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Abstract 
Research in bioinformatics is driven by the experimental data. 
Current biological databases are populated by vast amounts of 
experimental data. Machine learning has been widely applied to 
bioinformatics and has gained a lot of success in this research 
area.  At present, with various learning algorithms available in the 
literature, researchers are facing difficulties in choosing the best 
method that can apply to their data. We performed an empirical 
study on 7 individual learning systems and 9 different combined 
methods on 4 different biological data sets, and provide some 
suggested issues to be considered when answering the following 
questions: (i) How does one choose which algorithm is best 
suitable for their data set? (ii) Are combined methods better than 
a single approach? (iii) How does one compare the effectiveness 
of a particular algorithm to the others? 

Keywords:  Supervised machine learning, bioinformatics, 
ensemble methods, performance evaluation. 

1 Introduction 

In the post-genome era, research in bioinformatics has 
been overwhelmed by the experimental data. The 
complexity of biological data ranges from simple strings 
(nucleotides and amino acids sequences) to complex 
graphs (biochemical networks); from 1D (sequence data) 
to 3D (protein and RNA structures). Considering the 
amount and complexity of the data, it is becoming 
impossible for an expert to compute and compare the 
entries within the current databases. Thus, machine 
learning and artificial intelligence techniques have been 
widely applied in this domain to discover and mine the 
knowledge in the databases. Quoting from Baldi and 
Brunak (Baldi and Brunak, 2001) “As a result, the need for 
computer / statistical / machine learning techniques is 
today stronger rather than weaker.”  

Shavlik et al. (Shavlik et al., 1995) described the field of 
molecular biology as tailor-made for machine learning 
approaches. This is due to the nature of machine learning 
approaches that performs well in domains where there is a 
vast amount of data but little theory – this is exactly the 
situation in bioinformatics.  Since the introduction of 
machine learning to this field, various algorithms and 
methods have been produced and applied to study different 
data sets. Most of these studies compare a ‘new’  algorithm 
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with the conventional ones, asserting the effectiveness and 
efficiencies of their methods in particular data sets. The 
variety of learning algorithms currently available for the 
researchers are enormous and the main problems faced by 
researchers are: (i) How does one choose which algorithm 
is best suitable for their data set? (ii) Are combined 
methods better than a single approach? (iii) How does one 
compare the effectiveness of a particular algorithm to the 
others?  

The objective of this study is to provide some suggestions 
for the community by answering the above questions. This 
paper is organised as follows. Section 2 presents a brief 
summary of machine learning. Section 3 outlines the 
materials and methods used in this study. Section 4 
presents the results and discussion, and the final section 
summarises this work. 

2 Machine Learning Background 

A machine learning algorithm is one that can learn from 
experience (observed examples) with respect to some class 
of tasks and a performance measure. (Mitchell, 1997). 
Machine learning methods are suitable for molecular 
biology data due to the learning algorithm’s ability to 
construct classifiers/hypotheses that can explain complex 
relationships in the data. The classifiers or hypotheses can 
then be interpreted by a domain expert who suggests some 
wet-lab experiments to validate or refute the hypotheses. 
This feedback loop between in silico and in vivo / in vitro 
experiments accelerates the knowledge discovery process 
over the biological data.  This feedback is an important 
characteristic of machine learning in bioinformatics. 

Generally, there are two types of learning schemes in 
machine learning: supervised learning where the output 
has been given a priori labelled or the learner has some 
prior knowledge of the data; and unsupervised learning 
where no prior information is given to the learner 
regarding the data or the output. The overall tasks for the 
learner are to classify, characterise, and cluster the input 
data. Classification is the most common task in biological 
problem where given two different sets of examples, 
namely positive E+ and negative E- examples (E+∩E- =∅), 
the learner needs to construct a classifier to distinguish 
between the positive examples and the negative set. This 
classifier can then be used as the basis for classifying as 
yet unseen data in the future. Usually, for a supervised 
classification problem, the training examples are in the 
form of a set of tuples )},(),...,,{ ( 11 jnnj yxyx  where xi is 

the class label and yij is the set of attributes for the 
instances. The task of the learning algorithm is to produce 



a classifier (hypothesis, function) to classify the instances 
into the correct class.  In this study, we only consider 
supervised machine learning applied to classification. 

