak potential [67]. 

 

The methods outlined by [63] and [68] both function on the same underlying 

principle, neighbouring nodes adapt to frequently requested content according 

to location and attempt to duplicate content fewer hops away from the UE. This 

in turn leads to reduced delay when accessing content, and reduced traffic load 

on the network [68]. 

 

 
Figure 2.23. Caching types compared [68] 

 

The method used by [63] works well but not as intended by the research. 

Despite the advantages offered when resources are cached, the goal of MEC 

is to offload computation to servers a single hop away to service low-latency 

applications and turnover data in rapid succession.  
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This doesn’t mean however, that the authors of [63] were wrong in their 

approach, collaborative caching has contributed to QoS offered by many ‘as-

a-service’ companies including Netflix [69]. In fact, according to [68], caching 

in both UMTS and LTE networks has been proven to reduce mobile traffic by 

one to two thirds, comparisons of which can be seen in Figure 2.23, where 

cache types are compared in different locations in the network, and CCN 

caching reduces network load and drastically increases performance with 

greater utilisation whilst reducing delays. 

2.6.3 Stochastic Gradient Descent  

The authors of [70] explicitly and comprehensively tackle the application of ML 

within dynamic resource allocation, also bearing into account the impact of the 

learning algorithm within the simulated delay. Of further interest, is the fact that 

the author’s make it a point to question the efficiency and performance of the 

algorithm as a standalone ML algorithm as opposed to solely when it is applied 

within context.  

 

This approach is particularly useful as within any realm, there is always room 

for improvement and the authors acknowledge that the quality of each 

component involved, directly affects the quality of the outcome. Opting to use 

a supervised learning method, a Stochastic Gradient Descent (SGD), used for 

large-scale and sparse machine learning problems, is implemented on the 

edge server, as found below: 

 

𝑄(𝑤) =
1
𝑛
-𝑄9(𝑤)
=

9&*

 ( 2.12 ) 

𝑤 ∶= w− η∇𝑄(ω) = ω −
η
𝑛
-∇𝑄9(ω)
=

9&*

 ( 2.13 ) 
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SGD is primarily an optimisation technique used to train models where training 

steps (also known as learning rate in machine learning) are dictated by 𝜂, and 

steps can be limited to avoid taking into consideration the entire dataset 

therefore, decreasing the time taken for the algorithm to produce a response 

in exchange for accuracy.  

 

To avoid looping through the same data, a shuffle of the dataset is introduced 

within the first stage of the algorithm, and the algorithm is repeated to provide 

a convergence to produce the output.  

 

The network model used to test the efficiency of the algorithm consists of a 

single edge server located at P which is in turn connected to sensors(K) and 

the model used is stochastic in nature, leveraging the use of Lyapunov 

optimisation without assuming any prior knowledge of data. 

2.7     Summary 
Determining the correct algorithm was of vital importance in the formulation of 

this research. We explored the use of Reinforcement Learning (RL) to provide 

and subsequent key concepts. 

 

This chapter examined key academic efforts that were closely analysed during 

this research. These efforts encompassed foundational discoveries and 

technologies that underpinned the intelligence of current technologies, as well 

as potential enhancements to the network infrastructure and hardware we used 

in our daily lives.  

 

The chapter also delved into pertinent literature, past and present, to guide the 

research direction and the selection of the most suitable technologies for our 

optimization algorithm.
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Chapter 3 Simulator Comparison and Design 
The following chapter contains detailed comparison of the simulators 

shortlisted for this research and concludes with the selection of the final 

simulator used for the implementation of the algorithm formulated over the 

course of this research. 

3.1     Introduction 
As proposed by [71], the use of a simulator was the most advantageous 

approach to take for the purpose of this research, namely due to the high costs 

involved that would stop most students in their tracks, and the convenience of 

conducting real-time tests with rapid turnover on any modifications that may be 

required. Thus, ensuring that the research had a good starting point meant that 

several simulation software had to be compared of which one would emerge 

the victor in operability and academic viability.  

Advantages of simulation include: 

Controlled  

• Ensuring that our study does risk or damage any live/active systems. 

Reproducible 

• Where we can easily reproduce our scenarios and conduct them under 

the same conditions. 

Cost-effective 

• Ensuring that our study is not costly to conduct and therefore can be 

refined as many times as required. Additionally, no proprietary hardware 

is required. 

Time efficient 
• Simulation times can be increased to multiples of real-time 

implementation, providing results over longer time periods without the 

wait. 

Flexible 
• Can adapt to numerous testing scenarios rapidly. 
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TABLE 3.1.  
DETAILED FEATURE LIST OF SIMULATION SOFTWARE 

Software: Features: 

Network Simulation 3 

Mature application capable of simulating numerous network environments 

Advantages: 

• Free for research and educational use 

• Aligned with the simulation needs of modern development 

Disadvantages: 
o Code based development, which in turn makes it harder to 

visualize a network and implement changes  

CloudSim 

Provides a generalized and extensible framework to simulate cloud-based 

environments. 

Advantages: 

• Provides a generalized and extensible framework that enables 

seamless modelling, simulation and experimentation of Cloud 
computing infrastructures and application services 

Disadvantages: 

o Limited set of tools and applications 

iFogsim 

Designed to simulate Fog and Edge environments and created as an 

enhancement of CloudSim. 

Advantages: 

• Specialized for modelling fog environments and for evaluation of 

resource management and scheduling policies 

Disadvantages: 

o Complex interface and clunky controls 

GNS3 

Network simulation tool that provides a Graphical User Interface. 

Advantages:  

• Allows for quick modification of network elements  

Disadvantages: 

o Low integration with other applications 

Qualnet 

Network simulation tool with a GUI. 
Advantages: 

• Comprehensive modelling and simulation of real-world scenarios 

• Both wired and wireless networks can be easily built using GUI 

Disadvantages: 

o Not an open-source software 
o Paid license 

 
 

Due to the ever-increasing popularity of the subject, possibly owed to the 

limited roll-out of 5G, a number of scholars, hobbyists and even some 

corporations have been working on or funding open-source initiatives for 
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developers around the globe to contribute to while enhancing their own 

research or meeting their ends (no doubt to monetise on them once the time 

comes) [72].  

 

Several companies began and continue development of open-source network 

simulation software, all which lack Edge Computing features but are mature in 

their network simulation capabilities. Many of the simulators mentioned in 

TABLE 3.1 have a GUI along with their CLI to accommodate ease of use. 

Unfortunately, for the purpose of this research however, they do not support or 

offer dedicated cloud-based simulation. 

 

After the initial intention of utilising GNS3 for simulating an edge computing 

environment, further research revealed that a purpose made simulator had 

been created by researchers from Bogazici University, Istanbul [73]. This was 

acknowledged to be an ideal simulator to build upon for the purpose of my 

research by the review conducted by [11].  

 

The works conducted by Svorobej, et al. compare 7 different edge/fog 

simulation tools, their synonymous nature paves way for comparison between 

the tools as fog computing was the term originally coined by Cisco for cloud 

computation at the edge of the network [11].  

 

Svorobej, et al. found that EdgeCloudSim contains the most accurate 

simulation tools for recreation of an MEC environment yet lacks scalability. 

Naturally, over the course of the literature and due to the open-source nature 

of the software created by Sonmez, et al. [73] the simulator is constantly being 

improved and contributed to by researchers.  

 

Thus, in its current state, scalability features have been implemented allowing 

for the test of several hundred devices in a simulated edge environment where 

each UE simulated by the software is allocated a random task that is offloaded 

to the network edge [73]. In an update to my research, a simulator based on 

the initial findings of [73] was subsequently released[74] which will be 

discussed later in this research. 
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TABLE 3.2.  
FURTHER SIMULATION SOFTWARE EFFORTS 

Simulator Features Interface License 

Antidote (NRE Labs) 

Combines a network 

emulator with a 

presentation 

framework 

CLI and GUI Open source 

Cloonix 

Simple network 

emulator with FTP 

abilities, can spawn 

QEMU-KVM 

CLI Open source 

CORE 
Network emulator and 

virtualization platform 
CLI Open source 

EVE-NG 
Network emulation 

platform with GUI 
GUI Open source 

IMUNES 

Integrated 

Multiprotocol Network 

Emulator/Simulator 

CLI and GUI Open source 

Kathara 
Lightweight network 

emulation tool 
CLI Open source 

Mininet 

Emulator for rapid 

prototyping of SDN 

networks 

CLI Open source 

NS-3 
Discrete-event network 

simulator 
CLI Open source 

VNX and VNUML 

Virtual Network 

experimentation and 

Network User Mode 

Linux 

CLI Open source 

Containernet 
Fork of mininet, allows 

for the use of docker 
containers 

CLI Open source 

Knet network simulator 

Uses docker containers 
to build network nodes 

and Open vSwitch to 

create switches. Has a 
CLI and web interface 

and incorporates SDN 

CLI Open source  
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Educational Network 
Simulator 

Simple network 

simulator designed for 

educating young adults 

 Open source 

Labtainers 

Uses Docker 

containers and has 
many prepared labs for 

cybersecurity 

CLI Open source 

Cnet network simulator 

Enables development 

and experimentation 

with a variety of 
network protocols like 

WAN, LAN, and WLAN 

CLI Open beta 

NetMirage 

Allows real time code 

testing for IP 

applications 

CLI Open beta 

ESCAPE (Extensible 

Service ChAin 

Prototyping 
Environment) 

Supports development 

of several parts of the 
service chaining 

architecture including 

VNF 

CLI Open source 

OMNeT++ 

Discrete event 

simulator and INET 
Framework simulator 

for both wireless and 

mobile networks 

CLI Open source  

Netsim 
Network simulator for 

Rust programmers 
CLI Licensed 

VIMINAL 
Linux based network 

simulator 
CLI Open source 

5GPy 

Python based 5G 

simulator with Fog 
Computing 

CLI Open source 

 

TABLE 3.2 outlines several efforts to simulate containerised network 

applications. These were worth a mention due to the sudden surge in industry 

efforts to implement VNFs into application development. There are several 

advantages to this approach, not only does it simplify repeatability and 

modification of VMs that can be scaled easily, but it also allows software 

updates in a shorter time span. Applications such as Docker and Kubernetes 

have become accepted in wide stream web-applications and SaaS services 

[75], [76], [77], [78]. 
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As highlighted above, the purpose of this research was to use a dynamic 

approach in the discovery of research software, where a testing scenario was 

devised but did not rely heavily on the simulation software being used. By using 

an approach akin to SDN and VNF concepts of decoupling [79] the variables 

to be tested from the simulation software, I was given the freedom to implement 

my approach on the highest bidder, or in this case the best simulator, available 

at the time of testing.  

 

To achieve this, I ensured that I had devised a testing scenario that would 

largely remain unchanged over the course of this thesis until I was ready to 

discover results. Instead, my time and efforts were spent on researching the 

literature on my subject area.  

 

This approach gave me the opportunity to discover improved simulation 

software along the course of this research, which in turn were implemented 

within the thesis after simple and repeatable tests were conducted on said 

simulators.  

 

Unfortunately, this approach did also have drawbacks, namely that I would 

have to test every simulator and compare their features to find what would work 

best for this research project.  

3.2     Requirements for MEC and Simulator Selection 

3.2.1 MEC Requirements Review  

To form the simulator selection, requirements must first be reviewed for MEC: 

• Low/Intermittent connectivity 

o Bandwidth and associated high cost of transferring data to the 

cloud 

o Low latency, such as closed loop interaction between machine 

insights and actuators 

o Immediacy of analysis 

o Access to temporal data for real-time analytics 

o Compliance, regulation, or cyber security constraints 
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• Business Implications 

• Predictive Maintenance 

o Reducing costs  

o Security assurance 

o Product-to-service extension (new revenue streams) 

• Energy efficient management 

o Lower energy consumption 

o Lower maintenance costs 

o Higher reliability 

• Smart Manufacturing 

o Increased customer demands mean product service life is 

dramatically reduced 

• Customization of production modes 

• Small quantity and multi-batch modes are beginning to replace high-

volume manufacturing 

• Flexible device replacement 

o Flexible adjustments to production plan 

o Rapid deployment of new processes and models 

3.2.2 Simulator Selection 

TABLE 3.3 highlights open-source software that portrays good examples for 

the framework of this research and can be manipulated to provide the 

groundwork to create the proposed application capable of meeting the 

requirements.  

