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Abstract

This thesis presents a novel methodology for resource optimisation of 3D Network-on-Chip
(NoC) architectures in High-Performance System-on-Chip (SoC) applications.

The proposed approach combines hypergraph-based modelling and genetic algorithm optimisa-
tion to efficiently explore the design space and identify optimal combinations of topology and
routing algorithms tailored to specific application requirements. Two compute-intensive, yet
different use cases were chosen to validate the approach; namely, the double SHA256 attack
as applied to Bitcoin mining, and real-time facial recognition.

In addition to hypergraph modelling and GA optimisation, a unique aspect of this work is the
development of the Performance-to-Cost-Ratio function concept, as an effective, yet simple
method to steer the fitness evaluation during the optimisation phase.

In contrast to existing research that focuses on narrow perspectives of the problem, this work
offers a more holistic approach, by considering the interplay of routing strategies, buffer and
message sizing, bandwidth, and latency factors, together with resource utilisation.

The results and insights obtained contribute to the overall understanding of the design and
optimisation of 3D NoC architectures and their impact on system performance and resource
utilisation.

Three specific research questions are addressed. First, the effective utilisation of hypergraphs
as a design and implementation space exploration modelling tool for 3D NoCs; Second, is
the justification and use of genetic algorithms as an optimisation technique, once a suitable
topology is identified; and finally, the combination of the ideas of hypergraph modelling and
GA optimisation as framework in high-performance SoC designs employing 3D NoCs.

Extensive simulations and comparative analyses carried out showed significant performance
improvements in latency, throughput, bandwidth and resource utilisation, versus the chosen
3D Mesh baseline architecture.

The optimised architectures also lead to an observable energy efficiency characteristic, when
tested on an actual FPGA implementation.

The proposed methodology provides a systematic and automated design space exploration
and optimisation approach in the domain, eliminating the need for manual design space
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exploration, this enabling architects and designers to make informed decisions based on the
specific requirements of the target application, from the onset.

The insights and techniques presented in this thesis have far reaching implications for developing
efficient and scalable NoC solutions in the era of kilo- and mega-core SoC applications.
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Chapter 1

Introduction

1.1 Background and Motivation

The rapid advancements in semiconductor technology and the increasing demand for high-
performance computing have driven the development of complex System-on-Chip (SoC)
architectures. These SoCs integrate many processing elements, memory modul es, and
specialised accelerators on a single chip, enabling the execution of computationally intensive
applications[1]. However, as the number of on-chip components grows, the communication
infrastructure becomes a critical bottleneck, limiting the overall system performance and
scalability[2].

Network-on-Chip (NoC) architectures have emerged as a promising solution to address the
communication challenges in modern SoCs as far back as demonstrated in [3]. NoCs provide a
structured and scalable communication fabric that enables efficient data transfer among the
on-chip components [4]. By abstracting the communication infrastructure from the processing
elements, NoCs offer several advantages over traditional bus-based architectures, including
higher bandwidth, lower latency, and improved scalability [5].

The design of efficient NoC architectures is a complex task involving various design choices,
such as topology selection, routing algorithm design, and resource allocation. These design
choices significantly impact the performance, power consumption, and area overhead of the
NoC and, ultimately, the overall system performance [6]. Therefore, effective design space
exploration and optimisation techniques are crucial for identifying the most suitable NoC
configurations for specific applications or system requirements.

Three-dimensional (3D) NoC architectures have gained significant attention in recent years
due to their potential to enhance the performance and scalability of SoCs. By leveraging 3D
integration technologies, such as through-silicon vias (TSVs) and monolithic 3D integration,
3D NoCs enable stacking multiple layers of processing elements and interconnects [7]. This
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vertical integration offers several benefits, including reduced wire lengths, higher bandwidth,
and increased package density [8].

However, the design and optimisation of 3D NoCs pose additional challenges compared to their
2D counterparts, such as the increased complexity of the topology, the impact of inter-layer
communication, and the need for efficient vertical link placement [9].

To tackle these and other challenges in effectively explore the design space of 3D NoCs, more
holistic modelling and optimisation techniques are required. In that sense, Hypergraph theory
has emerged as a robust mathematical framework for representing and analysing complex
systems, including NoC architectures.

Hypergraphs extend the concept of traditional graphs by allowing edges to connect any number
of vertices, enabling the capture of higher-order interactions and dependencies. By modelling
3D NoCs as hypergraphs, designers can accurately represent the complex interconnections
among the processing elements and comprehensively analyse of the network properties and
performance characteristics, in contrast with the more traditional approach of using vendor-
specific tools which, while effective, will often come at the expense of portability and flexibility,
as well as cost.

Taking this further and superimposing it on time-to-market, skilled design resource costs and
efficiency drives, it soon becomes apparent that vendor commitment, particularly at the early
conceptual stages, will have a drastic impact on the end product characteristics [10].

In view of the above, the need for using more vendor-agnostic tools, while retaining accuracy
of the design space characteristics modelling, lends even more weight to the use of hypergraphs
as an accurate, relatively simple, well founded and well understood approach to the question
of modelling 3D NoCs; after all, they are inherently 3D architectures [11].

Another aspect of the problem is the sheer size of the design space 3D NoCs tend to span,
which is complicated even further where conflicting constraints, such as high performance and
low power consumptions need to be satisfied [12].

In fact, the vastness of the design space 3D NoCs on its own, necessitates efficient modelling and
optimisation techniques, to aid identify the most suitable configurations for a given application
[13]. Genetic algorithms (GAs) have been widely used for solving complex optimisation problems
in various domains, including NoC design [14]. The principles of natural evolution inspire GAs
and employ mechanisms such as selection, crossover, and mutation to explore the search space
and evolve optimal solutions [15]. By encoding the NoC design parameters as chromosomes
and defining appropriate fitness functions, GAs can effectively navigate the design space and
identify NoC configurations that optimise performance metrics such as throughput, latency,
and power consumption [16].

Given the above, it is then apparent that applying hypergraph-based modelling and GA-based
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optimisation techniques to 3D NoCs clearly represent new opportunities for resource optimisation
in high-performance SoC designs, as well as answering the fundamental requirements of a vendor-
independent, yet faithful and accurate tools for design space exploration and optimisation.

By considering the specific requirements and constraints of the target application, this approach
can guide the selection of optimal NoC topologies, routing algorithms, and resource allocation
strategies.

Once modelled, a 3D NoC can then be optimised using a genetic algorithms process, so as to to
maximise the utilisation of the available hardware resources, while meeting the performance and
power budget constraints [17]. The resulting optimised 3D NoC architectures can significantly
enhance the system performance, reduce power consumption, and improve the overall efficiency
of the SoC.

1.2 Research Questions

With Section 1.1 setting the stage for motivation, we set out to address three key research
questions related to designing and optimising 3D NoC architectures for high-performance SoC
designs. These are:

1.2.1 RQ1: How can hypergraphs be effectively used as a design
and implementation space exploration tool for 3D Networks on
Chip?

The first research question focuses on applying hypergraph theory to arrive at a consistent
approach, appropriate for modelling and analyse 3D NoC architectures.

As stated earlier, hypergraphs provide a robust mathematical framework for representing
complex systems with higher-order interactions and dependencies.

Given that 3D NoCs are by definition 3D structures, hypergraphs can effectively and accurately
capture the intricate interconnections among the processing elements, memory modules, and
other on-chip components, as well as the characteristics of said interconnects. By modelling
3D NoCs as hypergraphs, designers can gain valuable insights into the network’s structural
properties and performance characteristics.

Indeed, hypergraph-based analysis techniques, such as partitioning, clustering, and connectivity
analysis, can be applied to identify optimal NoC topologies, and to evaluate the impact of
different design choices and explore the trade-offs between performance, power, and area.

Hypergraph models can also facilitate the study of various network properties, such as bandwidth,
latency, and congestion, enabling a comprehensive understanding of the NoC behaviour.
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As a design and implementation space exploration tool for 3D NoCs, Hypergraphs capture
complex relationships and dependencies among the network elements. By representing the
NoC as a hypergraph, designers can perform detailed analysis and optimisation at a higher
level of abstraction without the need for extensive low-level simulations. This allows for rapid
exploration of different design alternatives and identifying promising NoC configurations.

Moreover, hypergraph-based techniques can be integrated with existing NoC design flows
and tools, providing a seamless and efficient way to explore the design space. The insights
gained from hypergraph analysis can guide the selection of optimal NoC architectures, enabling
designers to make informed decisions and trade-offs based on the specific requirements of the
target application.

1.2.2 RQ2: How can genetic algorithms be justified and used for
optimising the identified topologies in 3D Networks on Chip?

The second research question addresses the use of genetic algorithms (GAs) to optimise the
identified topologies in 3D NoCs.

GAs are a class of evolutionary algorithms successfully applied to various optimisation problems,
including NoC design. They are particularly well-suited for exploring large and complex search
spaces, where an exhaustive evaluation of all possible solutions is impractical.

In the context of 3D NoC optimisation, GAs can be used to search for the best combination of
design parameters, such as topology, routing algorithm, buffer sizes, and link bandwidth, that
maximise the desired performance metrics. The justification for using GAs lies in their ability
to efficiently navigate the vast design space and find near-optimal solutions in a reasonable
amount of time [18],[19].

The optimisation process using GAs typically involves the following steps:

• Encoding: The NoC design parameters are encoded as chromosomes, where each gene
represents a specific parameter value. The encoding scheme should capture all the relevant
design choices and their respective ranges.

• Fitness evaluation: A fitness function is defined to evaluate the quality of each chromosome
(NoC configuration) based on the desired performance metrics, such as throughput, latency,
and power consumption. The fitness function assigns a score to each chromosome, indicating
its suitability for the target application.

• Selection: The selection operator chooses the fittest chromosomes from the current
population to serve as parents for the next generation. Various selection methods, such as
tournament or roulette wheel selection, can balance exploration and exploitation [20].

• Crossover: The crossover operator combines the genetic information of the selected
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chromosomes to create their offspring. This operation promotes the exchange of good
genetic material and explores new regions of the search space.

• Mutation: The mutation operator introduces random changes to the genes of the offspring
chromosomes, helping to maintain diversity in the population and prevent premature
convergence to suboptimal solutions.

• Termination: The GA iteratively applies the selection, crossover, and mutation operators to
evolve the population over multiple generations until a termination criterion is met, such as
reaching a maximum number of generations or achieving a satisfactory fitness level.

By iteratively evolving a population of NoC configurations and selecting the fittest individuals,
GAs can effectively explore the design space and identify optimised topologies that meet the
desired performance objectives. Using GAs in 3D NoC optimisation is further justified by their
capability to handle complex design constraints, such as power, budget, and area limitations,
by incorporating them into the fitness function or through specialised operators.

GAs offer flexible optimisation objectives and easily adapt to different application requirements.
By adjusting the fitness function and the genetic operators, designers can prioritise specific
performance metrics or find trade-offs between conflicting objectives.

Combined with development and use of the Performance-Cost-Ratio functions concepts detailed
in Section 3.7.1 as a set of simple, yet very effective means of gauging fitness, the use GAs is
then made to be very specific it its fitness evaluation for a given optimisation constraint or
constraints.

1.2.3 RQ3: How can hypergraph-based modelling and GA-based
optimisation techniques be effectively used for resource optimi-
sation in high-performance SoC designs employing 3D NoCs?

The third research question explores the effective use of hypergraph-based modelling and
GA-based optimisation techniques for resource optimisation in high-performance SoC designs
employing 3D NoCs . Resource optimisation is critical to SoC design, as it directly impacts
the system performance, power consumption, and cost.

In the context of 3D NoCs, resource optimisation involves efficiently allocating and utilising
hardware resources, such as processing elements, memory modules, communication links, and
buffers, to meet the performance and power constraints of the target application. The goal
is to find the optimal balance between resource provisioning and system performance while
minimising power consumption and area overhead.