3 Materials and Methodologies  

3.1 Machine learning algorithms 

We performed an empirical comparison of rule-based 
learning systems (Decision trees, One Rule, Decision 
rules), statistical learning system (Naïve Bayes, Instance 
Based, SVM and neural networks) and ensemble methods 
(Stacking, Bagging and Boosting) on the data listed in 
Table 1 based on the accuracy, positive predicted value, 
specificity and sensitivity of the learning algorithms. All 
the learning methods used in this study were obtained from 
the WEKA machine learning package 
(http://www.cs.waikato.ac.nz/~ml/weka/).   

3.2 Data set 

In this study we used the following data sets obtained from 
UCI machine learning repository (Blake and Merz, 1998). 
We briefly describe the biological motivation for the data 
sets; interested readers should refer to the cited papers for 
details. 

E.coli data set – The objective of this data set is to predict 
the cellular localisation sites of E.coli proteins (Horton and 
Nakai, 1996).  There are 8 different cellular sites, which 
are cytoplasm (cp), inner membrane without signal 
sequence (im), periplasm (pp), inner membrane with 
uncleavable signal sequence (imU), outer membrane (om), 
outer membrane lipoprotein (omL), inner membrane 
lipoprotein (imL) and inner membrane with cleavable 
signal sequence (imS).  The attributes are signal sequence 
recognition methods (specifically those of McGeoch and 
von Heijne), the presence of charge on N-terminus of 
predicted lipoproteins and 3 different scoring functions on 
the amino acid contents whether predicted as a outer 
membrane or inner membrane, cleavable or uncleavable 
sequence signal. 

Yeast data set – The objective is similar to the E.coli data, 
which is to determine the cellular localisation of the yeast 
proteins (Horton and Nakai, 1996).  There are 10 different 
sites, which include: CYT (cytosolic or cytoskeletal); 
NUC (nuclear); MIT (mitochondrial); ME3 (membrane 
protein, no N-terminal signal); ME2 (membrane protein, 
uncleaved signal); ME1 (membrane protein, cleaved 
signal); EXC (extracellular); VAC (vacuolar); POX 
(peroxisomal) and ERL (endoplasmic reticulum lumen). 
The attributes are similar to the E.coli data set with the 
addition of nuclear localisation information. 

Promoter data set. The task of the classifier is to predict 
whether a DNA sequence from E.coli is either a promoter 
or not (Towell et al., 1990). The input data is a 
57-nucleotide sequence (A, C, T or G). 

HIV data set – The data set contains 362 octamer protein 
sequences each of which needs to be classified as an HIV 
protease cleavable site or uncleavable site (Cai and Chou, 
1998).  

Data set E.coli Yeast Promoters HIV 

Continuous Attribute 2 0 57 8 

Discrete Attribute 5 8 0 0 

Classes 8 10 2 2 

Data Size 336 1484 106 362 

Table 1: Data sets used in this study. 

3.3 Evaluation 

We constructed a confusion matrix (contingency table) to 
evaluate the classifier’s performance. Table 2 shows a 
generic contingency table for a binary class problem. True 
positives (TP) denote the correct classifications of positive 
examples. True negatives (TN) are the correct 
classifications of negative examples. False positives (FP) 
represent the incorrect classifications of negative 
examples into class positive and False negatives (FN) are 
the positive examples incorrectly classified into class 
negative.  

Predicted  

Positive Negative 

Positive TP FN Actual 

Negative FP TN 

Table 2: A contingency table for a binary class 
problem. 

Based on the contingency table, several measurements can 
be carried out to evaluate the performance of the induced 
classifier. The most popular performance evaluation 
measure used in prediction or classification learning is 
classifier accuracy which measures the proportion of 
correctly classified instances; 
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Positive Predictive Accuracy (PPV, or the reliability of 
positive predictions of the induced classifier) is computed 
by

FPTP

TP
PPV

+
= . Sensitivity (Sn) measures the fraction of 

actual positive examples that are correctly classified 
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of actual negative examples that are correctly 
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3.4 Cross-validation 

To evaluate the robustness of the classifier, the normal 
methodology is to perform cross validation on the 
classifier. Ten fold cross validation has been proved to be 
statistically good enough in evaluating the performance of 
the classifier (Witten and Frank, 2000). In ten fold cross 
validation, the training set is equally divided into 10 
different subsets.  Nine out of ten of the training subsets 
are used to train the learner and the tenth subset is used as 
the test set. The procedure is repeated ten times, with a 
different subset being used as the test set. 
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4 Results and Discussion 

We summarise our experimental results in Figure 1 and 2. 
The full analysis of this study is available in 
http://www.brc.dcs.gla.ac.uk/~actan/APBC2003. 