 

Further research conducted over the course of the thesis, paved way for the 

discovery of more suitable applications that were in development stages with 

incremental updates being introduced to add new features.  
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Attributes FogNetSim++ iFogSim FogTorchII EdgeCloudSim IOTSim EmuFog Fogbed 5GPy PureEdgeSim 

Computing 

paradigm 

Fog computing 

(general) 

Fog computing 

(general) 

Fog computing 

(general) 

Edge computing 

(IoT) 

Edge 

computing 
(IoT) 

Fog 

computing 
(general) 

Fog computing 

(general) 

5G Simulation PHY 

layer 

Edge 

Computing(IoT) 

Infrastructure and 

network level 

modelling 

Distributed data 

centres  

Sensors 
Fog nodes 

Broker 

Network links 

Delay 
Handovers 

Bandwidth 

Cloud data 

centres 
Sensors 

Actuators 

Fog devices 

Network links 
Delay 

Network usage 

Energy 
consumption 

Latency 

Bandwidth 

Cloud data centres 

Network links 

Edge servers 

WLAN and LAN 
delay 

Bandwidth 

Cloud data 

centre 

Latency  
Bandwidth 

Network links 

Fog nodes 

Routers  

Virtual nodes 

Switches 

Instance API 
Network links 

PHY layer 
simulation  

Modular 

Fronthaul 

communication 
support 

Fog and Cloud 

modules 

Cloud data centres 
Network links 

Edge servers 

WLAN and LAN 

delay 
Bandwidth 

Enhanced 

Orchestration 

Application-level 
modelling 

Fog network 

Data stream 

Stream-

processing 

Fog applications Mobile edge IoT Fog Fog network Fog, Cloud 
Mobile, Cloud, 
Edge, Fog, Mist 

Resource 
management 

modelling 

Resource 
consumption 

(RAM and CPU) 

Resource 
consumption 

Power 

consumption 
Allocation 

policies 

Resource 
consumption 

(RAM and CPU) 

Resource 

consumption (RAM 
and CPU) 

Failure due to 

mobility 

Resource 

consumption 

(RAM, CPU, 
and storage) 

Workload 

Resource 
consumption 

(RAM and CPU) 

Bandwidth 
Workload 

 

Full infrastructure 
including power 

simulation 

Ram, CPU, Energy, 
Mobility, Network 

conditions 

Mobility Yes No  No Yes No  No  No Yes Yes 

Scalabil ity Yes No No No 
Yes 

(MadReduce) 
No No  Yes Yes 

Date released Jan 2019 Oct 2016 Apr 2018 Sep 2018 Feb 2016 Sep 2017 Nov 2016 2020 2019 - current 

Forked 3 83 3 127 Not available 7 2 2 60 

Last updated Jan 2019 May 2017 Apr 2018 Nov 2020 Not available Sep 2020 Nov 2018 Apr 2020 December 2022 

TABLE 3.3.  
COMPARING FOG AND EDGE SIMULATORS 
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3.3     CloudSim 
As previously discussed, the introduction of any new software technologies 

brings with it a host of simulators that can help to alleviate issues before real-

world implementation and deployment of said technology. Good engineering 

practises dictate that a better understanding of a new solution can lead to rapid 

evolution of technology and within networking applications, costs of 

deployment can escalate quickly.  

 

Simulation software can help encourage better understanding and 

implementation of new solutions by giving software engineers the ability to 

simulate their solution within a containerised environment designed to mimic 

real-world implementation dependant on the amount of detail engineers wish 

to determine. One such simulation solution developed to understand the 

implementation of cloud technologies is CloudSim; a framework for modelling 

and simulation of cloud computing infrastructures and services [80]. 

 

An initiative going as far back as 2002, CloudSim is an open-source cloud 

environment simulation tool, formerly known as GRIDS Lab, developed by the 

School of Computing and Information Systems, University of Melbourne, 

Australia.  

 

It has since been used for several academic articles and publications, research 

efforts etc. which have undoubtedly led to numerous industrial implementations 

over the years including sponsors the likes of Microsoft, Samsung, Huawei, 

Lockheed Martin, Sun Microsystems, European Union etc. It has also led to a 

few forks such as one of the simulation software’s that will be discussed in-

depth in later chapters.  

 

In more recent and ongoing efforts, there have also been attempts to utilise 

the simulator to tackle the ongoing COVID-19 pandemic [81] using Fog 

Computing indicating the versatility and applicability of the technology as well 

as its current and future relevance. 
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The main functionalities, as listed on the website dedicated to the project are:  

• Support for modelling and simulation of large-scale Cloud computing 

data centres 

• Support for modelling and simulation of virtualized server hosts, with 

customizable policies for provisioning host resources to virtual machines 

• Support for modelling and simulation of application containers 

• Support for modelling and simulation of energy-aware computational 

resources 

• Support for modelling and simulation of data-center network topologies 

and message-passing applications 

• Support for modelling and simulation of federated clouds 

• Support for dynamic insertion of simulation elements, stop and resume 

of simulation. 

• Support for user-defined policies for allocation of hosts to virtual 

machines and policies for allocation of host resources to virtual 

machines 

 

Some of the additional characteristics, as indicated by [82] are as follow: 

• Developed in Java, a widely used programming language 

• Open source in nature, enabling contributions from the developer 

community 

• The first open-source specialised cloud simulation framework 

• Provides great flexibility to create simulated scenarios, where each 

scenario is modelled using Java 

 

CloudSims biggest attraction, however, lies in its potential for extensibility 

which has not gone unnoticed by researchers around the globe who have 

successfully implemented it into academic projects with varying subjects that 

may require simulation of cloud computing scenarios and subsequent 

technologies such as Mist, Edge, and Fog.  

 

Due to the modular nature of the library, it can be implemented in any way that 

the user chooses, where the developer is free to call upon libraries contained 
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therein and extend them to their hearts content which can be observed in [83], 

[84], [22], [47]. Due to its early introduction, it has also become one of the 

academic go-to simulation software for research purposes and still retains 

funding from large technology corporations. 

3.4     Simulation candidate 1: EdgeCloudSim 
After analysis of the available simulators, EdgeCloudSim was one of the 

candidates shortlisted as one of the finalists, with good feedback from the 

community as well as some validation provided by members of the community 

and the developer. To simplify matters, we will only be analysing the two most 

suitable simulation software’s in-depth.  

 

Originally based off the CloudSim [4] simulation tool, which is currently on its 

5th iteration, EdgeCloudSim uses the framework from CloudSim and 

implements a 3D Edge simulation model implementing use of wireless 

technologies that are currently not offered by CloudSim including WLAN and 

WAN, mobile nodes and mobility support and realistic Virtual Machine 

implementation.  

 

The researchers for [4] decided to base their simulator on CloudSim due to its 

modular nature and its simplistic development when compared to other 

simulators or network modelling tools.  

 

One the of key functions of EdgeCloudSim is the multi-tier approach for 

scenarios where multiple Edge servers can be run in coordination with upper 

layer cloud solutions.  

 

To offer this functionality, EdgeCloudSim uses an orchestrator module to 

simulate orchestration actions of assigned tasks and actions which arise in 

Edge Computing scenarios.  

 

The researchers then leveraged the extensive code base for modelling of 

computational tasks which has long been established and regularly contributed 

to, by developers of CloudSim due to its open-source nature.  
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3.4.1 Hierarchy and Design 

Whilst developing EdgeCloudSim, the authors considered multiple approaches 

to designing the multi-tiered simulation environment. One of which was to 

utilise Hu et, al [5] optimisation method where mobile users offload computing.  

 

Access point and remote clouds utilise a heuristic algorithm by considering 

both the communication and computation resources and thereby taking into 

consideration of the a RAN environment as a whole rather than considering 

only the data or computation oriented process and disregarding the mobile 

communications which will inevitably play a role, offering the possibility of 

further enhancements by working alongside the Edge computational model as 

opposed to being present as a separate entity [5]. 

 

The application is designed in the following order with each subset of 

applications functioning within their own designated layer and modules working 

with the following relationships as seen below [4]: 

 
Figure 3.1. Relationship between EdgeCloudSim modules 

 

Figure 3.1 outlines the relationship between the modules implemented by [73] 

utilising the CloudSim library as a base. Custom modules are introduced using 

CloudSims Global Cloud and Edge Serer classes as a base to implement a 
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custom Edge Orchestration as well as user mobility modules to produce the 

simulation output.  

 

The remaining modules customise their CloudSim counterparts to further 

enhance the specific application of EdgeCloudSim as an Edge Simulation tool, 

utilising modified modules that can implement core functionality of edge 

simulation and orchestration. The authors also introduce a custom networking 

module that gives access to both WLAN and WAN link with customisation 

options for the user to shape the speed and bandwidth of said links to the 

simulation requirements.  

 
Figure 3.2. EdgeCloudSim layered architecture 

 

Furthermore, Figure 3.2 portrays the various modules position within the 

simulator’s architecture and the specific layer that they reside in. The mature 

modules from CloudSim supply the VM structures and services as well as 

define the network parameters to ensure that a simulation environment is as 

accurate as possible. EdgeCloudSim then supplies dedicated modules that 

tackle our particular use case scenario, giving users the ability to provide 

custom models for any module and fine-tuning their unique simulation 

environment.  



 

 81 

The primary objective when designing the java-based simulator was to provide 

extensibility, therefore the authors created something called a scenario factory, 

a module within the simulator that orchestrates other modules to interact and 

have awareness of other modules as observed in Figure 3.2, orchestrates tasks 

to be sent to the VM for computational offloading.  

The following modules are responsible for the tasks as detailed in TABLE 3.4: 

  

TABLE 3.4  

TABLE OF MODULES IN EDGECLOUDSIM 
Module  Task 

Core simulation 

module 

Responsible for loading and running the entire application using the scenarios 
from the combination of XML and Java files. It also offers the ability to log and 

store results of the simulations. 

Networking 

Module 

Handles transmission delay and both WLAN and WAN scenarios, an 

improvement to the solution offered by CloudSim, as there were only static 

options available which were fixed for all users, the network link module makes 
a more accurate calculation based on several variables introducing dynamic 

scenarios and allows users to introduce their own network behaviours. 

Edge 

Orchestrator 

Module 

The edge orchestrator is akin to the backbone of the system as it directs and 

manages how tasks are handled by the Edge system. The authors claim that 

the orchestrator is very basic however, it allows for a more complex system to 
be integrated, extending functionality and optimising efficiency. 

Mobility Module 

The mobility module tracks the movement of the user within a 3-dimensional 

space using x and y co-ordinates. A hash table is used to store user co-

ordinates where locations are dynamically updated. 

Load Generator 

Module 

The load generator module allocates tasks to the Edge Server which are then 

managed by the Edge Orchestrator and subsequently remaining modules. It 
utilises a Poisson distribution to assign tasks to various aspects of the edge 

server. The load generator coupled with the Mobility module are the main 

components as they provide input to other components.  

 

To ease configuration and optimise task-flow for simulation purposes, an XML 

configuration file is used that can be changed on the fly to introduce any 

changes in the simulation. The parameters available in the XML file can 

manipulate usage for the four different types of applications available including 

variables such as delay sensitivity, data upload/download rates and individual 

VM utilisation per application. Other XML files can manipulate and modify the 
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amount of computing power available to the VM’s available on the network 

edge.  

 

These can range from multi-core processors to single-core devices, which can 

help find the most cost-effective solution to apply network resources. Further 

thought is also required when applying said solutions, as populated 

metropolitan areas are bound to request more resources than their 

counterparts based in the countryside, which would inevitably serve fewer 

users.  

 

The greatest difference between CloudSim  [84] and EdgeCloudSim [73] is the 

modular structure that EdgeCloudSim uses as well as the implementation of 

network modelling, device mobility modelling and a realistic load generator. 

EdgeCloudSim also supports multi-tier scenarios that can accurately determine 

the kind of workload that an Edge Server can expect [83].  

 

As an extension of CloudSim, EdgeCloudSim was developed to implement 

features found in Edge Computing and make use of the architecture of Cloud 

Simulation that had already been provided by CloudSim.   

 

A key omission from EdgeCloudSim was its lack of Mist computing features 

and for the purpose of this research, its lack of cellular access network model.  

The author(s) also acknowledged that Task Migration amongst the Edge or 

Cloud VMs, as previously observed in [63]  was lacking, therefore a single 

identifiable MEC Server was responsible to manage as many tasks as possible 

whilst conforming to bandwidth and latency restrictions.  

 

As the research was conducted in 2017, when the technology as well as the 

specifications were still in their infancy, the mobility model used by  [73] was 

simplistic in its implementation which is also visualised during the simulation 

and can be seen in Figure 3.3.  
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The blue dots indicate end users moving around within the simulated cell space 

and the simulator accurately reproduces attenuation to ensure a realistic 

simulation by leveraging some of the developed class modules from CloudSim.   

 

When compared to [74], which dynamically generates UEs and defines their 

position using x and y co-ordinates within a defined coverage area as observed 

below. Mist computing simulation was also added in [74] as well as an example 

file dedicated to comparing mist, edge, and cloud computing capabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The software class hierarchy can be seen in Figure 3.4, which details how the 

different classes within the simulator work together to provide the output.  

 

The MainApp Class calls upon ScenarioFactory which in turn ties into several 

subclasses to gather variables from XML files which are used to organise and 

declare different environmental variables such as Edge Device specifications 

as well as Client Device specifications.  

 

The simulator itself leans heavily on the CloudSim library, often utilising 

functions, and methods on underlying layers to provide key functionality.  

Figure 3.3. Mobility simulation map 
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Figure 3.4. Java Class Hierarchy of EdgeCloudSim app 
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3.4.2 Modules 

The simulator consists of several modules that work in conjunction to provide 

simulated network events which are as outlined below: 

 
MAIN APP 

The main application (MainApp) class in the model is contains and references 

various variables that draw dynamic variables such as directories and 

configuration files from other documents. It invokes the use of other supporting 

classes to start the simulation with the parameters required and produces the 

SimLogger data to the console. 

 
SCENARIO FACTORY 

The scenario factory invokes the remaining classes that can then use the 

configuration files in XML format to apply settings and resources for VM, UE’s 

and Cloud applications. The scenario factory is responsible for invoking 

classes from CloudSim and instantiating them to the simulator.   

 
EDGE ORCHESTRATOR 

The edge orchestrator module administrates the system, it is responsible to 

assign and allocate incoming requests using a probabilistic approach. The 

edge orchestrator module deploys a WLAN located in a stable physical place 

with a predetermined wireless coverage area.  

 
MOBILE DEVICE MANAGER 

The MobileDeviceManager class invokes the CpuUtilisationModel. Its role is to 

ensure and simulate the mobile devices being simulated within the software, 

which are each connected to the network and portrayed as using one of the 

applications that have their own utilisation requirements.  

 
NETWORK MODEL 

The NetworkModel class is responsible for providing the number of mobile 

devices as well as the simulation scenario. 
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EDGE SERVER MANAGER 

The EdgeServerManager contains specifications for the Edge Servers 

including their detail hardware specifications. Modifying this file can reflect on 

the simulation. 

 
CLOUD SERVER MANAGER 

Contains the parameters of the Cloud server should they need modification to 

match today’s standards. 
 