Hypergraph-based modelling and GA-based optimisation techniques can be effectively employed
for resource optimisation in 3D NoC-based SoCs, offering a comprehensive and automated
approach to design space exploration and optimisation. The integration of these techniques
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enables designers to systematically analyse the impact of different resource allocation strategies
and identify the most suitable NoC configurations for the given application requirements .

The effectiveness of using hypergraph-based modelling and GA-based optimisation for resource
optimisation in high-performance SoC designs can be attributed to several factors, most
prominent of which are:

• Comprehensive design space exploration: Hypergraph-based modelling allows for a detailed
representation of the NoC architecture, capturing the complex interactions and dependencies
among the resources. By analysing the hypergraph model, designers can explore various
resource allocation strategies and evaluate their impact on system performance and power
consumption.

• Automated optimisation process: GA-based optimisation techniques automate the search
for optimal resource allocation configurations [21]. GAs can efficiently explore the vast
design space and identify the most promising solutions by encoding the resource allocation
parameters as chromosomes and defining appropriate fitness functions [22], [23]. This
automation reduces the manual effort required for design space exploration and enables the
discovery of optimised resource allocation strategies that human designers might overlook
[24].

• Multi-objective optimisation: Resource optimisation in SoC designs often involves multiple
conflicting objectives, such as maximising performance while minimising power consumption
and area. Hypergraph-based modelling and GA-based optimisation techniques can effectively
handle multi-objective optimisation problems by incorporating multiple fitness functions or
using specialised multi-objective optimisation algorithms, such as NSGA-II [25], [26]. This
allows designers to find Pareto-optimal solutions representing the best trade-offs among
the different objectives.

• Application-specific optimisation: Hypergraph-based modelling and GA-based optimisation
techniques can be tailored to target the application’s specific requirements and constraints.
By incorporating application-specific knowledge into the modelling and optimisation process,
designers can focus on the most relevant performance metrics and resource constraints.
This application-specific optimisation leads to more efficient resource utilisation and better
system performance than generic optimisation approaches.

• Scalability and adaptability: Hypergraph-based modelling and GA-based optimisation
techniques are scalable and can handle the increasing complexity of modern SoC designs.
The number and size of NoC components are growing. These techniques can effectively
explore the design space and find optimised resource allocation solutions. Moreover, these
techniques are adaptable to different NoC architectures, routing algorithms, and application
domains, making them suitable for a wide range of high-performance SoC designs.

Using hypergraph-based modelling and GA-based optimisation techniques for resource optimi-
sation in high-performance SoC designs employing 3D NoCs can significantly improve system
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performance, power efficiency, and overall resource utilisation as shown by the analysis and use
cases in Chapter 3, Chapter 4 and Chapter 5, respectively. By automating the design space
exploration and optimisation process, these techniques enable designers to make informed deci-
sions and find the best trade-offs between performance, power, and area, ultimately resulting
in more efficient and cost-effective SoC designs [27], [28].

1.3 Thesis Contributions

This thesis presents several novel contributions to the field of Networks-on-Chip optimisation
for high-performance many-core System-on-Chip architectures. As processor designs advance
towards kilo-core scales and beyond, the significance of efficient on-chip communication
becomes paramount. The primary contributions are as follows:

1. Development of a novel vendor-independent theoretical framework combining hypergraphs
and genetic algorithms. The hypergraph component provides a mathematically elegant and
precise modelling approach, enabling straightforward representation of complex multi-point
communications and superior expressiveness compared to conventional graph-based models.
This is enhanced by an adapted version of the Non-dominated Sorting Genetic Algorithm II
(NSGA-II), featuring NoC-specific mutations and fitness functions incorporating bandwidth,
latency, throughput and routing algorithm as objectives.

2. Debugging and enhancement of the ROSS cycle-accurate simulator to support next-
generation architectures through comprehensive models for three-dimensional Network-
on-Chip topologies, at scale. This includes scalable three-dimensional mesh, torus, and
hypercube topology models supporting thousands of cores, along with a flexible traffic
pattern generator suited to modern high-performance 3D NoC applications.

3. Empirical validation through two compute-intensive use cases demonstrating significant
performance improvements: For real-time facial recognition, achieving over 29% reduction
in average packet latency and 40% improvement in network throughput; and for double SHA-
256 cryptographic operations, achieving over 33% reduction in latency and 40% increase in
throughput. These improvements were further validated through hardware implementation
using SystemC on a Xilinx Zynq AP SoC, demonstrating over 30% reduction in power
consumption and 20% improvement in resource utilisation.

These contributions advance the state-of-the-art in Network-on-Chip design and optimisation,
particularly addressing the challenges of scaling to kilo-core architectures. The mathematical
robustness of the hypergraph modelling approach, combined with its inherent simplicity and
precision, provides a powerful yet accessible framework for describing and optimising complex
Network-on-Chip architectures.
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1.4 Thesis Structure

Aside from the Literature Review (Chapter 2), this thesis is organised into three main research
chapters, and one conclusion chapter (Chapter 6), which address the above research questions
and contribute to advancing 3D NoC design and optimisation methodologies.

Chapter 3 focuses on developing and applying hypergraph-based modelling techniques for
3D NoC architectures. It presents a comprehensive framework for representing 3D NoCs as
hypergraphs. It also demonstrates the effectiveness of hypergraph-based analysis in exploring
the design space and evaluating the performance characteristics of different NoC topologies.
The chapter also introduces novel hypergraph-based metrics and algorithms for assessing the
structural properties and communication patterns of 3D NoCs. The insights gained from
this chapter lay the foundation for the subsequent optimisation techniques discussed in the
following chapters.

Chapter 4 investigates the use of genetic algorithms for optimising 3D NoC architectures.
It presents a GA-based optimisation framework that automates the search for optimal NoC
configurations based on the specified performance objectives and constraints. The chapter
details the encoding scheme, fitness function design, and genetic operators used in optimisation.
It also demonstrates the effectiveness of the proposed GA-based approach in finding optimised
NoC topologies and routing algorithms for different application scenarios. The results presented
in this chapter highlight the potential of GA-based optimisation in enhancing the performance
and efficiency of 3D NoCs.

Chapter 5 explores hypergraph-based modelling and GA-based optimisation techniques for
resource optimisation in high-performance SoC designs employing 3D NoCs. It presents
a holistic approach that integrates these techniques into the SoC design flow, enabling
designers to make informed decisions regarding resource allocation and optimisation. The
chapter demonstrates the effectiveness of the proposed approach in finding optimal resource
configurations that maximise performance while minimising power consumption and area
overhead. It also presents case studies and experimental results showcasing the benefits of
using hypergraph-based modelling and GA-based optimisation for resource optimisation in
real-world SoC designs.

Chapter 5 concludes the thesis, discusses findings and future directions.

This thesis focusses on providing a comprehensive and in-depth analysis of the proposed
methodologies, their theoretical foundations, and their practical applications. The chapters are
structured to progressively build upon each other, starting from the fundamental concepts of
hypergraph-based modelling and GA-based optimisation and culminating in their integration
for resource optimisation in high-performance SoC designs.

The research questions posed in this thesis are addressed through theoretical analysis, algorith-
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mic development, and experimental validation. The results and insights obtained from each
chapter contribute to the overall understanding of the design and optimisation of 3D NoC
architectures and their impact on system performance and resource utilisation.

By the end, readers will understand the effectiveness and practicality of using hypergraph-based
modelling and GA-based optimisation techniques for 3D NoC design and optimisation. The
contributions made in this work have the potential to significantly advance state-of-the-art
NoC design methodologies and pave the way for more efficient and high-performance SoC
architectures.

1.5 Chapter Summary

This chapter has introduced the background and motivation for the 3D NoC design and
optimisation research using hypergraph-based modelling and GA-based optimisation techniques.
It has highlighted the importance of effective design space exploration and optimisation in
high-performance SoC designs employing 3D NoCs.

Three key research questions, that drive the research efforts of this thesis are presented.
The first research question focuses on the effective use of hypergraphs as a design and
implementation space exploration tool for 3D NoCs. The second research question addresses
the justification and use of genetic algorithms for optimising the identified topologies in 3D
NoCs. The third research question explores the effective use of hypergraph-based modelling
and GA-based optimisation techniques for resource optimisation in high-performance SoC
designs.

This chapter also overviews the three main research chapters that form this thesis’s core. Each
research chapter addresses one or more research questions and contributes to advancing 3D
NoC design and optimisation methodologies.

Chapter 2 presented a literature review of existing works in the field, as well as a review of
some current application-specific use cases.

Chapter 3 focused on developing and applying hypergraph-based modelling techniques for 3D
NoC architectures, laying the foundation for subsequent optimisation techniques.

The research presented in this thesis aims to provide a comprehensive and in-depth analysis
of the proposed methodologies, their theoretical foundations, and their practical applications.
The insights and contributions made in this work have the potential to significantly advance
the state-of-the-art NoC design methodologies and enable the development of more efficient
and high-performance SoC architectures. We have shown the effectiveness of using hypergraph
modelling Genetic Algorithms optimisations in the proposed framework to identify optimal
topologies and configurations for two compute-intensive, yet slightly different use cases - the
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Double SHA256 in Bitcoin mining presented in Chapter 4 and Real-time facial recognition in
both still and video streams as presentd in Chapter 5

This chapter now sets the stage for the research on 3D NoC design and optimisation using
hypergraph-based modelling and GA-based optimisation techniques. It has highlighted the
importance and relevance of the research questions addressed in this thesis and provided an
overview of the research chapters that contribute to advancing the field.
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Chapter 2

Literature Review

Expanding on the earlier introduction in Chapter 1, this literature review will address these
scientific enquiries as follows:

• Section 2.1 and subsections give an overview of performance concerns in multicore SoCs
• Section 2.2 and subsections explore the current state of research in various areas surrounding

NoC architectures, topologies and associated performance and FT characteristic of each
topology

• Section 2.3 and subsections will explore the current state of research in load balancing,
resource distribution and multithreading concerns as applied to H-P SoCs and the NoC
paradigm

2.1 Performance Aspects in Systems on Chip (SoC)

Many works have recently emerged addressing design challenges of fast, scalable solutions
in multicore systems. These focused on improving execution times in the machine learning
domain in particular, with the goal of improving element capabilities by algorithmic, as well as
hardware means [29], [30].

The above not withstanding, only a few works focused on the interconnection subsystem as a
potential source of performance improvement, with examples including [31], [32], especially
given that wrapping many cores together offers excellent parallelism, adequate interconnections,
energy efficiency, thermal management, and silicon real estate efficiencies, particularly in area-
constrained applications [33], [34].

Research on scalable, power-aware interconnects is helping to manage challenges posed by the
increasing number of cores and demanding applications.

In the future, SoCs will have 1024 or more cores. This will substantially increase the number of
streams supported by a single device in the next two to four years [7]. It is imperative to consider
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a comprehensive range of factors, including individual element capabilities, interconnects, energy
efficiency, and load distribution to optimise for high-performance SoC applications featuring
1024 or more cores, with the NoC paradigm emerging as a viable solution for addressing
multifaceted challenges [35].

With that in mind, and while the research interest in this domain is active, it tended to focus
on narrow perspectives. Furthermore, the impact of silicon node processes on the construction
of HP many-core SoCs, in both the physical and logical synthesis senses, while the subject of
active research, has not yet been fully exploited [36].

2.2 Network on Chip (NoC)

Advances in VLSI technology, in tandem with silicon fabrication processes, have enabled
the packing of hundreds, even thousands, of pre-designed IPs in one SoC, fuelled by the
billion-transistor drive of this millennium. This was recognised early on by such works as [37],
and more recently by [38] and [39].

As the industry increasingly shifted towards higher integration, the push for multi-core and
many-core paradigm architectures has similarly intensified, resulting in the integration of
hundreds, even thousands of cores on a single die.

This shift created the need for a high-performance, flexible, scalable and designer-friendly
interconnection architecture. Traditional external bus interconnects became inadequate for
managing the extensive on-chip integration. The solution emerged in a new type of on-
chip interconnect, inspired by well-established and understood practices of packet-switched
communication networks, leading to the Network on Chip, or NoC paradigm.

