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Abstract.COVID-19 has spread rapidly worldwide in the past three years, triggering partial and full lockdowns
globally. The successful control of the COVID-19 pandemic on a global scale depended heavily upon the accurate
detection of COVID-19. However, the main diagnostic tests for COVID-19 have some significant limitations, e.g.
the major nucleic acid (RT-PCR) tests while having a high sensitivity are time-consuming and require expensive
equipment with the shortage of test kits inmany countries. Antigen lateral flow tests have a lower sensitivity and
they cannot be used during the early pandemic as well as usually more expensive than the full or complete blood
count test used in this paper which can be potentially performed using a finger blood sample. The last decade has
seen rapid growth of AI, particularly deep learning, which has found wide applications inmedical image analysis,
with results comparable to and even surpassing human expert performance. There have been several machine
learning models reported for COVID-19 diagnostics or prognosis predictions, most of them based on CT and
X-ray images. In this paper we have applied traditional machine learning and convolutional neural networks
(CNNs) based deep learning to the blood test data obtained from hematology analyzers and demonstrated that
the AI models can be used to detect COVID-19 with a high degree of accuracy (>97%). The performance of
different classifiers will be compared and discussed. The work should have potential applications in current
COVID-19 and future pandemics.
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1 Introduction

COVID-19 was initially reported in Wuhan, China, then
quickly spread worldwide and was declared a global
pandemic by the World Health Organization (WHO) on
the 11th of March 2020. It is a type of SARS-CoV2 virus
that produces various symptoms (e.g. acute respiratory
failure, acute respiratory distress syndrome (ARDS), and
COVID-19 pneumonia) in humans that can cause death.
This has ledmanycountries to enforce strict procedures such
as lockdowns and the closure of borders, schools, and other
sectors.

The successful control of the pandemic is heavily
dependentontheaccuratedetectionofCOVID-19.However,
the accurate detection of the virus is a challenging task,
with current methods of testing having significant limi-
tations, e.g. major nucleic acid (RT-PCR) tests while
having a high sensitivity (>90%) [1] are time-consuming
ding author: qingping.yang@brunel.ac.uk
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and require expensive equipment with the shortage of test
kits inmany countries aswell. Antigen lateralflow tests have
a lower sensitivity [2] and they cannot be used during the
earlypandemicaswell asusuallymore expensive thanthe full
blood count test used in this paper which can be potentially
performed using a finger blood sample.

Machine learning can provide very powerful methods
to detect COVID-19 [3]. In general, there are many
different machine learningmethods that can be used for the
detection of COVID-19 such as Logistic Regression, Naive
Bayes, k-nearest neighbours (KNN), Support Vector
Machine (SVM), Random Forest, shallow Artificial Neural
Networks (ANN), etc.

There have been many published papers employing the
use of machine learning to detect COVID-19.Many of these
papers use image processing based on CT andX-ray images
[4,5] whereas other papers use traditional machine learning
classifiers on numerical blood report data to detect
COVID-19. Jiang et al. [6] evaluated six machine learning
methods used to diagnose COVID-19 (SVM, Random
Forest, KNN, Logistic Regression, and two different
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
in any medium, provided the original work is properly cited.

mailto:qingping.yang@brunel.ac.uk
https://www.edpsciences.org
https://doi.org/10.1051/ijmqe/2024013
https://www.metrology-journal.org
https://creativecommons.org/licenses/by/4.0


2 R. Yang et al.: Int. J. Metrol. Qual. Eng. 15, 17 (2024)
decision trees). These were applied over a real dataset
obtained from Wenzhou Central Hospital and Cangnan
People’s Hospital inWenzhou (China). The performance of
SVM was strong compared to other methods with an
accuracy of 80%. Batista et al. [7] examined the
performance of five machine learning methods (SVM,
Logistic Regression, Random Forest, ANN, and gradient
boosted trees (GBT)) over a real dataset obtained from
Hospital Israelita Albert Einstein at Sao Paulo, Brazil. The
SVM and Random Forest methods outperformed other
methods with an AUC (area under curve) value of 0.847.
Alakus and Turkoglu [8] reviewed the performance of five
deep learning methods (i.e. CNN, Long-Short Term
Memory (LSTM), Recurrent Neural Networks (RNN),
CNNLSTM, and CNNRNN) and one shallow neural
network (i.e. ANN) to detect COVID-19 based on
laboratory findings. The CNNLSTM with an accuracy of
92.30% outperforms other methods. Despite generating
impressive results, these models [8] require nine blood test
components in addition to the full blood count data.