TASK GENERATOR MODULE 
The load generator module uses an XML configuration file modifying variables 

found throughout the code to simplify access and enable quick scenario 

deployment. Load distribution is handled using a Poisson distribution, a traffic 

model that is most used in the communications industry, that distributes 

computational traffic to the Virtual Machines, after tasks have been allocated 

the by end user devices. The tasks that can be created by the simulation are 

unlimited in amount and in typical usage, it takes 20 minutes to create and 

simulate 50k tasks using a core i7-5600u processor and 8GB DDR3 RAM [83]. 

Offloaded tasks technique: 

 

P(𝑋 = 𝑥) =
λ7𝑒>?

𝑥!
 

( 3.1 ) 
 

 

The default approach of the task generator is to use poisson distribution as 

seen above in Eq. ( 3.1 where l is the mean number of occurrences in the 

interval and 𝑒 denotes the Euler constant. 

 

A generic model is applied for the purpose of the research, portraying the 

simple requirements of the system without any complex functionality, but 

providing a strong foundation of what researchers and the industry can further 

enhance. In essence, the module attempts to recreate a Wireless Local Area 

Network (WLAN) environment as opposed to a Mobile Radio Access Network 
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(MRAN) environment, and therefore discounts propagation of radio waves in 

long distance communication along with accompanying delays incurred and 

other variables that need to be taken into consideration.  

 

The simulation environment used for testing purposes by the authors is one 

that reflects the state of a university campus, where users transition between 

a less frequented space (i.e., the administration building) to a greater 

frequented space (i.e. the library). This is then applied to a two-tier architecture 

and the Edge Orchestrator Module is responsible for handover between the 

two spaces, considering network traffic load. 

Application models 

The load generator module uses a combination of scripted use-cases to 

simulate a variable environment for load testing purposes. There are four 

application classes used by EdgeCloudSim[85]; Augmented Reality, Health 

(automation, smart devices, monitoring), Compute Intensive (computationally 

heavy tasks, simulations, renders etc.) and Infotainment Applications. Each 

application class varies in its application of task arrival distribution, delay 

tolerance and task length.  

 

There are several features that are missing from EdgeCloudSim including 

advanced and calculated cache allocation methods, despite this several 

researchers have attempted to tackle the issue albeit in theoretical form [63], 

[22], [60], [83].  

Mobility Model 

A simplistic nomadic mobility model is used to plot x and y coordinates of 

clients. This is periodically updated according to the dynamically managed 

hash table, by default, a nomadic mobility model is used. 

Requested Features for EdgeCloudSim 

Needed features found on their GitHub page [86] indicate that the simulator 

requires the following features: 
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• Mist computing features (executes task on mobile devices via ad-hoc 

networking) 

• Incorporating cellular access network model into EdgeCloudSim 

(3G/4G/5G) 

• Task migration among the Edge or Cloud VMs 

• Energy consumption model for the mobile and edge devices as well as 

the cloud datacentres 

• Adding probabilistic network failure model by considering the congestion 

or other parameters such as the distance between mobile devices and 

the Wi-Fi access point (geolocation or local based location profiling) 

• Graphical User Interface to interact with the simulator and display 

network topology 

 

Ensuring the optimal use of resources is vital to any project. To ensure that the 

thesis accounted for any changes within the simulation software that could 

produce clearer and better results, I was adamant on keeping up with any 

changes made to the simulator over the course of its existence. As the project 

had been made open source to allow for public contribution [86], I expected 

that frequent changes to the simulation software were to be likely and 

therefore, always referred to the GitHub page of the project to ensure that my 

version of the simulator was always up to date.  

 

Despite the increase of academic and industrial research efforts within MEC 

over the course of this thesis, I found that only minor changes were being 

implemented and those were usually orchestrated by the original author(s) of 

the software itself. This does not rule out the usage of the simulator however, 

as over 15 academic articles from the years 2018 to 2019 utilised or cited the 

simulator as part of their research [22], [60], [73], [83], [87], [88], [24], [89], 

[11], [22], [74]. 

 

In most cases, [22], [60], [83], researchers opted to extend the base 

functionality provided by the simulator in efforts to cater the software to their 
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individual needs. One of the key requirements that the software lacks is the 

integration of an energy model, particularly because of the importance of 

Mobile Edge Computing within IoT environments [90] which can affect the 

battery life of sensors and actuators located at the network edge. Maximising 

battery life potential, or indeed utilising perpetual energy methods to constantly 

power sensors [91], [92], can ensure that vital Edge Devices (EDs) remain 

powered, whether that be using wireless power transfer [92] or using solar-

powered methods [91]. 

 

EdgeCloudSim was initially uploaded on the 18th of Feb 2017 and seemingly 

updated until the 22nd of July 2019 with the following changelog [86]. Additional 

works include [93] who aim to address the shortcomings of both the mobility 

module and the load generator module.  

 

Freymann, et al. [93]  state that the mobility module is predetermined in nature, 

and therefore provides unrealistic results with predictable outcomes. 

Additionally, the load generator module initially creates the task queue as 

opposed to generating each task or a list of tasks progressively which can 

cause memory overloads.  

3.4.3 Assumptions 

Unfortunately, the main repository itself, apart from the academic research 

efforts made, lacks accessibility to those unfamiliar with some aspects of 

software development. When forking the repository or cloning from GitHub, it 

can prove tedious to run the included example applications depending on the 

IDE being used. Simulation software is often run within a containerised 

environment or an IDE. This has several advantages for anyone simply wishing 

to modify some parameters within four sample scenarios included within the 

simulation software.  

 

As aforementioned, EdgeCloudSim relies heavily on the CloudSim library for 

key background components such as VM integration and network backbone 

integration. Due to the extensible framework however, new features can be 
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constantly added without reworking the foundation of the application itself. On 

October 31st 2020, a major update was released [94] implementing the use 

Machine Learning for Vehicular Edge Computing. Despite the initial 

functionality and the class hierarchy largely retaining their form, a major update 

in the form a machine-orchestration edge orchestration model was 

implemented for multi-tier multi-access to the Vehicular Edge Computing (VEC) 

architecture [58]. 

 

VEC, as noted by Sonmez, et al. is an emerging technology offering in-vehicle 

applications the ability offload computational tasks to an edge infrastructure 

that has been streamlined for vehicular applications [94], there is a similar 

possibility of a future where connected services offered to vehicles via Edge 

Computing may make on-board applications redundant [95]. Sonmez, et al. 

incorporate the use of a two-stage ML based orchestration method that can 

intelligently identify the ideal location to offload tasks to maximise success.  

 

The first stage is set to predict the chances of success, and the second stage 

predicts the expected service time. Their model is simulated in EdgeCloudSim, 

and findings published [94] 

3.4.4 Validation 

To ensure the integrity of the simulator and its results, a simple test of 

validation to confirm that the individual components react as expected, was 

held. The first validation method was to ensure that the simulator was acquiring 

the correct properties as defined by the XML file for its properties, a test 

simulation was then conducted, and results plotted for comparison and analysis 

purposes. 

3.5     Simulation candidate 2: PureEdgeSim 
Like its predecessor, [73], PureEdgeSim is an event-driven simulator based on 

a variant, or independent fork, of CloudSim called CloudSim Plus taking 

advantage of features including native support for discrete events simulation 

used during the communication between its components [74].  
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Scouring the documentation of CloudSim Plus explains that despite its close 

following of the original CloudSim, CloudSim Plus has a plethora of additional 

features that were a cornerstone in the development of PureEdgeSim.  

 

Comprehensive documentation is included with PureEdgeSim that outlines the 

details of the simulator and its respective modules as well as core functionality. 

Each modules core functionality and extensibility is explained in detail by the 

author as well as intricate instructions on how to create a new example by 

extending its mainApplication class. 

 

Despite the advantages of CloudSim, the authors of [82] decided that they 

wanted to pursue their own take on the popular simulation software due to the 

following shortcomings: 

• Limited documentation. 

• Amount of duplicated code that jeopardised maintainability, extensibility, 

and testing. 

• Absence of functional/integration tests to ensure simulators correctness 

and validity. 

• Absence of design patterns. 

• Lack of conformance to some software engineering practises and 

recommendations such as SOLID principles. 

• Lack of a more organised package structure paving the way for a better 

understanding and modularity of the project. 

• Lack of a better class structure to allow third-party developers to 

implement missing features into the framework without needing to 

change core classes. 

 

To tackle these issues, CloudSim Plus indicates that its main contributions are: 

• Improved class hierarchy and code. 

• Increased application of reusability principles. 

• Overall review and improvement of code documentation. 
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• Re-structuring of project modules and packages to simplify usage and to 

improve separation of concerns (SoC) principles. 

• Addition of integration tests to cover overall simulation scenarios. 

• Completely new set of features described in detail on the official web site. 

 

Like [80], the authors of [82] also continued to make the project an open-source 

initiative and there is still an active interest in the project. This observation 

further pertains that comprehensive and detailed documentation efforts within 

open-source software can help ensure the project remains valid and actively 

contributed to over the course of its lifetime [82]. 

 

Several key changes in formatting as well as many improvements over its 

predecessor, including (i) Extensibility improvements, (ii) Reduced code 

duplication, (iii) Tests and code coverage. In addition, extra features were 

implemented such as (i) Dynamic arrival of cloudlets and VMs, (ii) New 

datacentre brokers, (iii) Re-engineered network module and new set of 

interfaces, (iv) Event listeners, (v) Builder classes, (vi) Integration tests, (vii) 

Software design quality metrics [82]. 

3.5.1 Hierarchy and Design 

 
Figure 3.5. Side-by-side comparison of layered architecture 

 

Figure 3.5 portrays the differences in architecture between the two-simulation 

software, a notable difference here is the custom Network Model used by 



 

 93 

CloudSim Plus. CloudSim Plus drops usage of the heavy modules to ensure a 

more streamlined simulation process without drastic overheads, more suitable 

for academic purposes where many use cases can be observed without as 

much computational investment. 

 

The author in this case has created a custom network model rather than relying 

on the libraries network model. Upon closer inspection, the network module 

utilised in PureEdgeSim contains integration of energy consumption monitoring 

but lacks WLAN integration, as the link in question over this research does not 

really on a WLAN connection, it is safe to say omitting that module should not 

be a cause for too much concern. 

 

The lack of WLAN in this case does not affect us greatly as our emphasis is on 

resource allocation within the MEC environment. The integration of CloudSim 

Plus however, included major performance enhancements over task 

scheduling but most importantly, the use of multi-threading. Additionally, 

CloudSim Plus builds upon the modular nature of the original, giving academics 

and researchers the chance to easily implement more complex custom 

modules and algorithms for testing.  

3.5.2 Modules 

 

Figure 3.6. Relationship between EdgeCloudSim and PureEdgeSim 

 

Figure 3.6 shows us the difference between how the modules inter-operate 

within the two respective simulation environments. To improve performance, it 



 

 94 

is noted that PureEdgeSim sheds the use of many core libraries of CloudSim, 

instead relying on the most important to keep performance overheads low and 

improve simulation speed whilst maintaining the required accuracy. 

 

The simulator consists of several modules that work in conjunction to provide 

simulated network events which are as outlined below: 

 

SIMULATION MANAGER 

The Simulation manager module represents the core of the simulation by co-

ordinating tasks between all the modules involved within the simulator. It also 

handles the interfacing between CloudSim Plus and the PureEdgeSim 

modules. It consists of two main classes: 1) Simulation Manager, responsible 

for initialising the simulation, starting it, and scheduling its end. It also 

schedules the tasks generation, displays the simulation progress, and prints 

the results. 2) Simulation Logger, computes the results and displays them at 

the end of every iteration, subsequently saving them in a CSV format. 

 

DATA CENTRES MANAGER 

The data centres manager module extends CloudSim Plus by extending the 

Datacentre simple class. It contains the properties of edge devices and their 

corresponding methods such as location, mobility, energy source and the 

battery capacity. It also contains the Server Manager class which generates 

the different servers and devices, their hosts, and their virtual machines 

according to the configuration files modified by the user. 

 

TASK GENERATOR 

This module is responsible for generating tasks eventually processing by 

allocated computational resources. A collection of three example applications 

are used for reference; e-health, smart-home, and augmented-reality. Each 

application has specific parameters which can be modified by editing the 

configuration files. The example provided in [74] and therefore suitable for 

demonstration purposes. 
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LOCATION MANAGER 

This module enables mobility by assigning users with x and y co-ordinates 

which can then be manipulated according to the mobility model the user wishes 

to utilise. This is particularly useful when simulating environments such as 

connected vehicles, each vehicle can be assigned an initial location and then 

modified over the course of the simulation.  

 

NETWORK MODULE 

Consists primarily of the network model. The author in this case created a 

custom module to consider the network load at each instant of the simulation 

and changes the allocated bandwidth for each task being transferred 

according. In essence, it improves upon the standard network module included 

with CloudSim Plus is its ability to adapt to network bandwidth availability and 

adjust the amount of bandwidth available per user/application. It also bears 

network load into account. A load balancer sample has not been included in 

the simulation. 

 

TASK ORCHESTRATION MODULE 

Like the previous module, a custom Task Orchestration Module has been 

designed for simulation purposes. The Orchestrator contained in the module 

has the task of the decision maker.  

 

It decides whether to offload the task or execute it locally and where to offload 

it depending on the algorithm in question and the architecture that is used. It 

also can be extended by the user utilising the Orchestrator class. Several 

classes of tasks are available within the simulator which have been generified 

to test the performance of the simulator.  

 

Here, we have not manipulated the task creation process but there are some 

assumptions that have been made such as the size of the data and the number 

of instructions required to complete the given task.  

 

SCENARIO MANAGER 
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The scenario manager module is responsible for loading parameters from the 

custom configuration files within the simulator and parsing them to be used by 

the Tasks Generator module. It also loads the cloud data centres; the fog data 

centres and the edge device characteristics that are used by the Data centres 

manager module.  