NoCs have many advantages over direct wiring and buses. These advantages include high
bandwidth, low latency, low power consumption, scalability, and opportunities to integrate
security and cryptography in the fabric of IP and communication.

In a NoC, messages are shuttled through interconnect networks between IP cores and other
elements. Consequently, the architecture of on-chip interconnects significantly impacts com-
munication across the chip, which affects the overall chip’s performance. Key factors such as
end-to-end delay, throughput, and packet loss are critical considerations, on a par with packet
switched networks.

These constraints also characterise the different topologies that abound in any packet-switched
architectural proposition, which is the concern of subsequent sections of this work. Each
topology has its relative merits and limitations [40].
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2.3 NOC Topologies and Components: an overview

Before delving into topologies and characteristics thereof, it is worth a prelude to the subject
with a general view of what makes and constitutes a NoC and its associated components.

NoCs are used to build parallel and multi-core processing platforms, usually on a single chip.
It is an architecture for interconnecting multiple cores on a chip, consisting of a set of Routers
(R), Links (L), Intellectual Property (IP) cores, and Network Interfaces (NI), also called a
Network Adapter (NA).

Figure 2.1 gives an overview of this paradigm.

Figure 2.1: NoC Paradigm

Next, each component listed in Figure 2.1 is described.
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2.3.1 Links

In a NoC context, a link is the physical interconnect between two routers. It comprises one or
more logical or physical channels, each comprising a set of wires. Messages passing through
the NoC are broken down into fixed-length packets. These packets are then composed as
datagrams called flits (flow control digits or units). Packets are then individually transferred
flit-by-flit style. Most of the time, a flit will match a phit (physical transfer unit) in which a
packet is divided and transmitted through the network, or the minimum amount of data that
can be transmitted in one link transaction. Synchronisation is achieved with a synchronisation
protocol implemented through dedicated wires or mixed-time FIFO or globally asynchronous
locally synchronous (GALS) [41], assuming local handshake protocols.

2.3.2 Network Interfaces

In a NoC context, a Network Interface (NI) is the interface between a router and the local IP.
It transposes the IP’s communication perspective to the router’s as shown in Figure 2.2 below:

MASTER NI RouterNetwork NI SLAVE
Request Request Request Request

ResponseResponseResponseResponse

Figure 2.2: Network Interface

This transposition can be viewed as a type of communication service which packages the raw
data into the packets at the point of origin for transmission onto the network and unpacks them
at the destination [42]. Having interfaces at the edge of routers allows for implementing IP-
specific protocols without affecting the router’s core functionality. Thus, by implementing NIs
as services, cores can be seamlessly integrated within the NoC platform and paradigm. Finally,
implementing NI functionality as a service effectively decouples interdependence between IPs
and pages to reuse many reusable IPs when implementing SoCs.

2.3.3 Routers

Arguably, the router is the most important component in a NoC architecture (Figure 2.3).

In a NoC context, the router switches the appropriate messages arriving at its input ports to
its output port(s) at the right time, following a predetermined path or route. A router also
supports switching, virtual channels and flow control, some of which will be reviewed next.
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Figure 2.3: Internals of a Router

2.3.4 Routing and Timing

Routing determines the path a packet takes from the point of origin to the intended target.
The routing algorithm decides which output port and channel(s) to traverse and which next
neighbour to forward.

The key aspect of a routing algorithm is timing. It refers to where or when a routing decision
is made. This concept is commonly used to classify routing algorithms into centralised, source,
and distributed [43].

The router only knows its neighbourhood as packets travel across the network. A header
containing only the destination address is used to select output channel/s. Source routing
algorithms will predetermine complete routing paths as a header on source nodes before
injecting packets into the network. The router switches along a path will be configured
accordingly by the header.

2.3.5 Switching

Switching is the process of constructing a path for packet propagation. One way to break
down the techniques of a switch is shown in Figure 2.4, and discussed next:

Circuit Switching constructs an end-to-end path reserved on each intermediate router before
the data transition through a routing probe. This reservation is released by the final destination
or upon completion of the transmission.

Arbitrary messages can be propagated and transported to the destination without interruption
upon the sender receiving an acknowledgement flit from the receiver. A circuit switching
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Switching Techniques

Circuit Switching Packet Switching

Store & Forward
Switching

Virtual Cut Through
Switching

Wormhole
Switching

Time Division
Multiplexing

Figure 2.4: Switching Techniques

mechanism with separated data and control plains is developed to reduce the overall latency
of the circuit establishment[44].

Packet switching on the other hand, does not reserve the entire channel. It is classified into
Store & Forward (SF), Virtual Cut Through (VCT) and Wormhole Switching (WH). SF is a
technique appropriate for the embryonic transfer of short and frequent packets requiring input
and output buffering. In other words, routing decisions are made by each intermediate router
as long as the entire packet has been buffered. Header flits can be forwarded to the next hop if
the routing decision has been made and the available buffer space in the next hop is sufficient.

VCT packet switching allows the header flit to cut through and move to the next hop as
soon as a routing decision is made, letting the remaining flits follow the same output channel
as their predecessors. In VCT, it is not possible to interleave or multiplex packets and packet
streams onto the same physical channel. The packet must be stored along a path on the
intermediate router(s). They will all behave the same as SF if the next hop is occupied or out
of buffer space, which contrasts with WH, which will be discussed next.

In WH packet switching, a header is used to build a path for subsequent flits that belong to
the same packet. Packets will then be transmitted in a pipeline-type arrangement, whereby
the path may span several routers. If the header cannot be processed for some reason, then
the wormhole chain will stall, thus occupying space in the flit buffers of each router along the
path(s) constructed thus far.

This will then possibly lead to blocking other communications. In extreme conditions, this
could lead to chain blocking, resulting in packet(s) being subjected to multi-blocking. This
will give rise to problematic timing analysis. WH offers low network latency and buffer costs.
However, its congestion level is high and deadlock-prone without special measures such as
Virtual Channel.

Last but not least, there is Time Division Multiplexing (TDM), which might be viewed as
a switching technique, particularly in settings with high(er) resource utilisation.
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In a TDM setting, resources are allocated through a timetable of a fixed number of time slots
at each router node. Each slot is reserved for one connection. Tables on all routers are kept in
sync with a global TDM schedule. This allows virtual channel (discussed in the next section)
reservations to be guaranteed, independently of connections. This does not require arbitration
and flow control as a prerequisite to the switching operation , discussed earlier in Section 2.3.5.

A summary comparison of packet switching techniques discussed in this section is given in
Table 2.1 below:

Switching Communi-
cation
Entity

Path
Reserva-

tion

Buffer
Size

Resource
Utilisation

Comments

Circuit
Switching

Flit Yes Small Low Requires setup
acknowledgement
and path tear
down phases

Store &
Forward

Packet No Large High Header must wait
for entire packet
before routing

Virtual Cut
Through

Packet No Large High Header can be
forwarded before
tail arrives

Wormhole Flit Yes Small Moderate Header blocking
reduces efficiency

Table 2.1: Comparison between different packet switching techniques

2.3.6 Virtual Channels

A Virtual Channel (VC) (Figure 2.5, is a technique used to enhance network performance
through the use of shallow buffers instead of a single deep buffer at the input/output ports of
routers (discussed in Section 2.3.5). Typical performance gain is in the range of 20% - 50%.

Without VCs, packets are stalled and stored in the local buffer(s) if the destination router’s
buffer is full or locked. It becomes evident under heavy load, particularly in WH-based switching
as discussed earlier. VCs vastly reduce this problem since other unblocked packets in the VC
can almost bypass blocked packet(s) towards the next hop router. This technique is a control
mechanism to expedite data packets in more generalised transmission protocols such as TCP.

The decision as to which packet(s) get access to physical channels is down to prioritisation
following the arbitration policy. Higher-priority packets take precedence over lower-priority
ones, which is evident in NoCs applying priority pre-emptive arbitration[45].
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Physical Channel

Virtual Channels Virtual Channels

Figure 2.5: Example of a Virtual Channel (VC)

To conclude, higher throughput and switching at the rate of physical channel bandwidth are
the main advantages of using VCs[46]. Using VCs in conjunction with wormhole switching also
realises several other advantages, e.g. deadlock-free switching, more efficient use of network
channels and the ability to implement service levels by using a class of service, while still
keeping switching complexity moderate. Indeed, this combination has become increasingly
prevalent in NoC architectures.

We will now discuss flow control as the final critical component of a router’s functionality.

2.3.7 Flow Control

Flow Control (FC) allocates network resources to packets traversing the NoC. Examples of
such resources are buffer space, control state and channel bandwidth[47]. Flow Control can be
decomposed as in Figure 2.6

Flow Control

BufferedBufferless

Flow Control Flow Control Flow Control

Figure 2.6: Flow Control Classifications [48]

FC can be broadly classified as buffered or bufferless. Bufferless flow control is mainly used
in circuit-switched network applications. It provides a mechanism for dedicated end-to-end
transmission path construction. In contrast, buffered flow control focuses on packet-switched
networks.
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In this context, basic handshaking involves using a validation signal to establish communication.
These are sent during flits (ARQ) transmission and returned as an acknowledgement upon
successful receipt and validation of the same (ACK). This mechanism’s main attraction is
the low-cost implementation. This comes at the expense of low link utilisation, leading to
inefficiencies. [49] gives good examples of using handshaking as a method of flow control in
the context of NOCs. There are also good examples of using a handshake as a means of flow
control, generally in [50] and [51].

When implementing ACK/NACK, flits are copied from the source router’s buffer and sent to
the next hop router until an ACK signal is received back from the destination router. If instead
a NACK is received, the flit is retransmitted.

Credit-based flow control involves the destination router keeping a counter of the available
buffer space in the source router – the credit counter. This counter is decremented as flits are
transmitted by the sender and incremented if the receiver accepts the flit. This guarantees
packet integrity. Examples of NoCs which implement ACK/NACK as a flow control include
SPIN and QNoC.

2.3.8 IP cores

We have so far discussed the layer-1 and layer-2 aspects of NoCs, and in doing so, have eluded
that the NoC exists to connect the higher-level functions of other components tasked with
performing the objective of the SoC. These components are IP cores, and mapping them onto
the NoC itself achieves the all-important design step of integrating the IP core functionality
and the NoC [52].

In theory and practice, IP cores can be any synthesisable entity, be they CPU cores, DSPS,
memory blocks, video processors, or very complex subsystems. A single is often portioned into
functional blocks or tiles interconnected by a dedicated or shared NoC. This paradigm has
existed since the early propositions of NoCs, as noted in [53]. It is also prolific and prevalent
in today’s SoC applications, specifically in commodity graphics and GPU applications [54].
Figure 2.7 shows an NVIDIA Tegra K1 SoC, partitioned in this fashion:

2.4 Topology Considerations in NOC Design

As a design principle, a NoC-based system typically starts with a study of the design space.
The design’s principle objective is to arrive at an optimal topology. Parameters such as network
topology, routing, and switching strategies influencing NoC’s performance are also studied.

Figure 2.8 below gives an overview of some popular topologies, which we will consider in turn:
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Figure 2.7: NVIDIA Tegra K1 SoC with an Interconnecting NoC

It is also worth mentioning that any discussion on NoC topologies will invariably fall into two
broad categories: flat and hierarchical or 2D and 3D.

In this literature review, we have elected to tackle the subject of the evolution of hierarchical
or 3D topologies rather than considering the two in isolation. By definition, these topologies
are an evolution of 2D or flat architectures.

In this spirit, we shall examine standard NoC topologies, from the classic to the more recent
and emerging topologies in NoC design. We will then summarise each topology’s characteristics
and provide an overview of its relative merits.

We will consider 11 topologies, depicted in Figure 2.8. Each topology is considered in its
specific section. We will then discuss the evolution of 3D topologies by looking at some
common examples.