The COVID-19 detection method we developed only
requires the full or complete blood count (CBC) data.
Based on the CBC numerical and flow cytometry image
data we collected from the first wave of COVID-19 in
Wuhan in early 2020, we have been carrying out their
systematic studies and developing a range of machine
learning models, including both traditional machine
learning and deep learning models. We have demonstrated
that the use of flow cytometry images and deep learning
models can achieve an accuracy comparable to a PCR
test, thus offering a novel, low-cost, fast and accurate
COVID-19 detection solution. This paper presents some of
our key results of the application of machine learning to
CBC numerical and image data.

2 Theoretical background

2.1 Machine learning classifiers

There are a number of machine learning methods that can
be used as classification algorithms. In this paper, we have
selected nine different classification methods, namely
Convolutional Neural Network (CNN), shallow ANN,
Decision trees, Random Forest, SVM, Discriminant
Analysis, Logistic Regression, Naïve Bayes and KNN.
These classifiers have been used successfully in various
domains.

2.2 Deep learning

Deep learning is an extension of machine learning based on
algorithms that attempt tomodel high-level abstractions in
data using multiple processing layers that are comprised of
complex structures or multiple non-linear transformations.
It has an important emphasis on replacing handcraft
features with efficient algorithms, which allow for unsu-
pervised or partly supervised feature learning and feature
extraction [9]. Various deep learning architectures such as
convolutional neural networks, deep belief networks and
recurrent neural networks have recently produced state-of-
the-art results in image recognition.
2.3 Convolutional neural networks

The human visual system is very efficient at recognizing
objects or images even in cluttered scenes. For artificial
systems, this is still very difficult due to view-dependent
object variability as well as the high variability of the
objects themselves. Deep neural networks such as CNNs
roughly mimic the visual cortex of mammals. This makes
CNNs one of the most promising architectures to be used to
develop image recognition systems [10].

CNNs are constructed from several layers with each
layer fulfilling a specific function. The majority of CNNs
used for image recognition are based on the following basic
components:

Convolutional layer: The core component of any CNN.
The parameters are a set of learnable filters or kernels. The
filters have a receptive field that extends the input. In the
forward pass, every filter is convolved across the height and
width of the input and the dot product between the filter
entries is computed producing a 2-D activation map
corresponding to it. Hence the CNN learns the filters that
activate when they see a specific type of feature in the
input.

Pooling layer: Used for non-linear down-sampling. The
most used function for pooling is max pooling. It splits the
image into non-overlapping partitions and, for each of
these regions, outputs the maximum. The purpose of this is
to progressively reduce the size of the representation,
therefore reducing the number of parameters as well as
computation in the network.

Fully connected layer/classification layer: After the
convolution layers and the max-pooling layers, the high-
level classification is done using the fully connected layer/
classification layer in a neural network.

ACNN consists of multiple convolutional layers, the set
of kernels within the layer scan the pixels of the input image
outputting data as a set of matrices called a feature map.
The convolution layer at the front of the network captures
the local and detailed information. There is a small
receptive field where each pixel of the output image only
uses a small range of the input image. The receptive field of
each subsequent convolution layer is increased in every
layer to capture more complex and abstract information.
After the computations of multiple convolution layers, the
abstract representations of the image at various scales are
obtained.

3 Dataset

The clinical and laboratory data were collected from
medical records of laboratory-confirmed COVID-19 cases
from Wuhan Union Hospital and Wuhan Mobile Cabin
Hospital between 25th January 2020 and 11th March 2020,
under the approval by the ethics committee of the Wuhan
Union Hospital of Tongji Medical College.

The CBC tests were performed by Mindray series
haematology analyzers, and the measurement thresholds
were given by the hospital laboratory. The CBC test results
were routinely generated as a blood panel of numerical
readings and also the associated flow cytometry image used
to derive the numerical readings. The flow cytometry used



Fig. 1. Sample image from SFL-SSC dataset. Fig. 2. Labelled regions of dataset image.
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for the CBC tests hydrodynamically focuses each cell to
pass through the laser and collects the scattered light and
fluorescence emission. There are three common channels in
the CBC tests. The forward scatter channel (FSC) reflects
the cell size and can be used to pick out cellular debris. The
side scatter channel collects the granular content informa-
tion within cells. The side fluorescence (SFL) with DNA
staining can measure the amount of nucleic acid. The
unique channel information of each cell is used to
differentiate cell types in the CBC test. There were
variations in the types of actually reported images and
CBC numerical components in different hospitals or in
their different departments. In this work, the image data
used is the SFL-SSC type (as shown in Figs. 1 and 2) and
the CBC numerical readings have 22 components (with the
names of these components listed in Tab. 1). Both types of
data need to be accurately labelled according to the
confirmed diagnosis by the doctors. The CBC SFL-SSC
images were manually cropped from the test reports and
the CBC numerical reading collection was semi-automated.
Both types of data were manually checked and verified
to identify and correct possible error entries or incorrect
image types.