 

Finally, it loads the network settings used by the Network Module, the 

architectures and algorithms used by the task’s orchestration module and other 

simulation parameters including simulation delay, log parameters, etc. required 

by the Simulation manager. It consists of two important classes: the File parser 

and the Simulation parameters. 

Simulation Input Parameters 

As with the previous simulator, [47] have made it relatively simple to input 

parameters for the simulation using an XML file where variables are contained 

and extracted to specify to the simulator the various parameters used to run 

the simulation shown in TABLE 3.5: 

 

TABLE 3.5 
SIMULATION PARAMETERS, PUREEDGESIM 

Parameter  Description 

Simulation_time The simulation duration (in minutes) 

Initialisation_time 
The time required to generate the different simulation 

entities 

Parallel_simulation Enable or disable parallel simulations 

Update_interval The interval between simulation events (in seconds) 

Pause_length The pause between iterations (in seconds) 

Display_real_time_charts To display or not the simulation results in real-time 

Auto_close_real_time_charts Auto close real-time charts after the end of each iteration 

Charts_update_interval The interval of refreshing real-time charts (in seconds) 

Save_charts Save charts in “.png” format 

Wait_for_all_tasks 
Wait until all tasks get executed or stop the simulation on 
time (when the simulation time set by the user finishes) 

Save_log_file Save the log file 

Clear_output_folder Delete the output folder at the beginning of each simulation 

Deep_log_enabled Enable deep logging 
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Location Manager Parameters 

Length The simulation area length (in meters) 

Width The simulation area width (in meters) 

Edge_range The transmission range of Edge devices (in meters) 

Fog_coverage The radius of area covered by each Fog server (in meters) 

Speed The speed of mobile devices (in meters/second) 

The servers manager settings 

Min_number_of_Edge_devices 
The number of Edge devices at the beginning of the 

simulation 

Max_number_of_Edge_devices The number of Edge devices at the end of the simulation 

Edge_device_counter_size 
The growth rate in the number of devices between 

iterations 

The network model settings 

Wlan_bandwidth The local area network bandwidth (in Mbps) 

Wan_bandwidth The backhaul network bandwidth (in Mbps) 

Wan_propogation_delay 
The propagation delay (when sending data/task to the 

Cloud) (in seconds) 

Network_update_interval The network model refresh interval (in seconds) 

The tasks orchestrator settings 

Enable_registry 
If enabled, a container will be pulled from the registry (by 

default) before the execution of the offloaded task 

Containers_deployment 
The containers deployment strategy that is defined by the 

user 

Enable_orchestrators 
Deploy the orchestrator to a physical device, If disabled, 

each device will orchestrate his tasks. 

Deploy_orchestrator 
To deploy the orchestrator to the Cloud, Fog, or any custom 

location 

Tasks_generation_rate 
The number of tasks generated by each device every 

minute 

Orchestration_architectures The computing paradigms that will be used 

Orchestration algorithms The orchestration algorithms that will be used/evaluated 

Energy model parameters 

Consumed_energy_per_bit The energy consumed when transferring 1 bit (in wh) 

Amplifier_dissipation_free_space 
The energy consumed by the amplifier in free space 

channel (in wh) 

Ampilifier_dissipation_multipath 
The energy consumed by the amplified in a multipath 

channel (in wh) 

 

The above simulation parameters can be set before starting the simulation, a 

build takes places using the newly provided simulation parameters and the 
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simulation is then run according to the parameters provided. This simple text 

entry method simplifies changing the parameters and simulating different 

scenarios without having to configure or modify the source-code of the 

simulation software.  

 

As observed in TABLE 3.5, many of the parameters provided rely on smaller 

modules, hence giving a modular approach to simulation which in turn works 

out perfectly for the scope of this research as the core focus is to improve the 

orchestration of the edge server. 

Output Format 

A key reason to transition to PureEdgeSim was the availability of pre-formatted 

files that contained the simulation logs in a CSV format. Additionally, during 

simulation, the authors of [74] have scripted in a graphical real-time analysis 

of the simulator running as seen in Figure 3.7, indicating the kind of data that 

will be received as a result, a log of the output can be seen in TABLE 3.6: 

 

TABLE 3.6  
EXAMPLE CONSOLE LOG OF PUREEDGESIM 

Timestamp Simulation 
Time Source Message 

2020/11/03 
17:51:53 0 (s) ServersManager Datacenters and devices were 

generated 

2020/11/03 
17:51:53 0 (s) SimulationManager 

Orchestration algorithm= 
ROUND_ROBIN - Architecture= 
ALL - number of edge devices= 100 

2020/11/03 
17:51:53 0 (s) SimulationManager Simulation: 1, iteration: 4 

 

PureEdgeSim also contains real-time monitoring on the simulations progress, 

giving researchers the ability to view a particular simulation play out in real-

time as seen in Figure 3.7, though this may be somewhat limited to non-parallel 

execution.  
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Execution times were also drastically improved in version 5.2, due to some 

major changes made by the author to accommodate for greater tasks to be 

scheduled on a greater number of devices[47].  

Figure 3.7. Real-time monitoring preview of PureEdgeSim simulation 

3.5.3 Assumptions 

Default modules include assumed and static parameters for the models, as 

seen in TABLE 3.7, but it must also be considered that the extensibility of 

PureEdgeSim allows for integration of custom modules to almost any aspect, 

allowing the replication of real-world event simulation using custom mobility 

and attenuation models. 

TABLE 3.7  
PUREEDGESIM ASSUMPTIONS 

ASSUMPTIONS 

COMPUTING RESOURCES 
End devices are assumed to have CPI, memory, storage and 

depletable batteries to process data and execute applications 

NETWORKING 

CONNECTIVITY 

We assume that all discoverable devices are connected to the 

network and are requesting resources in some form or manner 
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APPLICATION EXECUTION 

Assumption that applications can be executed on edge devise, 

and that the application execution time and resource usage can 
be modelled. 

WORKLOAD GENERATION 
Assume that we can generate the workload according to the given 
distribution model, which helps to simulate the behaviour of the 

edge computing system under various conditions. 

ENERGY CONSUMPTION 

We assume that the energy consumption of devices is 

proportional to the amount of computation and data transmission 

performed by the device. 

TASK SCHEDULING 

Assume that tasks can be scheduled to edge devices based on 

different task categories as well as criteria such as proximity to 
the source, resource availability and energy consumption. 

MOBILITY 
We assume the position of the mobile devices as well as their 
travel trajectory. 

 

3.5.4 Validation 

Initial tests were run using [47] to ensure simulator validity. Both simulators 

came pre-installed with basic algorithms such as Round Robin and Random 

task allocation. The results produced were equivalent however, PureEdgeSim 

showed increased simulation speed of 50%. 

3.6     The Final Selection 
Based on the comparisons conducted above, it was clear that the more modern 

simulator with improved extensibility and greater performance was the final 

choice. When given similar scenarios, PureEdgeSim greatly outperformed 

EdgeCloudSim in performance and accuracy whilst further allowing for greater 

customisation. Though initial set-up required some configuration with 

PureEdgeSim due to the use of Maven, the result paid off in ease of use and 

drastically improved overall simulation times, allowing more simulations to be 

run.  

 

Additionally, the ease of use when translating output data to a more usable 

format proves formidable for EdgeCloudSim, as the process is entirely manual 

in nature and the application requires that log files are extracted and imported 

into an external CSV/log parser before any meaningful conclusions can be 
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drawn from the data generated. Simulation times are severely lower, where a 

sample scenario containing 200 devices takes approximately 5 minutes on the 

same hardware as opposed to < 10 seconds on PureEdgeSim.  

 

Some of the sample modules within the simulation includes a test use case of 

a Fuzzy Logic Orchestration algorithm, the results of which can be viewed in  

 

 

Figure 3.8 where the task success rate can be seen fluctuating over the course 

of the simulation. 
 

Additionally, building on the research of [47]  implementing the reinforcement 

learning algorithm using some of the fundamentals provided ensured a 

smoother transition process where we were able to test algorithms more 

efficiently.  

 

Ultimately, the simulators used in this project were academic in nature, 

therefore no GUIs were provided with either of them, so knowledge of Java 

was required to implement our algorithms.   

 

Figure 3.8. PureEdgeSim Fuzzy Logic 

Orchestrator 200 devices 
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Despite this, the ease of use offered by PureEdgeSim showed that it was the 

most suitable candidate for the purposes of this research and hence, it was 

ultimately chosen as the simulator that we would go ahead with. 

Parameterisation using XML files is used to hard code most of the environment 

variables within the simulator increasing ease of use.  

 

 

3.7     Final Test: PureEdgeSim 
To initially test our simulator, we will use the predefined examples in 

PureEdgeSim to run an algorithm based on Fuzzy Decision Tree from [47] This 

example is provided within the library of PureEdgeSim and can be for 

comparison purposes when testing our proposed algorithm.  

 

The example provided within the simulation uses a 3-tier classification 

approach for the data output from the Fuzzy Logic generator, namely the data 

is classified within either ‘low’, ‘high’ or ‘medium’ settings.  

 

Although fewer tiers in this system helps to enhance the speed of the algorithm, 

there is a trade-off between optimum performance and speed which will 

unfortunately require a trial-and-error approach however, my theory is that 

giving the system classification and applying Fuzzy Logic within the learning 

process will help to improve overall performance of the systematic approach.  

Transfer learning will prove to be a key concept within the design of this 

algorithm as communication between edge-nodes will be particularly useful for 

providing an awareness about the network environment to the nodes. To 

enable a transfer of what has been learnt by the Edge Network (EN), the 

system will attempt to use dynamic variables acquired through each Edge Node 

and communicate parameters on a sporadic basis.  

 

Retaining our simulation parameters as outlined above, a test was conducted 

to ensure to determine the performance of competing algorithms as devised by 

Winner PureEdgeSim
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[47] to sample the application on install and to generate control data for our 

manipulated parameters. 

 

 
Figure 3.9. Generated against successful tasks (Fuzzy Logic) 

 

Figure 3.9  and Figure 3.10 portray the effectiveness of utilising a Fuzzy Logic 

approach included as one of the examples within the simulator. It applies a 

simple approach to dictating variables based on input variables, applying 

vague classification within a group of strict variables.  
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Figure 3.10. Generated against successful tasks (Increase Lifetime)  

 

The Fuzzification process in the supplied use case is broken into two, where 

one is responsible for the output RULES and the other for determining the 

classification of variables within the fuzzy scope. The above approach is 

touched upon in [74] where the authors simulate a Fuzzy Decision Tree and 

State of the Art approach that offers improved functionality using Deep 

Reinforcement Learning and Transfer Learning.  

 

As seen above however, the number of successful tasks completed by the 

simulator using a Fuzzy logic approach improves drastically, resulting in a 

much lower failure rate. The module in this case is implemented based of 

research conducted by the authors of [96], a library that implements Fuzzy 

Logic, fittingly called jFuzzyLogic.jar, is simply integrated and referenced 

within the code and provides most of the functionality.  

 

Parameters are then passed on to the simulation in the Orchestration module, 

taking advantage of the Fuzzy approach, and then utilised to gain better 

efficiency in the simulation.  
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The figures shown above can be easily acquired running one of the examples 

provided within the simulation bundle but are restricted in the sense that they 

only compare to one other algorithm which is the increase lifetime.  

 

The Fuzzy Logic simulation also uses increase lifetime algorithm as a base, 

but instead feeds it fuzzy variables which in turn improves system performance. 

In a similar fashion, over the course of this research, we wish to utilise the 

fuzzy output of the fuzzification process to give the algorithm the ability to 

‘understand’ the rough definition the action that it will be taking to improve the 

optimisation process. 

3.8     Summary 
The advantages of using a simulator verified by the community meant that we 

could focus on the research with tested and validated contributing factors to 

recreate an accurate testing environment, rather than theoretical 

implementation of the devised algorithm.  

 

A comparison of simulation software led to PureEdgeSim being the right 

selection for the purpose of this research. Although the frameworks are based 

on similar architecture, PureEdgeSims purpose made nature for Edge networks 

and increased efficiency of up to 40% as well as increased support for granular 

control made it the better choice.  

 

It also came with well written examples incorporating fuzzy logic as 

orchestration algorithms, helping to understand how modules work in 

conjunction and providing a strong foundational basis to build the improved 

algorithm.  
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Chapter 4 Simulator Setup and Single Layer RL 

4.1     Introduction 
In this chapter, we will develop and utilise an 𝜀-greedy Q Learning algorithm to 

optimise resource allocation in edge networks, testing in our selected 

simulator, PureEdgeSim. To ensure comprehensive coverage of all aspects 

within the simulator, each module was individually chosen and dissected, 

applying real-world scenarios, and ensuring that each element was carefully 

thought through before an allocation algorithm could be designed.  

 

Firstly, we will go through the various modules involved that will ensure our 

simulation will cover the major areas that need to be addressed over the course 

of this research. This will include real-world figure implementation of hardware 

capabilities and estimation of population and their mobility over time.  

The modules that require addressing in the simulator will be portrayed one-by-

one, exploring in-depth analysis of each one and its role within the model.  

 

TABLE 4.1  
SIMULATION PARAMETERS 

 

TABLE 4.1 contains some of the most crucial simulation parameters that define 

the control of the research. Over the course of the remaining chapters, we will 

Simulation Parameters Value 

Simulation duration 30 mins 

Min number of edge devices 100 

Max number of edge 

devices 
1000 

Simulation area 2000 × 2000 

Edge and fog bandwidth 1300 Mbps 

Cloud bandwidth 10000 Mbps 

Edge devices range 200 
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consistently retain the parameters to ensure that simulations are comparable 

in respect to each simulation run. 

4.2     Simulation Environment 

4.2.1 Task Modelling and Classification 

Additional metadata was implemented in the tasks following the changes made 

by [54] to increase network awareness of the of tasks requested by the device 

𝑑. Ensuring these parameters were accessible by the system was paramount 

to the algorithm recognising the requirements of the task and thus the 

capabilities required by the chosen offloading device to ensure adequate QoS. 