2.4.1 Mesh Topology

In a mesh topology (Figure 2.8a), nodes are connected to form a grid. One of the advantages
of this topology is easy expandability: this is a simple matter of adding more nodes to the
existing architecture. Another advantage is the existence of multiple paths amongst any pair
of nodes, making it tolerant to link failure to an extent.
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Figure 2.8: Common NOC Topologies

Its disadvantages include irregularity (corner nodes have a degree of 2, edge nodes a degree
of 3 and inner nodes a degree of 4, respectively). This leads to non-uniform fault-tolerant
patterns and non-uniform bandwidth characteristics: corner nodes have the least degrees
(interconnects) and hence the least bandwidth, whereas inner nodes have the most.

Another disadvantage of the mesh topology is that it can grow quite large in diameter, leading
to less efficient silicon area utilisation.

2.4.2 (Folding) Torus Topology

Torus (Figure 2.8b) is a mesh topology derivative, obtained by augmenting the mesh direct
connections for each pair of end nodes, in each row and column, respectively. A 9-node torus
is shown in Figure 8b. Compared to a mesh layout, this topology exhibits a reduced diameter.
Amongst its disadvantages is the length of paths. This can be overcome with a Folding Torus
arrangement, at the cost of doubling the wire length.

2.4.3 Ring Topology

In a ring architecture, each node is interconnected in a ring fashion (Figure 2.8d). Every
node has two neighbours, irrespective of the diameter of the ring. Ring architecture exhibits a
desirable small degree, but its diameter is linearly proportional to the number of interconnected
nodes.

One advantage of the ring architecture is the ease with which link faults can be located, which
simplifies troubleshooting. Compared to other architectures, expanding a ring with additional
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nodes is relatively easy. Ring topology limitations include the disruption necessary to insert or
delete nodes in the ring , and even a single fault in the ring can disrupt the entire network.

2.4.4 Octagon Topology

In an Octagon architecture (Figure 2.8e), each node requires two hops to form a communication
path with any other. At its simplest, the Octagon model is made up of eight nodes with twelve
bi-directional links. We refer to its simplest form as this topology can infinitely expand with
more nodes and links while the basic architecture remains the same.

It’s trivial to notice that this topology expands the ring architecture discussed in 2.4.3 above.
We observed that nodes are arranged in a ring, with the addition of a third link to the central
connection point, in addition to left and right neighbours.

This topology has some distinct advantages. For example, there is only a maximum of two
hops between any two nodes, creating shorter, faster pathways between nodes, compared to
the ring architecture discussed in 2.4.3 above. Another advantage is high throughput due to
the added number of non-overlapping communication pathways created. Finally, this type
of architecture naturally lends itself to shortest-path and shortest-path-first routing when
combined with interconnect scheduling design techniques [55].

2.4.5 Spidergon (Spider) Topology

The Spidergon architecture in Figure 2.8f was proposed by ST Microelectronics as a topology
for Systems on Chip.

It comprises an even number of nodes N and is similar to a Ring, augmented by cross-links
between opposing nodes. It can be that the Spider is an extension of the Octagon topology
discussed above.

This architecture exhibits unique topological characteristics. Firstly, the network is regular,
vertex symmetrical (identical topology at each node), and edge transitivity (any two edges in
the network are automorphic).

This topology is also interesting because the routing algorithms like Across First (aFirst),
Across Last (aLast) and Across Equalised (aEqualised) have evolved out of this proposal.

2.4.6 Binary Tree (BT) Topology

In a Binary Tree topology(Figure 2.8g), nodes are deployed as an inverted tree, originating
at a root node. Each node has a set of coordinates consisting of its level and position. The
level denotes the vertical level in the tree, and the position is the actual horizontal placement,
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customarily ordered from left to right. Each non-leaf node is linked to a pair of nodes in the
level directly below. Leaf nodes, also known as the resource nodes, are placed at the bottom
of the tree.

Some advantages of this topology include high performance in terms of latency and throughput,
and the traversal of BTs is very well understood, with abundant methodologies for doing so,
leading to robust switching and routing. Its drawbacks include relative complexity of the
structure, maintaining tree balance, and a linear increase in traversal complexity relative to
size O(n), where n is the number of nodes in the tree.

2.4.7 Butterfly Fat Tree (BFT) Topology

Butterfly Fat Tree or BFT(Figure 2.8h) is derivative of the BT topology discussed in Sec-
tion 2.4.6.

In this topology, the network is modelled as a tree, with butterfly-like interconnections between
levels. Nodes have the same co-ordinates of reference as in a BT. Leaf (or resource) nodes
are placed at the bottom of the tree, such that every two pairs of resource nodes (4 resource
nodes) are linked to a non-leaf node, and each non-leaf node is either linked to four non-leaf
nodes at the level directly above it, or four leaf nodes as explained earlier.

Added advantages of this layout include increased bandwidth and reduced latency due to
additional links and pathways. The opportunities for localised switching at neighbouring nodes
eliminate the need for global synchronisation. Amongst its disadvantages is the increase in
silicon area required for interconnects and additional pathways needed for these interconnects.
This only amounts to an insignificant increase versus the overall complexity of SoCs. Although
on the older side, [56] also gives good foundational work and proposal for such a switch-based
architecture. [57] and [58] also provide an excellent discussion of BFTs and other topologies.

2.4.8 SPIN Topology

SPIN (Figure 2.8i) stands for Scalable, Programmable, Integrated Network. It is an implemen-
tation of a BFT design discussed in Section 2.4.7. The illustration Figure 2.8 shows a 4-ary
SPIN. We can observe that there are as many non-leaf (router or switch) nodes as there are
leaf.

This topology’s advantages include forming a non-blocking packet switching paradigm, in
which performance scales well while keeping size reasonable. For a tree of n leaves, there is a
total 3n

4 of switches; the number of required parent ports is the same as the number of child
ports for every switch node in the tree, and every level of switch has the same number of
switches. Growth of the network is of the order of nlogn

8 .
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Disadvantages include higher on-chip space consumption and power efficiency trade-offs for
higher throughput compared to BFT and BT architectures.

2.4.9 Hypercube (Hyper) Topology

Of all topologies discussed so far, the Hypercube (Figure 2.8j), or simply Hyper, is a 3D
or hierarchical NOC implementation, which is a prelude to discussing the evolution of the
hierarchical NOC from flat 2D implementations to 3D implantation. This has been and
continues to be, a drive instigated by the demand for faster processors and more cores over
the same or smaller area ratios.

An n-dimensional Hypercube, Q(n), is a 3D graph structure obtained using interconnecting 2n
nodes with n2(n-1) edges. One way of addressing nodes in a Hyper is to address every node
with an n-bit binary number b, such that any two given nodes, u and v, are joined if and only
if u and v differ by exactly one bit; thus, Qn is a regular graph since each node (vertex) has
the same number of neighbours. Following this, it is easily observed that hyperarchitectures
form simple recursive structures and are therefore highly scalable. [59] provides an excellent
discussion of a high-performance routing algorithm proposal for Hyper, targeted at DSP and
Image Processing applications.

One major limitation of a Hypertopology is the network size restriction, due to the degree
limitation, with some proposed solutions around derivations of folded hypercubes, crossed
cubes and hierarchical cubes, amongst others.

2.4.10 Star Topology

The Star topology (Figure 2.8j) is the last of the selected 11 architectures for this review.

In this architecture, n− 1 nodes in a network of n nodes interconnect to a central node. The
centre node has a degree of n− 1, whilst every other node has a degree of 1.

Some of the Star interesting features, and perhaps strengths, is that the diameter of a star is
a constant 2, regardless of size, and therefore a small average pathway distance is exhibited.
Inherent redundancy is also exhibited in that any single node failure does not impact the rest
of the network, with the important exception being the centre node.

Limitations of this topology include the single point of failure due to complete dependency on
the central node for interconnect. The bandwidth and latency limitation comes from a central
interconnection point being a bottleneck.
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2.5 Topology Evolution: 2D to 3D

As mentioned earlier, demand for faster processors and multiple cores over the same or smaller
area ratios quickly led to the boundaries and limitations of 2D NoC topologies being reached,
so it was natural that researchers turned their attention to 3D topologies.

Very active research and development further enabled these efforts’ derive in the 3D IC domain,
primarily driven by Through Silicon Via (TSV) advancements [60].

Indeed, the drive for both energy efficiency, coupled with the need for higher integration, was
very much challenged by the need to develop new MOSFET transistors, as planar structures
became a blocker at around the 28nm node process [61], as will be discussed shortly. Thus,
the move from planar MOSFET designs to 3D structures ensued, is summarised in Figure 2.9:

Figure 2.9: Evolution from Planer (2D) MOSFET to 3D CFET

The characteristics of each iteration of MOSFET architecture gives good insight as to the
evolutionary pathways that 3D NoCs and SoCs have taken. It represents a remarkable journey
in semiconductor technology.

As mentioned above, planar MOSFETs, characterised by their flat, two-dimensional structure
with the gate positioned atop a single conducting channel, and Shallow Trench Isolation (STI)
used to isolate adjacent transistors, dominated semiconductor manufacturing until the early
2000s [62]. However, as device scaling approached sub-28nm nodes and beyond, planar designs
encountered severe short-channel effects and increasing power leakage [63].

This led to the development of FinFET technology, where the conducting channel is raised into
a three-dimensional ’fin’ structure, with the gate wrapping around three sides, significantly
improving electrostatic control [64].

As manufacturing processes advanced towards 7nm nodes, NanoSheet (NS) transistors emerged,
featuring multiple stacked silicon channels completely surrounded by the gate material, offering
superior electrical characteristics and better scaling potential [65].
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The latest advancement in this progression is the Complementary FET (CFET), which vertically
stacks n-type and p-type transistors, enabling unprecedented device density and performance
while maintaining compatibility with existing manufacturing processes [66].

This architectural evolution from planar to CFET represents a fundamental shift from two-
dimensional to three-dimensional design paradigms, significantly improving power efficiency
and computing density in modern semiconductor devices [67].

All of this resulted in an equally vibrant research effort in newly developed 3D NoC topologies,
which the NoC, both as a standalone structures as an end, as well as core components of the
SoCs equally remarkably evolved to utilise this advancement in both design and engineering
processes (Figure 2.10)

Figure 2.10: Representation of a 3D NoC in Silicon

It is the subject of our discussion in this section and subsections, examining the popular
Hypercube and Hyper-Mesh topologies.

2.5.1 Mesh and Cube in 3D: 3D Hypercube and 3D Hyper Mesh

We introduced the Hypercube architecture in Section 2.4.9 earlier and touched upon some of
its features and characteristics. In keeping with the conventions set out thus far, we will also
model this topology using graph notation.

26



Chapter 2 A.Al-Alousi (2024)

With reference to Figure 2.8, the following propositions are made, guided by Graph Theory, to
arrive at the Hypercube representation in Figure Figure 2.11:

1. Let G(V, E) be an undirected graph, with V and E representing the vertex and edge sets
of G, respectively.

2. Let hypercube Qn be an undirected graph, where n represents the dimension of the
hypercube and a set of vertices labelled 0 to 2n 1 and a set of n2n− 1 edges, such that
there is an edge between any two vertices if and only if their labels differ by exactly one
positional bit.

000 001

010 011

100 101

110 111

Figure 2.11: Hypercube (n=3)

1. Let M(r, c) be a 2D mesh topology, consisting of r rows and c columns, with a total of
r ∗ c vertices.

2. Let vertices be labelled (x, y), where 1 ≤ x ≤ r and 1 ≤ y ≤ c.
3. Each interior vertex has exactly 4 neighbours. The degree of M(r, c) is 4, diameter is

r + c− 2.

Similarly, we define a mesh with the following characteristics to arrive at the mesh in 2.12:

1. Let M(r, c) be a 2D mesh topology, consisting of r rows and c columns, with a total of
r ∗ c vertices.

2. Let vertices be labelled (x, y), where 1 ≤ x ≤ r and 1 ≤ y ≤ c.
3. Each interior vertex has exactly 4 neighbours. The degree of M(r, c) is 4, diameter is

r + c− 2.
4. There exist at least 2 node-disjoint paths between any two nodes.
5. WLOG assume r = c = k where k ∈ N and k is even.