For the CBC numerical data, there were 662 records
for COVID-19 patients (outpatients and inpatients) and
659 records for COVID-19 negative patients. For the CBC
image data, there were 799 CBC images for Covid-19
patients, and 945 CBC images for the control group, with
a total of 1744 patients. The CBC numerical and image
data have allowed us to develop a range of machine
learning models. To our knowledge, we are the first to
apply deep learning to the CBC flow cytometry images for
COVID-19 detection or diagnostics since we collected
these data from the very first wave of COVID-19 in
Wuhan in early 2020.
4 Experiments and results

4.1 Experiment design and methods

Initiallywe performed some exploratorydata analysis on the
CBC numerical data, including correlations, T-test, Analy-
sis of variance (ANOVA) and principal component analysis
(PCA). Pearson’s correlation coefficients were calculated
between each pair of the 22 features. For COVID-19
detection, two-sided t-test was carried out to test the
significance of the differences in the features of the study and
control groups, assuming unequal variances due to the
significant variations between the variances of the two
groups. These statistical analyses could assist the under-
standing and explanation of the machine learning models.

We have also applied traditional machine learning
(Discriminant Analysis, KNN, Decision trees, Naïve Bayes,
SVM, Logistic Regression and Random Forest). For each
type of model below, a full model and a partial model are
trained. The partial model is trained by sequential feature
selection, i.e. sequentially selecting the important feature for
training.The fullmodel is trainedusing10-Fold training and
the partial model using 7-Fold training. The performance
metrics are then calculated for ROC (receiver operating
characteristics) and AUC using the full model. We chose
these metrics as ROC andAUC are generally seen as a more
important measure of how well an algorithm performs as it
considers trade-offs between precision and recall.

A shallow neural network of ANN was also trained
(Fig. 3). This model was trained 10 times with the 10
models being used to calculate the ROC and AUC metrics.

For the CBC image data, we also performed some
exploratory image analysis to understand the key image
features, including edge detection, image PCA and SIFT
(Scale-Invariant Feature Transform).



Table 1. T-test results (left half: significance of all 22 CBC components; right half: significant CBC components in the
order of p-value; * 10�10 < p < 0.05; ** 10�20 < p � 10�10, *** 10�30 < p � 10�20, **** p � 10�30).

All components p-value(Covid-19 vs Control) Significant components p-value (Covid-19 vs Control)

WBC 1.43E-12 ** LYMPHn 2.70E-66
RBC 5.23E-04 * EOn 1.13E-42
HGB 7.22E-15 ** EOp 1.10E-32 ****
HCT 1.49E-11 ** BASOp 3.60E-22 ***
MCV 2.24E-10 * BASOp 2.43E-21 ***
MCH 4.80E-15 ** LYNPHp 4.34E-17 **
MCHC 5.48E-09 * MCH 4.80E-15 **
PLT 7.62E-01 NEUTp 5.49E-15 **
NEUTp 5.49E-15 ** HGB 7.22E-15 **
LYNMPHp 4.34E-17 ** WBC 1.43E-12 **
MONOp 9.59E-08 * HCT 1.49E-11 **
EOp 1.10E-32 **** MCV 2.24E-10 *
BASOp 2.43E-21 *** MCHC 5.48E-09 *
NEUTn 2.76E-03 * MONOp 9.59E-08 *
LYMPHn 2.70E-66 **** RBC 5.23E-04 *
MONOn 5.83E-03 * RDW-CV 8.26E-04 *
Eon 1.13E-42 **** PWD 1.64E-03 *
BASOn 3.60E-22 *** NEUTn 2.76E-03 *
RDW-CV 8.26E-04 * MONOn 5.83E-03 *
PDW 1.64E-03 *
MPV 1.85E-01
PCT 7.78E-01

Fig. 3. Model Design of ANN and CNN.
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Fig. 4. Correlation matrix of 22 CBC features.
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Subsequently, a convolutional neural network was
designed and trained to classify the CBC SFL-SSC images.
In order to determine the optimal network architecture,
more than 20 networks were designed with different
hyperparameters, including different learning algorithms,
number of convolution layers, number of filters at each
layer, filter size, type of pooling layers, pooling strides and
number of hidden neurons in the fully connected layer.
Each configuration was trained five times and the average
performance was then compared and the best model
architecture was determined as shown in Figure 3, which
has two convolutional layers (each has 16 2� 2 filters) and
a max pooling layer of size 2� 2 with a stride of 2, trained
by Adam algorithm. This model was also trained 10 times
to calculate the ROC and AUC metrics.