 

The comprehensive task creation module tracks the size of each task created 

during the course of the simulation run, values from the respective tasks are 

then used to populate QTables to feed the RL algorithm. The parameters that 

are tracked from each task can be found in TABLE 4.2: 

TABLE 4.2 
TASK PARAMETER DENOTATION 

Parameter Variable 

Task Start Time start 

Task End Time end 

Deadline for task dl 

Incoming data size size 

Instructions needed to process the task mi 
 

 

Introduction of the metadata also made it possible to further identify the tasks 

to supplement the reinforcement learning algorithm with provided parameters. 

Each round of RL introduced metadata that provided contextual information of 

rewards and priority to each task. This made recognition of previously allocated 

𝑇1,( = {	𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑑𝑙, 𝑠𝑖𝑧𝑒,𝑚𝑖} 
 

( 4.1 ) 
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rewards and priorities identifiable by the algorithm to accurately construct Q 

Tables and implement RL.  

 

As the Q-learning algorithm requires a finite state space, discretising the 

continuous values is necessary, thus we use Fuzzy Logic to define the 

following membership functions; taskLength, taskMaxLatency, localCPU, 
localMIPS, avgEdgeCPU and avgCloudCPU in the following manner in 

piecewise linear functions using Centre of Gravity (COG) method [97]: 

taskLength:  

1. Low: 

𝜇&'((𝑥) = 	3

1 𝑖𝑓	𝑥	 ≤ 0

1 −	
𝑥

20000
𝑖𝑓	0 < 𝑥 ≤ 20000

0 𝑖𝑓	𝑥 > 20000

(4. 2) 

 

Remaining membership functions can be found in Appendix A that define 

membership logic retained throughout all algorithms implemented in Chapters 

4 and 5. 

4.2.2 Mobility Modelling 

For the most accurate results, a mobility model was required to ensure that 

client devices are not simply static within the cell. 

Figure 4.1 Sample real-time mobility view 
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The mobility model included in the simulator addresses the user device’s 

mobility within a period and how that affects network conditions. From our 

knowledge in networking and routing tables, we infer that once a user is out of 

range from its nearest access node, a handover is conducted to the next node 

that the user is within range of. Figure 4.1, depicts how mobility simulation is 

visualised over the course of simulation time, where users are travelling around 

the cell space.  

 

Often, this means that the node must re-establish its routing table. The method 

applies to any type of connected device that uses an AP to gain access to a 

wider network, including the RF domain.  

 

The handover process ensures a smooth, and often unnoticeable transition of 

a user from one access point to another within a given domain, removing the 

need for re-authentication should any be required.  

 

Continual adaptation of the network is paramount to a good user experience. 

Although it must be heralded that mobility is only of the reasons that a network 

should be continuously adapting to its network environment, other variables to 

consider are battery life, the disconnection of a device.  

 

For example, an access point that is based in the city centre for public use 

must perform drastically different to an access point located within an industrial 

site as the industrial site is likely to have repeat visitors from the employees 

that work there, therefore to ensure optimisation, a network administrator or an 

orchestration algorithm must be optimised to continuously authenticate and de-

authenticate the gradual change of users as opposed to the public access point 

which must be dynamic at all times. 

 

Performance expectations of an access point contained within a company, 

however, are very different those within the public domain, users in a company 

expect rapid access to higher bandwidth services such as teleconferencing or 

uploading large files whereas those within a public domain wouldn’t have the 
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same expectations of a public hotspot (though that doesn’t mean they wouldn’t 

appreciate them). 

 

It is to be understood that 5G aims to tackle these real-world issues by offering 

low-latency, high-bandwidth access to all users but an orchestration algorithm 

must be dynamic and adaptive to its network environment as these conditions 

are subject to change in the blink of an eye. 

 

Despite the setback on the data model obtained, the visualised scenario was 

still viable and would be the one used, namely, a dense metropolitan area 

providing 5G connectivity for a vast number of users within a limited space 

within rapid handover expectations.  

 

Due to its growing popularity, and the interesting challenge it would pose, I 

believed that the city centre or high-street would be the ideal situation to base 

my simulation in however, this would also cater for another specific type of 

application, autonomous vehicular communication[98]. Introducing this 

application within the mobility module would mean that the algorithm designed 

had to be adaptive to the network environment, and inter-communicate with 

peer nodes rapidly.  

 

This also meant taking into consideration the toll on computation in short bursts 

from node-to-node within a limited area however, the amount of space the 

simulation would take place in was now to be much larger than initially 

expected.  

 

For the extents and purposes of this research, the default mobility model was 

lightly customised to ensure that simulated devices were randomly moved 

around the environment. 

  

4.2.3 Network Modelling 

The network will simulate a 5G environment as much as possible. This will 

include integration of the specifications devised by ETSI, including those that 



 

 111 

may have been released post-simulator. Any Classes or Modules that may 

need adding as a result, will be devised, and developed to ensure that the 

simulator meets the needs of the research.  

 

Each sample application simulated different environments using different 

variables. For this thesis, the most relevant was sample_app4 which used 

fuzzy logic on the Edge Orchestrator module to allocate resources where they 

were most required.  

 

The weighting system was applied on the Edge Orchestration module to 

emulate a ‘human’ approach to administration and allocation of tasks [85]. 

There is, however, a limitation to the approach used by [73] which co-ordinated 

tasks using the three-tiered fuzzy logic approach. The orchestrator in their case 

is aware of the network resources available as well as the status of the edge 

server, yet a protocol of discovery has not been outlined.  

 

The final tier is the global cloud server that can then be communicated with to 

back information up as required. Despite this being the most-recognised 

approach, the system must also co-ordinate the backup process.  

 

Additionally, to ensure that no resources are wasted, edge servers must 

manage downtimes on uplink and downlink to ensure that no redundancy is 

introduced to the system, making it both energy and cost-efficient. 

 

Not omitting the fact that certain applications leverage the use of the GPU 

which can significantly impact some applications that we will be addressing 

such as VR/AR applications, we must also consider the implication on battery 

life when both CPU and GPU are engaged.  

 

The two branches are generated in conducting this research are tasks 

offloaded to conserve battery life for the UE which can handle the task in 

question, employing a heuristic approach we can assume that there will be 

certain classifications of devices that will be looking to offload tasks based on 

lack of resources and latency requirements.  
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4.2.4 Propagation Modelling 

Weighting parameter 
To fine-tune trade-off value between latency and power consumption, we use 

𝛽 as a constant throughout all cost calculation formulas. 

 

Local 

Given the task parameters, and device specifications, provided 𝑇2,
3,' ≤ 𝐷2,563 , 

the given task can be processed locally, with the latency 𝐿7  defined as the 

following:  

𝐿1,(3 =	
𝑇49
1,(

𝐷49:#1  

 
Additionally, we define the power consumption, 𝐸3,'7  as: 

 

𝐸1,(3 =	𝑇49
1,( ∙ 	𝐷@@1 	 

 
The combined  cost, 𝐶3,'7  is therefore defined as, where 𝛽  is a weighting 

parameter the regulated trade-off between latency and consumption: 

 

𝐶1,(3 =	𝐿1,(3 ∙ 	𝛽𝐸1,(3 	 (4. 3) 

 
Edge Processing 
If task requirements exceed local computational specifications, the task is 

subsequently offloaded to be handled by the appropriate network device. To 

achieve this, task data must also be sent to the edge device, therefore total 

costs must take into consideration propagation of task data, we first define the 

latency 𝐿3,'2 : 

𝐿1,(4 =	
𝑇#9A@
1,(

𝑅1,1!
	+ 	

𝑇49
1,(

𝐷49:#1!  
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Where 𝑅3,3" is the maximum bit rate of the network between devices 𝑑 and 𝑑! 

according to the Shannon-Hartley theorem. The channel noise is assumed to 

be white Gaussian noise with its variance as  𝜎8 and signal power S depends 

on path loss propagation model.  

 

𝑅1,1! = 𝐷@B1 	 logC ]	1 +	
𝑆
𝜎C
	_ 

 

Energy consumption is also impacted by the cost of transmitting data between 

device 𝑑 to device 𝑑!:  

 

𝐸1,(4 = 𝑇#9A@
1,( ∙ 𝐷$@1 + 𝑇49

1,( ∙ 𝐷@@1
! 

 

 Ultimately, the total cost for energy is the weighted sum the processing time 

𝐿3,'2  and power consumption 𝐸2: 

 

𝐶1,(4 = 𝐿1,(4 + 𝛽𝐸1,(4 	 (4. 4) 

 
Fog Processing 

As above, we model the processing time, 𝐿3,'
) :  

 

𝐿1,(
5 =	

𝑇#9A@
1,(

𝑅1,5
	+ 	

𝑇49
1,(

𝐷49:#
5  

Where 𝑅)3 is defined as:  

𝑅1,5 = 𝐷5B1 	 logC(	1 +	
𝑆
𝜎C
) 

Additionally, we model the energy consumption 𝐸3,'
) : 

 

𝐸1,(
5 = 𝑇#9A@

1,( ∙ 𝐷$@1 + 𝑇49
1,( ∙ 𝐷@@

5  
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Finally, the total cost for fog is defined as: 

 

𝐶1,(
5 = 𝐿1,(

5 + 𝛽𝐸1,(
5 	 (4. 5) 

 
Cloud Processing 
If task parameters exceed local, edge and fog computation, devices can also 

offload tasks for cloud processing. Once again, we establish the latency taking 

propagation into consideration: 

 

𝐿1,(6 =	
𝑇#9A@
1,(

𝑅1,6
+	

𝑇49
1,(

𝐷49:#6  

𝑅1,6 = 𝐷6B1 	 logC ]	1 +	
𝑆
𝜎C
	_ 

 
The energy consumption of task 𝑘 of device 𝑑 then depends on the cost of 

processing at cloud server 𝑐 and the cost of transmitting the data from device 

𝑑 to the cloud server 𝑐: 

 

𝐸1,(6 = 𝑇#9A@
1,( ∙ 𝐷$@1 + 𝑇49

1,( ∙ 𝐷@@6  

 
And total cloud processing cost is:  

 

𝐶1,(6 = 𝐿1,(6 + 𝛽𝐸1,(6 	 (4. 6) 
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Figure 4.2. Device service request classification 

Service Request (MEC Server)
Service request received

Resource-restriction Driven
UE does not have necessary 
computation resources to 
complete requested task

Display and networking 
capabilities

Device can utilise the higher 
bandwidth and lower latencies 

provided by MEC to remove 
dedicated componenets, thus 
significantly reduscing price

Low-mid end device/older model
Lacking the power to keep up with 

current standards but has the 
networking abiliy to offloac to MEC

Latency Driven
UE has the necessary resources to 

complete requested task but 
requires a low latency service for 

real-time application

Mid-high end devices
Able to run applications with 

extensive features disabled, still 
suffering a significant impacto 

battery life

High end devices
Able to run applications 

completely with some impact to 
battery life therefore utilise MEC 

to maximise mobility
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As portrayed by Figure 4.2, we can classify UE by their service request types, 

assuming a future where display and battery (DisBat) devices can leverage 5G 

networking capabilities to give MNOs the chance to offer Mobile Devices as a 

Service with differentiating service plans and SLAs according to the 

requirements of the user. For now, unfortunately, we can assume that IoT 

sensors and devices can occupy the ‘display and networking capabilities’ 

section.  

 

Differentiating service types using flags or identifiers will help MNOs achieve 

SLAs and help any learning models implemented on the MEC servers to 

respond with greater speed and accuracy. Each class of device will be able to 

identify it is needs and requirements according to the application request and 

determine its urgency. The request can then be actioned according to its 

requirements in latency, battery life implication, as well as other variables.  

 

Processing time is a factor that must be heavily considered, especially when 

the cost of integrating MEC Servers within 5G is considered. The figure below 

details the average processing times when an application is processed solely 

on the network edge as opposed to a mobile device, Figure 4.3, where 200 

devices were simulated for 30 minutes, and processing time recorded to test 

the initial run of the simulation. 

Figure 4.3. Processing time comparison example 

Figure 4.3 plots our control simulation, the processing time of a mixture of 

computational tasks against number of mobile devices, operating solely on the 
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mobile device, solely on the edge device and using a hybrid method of both. 

The processing time of tasks is several times lower when the edge device is 

utilised to accomplish the task. The above plot was a quick simulation run, with 

up to a maximum of 200 mobile devices. The plot portrays an average of all 

application use case scenarios.  

 

Theoretically, it makes perfect sense that the edge device would handle tasks 

at a blinding rate when compared to its counterpart. Unfortunately, the issue 

presents itself when other factors are considered such as network latency to 

return data back to the user. Despite the apparent benefit of being able to 

handle more intensive tasks that the mobile device may be incapable of 

handling, other advantages of offloading tasks include less consumption of 

battery life, less heat generated by the UE, faster response times for various 

applications and greater mobility options for UE owners. 

 

Parameters for Edge Devices 
To ensure that the tests were regulated, an end user was defined with the 

following specifications using average device specifications from the year 

2023, the device specifications listed below do not consolidate laptops, TVs, 

and any other smart devices, they are strictly limited to smartphones accessible 

globally alongside average expected specifications [99], [100].  

 
The specifications applied for consumer devices have been outlined in  

Figure 4.4 portrays the device distribution over all simulation runs, each device 

has its own subset of applications that can be assigned with their own QoS. 

 

TABLE 4.3 and Figure 4.4, where the distribution of the various devices we will 

be simulating is portrayed alongside the parameters assigned to each device, 

the device parameters specifically indicate computational power of user end 

devices.  