Containing the graph theory theme, the cross product of two graphs, ⊗, is a handy and
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Figure 2.12: M(k = 2)

powerful tool for deriving new variations of common networks. A full discussion of graph
theory is beyond the scope of this work.

WLOG, the cross product of the Mesh and Hypercube structures introduced thus far will yield
a Hyper Mesh architecture, depicted in Figure 2.13 below, such that G(V, E) ⊗ M(k) =
QM(n, k), will satisfy the following conditions:

1. Size: QM(n, k) has 2nk2 nodes.
2. Degree: QM(n, k) is of degree n + 4
3. Diameter: let n be the dimension of a hypercube QM(n, k) of size k2, then the diameter

is n + k − 2.
4. Bisection width: let n be the dimension of a hypercube QM(n, k) of size k2, then the

bisection width is 2n − 1k2.
5. Connectivity: let u and v be two nodes in QM(n, r, c), then the number of node-disjoint

paths is the minimum of (neighbours of node u, neighbours of node v). It is at most
n+2k-2 in length.

6. Cost: let n be the dimension of a hypercube QM(n, k) of size k2, then the cost (number
of links) of the structure is 2n + 1(k2 − k) + nk22n−1.

Having completed our survey of NoC topologies, we now focus on load balancing, resource
distribution multithreading and optimisation techniques. After summarising what we have
discussed, this is the subject of Section 2.3 and subsections thereof.
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Figure 2.13: Hyppermesh QM (3, 2)

2.5.2 NOC Architecture Summary

Having discussed topologies and components in the previous sections, we shall now look at a
comparison between the characteristics of the various architectures considered thus far, utilising
undirected graphs as a model, with the following observations:

• n: Number of vertices
• cost: Maximum number of edges for a given topology, of size n number of vertices
• k: for a mesh M of (r, c) rows and columns, we assume that r = c = k w.l.o.g

• degree d: the number of links for a given vertex
• network diameter (ND): maximum shortest path length between any pair of nodes in a

topology
• performance: this is a general performance indicator taking into account throughput and

average network latency
Topology Max Degree Diameter Cost Performance

Mesh 4 2k − 2 2n(n− 1) Average

Folding Torus 4 (n− 2)bk/2c+
max(2n− 4, bk/2c)
(n− 2)bk/2c+
max(2n− 4, bk/2c)

Variable
(out of
scope)

Good

Continued on next page
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Table 2.2 – continued from previous page

Topology Max Degree Diameter Cost Performance

Ring 2 n/2 2n Good

Octagon 3 2 12 Very Good

Spidergon n/2 2n + 4 3n/2 Excellent

BT 2L O(log n) TBD Very Good

BFT 2L ∀L = log4 n, ND = L TBD Very Good

SPIN n Irregular
(N log N)/8

Irregular Very good

Heube n n n2n−1 Excellent

Star n 1 n Poor

Table 2.2: Comparison of Network-on-Chip Topologies

Thus far, we have addressed the different architectures, components and relative merits of
various NoC topologies with Graph Theory tools. Any discussion around NoC performance,
particularly in multi-core SoC settings, inevitably includes load balancing, resource distribution,
routing and multi-threading. This will be our focus in Section 2.6 and further sections of this
literature review.

2.6 On Load balancing, Resource Allocation and Multi-
threading in NOC Designs

Whilst a dissection of operating systems theory and practices is not in the scope of this
research, it is trivially known that allocating a large number of objects in multi-threaded
settings on multicore problems will inevitably lead to a degradation in performance, contrary to
the expected twice-fold increase. A basic understanding of resource management and operating
systems tells us that the reason behind this is embedded deeply in software-based resource
allocation mechanisms, such as the well-known glibc allocator in *NIX environments [68]

To this extent, the problem of resource allocation in a NoC context is compounded and unique.
Addressing resource allocation in multi-core applications is complex; scaling this to meet 1K+
cores is even more complex. If one is mindful that a typical OS, operating on commercially
available server-type hardware, is at most dealing with a few tens of cores, given the state of
commercially available CPU technology.
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2.6.1 Load Balancing and Routing

Literature on load balancing in NoC designs usually tackles the matter as a routing problem.
Works on the subject include [69]. Their novel routing policy design is ACO-based and involves
regional routing design inspired by entomology research, specifically observing live ants. Others,
such as [70], considered global network load to devise a centralised, adaptive routing paradigm.
A type of hybrid approach was presented in [71], with their proposed route aggregation using
a super-router node, whereby nodes with dense traffic and long link distances are grouped
together as one routing node, with a routing protocol for the super-router to improve overall
performance. It is worth noting that although a good body deals with routing and load
balancing, approaches focus on load distribution as a routing question rather than an overall
resource allocation problem. Moreover, not much work seems to have gone into load-balanced
routing in an FPGA context; one such literature is [72], which, although superficial in its
approach, still manages to cover the subject of routing and load balancing in an FPGA context.

2.6.2 Resource Allocation

Resource allocation plays a crucial role in optimising the performance, power consumption,
and cost of Networks-on-Chip (NoCs).

Resource allocation, in a NoC context, refers to the process of assigning and managing on-chip
resources, such as processing elements, memory modules, and communication channels, to
different applications or tasks running on the NoC.

Effective resource allocation strategies ensure that on-chip resources, such as processing
elements, memory modules, and communication channels, are efficiently utilised to meet the
demands of applications while adhering to constraints.

In other words, the goal of resource allocation is to optimise the utilisation of available resources
and ensure efficient execution of applications while meeting performance requirements and
constraints.

The problem is more pronounced and indeed critical in general purpose NoC. It was recognised
in works as early as [73]).

Another good good example is [74]. Another more thorough example is [75], although no
attempt is made to address resource allocation in an FPGA context.

Another interesting treatment can be found in [76], whereby the efficiency problem is considered
a fragmentation question. A possible answer is proposed in their DeFrag algorithm.

Further treatment of resource allocation as a communication problem is found in this interesting
and rather novel approach of bringing cycle-accurate SystemC modelling as an instrument of
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choice [77]; a set of load balancing, broadcast and scatter primitives are proposed and put to
good use.

We will now survey the different strategies used in resource allocation as applied to NoC.

2.6.2.1 Application Mapping

As stated earlier, one of the core questions at the heart of NoC applications in SoC contexts is
the allocation of processing and memory resources.

This invariably leads to the need to examine application behaviour and traffic generation
patterns, and this is where application mapping becomes relevant.

Application mapping involves assigning application tasks to specific processing elements in the
NoC. The goal is to minimise communication overhead and maximise resource utilisation.

Various mapping techniques exist, each with its own advantages and disadvantages, the most
common of which are discussed below, with their relative merits and shortcomings:

• Clustering-based mapping: as a strategy centring around the communication behaviour,
applications with a high level of communication demands are grouped and mapped to nearby
processing elements, to reduce communication distances and improve performance [34, p.
102685]. This approach is particularly effective for applications with localised communication
patterns. However, it can be challenging to determine the optimal clustering strategy, and
poor clustering can lead to increased congestion and contention

• Priority-based mapping: Tasks are assigned priorities based on their criticality or perfor-
mance requirements, and higher-priority tasks are allocated to processing elements with
better resources or connectivity [74, p. 4]. This strategy ensures that critical tasks receive
adequate resources, but it may lead to unfairness and starvation for lower-priority tasks.

• Topology-aware mapping: Mapping algorithms consider the NoC topology and its char-
acteristics to make informed allocation decisions. For instance, tasks with high bandwidth
requirements may be placed closer to the network’s centre to minimise contention [10, p.
109]. This approach can improve overall system performance, but it requires a detailed
understanding of the NoC topology and its impact on application performance.

2.6.2.2 Communication Scheduling

This aspect of resource mapping is more focussed on and concerned with the timing and
scheduling of communication resources. It determines the order and timing of data transfers
between processing elements.

Efficient scheduling algorithms minimise contention, prevent deadlocks, and ensure timely
delivery of data. Common scheduling techniques include:
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• Time-division multiple access (TDMA): time is divided into slots, and each commu-
nication channel is assigned specific slots for data transmission. This approach ensures
fairness and avoids collisions but may lead to under utilisation of resources if traffic patterns
are not uniform.

• Round-robin scheduling: Channels are given access to the network in a cyclic manner,
ensuring fairness and simplicity. However, it may not be optimal for applications with
varying communication demands.

• Priority-based scheduling: Communication requests are prioritised based on their urgency
or criticality. This approach ensures that high-priority data is transmitted promptly, but it
may lead to starvation for lower-priority requests.

2.6.2.3 Quality-of-Service (QoS) Management

QoS management aims to guarantee specific performance levels for different applications or
traffic flows in the NoC.

This involves allocating resources and prioritising communication based on QoS requirements.
Techniques for QoS management include:

• Traffic shaping: a technique for regulating the rate of data transmission, to prevent
congestion and ensure fairness among different traffic flows. Can improve overall network
performance but may require complex traffic monitoring and control mechanisms.

• Virtual channels: involves the creation of multiple virtual channels within a physical
channel, to isolate and prioritise different traffic flows, with varying QoS requirements [78].
Virtual channels can improve performance and isolation, but may increase resource overhead
and complexity.

• Adaptive routing: involves dynamic adjustment of routing paths, based on network
conditions and QoS requirements, to minimise latency and avoid congestion [79]. Adaptive
routing can improve performance and fault tolerance, but may require sophisticated routing
algorithms and real-time monitoring of network conditions.

Table 2.3 below summarises aspects discussed above:
Strategy Description Advantages Disadvantages

Application
Mapping

Assigning tasks to
processing elements

Minimises
communication
overhead
Maximises resource
utilisation

Can be challenging
to determine
optimal mapping
May lead to uneven
resource utilisation

Continued on next page
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Table 2.3 – continued from previous page

Strategy Description Advantages Disadvantages

Communica-
tion
Scheduling

Determining order
and timing of data
transfers

Minimises
contention
Prevents deadlocks
Ensures timely data
delivery

May lead to
underutilisation or
starvation
Can be complex to
implement and
manage

QoS
Management

Guaranteeing
performance levels
for different traffic
flows

Improves overall
network
performance
Ensures fairness and
isolation
Provides fault
tolerance

May require complex
mechanisms
Can increase
resource overhead

Table 2.3: Summary of Resource Allocation Strategies in NoCs

2.6.2.4 Emerging Trends in Resource Allocation

As stated earlier in Section 2.6, and subsequent sections, resource allocation plays a critical
role in the design and application of NoC. This is even more pronounced and critical in the
many-core state of today’s high-performance SoC applications and VLSI ASICs, where kilo-core
deployments are increasingly common place [80], and mega-core is only a matter of time [81].

In that sense, the need for ever more creative techniques of resource management and allocation
is driving the current trend in future development. Noteworthy directions are:

• Machine Learning: ML techniques are being used to predict traffic patterns and dynami-
cally adjust resource allocation to optimise NoC performance. This approach can adapt to
changing workloads and improve resource utilisation. The major drawback in using ML is
the need for extensive training data, and complex models.

• Application-specific resource allocation: Recognising that different applications have
unique communication patterns and performance requirements, there is a growing trend
towards tailoring resource allocation strategies to specific application domains [12]. This
approach can optimise performance for specific applications but may require specialized
knowledge and design effort.

• 3D NoC resource allocation: As stated earlier, the natural move to and evolution of the
3D pradigm in NoC applications offered both new opportunities , and posed new challenges
for resource allocation. This has lead to more and more high performance SoC and ASIC
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design application of the 3D NoC model to address questions of density, performance and
energy efficiency, in dense node processing at 5nm and below [82]. Efficiently managing
vertical links and balancing resource utilisation across multiple layers are crucial for optimising
3D NoC performance.