 

Figure 1. Accuracy vs Positive Predictive Value 

 

Figure 2. Specificity vs Sensitivity 

From the results, we observed that most of the individual 
learners tend to perform well either in accuracy or 
specificity. Probably this is due to the induced classifier 
being able to characterise the negative examples (most of 
the training sets have large ratio of negative examples 
compared to positive examples).  Furthermore, the results 
suggest that combination approaches are in general better 
at minimising overfitting of the training data. We also 
observed from this experiment that boosting performs 
better than bagging.  This is because attributes which are 
highly important in discriminating between classes are 
randomly removed by bagging; however they are 
preserved in boosting and thus contribute to the final 
voting scheme. The only individual learning system that 
perform better than the combined methods is Naïve Bayes 
learning. This may suggest that Naïve Bayes is capable of 
classifying instances based on simple prior probabilistic 
knowledge.  In this study SVM does not perform well 
compared to other methods, probably due to the fact that 
training data are not separable in the vector space. 

4.1 Rules-of-thumb 

In this section, we address the following questions by 
providing some suggested issues (rules-of-thumb) to be 
considered when answering them.  

(i) How does one choose which algorithm is best suitable 
for their data set?  

Ratio of the training data – From these experiments, we 
observed that the division of the training data plays a 
crucial role in determining the performance of the 
algorithms. If the training TPs and TNs are almost equal in 
size, the algorithms tend to construct much better 
classifiers. This observation suggested that the classifier 
induced from equal size of TP and TN tend to be more 
robust in classifying the instances. Furthermore, the 
classifiers generated consider all the discriminative 
attributes that distinguish between two different classes. If 
the size of the TP set is small compared to that of TN, most 
probably the classifier will overfit the positive examples 
and thus perform poorly in the cross validation stages. 

Attributes – Another factor that must be taken into 
consideration when choosing a learning method is the 
nature of the attributes. Generally, statistical methods (e.g. 
SVM, neural networks) tend to perform much better over 
multi-dimensions and continuous attributes. This is 
because the learning strategy embedded in these 
algorithms enables the learners to find a maximal margin 
that can distinguish different classes in the vector space. 
By contrast, rule-based systems (e.g. Decision trees, 
PART) tend to perform better in discrete / categorical 
attributes. The algorithms of these methods operate in a  
top-down manner where the first step is to find the most 
discriminative attribute that classifies different classes. 
The process is iterated until most of the instances are 
classified into their class. 

Credibility vs. Comprehensibility – When choosing a 
machine learning technique, users need to ask themselves 
what they really want to “discover”  from the data. If they 
are interested in generating understandable hypotheses, 
then a rule-base learning algorithm should be used instead 
of statistical ones. Most machine learning algorithms 
follow Occam’s principle when constructing the final 
hypothesis. According to this principle, the algorithm 
tends to find the simplest hypotheses by avoiding 
overfitting the training data. But does this principle still 
hold in bioinformatics?   In bioinformatics we often wish 
to explore data and explain results, and hence we are 
interested in applying intelligent systems to provide an 
insight to understand the relations between complex data.  
The question then arises as to whether we prefer a simple 
classifier or a highly comprehensible model.  In general, 
there is a trade off between the credibility and 
comprehensibility of a model.  Domingos (1999) 
suggested applying domain constraints as an alternative 
for avoiding overfitting the data. We agree with 
Muggleton et al. (1998) that when comparing the 
performance of learning systems in a bioinformatics 
context, the hypothesis with better explanatory power is 
preferable when there exist more than one hypotheses with 
statistical equivalent predictive accuracy. 



(ii) Are combined methods better than a single approach?  

From the experiments most of the combined methods 
perform better than the individual learner. This is because 
none of the individual methods can claim that they are 
superior to the others due to statistical, computational and 
representational reasons (Dietterich, 2000).  Every 
learning algorithm uses a different search strategy.  If the 
training data is too small, the individual learner can induce 
different hypotheses with similar performances from the 
search space. Thus, by averaging the different hypotheses, 
the combined classifier may produce a good 
approximation to the true hypotheses. The computational 
reason is to avoid local optima of individual search 
strategy. By performing different initial searches and 
combining the outputs, the final classifier may provide a 
better approximation to the true hypotheses. Lastly, due to 
the limited amount of training data, the individual 
classifier may not represent the true hypotheses. Thus, 
through considering different classifiers, it may be 
possible to expand the final classifier to an approximate 
representation of the true hypotheses. Ensemble learning 
has been an active research topic in machine learning but 
not in the bioinformatics community. Since most of the 
hypotheses induced are from incomplete biological data, it 
is essential to generate a good approximation by 
combining individual learners. 