 

Characteristics of devices within the simulator are defined by the following 

vector: 

𝐷1 = {	𝑐𝑝𝑢, 𝑡𝑟,𝑚𝑖𝑝𝑠, 𝑒𝑒, 𝑡𝑒, 𝑒𝑏, 𝑓𝑏, 𝑐𝑏	} 
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Where 𝑐𝑝𝑢 is the current % of CPU usage, 𝑡𝑟 is the number of tasks being 

executed, 𝑚𝑖𝑝𝑠  is the maximum computational capacity, 𝑒𝑒  is the energy 

consumption per million instructions, 𝑡𝑒  is the energy consumption per 

transmitted bit, 𝑒𝑏 is the bandwidth of the edge device in bits per second (bps), 

𝑓𝑏 is the bandwidth of the fog device in bps and 𝑐𝑏 is the bandwidth of the cloud 

in bps.  
 

Figure 4.4 portrays the device distribution over all simulation runs, each device 

has its own subset of applications that can be assigned with their own QoS. 

 

TABLE 4.3  
END USER DEVICE SPECIFICATIONS 

User End Device Specifications 

 SMARTPHONE LAPTOP 
IoT 
DEVICE 

IoT ACTUATOR 

Processor 8 cores 8 cores  2 

MIPS 25K 110K 16K 0 

Storage 64GB 1TB  N/A 

RAM 4GB 8GB  N/A 

Battery 
Life 

3,000 Mah 
5,620 
Mah 

 N/A 

Mobility True True False False 

     

30%

10%

20%

40%

End Device Distribution

Smartphone

Laptop

IoT Device

IoT Actuator

Figure 4.4. Device Distribution 
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4.2.5 Edge Orchestration 

The orchestrator within the simulator is responsible for the effective allocation 

of resources and judging where the appropriate resources must be allocated. 

In this case, the simulator uses the fixed parameters as input variables to 

decide accordingly, how resources should be applied. To correctly insert our 

algorithm within the simulation software, the orchestrator itself will be 

manipulated to respond to the needs of the network environment dynamically, 

using the RL algorithm devised over the course of this research.  

4.2.6 Simulation Architecture 

A unique approach studied for optimisation policies, found in [101], detailed a 

method of implementing multiple stages in a deep learning algorithm for 

optimal control which reflected what I intended to do with my algorithm. 

Hypothetically, giving the system an overall understanding within a centralised 

location would mean operating in a distributed manner, hence introducing 

latency, not of data concerned being transferred, but of computational 

parameters exchanged between the central and edge servers.  

 

Although this would provide the opportunity of greater computational resources 

allocated to solve the optimisation algorithm of a control network, the number 

of requests being served may introduce unnecessary complexities in 

computing the best approach for resource allocation. Decoupling the 

involvement of a central system, however, would give granular control to each 

sub-network, thus using [101]’s multiple stage approach to have differing action 

spaces, environmental model dynamics and reward signals. 

 

The approach illustrated in Figure 4.5 portrays the movement of the 

environmental variables such as model dynamics, as communicated across the 

network at sporadic periods. This would enable the core network to not only 

understand the environment, but also predict usage shifts across all connected 

edge nodes and could be adapted to multiple stages dependant on network 

hierarchy.  
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Thus, computational time would be reduced, as the model can predict the best 

optimisation algorithm according to data shifts and given enough learning data, 

and supply control parameters to the entire network.  

 

 
Figure 4.5. Orchestration Outline 

 

Having browsed the literature, the best approach for the algorithm was to 

introduce a Fuzzy Logic approach which could then be interpreted by Deep 

Reinforcement Learning to optimise approach and further elaborate from non-

definitive output of the Fuzzification process.  

 

This meant first running a pass of Fuzzification, supplying observations to the 

Deep reinforcement learning algorithm and analysing output using a reward 

and punishment system to ensure that the system continued to function 

optimally under any changes in the network environment after a short learning 

process. Unfortunately, as someone well versed with the concepts being used 

in this research would immediately realise, this meant that each pass of the 
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algorithm would have to re-acquire all parameters such as network 

environment should those be included within the scope, introducing 

unnecessary re-calculation time, and lengthening the process.  

 

As introducing unnecessary redundancy within the network optimisation 

algorithm may be the opposite of the goal of this research, it was probably a 

wise decision to establish some limitations on the frequency that parameters 

were refreshed within the algorithm depending on a layered approach that 

could prioritise each parameter contained within on the urgency and impact on 

the algorithm to ensure rapid return of learning results. This would in turn give 

some structure to the algorithm and ensure that response times were not 

affected.  

 

This approach however meant that some definitive limitations had to be set 

within the Deep Reinforcement Learning approach to ensure all parameters 

were not established from the beginning but rather took a layered approach. 

This approach could then be readdressed taking all factors into consideration 

according to the historical time data that the algorithm could acquire, allocating 

re-assessment time of the entire algorithm according to when the best 

time/down-time of the network occurred.  

 

As planning was required in understanding the direction and intention of the 

optimisation algorithm the initial plan of the layered approach was to ensure 

that the layered approach was divided amongst tasks that needed periodical 

refresh times. 

  

Figure 2.15 was then devised as a preliminary approach. The final approach 

had to be compatible with end-goal of reduced latency therefore it was 

imperative to the research that algorithm calculation, or any variables output 

by the RL method were not introducing any unnecessary latency into the 

network. Categorising the initial variables was just the first stage however, this 

also meant that multiple algorithms would have to be put into effect and run at 

variable intervals to check the consistency of their counterparts.  
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The goal is to create an optimisation algorithm, therefore, considering the 

Bellman equation, classified as a functional equation, and solving it means 

finding the unknown function V. The formula below corresponds to discrete-

time optimisation problems, namely, those that have a set value rather than a 

complex number. It is also referred to as the basic building block of solving 

reinforcement learning by some authors [102]. The goal of the function is to 

find the optimum value function to yield optimal rates, decreased energy usage 

balanced with least task failures.  

4.2.7 Simulation Hardware 

For transparency purposes, I have outlined the device that I used for simulation 

purposes and will be keeping a log of simulation times as well as other factors 

that portray my findings. The device used to run the simulations has the 

following specifications as found in TABLE 4.4: 

 

TABLE 4.4  
SIMULATION DEVICE SPECIFICATIONS 

 Devices used to run simulations 

Model MacBook Pro 

OS MacOS Sonoma 14.5 

SYSTEM TYPE ARM 64 

IDE Visual Studio Code 

IDE dependencies jFuzzyLogic.jar 

CPU M2 Max 

CPU Cores 12 

GPU M2 Max 38 Core 

RAM 32GB DDDR5 UNIFIED 

Storage 1TB SSD 

 

For simplification purposes, I have omitted the operational frequency as well 

as dynamic frequencies of the CPU as well as the operational speeds of other 

components such as the SSD and RAM. I will also avoid monitoring the CPU 

and GPU temperatures whilst running simulations as I believe that they portray 

the functionality/optimisation of the simulator rather than having any effect on 

the results gathered. These details are not being recorded as they will have 

little to no consequence on real-world implementation of any optimisation 

algorithms used or discovered over the course of the research.  
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Although it must be acknowledged that CPUs and GPUs approach tasks in an 

assumed manner (even with equivalent specifications). The only change I 

believe that will occur on another device is that the time taken to complete 

simulation will be different and as I will be going through several simulations, 

this can only impact my research negatively.  

4.2.8 Assumptions 

There were numerous assumptions made over the course of this research as 

we could not account for every possible variable, however, to ensure that 

results were valid within the scope of the research and well-rounded, the 

following concrete assumptions were used as seen in TABLE 4.5:  

 

TABLE 4.5  
ASSUMPTIONS TABLE 

ASSUMPTIONS 

COMPUTING RESOURCES 
End devices are assumed to have CPU, RAM, storage and 
depletable batteries to process data and execute applications 

NETWORKING 
CONNECTIVITY 

We assume that all discoverable devices are connected to the 
network and are requesting resources in some form or manner 

APPLICATION EXECUTION 
Assumption that applications can be executed on edge devise, 
and that the application execution time and resource usage can 

be modelled. 

WORKLOAD GENERATION 

Assume that we can generate the workload according to the given 

distribution model, which helps to simulate the behaviour of the 

edge computing system under various conditions. 

ENERGY CONSUMPTION 

We assume that the energy consumption of devices is 

proportional to the amount of computation and data transmission 
performed by the device. 

TASK SCHEDULING 

Assume that tasks can be scheduled to edge devices based on 

different task categories as well as criteria such as proximity to 

the source, resource availability and energy consumption. 

MOBILITY 
We assume the position of the mobile devices as well as their 

travel trajectory. 
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4.3     Algorithm Design 
The value function of the state 𝑠 under policy 𝜋 is defined as follows: 

𝑉D =	𝔼D[𝑅$|	𝑠$ = 𝑠] = 	𝔼D 	�-𝛾(𝑟$)*)(

%

(&'

|𝑠$ = 𝑠� ( 4.7 ) 

The quality of action 𝑎 under policy 𝜋 is then expressed as the expected value 

of the cumulative reward starting from the state 𝑠 , acting on 𝑎 , and then 

following the policy 𝜋: 

𝑄D(𝑠, 𝑎) = 	𝔼D[𝑅$|
𝑠$ = 𝑠
𝑎$ = 𝑎] = 	𝔼D 	�-𝛾(𝑟$)*)(

%

(&'

�
𝑠$ = 𝑠
𝑎$ = 𝑎� ( 4.8 ) 

As aforementioned, the task of the MDP agent is to find the best possible policy 

by comparing value functions. 𝜋! is considered better than another policy 𝜋 

only if each state transition yields a higher value.  Subsequently, the value and 

quality functions can be rewritten in accordance with the Bellman optimality 

equations as outlined above:  

 

Value 𝑉∗(𝑠) = 𝑚𝑎𝑥
𝜋 	𝑉:(𝑠) = 	𝑚𝑎𝑥𝑎 |𝒫;(𝑠, 𝑠!)[ℛ;(𝑠, 𝑠!) + 𝛾𝑉∗(𝑠!)]

6"
 ( 4.9 ) 

Quality 𝒬(𝑠, 𝑎) = 𝑚𝑎𝑥
𝜋 	𝒬)(𝑠, 𝑎) = 	1𝒫*(𝑠, 𝑠+) 3ℛ*(𝑠, 𝑠+) + 𝛾

𝑚𝑎𝑥
𝑎+ 𝒬

∗(𝑠+, 𝑎+)6
-#

 ( 4.10 ) 

 

To ensure the correct balance of exploitation and exploration, off-policy 

techniques are used to separate the policy searched from the one used to make 

decisions, the learning process focuses on optimisation of the action-value 

function (𝑄) using an iterative update based on previous values and temporal 

difference.  

𝒬(𝑠!, 𝑎!) = 𝒬(𝑠!, 𝑎!) + 𝛼 ?𝑅!"# + 𝛾
𝑚𝑎𝑥
𝑎 	𝒬(𝑠!"#, 𝑎) − 𝒬(𝑠!, 𝑎!)@ ( 4.11 ) 
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# Single-layer 𝜀-greedy Q-Learning Algorithm 

# Parameters: discount factor 𝛾, learning rate 𝛼, exploration rate 𝜀, penalty factor 𝛿, query reward 

factor 𝜌, and query use penalty 𝜔 

1. 
2. 

3. 

4. 

5. 
6. 

7. 

8. 
9. 

10. 

11. 
12. 

13. 

14. 
15. 

16. 

17. 
18. 

19. 

20. 
21. 

22. 

23. 
24. 

25. 

26. 

27. 
28. 

29. 

30. 
31. 

32. 

33. 
34. 

35. 

36. 
37. 

38. 

39. 
 

begin 

for each step 𝑡 do 

Observe actual state 𝑠𝑡 

Determine feasible action set 𝐴' from 𝐴 

𝑠𝑄𝑢𝑒𝑟𝑦 ← 𝑓𝑎𝑙𝑠𝑒 

𝑒 ← random number from [0,1] 

     

    # Exploration vs. Exploitation 

    if 𝑒 < 𝜀 then 

        𝑎𝑡 ← randomly select an action from 𝐴' 
    else 

        𝑎𝑡 ← arg min 𝑎∈𝐴' 𝑄(𝑠𝑡, 𝑎) 

    end 

 
    # Offloading Decision 

    if 𝑎𝑡 is to offload to a fog server then 

        𝑖𝑠𝑄𝑢𝑒𝑟𝑦 ← 𝑡𝑟𝑢𝑒 

        Send the offloading request to a fog server 

        𝑎𝑡 ← get the fog server decision 

    end 
     

    Execute or send the offloading action 𝑎𝑡 

    Wait for the task to be completed 

    Observe new state 𝑠𝑡+1 

     
    # Calculate Reward 

    Calculate reward 𝐶𝑡 using (15) 

     

    # Apply Query Reward and Penalty 

    if 𝑖𝑠𝑄𝑢𝑒𝑟𝑦 then 

        𝐶𝑡 ← 𝜌 ⋅ 𝐶𝑡 

        𝐶𝑞𝑡 ← 𝜔 ⋅ 𝑡 ⋅ 𝐶𝑡 

         

        # Update Q-value for Query Action (4) 

        Update 𝑄(𝑠𝑡, 4) using (14) with 𝐶𝑞𝑡 

         

    # Update Q-value for the selected action 𝑎𝑡 

    Update 𝑄(𝑠𝑡, 𝑎𝑡) according to (14) with 𝐶𝑡 

end 

ALGORITHM 4.1  
SINGLE LAYER RL 
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4.4     Reinforcement Learning (single layer) results 
Against our control algorithms, Round Robin and Random Allocation, we ran 

our initial 𝜀-greedy Q-Learning Algorithm. The following results were obtained: 

4.4.1 Task Success Rate 

Using our control algorithms, random assignment and round robin as 

comparison, initially, task success starts similar to round robin and already 

provides a vast improvement over random assignment. 

 

As devices increase however, we observe in Figure 4.6 that the efficiency rate 

of the 𝜀-greedy Q-Learning Algorithm begins to ascend and shows signs of 

further improvement. Towards the end of our simulation run, with 1000 devices 

being serviced, we observe an almost 20% increase in efficiency with task 

success.  