2.7 Optimisation Techniques and Trends for NoC

The design and optimisation of Networks-on-Chip (NoCs) is a multifaceted challenge with
significant implications for system performance, power consumption, and cost. As the number
of cores on a chip increases and the communication demands of applications become more
intricate, efficient NoC design becomes paramount. Various optimisation techniques have been
proposed to address these challenges, each with its own strengths and weaknesses. This section
surveys some prominent NoC optimisation techniques, including machine learning, genetic
algorithms, linear programming, simulated annealing, and game theory, and discusses current
trends in the field. It concludes with a discussion of why genetic algorithms are particularly
well-suited for optimising NoCs modelled as hypergraphs.

2.7.1 Machine Learning for NoC Optimisation

ML techniques have emerged as a promising avenue for NoC optimisation, in very much the
same way they are being applied to address resource allocation questions. This is due to their
ability to discern complex patterns and relationships in data. These techniques can be employed
to predict NoC performance metrics such as latency and throughput, based on architectural
parameters and application characteristics. This predictive capability enables rapid design
space exploration and optimisation without necessitating time-consuming simulations.

One example of ML application in NoC optimisation, is the use of supervised learning techniques
to predict NoC performance and power consumption. This approach involves training a model
on a dataset of NoC configurations, and their corresponding performance metrics. The trained
model can then be used to predict the performance attributes of interest for a new NoC design,
enabling efficient design space exploration [83].

Another trend is the use of reinforcement learning techniques. This involves training an agent
to interact with an environment, and then learn optimal policies through trial and error. In the
context of NoC optimisation, the agent can be trained to select optimal configurations based
on feedback from the NoC environment. This approach has the potential to adapt to dynamic
workload conditions and optimise NoC performance in real-time.

Furthermore, ML can be used to optimise specific aspects of a given NoC design, such as
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routing algorithms and buffer allocation. The models can be trained to predict traffic patterns
and dynamically adjust routing decisions to minimise congestion and improve latency.

Despite its potential, ML applications in NoC optimisation settings also have drawbacks, some
of which are:

• Data dependency: ML models require large and representative datasets for training, to
be useful. Acquiring such datasets can be challenging and time-consuming, especially for
complex NoC designs.

• Black box nature: ML models can be difficult to interpret and understand, making
it challenging to rationalise and cite the reasoning behind their decisions. This lack of
transparency represents a not so insignificant concern for NoC designers, who need to
understand the trade-offs and implications of specific design choices.

• Generalisation limitations: ML models may not generalise well to unseen NoC configura-
tions and/or application workloads. This limitation very often restricts their applicability to
specific design scenarios, and require retraining for new applications and/or architectures.

2.7.2 Genetic Algorithms for NoC Optimisation

Genetic algorithms (GAs) are a class of evolutionary algorithms inspired by natural selection
and genetics. They have been widely used for NoC optimisation due to their ability to
efficiently explore large and complex design spaces. GAs operate on a population of candidate
solutions (NoC configurations) and iteratively evolve them through genetic operations such
as selection, crossover, and mutation. The fitness of each candidate solution is evaluated
based on predefined objective functions, which consider the desired performance metrics and
constraints.

One of the key advantages of GAs for NoC optimisation is their ability to handle multi-objective
optimisation problems. NoC design often involves balancing conflicting objectives, such as
maximising performance while minimising power consumption and area overhead. GAs can
effectively explore the tradeoffs between these objectives and identify Pareto-optimal solutions,
which represent the best possible compromises.

Another benefit of GAs is their adaptability to different NoC architectures and application
domains. By adjusting the fitness function and genetic operators, GAs can be tailored to
optimise NoCs for specific application requirements and constraints. This adaptability makes
GAs a versatile tool for NoC optimisation across various domains.
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2.7.3 Linear Programming for NoC Optimisation

Linear programming (LP) is a mathematical optimisation technique used to achieve the
best outcome (such as maximum profit or lowest cost) in a mathematical model whose
requirements are represented by linear relationships. In the context of NoC design, LP can be
used to formulate and solve optimisation problems related to resource allocation, routing, and
scheduling. By defining objective functions and constraints as linear equations or inequalities,
LP solvers can efficiently find optimal solutions that satisfy the given requirements. For
instance, LP can be used to optimise buffer allocation in NoCs, where the objective is to
minimise buffer sizes while ensuring deadlock-free routing and meeting performance constraints.

The above discussion not withstanding, LP as applied to the NoC optimisation question, has
some distinct disadvantages in two key areas: linearity assumption and scalability. In the first
aspect, LP requires the objective function and constraints to be linear. This assumption may
not hold for all but the most trivial NoC optimisation problems, especially those involving
complex non-linear relationships between design parameters and performance metrics. In the
second regard, LP can become computationally expensive for large scale NoC designs, with
many variables and constraints. This limitation can hinder its applicability in even moderately
complex optimisation problems.

2.7.4 Simulated Annealing for NoC Optimisation

Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of
a given function. It is often used when the search space is discrete (e.g., all tours that visit
a given set of cities). For problems where finding an approximate global optimum is more
important than finding a precise local optimum in a fixed amount of time, simulated annealing
may be preferable to alternatives such as gradient descent. In NoC optimisation, SA can be
used to explore the design space and find optimal or near-optimal solutions for various design
parameters, such as topology, routing algorithms, and buffer sizes [79, p. 185]. SA starts with
an initial solution and iteratively explores neighbouring solutions by randomly modifying the
current solution. The acceptance of a new solution is based on a probability function that
depends on the difference in quality between the current and new solutions and a temperature
parameter that gradually decreases over time.

That being said, SA has its own disadvantages, when applied to NoC optimisation, including
the requirement for careful tuning of parameters, such as the initial temperature and cooling
schedule, to achieve good performance. This tuning process can be time consuming, and often
requiring expert knowledge. Moreover, SA can be slow to converge to the optimal solution,
particularly where complex NoC designs, with large search spaces are concerned.
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2.7.5 Game Theory for NoC Optimisation

Game theory is a mathematical framework that studies strategic interactions between rational
decision-makers. In the context of NoC design, game theory can be used to model and analyse
the interactions between different NoC components, such as routers and processing elements.
By considering the individual objectives and strategies of these components, game theory can
help to design NoCs that achieve optimal overall performance and resource utilisation [84]. For
example, game theory can be used to design routing algorithms that balance the competing
interests of different traffic flows in the NoC, ensuring fair and efficient resource allocation.

The above not withstanding, game theory has its own limitations in this domain, most
noteworthy of which are complexity and reliance on assumptions. In the first regard, applying
game theory to NoC optimisation can be complex, requiring careful modelling of the interactions
between components, and the definition of appropriate payoff functions. In the second regard,
game theory relies on certain assumptions of rationality and behaviour of NoC components.
These assumptions may not always hold true in practice, particularly where complex NoC
designs with dynamic workloads are concerned.

2.7.6 Current Trends

The field of NoC optimisation is constantly evolving, with new techniques and approaches
being proposed to address the growing complexity and challenges of NoC design. Some of the
current trends in NoC optimisation include:

• Hybrid optimisation algorithms: Combining different optimisation techniques, such as
GAs and machine learning, can leverage their respective strengths and improve the overall
optimisation process. For example, GAs can be used for global search and exploration, while
machine learning techniques can be used for local refinement and prediction.

• Application-specific NoC design: Recognising that different applications have unique
communication patterns and performance requirements, there is a growing trend towards
designing NoCs tailored to specific application domains. This approach involves incorporating
application-specific knowledge into the optimisation process to achieve optimal performance
and resource utilisation.

• 3D NoC optimisation: 3D NoCs, which stack multiple layers of NoC architectures,
offer significant potential for performance and scalability improvements. However, they
also introduce new challenges for optimisation, such as thermal management and vertical
link placement. Current research is exploring new techniques for optimising 3D NoCs,
considering these unique challenges.

• Design space exploration and automation tools: To assist NoC designers in navigating
the vast and complex design space, there is a growing need for design space exploration
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and automation tools. These tools can leverage various optimisation techniques, such as
GAs and machine learning, to automate the exploration process and identify optimal NoC
configurations.

2.7.7 Suitability of the GA-Hypergraph Combination

Genetic algorithms offer a compelling approach to NoC optimisation, particularly when NoCs
are modelled as hypergraphs. This suitability stems from the key factors:

1. Handling complexity: Hypergraph models of NoCs can be quite complex, capturing
intricate interconnections and dependencies among processing elements, memory modules,
and other on-chip components. GAs excel at efficiently exploring this complex design space
and identifying optimal configurations. Unlike linear programming, which struggles with
non-linear relationships often present in NoC designs, GAs can navigate these complexities
with ease.

2. Multi-objectivity: NoC design often involves balancing multiple conflicting objectives,
such as performance, power consumption, and area overhead. GAs can effectively handle
multi-objective optimisation problems and identify Pareto-optimal solutions that represent
the best possible trade-offs. This capability sets GAs apart from techniques like simulated
annealing, which may struggle to balance multiple objectives simultaneously.

3. Adaptability: GAs can be easily adapted to different NoC architectures and application
domains by adjusting the fitness function and genetic operators. This adaptability makes
GAs a versatile tool for optimising NoCs modelled as hypergraphs, as the fitness function
can be tailored to consider the specific characteristics and constraints of the hypergraph
model. This contrasts with machine learning, where models often require retraining for new
applications or architectures.

4. Scalability: GAs can handle the increasing complexity of NoC designs, including the
growing number of cores and the intricate interconnections in 3D NoCs. As NoC designs
become more complex, GAs can effectively scale to explore the larger design space and
identify optimal solutions. This scalability is crucial in the era of kilo- and mega-core
systems, where other techniques might falter.

5. Explainability: Unlike machine learning models, which often operate as ”black boxes,”
GAs offer a more transparent optimisation process. The genetic operations of selection,
crossover, and mutation are readily interpretable, allowing designers to understand how
the algorithm arrives at its solutions. This transparency is valuable for NoC design, where
understanding the trade-offs and implications of different design choices is crucial.

In conclusion, GAs really do present several features that make them a powerful and versatile
tool for optimising NoCs, when modelled as hypergraphs. Their ability to handle complex-
ity, multi-objective optimisation, adaptability, scalability, and explainability makes them a
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compelling choice for addressing the challenges of NoC design and optimisation in the contem-
porary landscape of high-performance computing, and the exponential growth in many-core
applications.

Table 2.4: Comparison of NoC Design Space Optimisation Techniques

Technique Features Advantages Disadvantages

Machine Learn-
ing

• Predicts NoC perfor-
mance metrics
• Enables rapid design

space exploration
• Adapts to dynamic
workloads
• Optimises routing

and buffer allocation

• Fast exploration of
design space
• Can handle complex

relationships
• Potential for real-

time adaptation

• Requires large, repre-
sentative datasets
• Black box nature
• Limited generalisa-

tion ability

Genetic Algo-
rithms

• Evolutionary ap-
proach
• Operates on solution

populations
• Uses genetic opera-

tors
• Evaluates fitness ob-

jectives

• Handles multi-
objective optimisa-
tion
• Adaptable to various

architectures
• Efficient space explo-

ration
• Scalable to large de-

signs
• Explainable process

• Computationally ex-
pensive
• Requires careful pa-

rameter tuning

Linear Pro-
gramming

• Mathematical optimi-
sation
• Linear relationships
• Uses equation solvers

• Efficient for linear
problems
• Guaranteed optimal

solutions

• Limited to linear rela-
tionships
• Expensive for large

problems
• May miss NoC com-

plexities

Continued on next page
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Table 2.4 – continued from previous page

Technique Features Advantages Disadvantages

Simulated An-
nealing

• Probabilistic tech-
nique
• Explores neighbour-

ing solutions
• Temperature-based

acceptance

• Can escape local op-
tima
• Simple implementa-

tion

• Needs parameter tun-
ing
• Slow convergence
• Limited for complex

NoCs

Game Theory
• Models strategic in-

teractions
• Considers component

objectives
• Optimises resource

usage

• Insights into interac-
tions
• Fair resource alloca-

tion

• Complex to model
• Relies on assump-

tions
• Not suitable for all

cases

2.8 Chapter Summary

There is arguably a good body of existing work and knowledge around some of the issues
relating to the performance of NoCs in multi-core applications.