The average performances of all the classifiers (including
traditional machine learning, shadow neural network and
CNN) were compared using the same data set under similar
training conditions (i.e. sample balancing and splitting, and
validation), with the performance metrics including sensi-
tivity, specificity, accuracy, AUC, and ROC plots.

4.2 Experiment results and discussions

Some results of exploratory data analyses including
correlation, T-test, PCA and ANOVA are shown below
in Figures 4–6, and Table 1.

The correlation matrix (Fig. 4) shows how the features
of the CBC components correlate with each other and
whether the dimensionality could be potentially reduced.

In order to see which of the 22 CBC components are
significantly affected by COVID-19, a t-test is performed to
compare the means of two samples corresponding to the
patient group and the control for each CBC component,
assuming unequal variances for each pair of the samples.
The t-test results in Table 1 have shown that for
COVID-19 detection there is a significant difference in 19 of
the 22 features between the means of the disease and
control groups, with the most significant components for
COVID-19 detection being lymphocyte counts, eosinophil
counts and eosinophil percentage, followed by basophil
counts and basophil percentage. These indicate that
lymphocyte, eosinophil and basophil cells are closely
linked to the infection of COVID-19.

Figure 5 shows part of the PCA results. Typically, the
first 3–5 principal components could explain about 80% of
the variance and further modelling could just be based on
them. But for the CBC readings, the differences seem to be
gradual among the components as seen in the PCA results.
This means the models will need to use most of the 22 CBC
components.

The ANOVA plots shown in Figure 6 indicate the
significant differences in the CBC components between
COVID-19 positive, negative, and recovered patients.

After the exploratory data analysis, traditional ma-
chine learning classifiers were applied to the data, this
includes Discriminant Analysis, KNN, Decision trees,
Naïve Bayes, SVM, Logistic Regression and Random
Forest. These models produced a similar performance with
accuracies of around 80% on the test set, withKNNgiving a
loss value of 0.1785, Discriminant Analysis 0.2173, Naïve
Bayes 0.2163, decision trees 0.2353, SVM 0.2163 and
Random Forest 0.1649. The test prediction confusion
matrix (using 22% of the dataset) for the Random Forest
model, the best performing traditional classifier, is shown
in Figure 7.

These results showed promising performances for all
traditional classifiers. However, the accuracies are too low
to be recommended for practical use. For KNNs an
assumption is made that nearby neighbours are similar.



Fig. 6. ANOVA of CBC numerical components with the most significant differences (Covid0=negative; Covid1=COVID-19
positive; CovidR= recovered).

Fig. 5. PCA results with percentage of the total variance explained by top 10 principal components.
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But for a dataset with 22 features the ‘Curse of
dimensionality’ [11] should occur, i.e. when the number
of dimensions increases, the distribution of the neighbour-
ing points also increases, which breaks the above
fundamental assumption, with KNNs losing all predictive
power. While Naive Bayes works well with high dimension-
ality data, Naïve Bayes also has the assumption that all the
features are mutually independent, which, according to
the correlation analysis, does not really hold since the
correlation analysis has shown clear correlations in some of
the features in this dataset.

The shallow ANN was then developed, and the results
show performance similar to or slightly better than the
traditional machine learning classifiers. The typical test
prediction confusion matrix (using 15% of the CBC
readings) for the ANN is shown in Figure 8. The best
performance metrics of the ANN numerical CBCmodel are
shown in Table 2.

The above experiments were all conducted using the
numerical CBC data from Wuhan Union Hospital. Based
on the literature review and the study of the CBC data it is
believed that to achieve better performance the use of deep
learning techniques and more specifically convolutional
neural networks would be needed. Using the CBC SFL-SSC
images a convolutional neural network was developed. The
model produced much better results achieving very high
sensitivity and specificity, 98.3% and 97.5%, respectively as
well as high accuracies 97.8%, based on the test data set
(15% of the CBC images), as shown in Figure 9. Table 3
shows the results of the CNN model with the training
repeated 10 times.

The metrics including the ROC plots and AUC for all
the machine learning models are shown in Table 4 and
Figure 10. It can be seen that whilst all the classifiers have
performed quite well, the CNN, Random Forest and ANN
are the best three classifiers.

The ANN COVID-19 detection using CBC numeri-
cal readings have sensitivity and specificity of about
86% for all the data, and 85.7% and 83.3% (Tab. 2),
respectively, for the test data set with an average AUC
of 0.881.