 

Initially, Round Robin and RL begin at similar success rates, which eventually 

is superseded by the RL algorithm as it continues to develop intelligence and 

more efficiently allocates resources. The algorithm meets expectation and task 

success rate continues on an upward trend as the number of edge devices 

increases over iteration count. 

 

Figure 4.6. Task Success Rate Single Layer RL 
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4.4.2 Energy Usage 

The large trade-off here comes with the computational power energy 

requirements made by the RL algorithm as seen above in Figure 4.7, where 

power usage is required to keep latency levels low and task success rate high. 

A drastic increase in energy consumption across the architecture is observed 

with the use case of 1000 devices on an untrained network.  

It is expected that RL will be slightly higher in energy usage, largely due to the 

computational requirements as the CPU load is increased when completing ML 

tasks. We see that task success rate in Random allocation is almost below 5% 

which is significantly lower than desired QoS rate. Due to constraints in 

computational capacity applied to the edge node, offloading decisions in the 

control algorithm RANDOM are handled immediately and primarily by Edge as 

opposed to being offloaded to the cloud as seen in Figure 4.8. 

  

Figure 4.7. Energy Usage Single Layer RL 

Figure 4.8. Comparison of Cloud vs Energy usage 
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4.4.3 Average CPU Usage, All Hierarchy 

The energy usage as depicted in Figure 4.7 also correlated directly with the 

CPU utilisation of the RL tasks, however, the higher value in task success is 

worth the trade-off as a round robin requires an equal amount of energy usage. 

Despite the greater computational requirements of the RL algorithm, we 

observe that CPU utilisation across the entire hierarchy is equivalent when 

compared with the Round Robin algorithm as seen in Figure 4.9.  

 

The increase in task success rate is worth the trade off when considering that 

an increase of 80% is observed. This shows that the RL algorithm operates 

efficiently within the context of the requirements but leaves room for 

improvement with typical energy usage across the network hierarchy.  

 

Further considerations include that lack of an ML optimised Edge device that 

would improve the results of computation efficiency and decrease energy 

usage; however, constraints are largely subject to the network HW and 

infrastructure simulated within the environment. 

  

Figure 4.9. Avg CPU Usage Single Layer RL 
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4.4.4 Average Execution Delay 

One aspect where the RL implementation portrays efficiency is in the execution 

delay, hence our task latency requirements are met as observed in Figure 4.10. 

Execution delays continue on a downward trend as number of devices scale 

up and the RL algorithm builds its Qtable.  

 

We observe a decrease in initial latencies whereas the Random algorithm 

continuously grows as devices increase, each taking into consideration latency 

requirements per task. Bearing in mind that the execution delay is averaged 

Figure 4.10. Avg Execution Delay Single Layer RL 

Figure 4.11. Task Failure Rate 
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across all tasks and initial tasks bear the brunt of the RL algorithm build-up as 

clarified in Figure 4.11.  

4.5     Summary 
Over the course of this chapter, we discover that our RL algorithm provides 

great increases in task efficiency and success rate, ensuring that more tasks 

meet latency requirements. The obvious negative aspect, however, lies in the 

power usage requirements that intelligence on the network edge requires. 

 

Despite this, the simulation does not consider recent advances in neural 

network processing capabilities, where newer chipsets are being produced to 

handle CPU intensive tasks more efficiently, it also does not utilise GPUs 

effectively, as our measurement in the simulation is only conducted on average 

CPU usage.  
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Chapter 5 Multi-Layer RL in Resource Allocation 

5.1     Introduction 
This chapter consists of the design and implementation of our multi-layer 

algorithm in an attempt to improve learning and subsequently task success 

rate, at the end of which we will discuss the results. Using the parameters from 

Chapter 4, we can expand on our RL algorithm to use Multiple tiers to further 

optimise our Learning mechanism. Thus, theoretically improving the results of 

the algorithm.  

 

Our QTables will then contribute to the next learning phases, which in this case 

must be done manually upon each iteration. Though out of the scope of this 

research, the QTables generated by the algorithm can then further be refined 

using a broader dataset of historical QTables, using granular environmental 

variables to ensure optimum performance for their respective environment.  

5.2     Multi-Stage Implementation 
 

 

Figure 5.1. Output analysis 
 

Designing a multi-tiered reinforcement learning (RL) algorithm involves 

developing a system that can operate at multiple levels of abstraction and 

decision-making, allowing for more efficient and effective learning. Further 

implementing Fuzzy Logic for output analysis as seen in Figure 5.1 provides 

abstraction when observing task states, supplementing task state and 

allocation.  

 

Thus, a tiered system can be introduced along multiple levels within the 

network to ensure maximum efficiency, effectively allocating tasks within 

multiple layers of the network stack.  

Tier 1: Low-Level Control 

Machine Learning Outputs Fuzzy Logic analysis
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At the lowest level, the agent interacts directly with the environment and takes 

actions based on the current state. The goal of this tier is to learn the basic 

skills and actions required to perform the task. 

 

This tier can be trained using a simple RL algorithm such as Q-learning or 

SARSA. The agent receives a reward signal based on the outcome of its 

actions, and the algorithm updates its policy accordingly as seen in Figure 5.2. 

 

Tier 2: Mid-Level Control 
The second tier involves a higher-level controller that supervises the low-level 

agent and provides it with guidance and context. The mid-level controller is 

responsible for setting goals and sub-tasks, coordinating actions, and 

monitoring progress. 

 

The mid-level controller can be trained using a hierarchical RL algorithm such 

as the MAXQ framework [103] or the options framework. These algorithms 

decompose the task into a hierarchy of sub-tasks, allowing the agent to learn 

to perform complex tasks by combining simpler skills. 

 

Tier 3: High-Level Control 
The top tier involves a meta-controller that supervises the mid-level controller 

and coordinates its behaviour. The meta-controller is responsible for selecting 

appropriate sub-tasks and adjusting the mid-level controller's parameters. 

Figure 5.2. Hierarchy of the proposed network 
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The meta-controller can be trained using a meta-RL algorithm such as the 

model-based RL or the population-based RL. As gathered from [55], we wish 

to ensure that the action space for any given subspace within our architecture 

is minimised to reduce-delay.  

 

Further enhancements can be made by ensuring that the targeted action 

space’s algorithm is catered to the delay sensitivity of its function. The last 

algorithm design is improved upon by including the continued. The value 

function of the state 𝑠 under policy 𝜋 is defined as follows: 

 

𝑉D =	𝔼D[𝑅$|	𝑠$ = 𝑠] = 	𝔼D 	�-𝛾(𝑟$)*)(

%

(&'

|𝑠$ = 𝑠� ( 5.1 ) 

 

The quality of action 𝑎 under policy 𝜋 is then expressed as the expected value 

of the cumulative reward starting from the state 𝑠 , acting on 𝑎 , and then 

following the policy 𝜋: 

 

𝑄D(𝑠, 𝑎) = 	𝔼D[𝑅$|
𝑠$ = 𝑠
𝑎$ = 𝑎] = 	𝔼D 	�-𝛾(𝑟$)*)(

%

(&'

�
𝑠$ = 𝑠
𝑎$ = 𝑎� ( 5.2 ) 

 

The task of the MDP agent is to find the best possible policy by comparing 

value functions. 𝜋! is better than another policy 𝜋 only if each state transition 

yields a higher value. The value and quality functions can be rewritten in 

accordance with the Bellman optimality equations as outlined above:  

 

Value 𝑉∗(𝑠) = 𝑚𝑎𝑥
𝜋 	𝑉:(𝑠) = 	𝑚𝑎𝑥𝑎 |𝒫;(𝑠, 𝑠!)[ℛ;(𝑠, 𝑠!) + 𝛾𝑉∗(𝑠!)]

6"
 

( 5.3 ) 
Quality 𝒬(𝑠, 𝑎) = 𝑚𝑎𝑥

𝜋 	𝒬:(𝑠, 𝑎) = 	|𝒫;(𝑠, 𝑠!) �ℛ;(𝑠, 𝑠!) + 𝛾
𝑚𝑎𝑥
𝑎! 𝒬

∗(𝑠!, 𝑎!)�
6"

 

 

To ensure the correct balance of exploitation and exploration, off-policy 

techniques are used to separate the policy searched from the one used to make 
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decisions, the learning process focuses on optimisation of the action-value 

function (q) using an iterative update based on previous values and temporal 

difference. 

𝒬(𝑠!, 𝑎!) = 𝒬(𝑠!, 𝑎!) + 𝛼 ?𝑅!"# + 𝛾
𝑚𝑎𝑥
𝑎 	𝒬(𝑠!"#, 𝑎) − 𝒬(𝑠!, 𝑎!)@ ( 5.4 ) 

TABLE 5.1  
NOTATION TABLE FOR Q POLICY EQUATION 

 

Denotations 

𝒔𝒕 Current state 

𝒂𝒕 Current action 

𝜸 Discount factor 

𝜶 Learning rate = { 0	 → 1} 

5.3     Multi-Layer Results 

5.3.1 Task Success Rate 

As seen in Figure 5.3, the implementation of a multi-layered algorithm varied 

in its success initially, for reference, RL_MULTILAYER_EMPTY portrays an RL 

algorithm without QTables loaded, where QTables are initialised from the 

beginning, and built across the duration of the algorithm.  

 

It is clear from the results gained that on initialisation, the algorithm performs 

poorly when compared to non-intelligent methods such as Round Robin, but as 

devices increase, which is the expected for an MEC node serving in an end-

user environment, Multi-Layer RL provides an improved output of efficiency.  

 

A similar trend is observed across all generated results, where output largely 

depends on the number of nodes. Figure 5.3 further portrays the relationship 

between the RL algorithm when QTables have been previously populated, 

clearly demonstrating the superiority over the ROUND_ROBIN algorithm, 

where task success rate immediately decreases once the edge device count 

begins to rise above 100. 
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Initial values show that with fewer devices, the single layered algorithm shows 

improved performance but once devices increase, so does the efficiency of the 

multi-layer algorithm. 

5.3.2 Execution Delay 

A similar observation is made for execution delay as seen above in Figure 5.4, 

as nodes increase, the ‘intelligent’ algorithms begin to outperform their non-

intelligent counterparts by exponential increases, once again, when 

Figure 5.3. Task Success Rate Multi-Layer 

Figure 5.4. Multi-Layer RL Execution Delay 



 

 136 

implemented in a multi-stage fashion, execution delays begin to decrease 

greatly.  
 

This affects tasks with latency requirements, as more tasks can be successfully 

executed when start-up time of the tasks is lower, particularly helping in the 

fields of mobile health or robotic surgery.  

5.3.3 Energy Usage 

As with the single layer RL algorithm, we find that multi-layer RLs added 

complexity requires more computational power, therefore increased energy 

usage is incurred.  

 

Once again, computational decisions are increasingly handled by the cloud, 

however a pattern emerges where decision-making, which is now handled 

across the entire hierarchy using the tier system, is more evenly distributed, 

thus tasks can be effectively handled at the network edge once intelligence 

peaks (800 device mark, as seen in Figure 5.5). 

 

Figure 5.5. Avg Edge Energy Consumption Multi-Layer 
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Inconsistency is observed around the 800-device mark, where we notice a 

sharp increase in Edge consumed energy due to the offloading decision being 

allocated to edge. Despite the energy increase across both cloud and edge, 

average execution delay is reduced significantly once QTables have been 

loaded within the Multilayer algorithm. 

5.4     Further Enhancement 
Using an approximation Q function to enhance success rate of tasks as seen 

in Eq. 5.5	 𝜀-greedy algorithm uses exploration vs exploitation to maximise 

reward gaining advantages as implemented in Eq. 5.5, where using the 

parametrised function 𝑄(𝑠, 𝑎; 𝜃)  and 𝜃  are the parameters of the function 

approximator: 

θ	 ← 𝜃 + 𝛼	[𝑟!"# + 𝛾	𝑄(𝑠!"#, 𝑎; 𝜃) − 𝑄(𝑠!, 𝑎!; 𝜃)]	∇)𝑄(𝑠!, 𝑎!; 𝜃) ( 5.5 ) 

TABLE 5.2  

NOTATION TABLE FOR Q FUNCTION APPROXIMATION 

Denotations 

θ Model parameters (weights) 

α Learning rate (ranges from 0 to 1) 

Figure 5.6. Avg Cloud Energy Consumption Multi-Layer 
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γ Discount factor (ranges from 0 to 1) 

𝒓𝒕%𝟏 Reward at the next time step 

𝒔𝒕 Current state 

𝒔𝒕%𝟏 Next state 

𝒂𝒕 Current action 

𝑸(𝒔𝒕, 𝒂𝒕; 	𝜽) Estimated Q-value for current state-action pair 

𝑸(𝒔𝒕%𝟏, 𝒂; 	𝜽) Estimated Q-value for next state and action 

 
This equation is an update rule used in reinforcement learning to adjust the 

parameters of a function approximator, such as a neural network, in order to 

improve its performance. This type of update is commonly seen in algorithms 

like Q-learning with function approximation (e.g., Deep Q-Networks (DQN)). 

 

𝜃	 ← 	𝜃	 + 	𝛼	[	…	]𝛻>𝑄(𝑠$ , 𝑎$; 	𝜃) 

 

θ: The parameters (weights) of the function approximator, typically a neural 

network. 

α: The learning rate, a scalar that controls how much the parameters are 

adjusted in each update step. 

𝜵𝜽𝑸(𝒔𝒕, 𝒂𝒕; 	𝜽) : The gradient of the Q-value function with respect to the 

parameters θ. This tells us how to change the parameters to maximize the Q-

value. 

𝑟$%& 	+ 	𝛾	𝑄(𝑠$%&, 𝑎; 	𝜃) − 	𝑄(𝑠$ , 𝑎$; 	𝜃) 

 

𝒓𝒕%𝟏: The immediate reward received after acting 𝑎$ in state	𝑠$ . 