Research in NoC optimisation techniques has evolved from basic genetic algorithms to more
sophisticated approaches including machine learning and hybrid methods, as highlighted in
Section 2.7. This not withstanding, current state-of-the-art research tends towards a narrow,
disjointed approach that fails to fully address the challenges of next-generation architectures
requiring 1K+ cores and beyond.

That said, current state-of-the-art research would suggest a narrow, disjointed approach to
resource allocation questions in NoCs for high performance multi-core applications. The world
continues to move rapidly towards 1M+ cores being the norm and massively spiky neural
network implementations, particularly in 5G application, AI, and ML. We can no longer treat
the question of resource allocation and NoC optimisation as a disjointed set of smaller problems.

Further, research in resource allocation and optimisation in FPGAs is scarce. This is especially
true of partially re-configurable FPGAs, for which the demand has never been greater due to
factors such as time to market, cost, performance, and the ever-increasing pressure on silicon
real estate.
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As highlighted in the sections earlier, these are some of the motivations for undertaking this
research, and it is for these reasons that this research is both viable and relevant. This is
summarised in Table 2.5 below:

Table 2.5: 2D NoC vs. 3D NoC: A Comparison [85]

Feature 2D NoC 3D NoC Justification

Topology Mesh/Ring Mesh/Torus -

Diameter [86] O(
√

N) / O(N) O( 3
√

N) 3D reduces diameter, enabling
shorter communication paths
between nodes.

Scalability Limited Improved Lower diameter allows for bet-
ter scalability with increasing
core counts.

Bandwidth Limited Increased More connections and vertical
links in 3D increase the avail-
able bandwidth.

Wire length Longer Shorter Vertical stacking reduces wire
length, leading to lower la-
tency and power consump-
tion.

Density Lower Higher 3D integration enables higher
core density and closer prox-
imity of processing elements.

Resource Allocation Less Efficient More Efficient Shorter communication dis-
tances and increased connec-
tivity allow for more balanced
resource utilisation.

Latency Higher Lower Shorter paths and higher
bandwidth contribute to re-
duced latency.

Energy Efficiency Lower Higher Shorter wires and reduced
communication reduce energy
consumption.

Continued on next page
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Table 2.5 – continued from previous page

Feature 2D NoC 3D NoC Justification

Performance Lower Higher Lower latency, higher band-
width, and efficient resource
allocation improve perfor-
mance.
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Chapter 3

Modelling 3D NOC as Hypergraphs

First introduced by Leonhard Euler to solve the 7 bridges of Konigsberg[87], Graph Theory
is useful in many disciplines for modelling real-life problems involving topology, traversal and
optimisation.

It gained popularity in VLSI design, with applications as a tool for modelling the Dynamic
Timing Analysis (DTA) of VLSI components [88], [89].

This chapter will use higher-order graph theory to investigate the modelling and analysis of 3D
Network-on-chip (3D NOC) architectures. We will then go on to develop a uniform method An
Undirected Graph or simply Graph G = (V, E) consists of finite nonempty sets of vertices V

and edges E[90, p. 148-149]. If each edge is a set {v, w} of vertices, the graph is undirected.
Whereas if each edge is an ordered pair [v, w] of vertices, the graph is a Undirected Graph or
simply Digraph. A graph can be represented using an adjacency matrix A = |V | × |V |, where
an entry A[i, j] = 1 will exist if and only if there is an edge from vertex i to vertex j, and
A[i, j] = 0 if there is no edge. This is a special case of a distance matrix D = |V | × |V | with
the same unit distance for all edges [91].

3.1 Hypergraphs: Characteristics

An Hypergraph H is defined as a generalisation of the idea of a graph, in which an edge, called
an hyperedge, can link any number of vertices. More formally, an Hypergraph H is a pair
H = (V, E), where V is a set of vertices and E is a set of non-empty subsets of V [92]. Each
subset e ∈ E is a hyperedge, and each hyperedge will connect at least one pair of V (i, j).

In an hypergraph, an edge (often called a hyperedge) can connect more than two vertices. In
this situation, a 3-dimensional representation can be considered; more formally, for a set of
vertices V , A hyperedge in this context could be a set of three vertices {v1, v2, v3}.
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A 3-dimensional adjacency matrix(also referred to as an adjacency tensor [93], or simply Tensor)
extends the concept to be useful in representing higher-dimensional data structures or networks.

An hypergraph typically denotes a graph visualised or embedded in the n-dimensional space.
In the context of this work on 3D NoC, we are modelling structures where n=3; hence, we
will use Hypergraph (also, hypergraph) to refer to hypergraphs where n=3, without explicit
specification. Henceforth, we will use n to refer to the number of nodes in the network, the
plane, or in general, without further specifying that n=3.

From fundamental Graph Theory, an adjacency tensor T for a hypergraph of shape n× n× n,
where n is defined as the number of nodes in the graph. An element Tijk in this tensor will
thus have a value of 1 if and only if there is a relationship (i.e. an edge) between node i, node
j, and node k, respectively, else it will have a value of 0. This adjacency tensor provides a
convenient representation for hypergraph relationships among the nodes in the network.

In other words, a 3-dimensional structure is required to represent a hypergraph. The tensor
idea described earlier serves the purpose well; taking H with dimensions |V | × |V | × |V | as
an example, then an entry H[i, j, k] in that structure would be set to 1 if there exists an
hyperedge connecting vertices i, j, and k. Otherwise, it would be set to 0, as described above.
More succinctly:

1. If H[i, j, k] = 1 and all indices are distinct, it indicates a hyperedge connecting vertices
i, j, and k.

2. If two indices are the same, for instance, H[i, j, j], it might represent a traditional edge in
the graph connecting i and j.

3. If all three indices are the same, for example, H[i, i, i], it might denote a self-loop on vertex
i.

To take the ideas developed above further, in the context of hypergraphs and 3D Topologies,
and without loss of generality, a Distance Tensor is three-dimensional array (tensor) D of
size n × n × n, where each element Dijk represents the shortest distance (or weight) from
node i to node j in the kth layer of the 3D structure. Given a 3D topology, the Distance
Tensor would capture the distances between every pair of nodes for each topology layer. This
structure allows one to store and analyse multi-layer or multi-relational data in networks.

Just like the adjacency matrix can be seen as a special case of a distance matrix, the 3D
adjacency matrix can be seen as a special case of a 3D distance tensor. Therefore, an element
D[i, j, k] = 1 in this tensor represents the distance between a hyperedge connecting vertices
i, j, and k, respectively. If there is no such hyperedge, this could be represented as infinity (or
some very large number).

Next, we will now focus our attention on 4 primary topologies of interest: 3D Mesh, 3D Torus,
3D Folding Torus, and 3D Hypercube. Henceforth, topologies are assumed to be 3D structures,
unless stated otherwise.
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For each topology of interest, we will proceed to derive the following characteristics:

1. Adjacency Matrix: An adjacency matrix is a square matrix representing a finite graph.
The matrix elements indicate whether pairs of vertices are adjacent or not in the graph.
For a graph G with n vertices, its adjacency matrix A is an n× n matrix where A[i, j] is 1
if there is an edge between vertices i and j; otherwise, it’s 0.

2. Distance Matrix: The distance matrix is a square matrix containing the shortest distance
between every pair of nodes in the graph. For a graph G with n vertices, its distance matrix
D is an n× n matrix where D[i, j] is the shortest path length from vertex i to vertex j.

3. Weight Matrix: The weight matrix is similar to the adjacency matrix, but instead of
binary values indicating the presence or absence of edges, it contains the weights of the
edges. The corresponding entry is usually set to infinity (or a large value) if there is no
edge between a pair of vertices.

We will now proceed to these features in the context of our topologies of interest, namely
Mesh, Torus, Folding Torus and Hypercube, as follows:

3D Mesh: A 3D mesh consists of vertices arranged in a regular grid. Let us assume the
grid dimensions are n×m× p. Each node in the 3D mesh has a coordinate (x, y, z) where
0 ≤ x < n, 0 ≤ y < m, and 0 ≤ z < p.

Adjacency Matrix:

An adjacency matrix A for this structure would be of size (n×m× p)× (n×m× p). For
two nodes i and j:

A[i, j] =

1 if iandj are adjacent in the 3D mesh

0 otherwise
(3.1)

For nodes to be adjacent, their coordinates (xi, yi, zi) and (xj, yj, zj) should differ by 1 in one
dimension and be the same in the other two dimensions[94].

Distance Weight Matrix: This is similar to the adjacency matrix but with distances. If
nodes are adjacent, the distance is 1; otherwise, it is infinity (or a large number).

3D Cube:

A 3D cube is a specific case of a 3D mesh where n = m = p = 2.

3D Torus:

A 3D torus connects the edges of a 3D mesh, making the topology wrap around. This means
nodes on the boundary are adjacent to nodes on the opposite boundary.

Adjacency Matrix: This matrix is similar to the 3D mesh but with added connections for
wrapping. For example, nodes with x = 0 are adjacent to nodes with x = n− 1 (and similar
for y and z). [95]
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Distance Weight Matrix: As with the 3D mesh, adjacent nodes have a distance of 1 but
with added wrap-around connections.

3D Folding Torus:

A 3D Folding Torus topology is complex. The boundaries wrap around (akin with 3D Torus),
with the addition of folding connections, hence the name.

Adjacency Matrix: Besides the regular torus connections, nodes are also connected across a
folding plane. Depending on the specifics of the folding torus, connections will vary[96].

Distance Weight Matrix: This will depend on the specific fold connections and the regular
torus connections.

3.2 Topology descriptions as graphs

This section and the following paragraphs will consider each topology’s vertex and edge
characteristics. The end goal will culminate towards modelling each topology’s characteristics
as a set of Performance Cost Ratio functions (PCR), introduced in Section 3.7.1

3D Mesh:

Vertices: Every point in the 3D mesh is a vertex. If the mesh has dimensions n ×m × p,
there are n×m× p vertices. Each vertex can be identified by its 3D coordinates: (x, y, z)
where 0 ≤ x < n, 0 ≤ y < m, and 0 ≤ z < p[97, p. 109].

Edges: There is an edge between any two adjacent vertices in the mesh. Specifically:

• If two vertices share the same y and z coordinates but have x coordinates that differ by 1,
they’re connected.

• If two vertices share the same x and z coordinates but have y coordinates that differ by 1,
they’re connected.

• If two vertices share the same x and y coordinates but have z coordinates that differ by 1,
they’re connected.

Hyper Cube:

Vertices: The 3D cube is a special case of the 3D mesh with 8 vertices, represented as the
corners of a cube.

Edges: Each vertex is connected to 3 other vertices - those it shares a face with. There are
12 edges in total.

3D Torus:

Vertices: Same as the 3D mesh.
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Edges: The 3D torus has all the edges of the 3D mesh plus additional edges that ”wrap
around”. Specifically:

• Vertices on the left boundary (where x = 0) are connected to vertices on the right boundary
(where x = n− 1), and vice versa if they share the same y and z [98].

• Similarly, vertices on the top boundary (where y = 0) are connected to vertices on the
bottom boundary (where y = m− 1), and vice versa if they share the same x and z.

• Vertices on the front boundary (where z = 0) are connected to vertices on the back
boundary (where z = p− 1), and vice versa if they share the same x and y.

3D Folding Torus:

The 3D folding torus is more complex and can vary based on the exact fold type. Here’s a
basic interpretation:

Vertices: Same as the 3D mesh.

Edges: The 3D folding torus has all the edges of the 3D torus plus additional edges for the
fold. The exact nature of these edges depends on the fold’s specifics. For example, there could
be Edges connecting vertices on the ”top” of the torus to vertices on the ”bottom”, creating
a fold that’s akin to a Möbius strip, but in three dimensions.

The exact specification of the ”folding” in the 3D folding torus will dictate additional edges.
The interpretation above provides a high-level overview, but the specific topology’s exact
details must be clarified to give an accurate graph representation.

Orthogonal & Diagonal Edges

In the context of the 3D topologies mentioned, ”orthogonal” and ”diagonal” edges pertain to
how nodes are connected in the structure.