 (iii) How does one compare the effectiveness of a 
particular algorithm to the others?  

Predictive accuracy – Most of the time, we can find in the 
literature reports that a learning scheme performs better 
than another in term of one model’s accuracy when 
applied to a particular data set. From this study, we found 
that accuracy is not the ultimate measurement when 
comparing the learner’s credibility. Accuracy is just the 
measurement of the total correctly classified instances. 
This measurement is the overall error rate, but there can be 
other measures of the accuracy of a classifier rule. If the 
training data set has 95 TNs and 5 TPs, by classifying all 
the instances into a negative class, the classifier still can 
achieve a 95% accuracy. But the sensitivity and the 
positive predicted value is 0% (both measurements 
evaluate the performance in classifying TPs). This means 
that although the accuracy of the classifier is 95% it still 
cannot discriminate between the positive examples and the 
negatives. Thus, when comparing the performance of 
different classifiers, accuracy as a measure is not enough. 
Different measures should be evaluated depending on 
what type of question that the user seeks to answer. See 
Salzberg (Salzberg, 1999) for a tutorial on comparing 
classifiers. 

5 Conclusions 

Machine learning has increasingly gained attention in 
bioinformatics research. With the availability of different 
types of learning methods, it has become common for the 
researchers to apply the off-shelf systems to classify and 
mine their databases. In the research reported in this paper, 
we have performed a comparison of different supervised 
machine learning techniques in classifying biological data. 
We have shown that none of the single methods could 

consistently perform well over all the data sets.  The 
performance of the learning techniques is highly 
dependant on the nature of the training data. This study 
also shows that combined methods perform better than the 
individual ones in terms of their specificity, sensitivity, 
positive predicted value and accuracy. We have suggested 
some rules-of-thumb for the reader on choosing the best 
suitable learning method for their dataset. 

6 Acknowledgements 

We would like to thank colleagues in the Bioinformatics 
Research Centre for constructive discussions. We would 
also like to thank the anonymous reviewers for their useful 
comments. The University of Glasgow funded AC Tan’s 
studentship. 

7 References 

BALDI, P. AND BRUNAK, S. (2001) Bioinformatics: 
The Machine Learning Approach, 2nd Ed., MIT Press. 

Blake, C.L. AND Merz, C.J. (1998) UCI Repository of 
machine learning databases 
[http://www.ics.uci.edu/~mlearn/MLRepository.html] 

CAI, Y.-D. AND CHOU, K.-C. (1998) Artificial neural 
network model for predicting HIV protease cleavage 
sites in protein. Advances in Engineering Software, 29: 
119-128. 

DIETTERICH, T.G. (2000) Ensemble methods in 
machine learning. In Proceedings of the First 
International Workshop on MCS, LNCS 1857: 1-15. 

DOMINGOS, P. (1999) The role of Occam’s razor in 
knowledge discovery. Data Mining and Knowledge 
Discovery, 3: 409-425. 

HORTON, P. AND NAKAI, K. (1996) A probabilistic 
classification system for predicting the cellular 
localization sites of proteins. In Proceedings of Fourth 
International Conference on ISMB, p.109-115. AAAI / 
MIT Press. 

MITCHELL, T. (1997) Machine Learning. McGraw-Hill. 

MUGGLETON, S., SRINIVASAN, A., KING, R.D. AND 
STERNBERG, M.J.E. (1998) Biochemical knowledge 
discovery using inductive logic programming.  In H. 
Motoda (Ed.) Proceedings of the First Conference on 
Discovery Science, Springer-Verlag. 

SALZBERG, S. (1999). On comparing classifiers: a 
critique of current research and methods. Data mining 
and knowledge discovery, 1: 1-12. 

SHAVLIK, J., HUNTER, L. & SEARLS, D. (1995). 
Introduction. Machine Learning, 21: 5-10. 

TOWELL, G.G., SHAVLIK, J.W. AND NOORDEWIER, 
M.O. (1990) Refinement of approximate domain 
theories by knowledge-based neural networks. In 
Proceedings of the Eighth National Conference on 
Artificial Intelligence, p. 861-866. AAAI Press. 

WITTEN, I.H. AND FRANK, E. (2000) Data Mining: 
Practical machine learning tools and techniques with 
java implementations. Morgan Kaufmann. 