𝜸 (gamma): The discount factor, which determines the importance of future 

rewards. 

𝑸(𝒔𝒕%𝟏, 𝒂; 	𝜽): The estimated maximum future Q-value for the next state 𝑠$%&. 

This represents the best possible future cumulative reward starting from 𝑠$%&. 

𝑸(𝒔𝒕, 𝒂𝒕; 	𝜽): The current Q-value estimate for taking action 𝑎$ in state 𝑠$. 
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The term 𝑟$%& + 𝛾𝑄(𝑠$%&, 𝑎; 𝜃) − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃)  represents the temporal-difference 

(TD) error. It measures how far off the current Q-value estimate is from the 

"true" target value 𝑟$%& + 𝛾𝑄(𝑠$%&, 𝑎; 𝜃). 

 

The update rule 𝜃 ← 𝜃 + 𝛼[𝑇𝐷	𝑒𝑟𝑟𝑜𝑟]𝛻>𝑄(𝑠$ , 𝑎$; 𝜃) uses this TD error to adjust the 

parameters 𝜃. The gradient term 𝛻>𝑄(𝑠$ , 𝑎$; 𝜃) guides the direction of the update 

to minimize this error. 

 

Purpose of the Update 
The goal is to iteratively adjust 𝜃  so that the Q-value function 𝑄(𝑠, 𝑎; 𝜃) 

becomes a better approximation of the true action-value function. By applying 

this update repeatedly, the model learns to predict the expected cumulative 

reward for any given state-action pair more accurately. 
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ALGORITHM 5.1  
MULTI-LAYER APPROXIMATION 

Algorithm 2: 𝜀-greedy Multilayer Q-Learning Algorithm 

Parameters: discount factor 𝛾, learning rate 𝛼, exploration rate 𝜀, penalty factor 𝛿, query reward 

factor 𝜌 and query use penalty 𝜔 

1. 

2. 

3. 
4. 

5. 

6. 
7. 

8. 

9. 
10. 

11. 

12. 
13. 

14. 

15. 
16. 

17. 

18. 

19. 
20. 

21. 

22. 
23. 

24. 

25. 
26. 

27. 

28. 
29. 

30. 

31. 
32. 

33. 

34. 
35. 

36. 

begin 

for each step 𝑡 do 

    Observe actual state 𝑠$ 

    Determine feasible action set A' from A 

    isQuery ← false 

    e ← random number from [0, 1] 

     

    if e < ε then 

        𝑎$ ← randomly select an action from A' 

    else 

        𝑎$ ← arg min_{a ∈ A'} Q(𝑠$, a; θ) 

    end 

     

    if 𝑎$ is to ask a fog server then 

        isQuery ← true 

        Send the offloading request to a fog server 

        𝑎$ ← get the fog server decision 

    end 
     

    Execute or send the offloading action 𝑎$ 

    Wait for the task to be completed 

    Observe new state 𝑠$%& 

    Calculate reward 𝐶$ by (15) 

     
    if isQuery then 

        𝐶$ ← ρ ⋅ 𝐶$ 

        C_q_t ← ω ⋅ t ⋅ 𝐶$ 

        δ = C_q_t + γ max_{a'} Q(s_{t+1}, a'; θ) - Q(𝑎$, 𝑎$; θ) 

        θ ← θ + α δ ∇_θ Q(s_t, a_t; θ) 

    end 

     

    δ = 𝐶$ + γ max_{a'} Q(s_{t+1}, a'; θ) - Q(𝑠$, 𝑎$; θ) 

    θ ← θ + α δ ∇_θ Q(𝑠$, 𝑎$; θ) 

end 
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5.5     Multi-Layer Approximation Results 
We will now compare only the RL algorithms below, with round robin and 

random allocation once again as our control algorithms. The approximation 

algorithm often outperforms the multilayer algorithm in the previous section in 

regard to energy usage and also shows promising results over greater number 

of edge devices.  

5.5.1 Task Success Rate 

Using the function approximation algorithm, we notice a marginal increase in 

task success rate that once again, scales over time. We can rule out the 

RANDOM algorithm as being the least performant which is on par with 

expectations.  

 

It is noticeable however, that the ROUND ROBIN algorithm almost performs 

equivalently but as we will notice in the next section, there is a sharp increase 

in average execution delay which indicates that as devices increase, task 

failure rate will begin to decline sharply.  

5.5.2 Execution Delay 

Figure 5.7. Task Success Rate Multi-Layer 
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Results in execution delay are varied, as there is a noticeable dip at the 600-

device mark for our previous RL_MULTILAYER algorithm, although on 

conclusion of the simulation, we find that once again, a marginal increase is 

provided by our improved algorithm.  

 

This is largely due to the distribution of the task generator, as each task has 

its own specific requirements which are then allocated to the orchestrator. 

Despite the anomaly observer in the 600-device mark, the approximation 

algorithm outperforms the Multilayer algorithm across the board. 

Figure 5.8. Avg Execution Delay Multi-Layer 

Figure 5.9. Avg Energy Consumption Multi-Layer 
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5.5.3 Power Usage 

Test results stand, that with great intelligence, comes great power usage, and 

as the approximation algorithm is using more calculations, more CPU power is 

required to complete resource allocation.  

 

Unfortunately, despite addressing the computational distribution for resource 

allocation, we continue with similar performance with energy usage without 

overhauling the entire edge architecture and changing simulation parameters. 

Another observation indicates that RANDOM assignment continuously declines 

in energy usage, however as the task failure rate is not sufficient and certainly 

does not meet QoS requirements for most applications, despite the  

 

Due to the nature of simulation, at the time of writing results, the expected 

computational power available at the network edge has increased several fold, 

which in turn would also decrease execution delay as well as overall latency, 

ensuring more tasks are successful and meeting latency requirements.  

 

Despite the anomalies observed where figures rise or dip sharply due to the 

nature of the task allocation and its random assignment when building task 

loads, we find that the latest improved algorithm consistently outperforms the 

multilayer algorithm without too great of an impact on performance. 

5.6     Summary 
This chapter portrayed that usage of a multi-layer approach within resource 

allocation can greatly increase efficiency of task success whilst reducing 

energy usage as the number of devices increases. There is a slight trade-off 

however, when it comes to task execution time, where RL can cause initial 

start-up delays. CPU usage also increases slightly, however as the algorithm 

matures, this also decreases with greater number of devices.
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Chapter 6 Conclusion and Future Work 
Over the course of this research, we dove into the resource allocation and 

MEC, compared simulation software and implemented our 𝜀 – greedy single 

layer and multi-layer algorithms that portrayed improvements at each stage. 

6.1     Conclusion 
This research covered many aspects of resource allocation within MEC 

environments. From the single layer implementation to the multi-layer, 

increases in efficiency were observed across all resource allocation as 

expected, however they did come with major disadvantages in energy usage, 

despite this, we must consider that our network configuration, particularly the 

configuration of the edge devices, was sourced from technology that began at 

the start of the thesis and therefore, does not take into account improvements 

in efficiency within silicone and neural network enabled processing.  

 

Implementation of further enhancements, such as replay memory and 

approximate Q functions allowed more tasks to be successfully executed but 

once again, came at a cost in energy consumption. Simulating these 

environments gave us a chance to offset real-world implications and fine-tune 

our algorithm to respond to allocation tasks with greater efficiency, ensuring 

that once fully realised, gains in efficiency and QoS requirements for individual 

tasks could be met within industrial application.  

 

As noted above, exponential increases in optimisation were observed in task 

success across all algorithmic implementations, and minor improvements could 

be made to return major gains in efficiency. Due to time implications, further 

improvements utilising neural network-based solutions could not be 

implemented as various research and software-based packages were 

introduced whilst this research was being conducted, such as ND4J, that could 

help us further integrate a neural network-based algorithm. Reward allocations 

could also be further refined to ensure the system is penalised for higher 

energy usage ensuring energy efficiency goals are met for resource allocation.  
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On the other hand, we successfully compared and discovered an optimum 

solution for the implementation and simulation for MEC environments that can 

apply to a cross-network architecture. We also developed and iterated upon 

intelligent resource allocation and subsequently multi-tiered resource 

allocation within the network edge, thereby increasing success rate of allocated 

tasks exponentially.  

 

Some limitations were encountered within the simulation that constrained our 

simulation environment to fewer devices, issues such as this have since been 

addressed in PureEdgeSim but come at the cost of major architectural changes 

which require a rewrite of the custom edge orchestration modules and 

algorithms used over the course of the thesis.  

 

To ensure validation, edge server specifications were maintained throughout 

the thesis and once decided, were not updated as new hardware was 

announced for the network environment. Though this may require addressing 

for the purpose of this research, luckily, we are just a parameter change away 

to being able to model and simulate any network environment with high 

accuracy.  

 

Iteratively improving the resource allocation can lead to significant results over 

a larger number of devices, which would be the case when addressing 

individual cells within an Edge network or indeed a mobile network. We find 

that usage a RL can quickly and efficiently improve network operation but there 

is much to be gained in iterating QTables in a more efficient manner without 

overloading them with overheads and thus ensuring redundant information is 

omitted.  

 

Thus, utilising methods like Experience Replay can help improve data 

efficiency and stability in training, particularly for off-policy algorithms such as 

the ones implemented in this research.  
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To conclude then, it is clear from the research we conducted that there is much 

to be gained with intelligence in resource allocation within the entire network 

stack, but as latency requirements become a major limitation in service 

provider offerings, including generative AI, we have just touched upon some of 

the many challenges that NPs face when implementing new architecture.  

 

Thus, simulation and optimal resource allocation can help to provide the best 

route when it comes to intelligent service offerings at the network edge, 

readying us for 6G and beyond. 

6.2     Future Work 
As network connected devices increase alongside generative AI such as 

ChatGPT, ensuring that resources are allocated efficiently in both power usage 

and QoS becomes paramount to utilisation of technology. Despite the 

increases in bandwidth and speed in future technologies such as 6G, 

computational power must also be taken into consideration.  

 

Technologies such as VR and AR have yet to see their full potential in 

application and will be further enhanced by MEC technology, but optimal 

resource allocation will prove to be a cornerstone in meeting QoS requirements 

for the vast variety of services expected to be handled by the network edge.  

 

Despite our extensive coverage of optimal resource allocation, including the 

in-depth review of simulation software, implementation in real-world scenarios 

prove challenging and require consideration of numerous variables considering 

projected computation growth at the network edge with cost projections for 

MNOs to upgrade the technology.  

 

Our multi-layered algorithm covered three layers however, there is potential for 

a ‘context aware’ MEC platform, that is able to dynamically identify its 

environment and select an appropriate allocation algorithm depending on 

projected usage from a historical context, as well as considering information 

on future network usage, adapting to use cases such as large events. 
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One major disadvantage was the lack of GPU implementation usage or more 

efficient, neural network enabled silicon that can more accurately gauge and 

drastically reduce the energy requirements for intelligence in the network edge. 

The above would have greatly impacted task execution delay, as RL tasks 

would have been handled more efficiently utilising GPU. 

 

Unfortunately, as the testing was conducted using local computation with local 

hardware (and cost restraints), the number of edge devices was largely limited 

without the simulator simply giving up due to computational taxation. To further 

gauge the efficacy of the proposed algorithm in this research, it would be ideal 

to test the algorithm on a computational cluster via Elastic Compute (EC2) or 

Google Cloud Engine (GCE) using a computational cluster which would provide 

the added benefit of GPU based computation on NVIDIA architecture. This 

would remove the single device limitation and provide a more accurate 

representation of serving a greater number of devices of single edge nodes.  

 

Considering that computational prowess continues to increase, newer 

technologies continue to emerge [104] [105], and energy efficiency has 

become a pivotal focus within both industry and academia, not only would we 

gauge a better idea of how the proposed algorithm would function in real-world 

application, but we could also understand the limitations and the trade-off 

between intelligent and non-intelligent resource allocation methods. In an ideal 

world, utilising AI based and simple allocation interchangeably until QTables 

are generated would be a greater solution, especially when considering initial 

deployment of edge nodes.  

 

Additionally, with the advancement of AI, using Retrieval-Augmented 

Generation (RAG) to supplement and enhance contextual knowledge of the 

network during deployment and discovery of nodes would further bolster the 

success of the algorithm, ensuring that networks can pre-emptively and 

intelligently allocate resources efficiently whilst taking network conditions into 

consideration and using predictive pre-emptive measures to adjust accordingly 

when traffic is expected to fluctuate due to real-world conditions. 
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Intelligence in the network edge provides the kind of dynamicity required to 

keep up with growing demands and meeting with net-zero targets for 

organisations, specifically MNOs. As we enter industry 4.0, accompanied by 

the advancements and adoption of AI on a wider scale, an intelligent 

communication network is paramount to future-proof success. 

 

Despite the focus and products of the research, it is important to consider how 

hierarchical continuous processes can enhance and optimise AI intelligence 

outside of LLMs. The natural progression of this research, with some lateral 

thinking, is determining how can infer contextual variables to adapt trained 

algorithms to new environments without incurring the same overhead, thus 

reducing TtE (Time to Efficiency). This will not only help to enhance 

optimisation in the communications space, but also ensure that continuous 

models can iteratively adapt to any use case.  
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Appendices 

Appendix 1 

Membership Functions 
Variable Fuzzy Term Range Start Range End 

taskLength Low 0 20000 

 Medium 20000 100000 

 High 100000  

taskMaxLatency Low 0 6 

 Medium 6 15 

 High 15  

localCPU Low 0 25 

 Medium 25 50 

 Busy 50 75 

 High 75  

localMips Low 0 30000 

 Medium 30000 130000 

 High 130000  

avgEdgeCPU Low 0 25 

 Medium 25 50 

 Busy 50 75 

 High 75  

avgCloudCPU Low 0 25 

 Medium 25 50 

 Busy 50 75 

 High 75  
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