In particular, the COVID-19 detection using CNN with
the CBC images has achieved very high sensitivity and
specificity, 99.1% and 98.4% (Fig. 9), respectively, for all
the data directly used in the development of the model and
an AUC of 0.981 for the test data. These performances are
also consistent with other performance metrics, namely
ROC and AUC.



Fig. 7. Random Forest confusion matrix. Fig. 8. ANN confusion matrix.

Table 2. The best performance metric of ANN numerical CBC model.

Validation Test All

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

87.4% 86.3% 86.9% 85.7% 83.3% 84.3% 86.3% 86.1% 86.2%

Fig. 9. CNN confusion matrix.
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We have tested the deep learning model specially with
the 13 influenza A patients, all with correct predictions.
5 Conclusions

In this work, we examined the performance of nine machine
learning classifiers and their ability to detect COVID-19.
These classifiers were performed on a real dataset of CBC
blood test data on both numerical data and SFL-SSC
images from Wuhan Union Hospital in China. The results
show that all the classifiers produced strong results with all
of them producing accuracies over 70%. The best
performance was produced by the deep learning CNN
model with the best test accuracy of over 97% which is
corroborated by the AUC values and ROC plots. This
has demonstrated that our CNN model has achieved
an accuracy comparable to a PCR test, thus offering a
novel, low-cost, fast and accurate COVID-19 detection
solution.



Table 3. CNN results (10 simulations).

No. Validation Training Test All

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

1 96.1% 96.4% 96.3% 97.0% 99.0% 98.3% 92.2% 95.3% 94.1% 96.2% 98.1% 97.3%

2 98.0% 97.6% 97.8% 98.3% 99.5% 99.1% 94.1% 94.1% 94.1% 97.6% 98.4% 98.1%

3 90.2% 96.4% 94.1% 96.6% 98.0% 97.5% 92.2% 98.8% 96.3% 95.0% 97.9% 96.8%

4 90.2% 92.9% 91.9% 97.5% 98.2% 97.9% 94.1% 92.9% 93.4% 95.9% 96.6% 96.3%

5 100.0% 92.9% 95.6% 99.6% 99.7% 99.7% 98.0% 97.6% 97.8% 99.4% 98.4% 98.8%

6 92.2% 98.8% 96.3% 98.7% 99.2% 99.1% 88.2% 97.6% 94.1% 96.2% 98.9% 97.9%

7 96.1% 94.0% 94.8% 97.9% 98.7% 98.4% 98.0% 96.5% 97.1% 97.6% 97.7% 97.7%

8 98.0% 97.6% 97.8% 99.2% 99.7% 99.5% 92.2% 97.6% 95.6% 97.9% 99.1% 98.7%

9 96.1% 91.7% 93.3% 96.6% 98.0% 97.5% 96.1% 96.5% 96.3% 96.5% 96.8% 96.7%

10 94.1% 95.2% 94.8% 97.9% 99.2% 98.7% 94.1% 98.8% 97.1% 96.8% 98.6% 97.9%

Average 95.1% 95.4% 95.3% 97.9% 98.9% 98.6% 93.9% 96.6% 95.6% 96.9% 98.1% 97.6%

Table 4. Performances of all classifiers.

No. Classifiers Data type Training Test Average
test AUcSensitivity Specificity Accuracy Sensitivity Specificity Accuracy

1 KNN CBC readings 98.1% 98.3% 98.2% 80.7% 82.6% 81.7% 0.901

2 Discriminant Analysis CBC readings 76.0% 82.0% 79.0% 70.1% 85.1% 77.6% 0.854

3 SVM CBC readings 77.4% 81.6% 79.5% 73.4% 85.7% 79.6% 0.857

4 Naive Bayes CBC readings 79.9% 81.4% 80.6% 82.2% 80.1% 81.1% 0.860

5 Decision Tree CBC readings 82.5% 81.2% 81.8% 73.4% 75.4% 74.4% 0.832

6 Logistic Regression CBC readings 76.6% 81.9% 79.2% 77.3% 83.3% 80.3% 0.866

7 Random Forests CBC readings 98.2% 98.2% 98.2% 82.7% 82.1% 82.4% 0.899

8 ANN CBC readings 81.3% 84.4% 82.8% 78.7% 83.0% 80.9% 0.881

9 CNN1 SFL-SSC images 97.9% 98.9% 98.6% 93.9% 96.6% 95.6% 0.981

Fig. 10. ROC plot of all classifiers.
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In future work, we will analyse whether themodels have
a similar performance on the data obtained from later
stages in the pandemic as well as perform experiments on
the explainability of the models to support their practical
deployment.
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