Orthogonal Edges:

These edges connect two nodes that share two of the three coordinates and differ by exactly
one unit in the third coordinate. In our 3D topologies:

1. 3D Mesh & 3D Cube: For any given vertex with coordinates (x, y, z), it has orthogonal
edges to:
• (x± 1, y, z) (if within bounds)
• (x, y ± 1, z) (if within bounds)
• (x, y, z ± 1) (if within bounds)

2. 3D Torus:
• Same as the 3D Mesh, but with wrapping. So, a node at one boundary has an orthogonal

connection to a node at the opposite boundary in the torus.
3. 3D Folding Torus

• Same as the 3D Torus, but with additional orthogonal connections depending on the
specifics of the folding.
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Diagonal Edges:

Diagonal edges connect two nodes that differ in more than one coordinate.

3D Mesh and 3D Cube

• A vertex (x, y, z) could have diagonal edges to:
– (x± 1, y ± 1, z)
– (x± 1, y, z ± 1)
– (x, y ± 1, z ± 1)

• And the fully diagonal edges would be to:
– (x± 1, y ± 1, z ± 1)

However, in the standard 3D Mesh and Cube representations, these diagonal connections do
not typically exist.

3D Torus

• Same potential diagonal connections as the 3D Mesh, but with wrapping. These diagonal
connections are not standard for a 3D torus but can be conceived with the same wrapping
logic.

3D Folding Torus

• It would include potential diagonal connections similar to the 3D Torus but can have other
diagonal connections depending on the specific fold.

In general, in the topologies discussed, orthogonal connections are the most common, and
diagonal connections are less frequent or non-existent. However, nothing theoretically prevents
the addition of diagonal connections; they are just not standard for those topologies.

3.3 Graph Characteristics: a summary

For each of the topologies discussed so far, we are now in a position to characterise the
corresponding graph features as follows:

3D Mesh:

Vertices (nodes):
V = n×m× p (3.2)

Edges: If those neighbours exist, each vertex connects to a neighbour to its right, left, up,
down, in front, and behind.
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E =


(n− 1)×m× p edges in the x− direction.

n× (m− 1)× p edges in the y − direction.

n×m× (p− 1) edges in the z − direction.

(3.3)

total:
Etotal = (n− 1)×m× p + n× (m− 1)× p + n×m× (p− 1) (3.4)

Graph Diameter: In a 3D mesh, the longest shortest path would be from one corner to the
opposite corner. This would be:

D = (n− 1) + (m− 1) + (p− 1) (3.5)

Hyper Cube:

This is a specific case of a 3D Mesh where n = m = p = 2.

Vertices:
V = 8 (3.6)

Edges:
E = 12 (Each of the 8 vertices is connected to 3 others) (3.7)

Graph Diameter:

D = 3 (Y ou can go from one corner to the opposite corner in 3 steps) (3.8)

3D Torus:

Vertices:
V = n×m× p (3.9)

Edges: Every vertex in a 3D torus has 6 neighbours (assuming n, m, p > 1 to avoid degenerate
cases). However, every edge is counted twice (once for each vertex it connects).

Total:
Etotal = n×m× p× 6

2 = 3nmp (3.10)

Graph Diameter: The diameter would be the maximum distance travelled in one dimension
without wrapping. Hence, it would be half the size of the largest dimension, rounded up:

D = max
(⌈

n

2

⌉
,
⌈

m

2

⌉
,
⌈

p

2

⌉)
(3.11)
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3D Folding Torus:

The specifics of a 3D folding torus can vary based on the exact fold type if we assume that
the folding only adds connections without removing the existing ones:

Vertices:
V = n×m× p (3.12)

Edges: Greater than or equal to that of a standard 3D torus. The exact number would depend
on the nature of the folds.

Graph Diameter: This would typically be less than or equal to the standard 3D Torus, as
the folding usually provides shortcuts across the topology. The exact diameter depends on the
specifics of the folding.

For the 3D folding torus, a precise specification of the ”folding” would be required for accurate
measurements. This is the subject of the next section 3.3, and associated subsections.

Manifolds & the 3D Torus Special Case

Given the context of topological manifolds, a 3D torus is embedded in a higher-dimensional
Euclidean space (not directly realisable in ( R 3 ) due to its topology). For the case of a 3D
Folding Torus, the folding specifies how the manifold is deformed or connected in ways that
are not native to a simple 3D torus.

To understand the specification of the folding in the case of a 3D Folding Torus, one would
need:

1. Type of Connection: Describes how sections of the manifold connect or relate to each
other. For example, a Möbius strip has a twist; it is a kind of ”fold”.

2. Location of the Folds: Identifying where these folds or connections occur on the torus.
3. Topological Changes: Determine if the fold alters or deforms the overall topology. For

instance, adding a handle to a torus changes its genus, and such specifics must be identified.
4. Embedding in Higher Dimensions: To visualise or represent the folded torus, it might

be necessary to understand its embedding in a higher-dimensional space, like R4 or beyond.
This can help understand its structure, intersections, and overlaps.

5. Local Properties: Manifolds are defined by their local Euclidean properties. For any point
on our folding torus, one should be able to find a small enough neighbourhood around it that
is topologically equivalent to R3. Any folding should maintain this property; understanding
this can help discern the fold’s nature and extent.

6. Global Properties: While manifolds are locally Euclidean, their global structure can vary
dramatically based on folds and connections. Understanding the global properties can help
grasp the manifold’s overall shape and connectivity.
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3.4 Analysis of Topologies of Interest

To conclude the discussion above without any loss of generality, we will provide the above
metrics, as calculated for an m, n, p term = 3 for all topologies except Hypercube, where a
single metric of D=3 is used. Each topology and the corresponding Adjacency and Distance
Weight matrices are depicted.

3D Mesh Example The 3D Mesh topology consists of nodes arranged in a cubic structure,
where each node is connected to its six orthogonal neighbours (up, down, left, right, front,
and back) except on the boundaries. While considering diagonals, nodes connect to additional
neighbours located diagonally on the same plane or the plane above/below. Figure 3.1 below
depicts this structure:

Figure 3.1: 3D Mesh Topology (3x3x3) - Figure 1

Table 3.1: 3D Mesh Properties

Diameter Number of Nodes Number of Edges

D = 3× (3− 1) 27 3× 27− boundary connections
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Adjacency Matrix (indicative for 3D Mesh) =



0 1 0 . . .

1 0 1 . . .

0 1 0 . . .
... ... ... . . .


(3.13)

Distance Weight Matrix for 3D Mesh =



0 1 ∞ . . .

1 0 1 . . .

∞ 1 0 . . .
... ... ... . . .



3D Torus Example The 3D Torus is a cyclic version of the 3D Mesh. Nodes on the edges
are connected cyclically to nodes on the opposite edge, creating a wrap-around connection.
3.2 below depicts this structure:

Figure 3.2: 3D Torus Topology (3x3x3) - Figure 2

Table 3.2: 3D Torus Properties

Diameter Number of Nodes Number of Edges

D = 3
2 27 3× 27
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Adjacency Matrix (indicative for 3D Torus) =



0 1 1 . . .

1 0 1 . . .

1 1 0 . . .
... ... ... . . .


(3.14)

Distance Weight Matrix for 3D Torus =



0 1 1 . . .

1 0 1 . . .

1 1 0 . . .
... ... ... . . .


(3.15)

3D Folding Torus Example The 3D Folding Torus is similar to the 3D Torus but with
additional diagonal links connecting nodes on opposing corners of the cube. 3.4 depicts this
structure:

Figure 3.3: 3D Folding Torus Topology (3x3x3) - Figure 3

Table 3.3: 3D Folding Torus Properties

Diameter Number of Nodes Number of Edges

D = 3
2 27 3× 27 + diagonal links
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Adjacency Matrix (indicative for 3D Folding Torus) =



0 1 1 . . .

1 0 1 . . .

1 1 0 . . .
... ... ... . . .


(3.16)

Distance Weight Matrix for 3D Folding Torus =



0 1 1 . . .

1 0 1 . . .

1 1 0 . . .
... ... ... . . .


(3.17)

3D Hypercube (Depth 3) Example The 3D Hypercube with depth 3, also called an 8-cube,
consists of nodes where each node is connected to eight other nodes, representing a binary
sequence of 3 bits. Figure 3.4 depicts this structure:

Figure 3.4: 3D Hypercube Topology (Depth 3) - Figure 4

Table 3.4: 3D Hypercube Properties

Diameter Number of Nodes Number of Edges

D = 3 23 = 8 8×3
2 = 12
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Adjacency Matrix (indicative for 3D Hypercube) =



0 1 1 1 0 0 0 0

1 0 1 1 0 0 0 0

1 1 0 1 0 0 0 0

1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1

0 0 0 0 1 0 1 1

0 0 0 0 1 1 0 1

0 0 0 0 1 1 1 0



(3.18)

Distance Weight Matrix for 3D Hypercube =



0 1 2 . . .

1 0 1 . . .

2 1 0 . . .
... ... ... . . .


(3.19)

3.4.1 Performance Analysis

In the previous sections, we laid the groundwork and detailed our approach to modelling our
3D NoC topologies of interest, such as Hypergraphs in the n-dimensional space, with n=3.
In the coming sections, we will be building the groundwork for analysing the performance of
NoCs in general, focusing on the 3D topologies discussed so far.

We will start by associating a simple cost with each link and develop a cost function that
would return to the total cost associated with traversing a particular path, when given a start
node, an end node, and a list of edges to traverse.

To build our understanding, we focus on three Graph Theory concepts: the number of
vertices (V), edges (E) and diameter (D) of the graph representing each topology of interest,
discussed earlier in Section 3.2 and Section 3.3. While dealing with 3D Hypercube Structures,
connectivity aspect must be dealt with. It will be discussed separately in Equation 3.4.1,
dealing with the Hypercube structure. Next is a topology breakdown:

3D Mesh:

Vertices:

The number of vertices in a 3D mesh topology is straightforward to calculate. Given that the
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topology is a 3D grid with dimensions n×m× p, the total number of nodes V is:

V = n×m× p (3.20)

Edges:

Edges in a 3D mesh are formed between neighbouring nodes in all three dimensions:

1. Along the n dimension, each node has an edge to its right, except the last node in each
row. Hence, the number of edges along the n dimension is (n− 1)×m× p.

2. Along the m dimension, each node has an edge below it, except the last node in each
column. Hence, the number of edges along the m dimension is n× (m− 1)× p.

3. Along the p dimension, each node has an edge in front of it, except the last node in depth.
Hence, the number of edges along the p dimension is n×m× (p− 1).

.

Therefore, the sum of the total number of edges E in the 3D mesh topology is:

E = (n− 1)×m× p + n× (m− 1)× p + n×m× (p− 1) (3.21)

Diameter: The diameter of a graph is the longest path between any two nodes in the graph.
In a 3D mesh topology, the longest shortest path is from one corner of the mesh to the opposite
corner. If you travel in a straight line through the mesh along each dimension, you will get:

D = (n− 1) + (m− 1) + (p− 1) (3.22)

Where D is the diameter, representing the maximum number of hops required to traverse from
one corner of the mesh to the opposite corner.

So, to summarise:

V = n×m× p (3.23)

E = (n− 1)×m× p + n× (m− 1)× p + n×m× (p− 1) (3.24)

D = (n− 1) + (m− 1) + (p− 1) (3.25)

Hypercube (or n-cube) an Hypercube (or n-cube) is a fascinating topological structure. A
1D hypercube is a line segment, a 2D hypercube is a square, and a 3D hypercube is a cube.
Vertices are effectively doubled for each extra dimension, and corresponding connecting edges
are added. Wlog, For a 3D structure, the Hypercybe is simply a Cube, hence our use of the
terms Hypercube and Cube interchangeably throughout this text.
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We will now proceed to break down the structure of a cube using the same logic and means
applied earlier to the 3D Mesh topology:

Nodes (Vertices):

The cube has 8 vertices regardless of how we derive it.

For a general n-dimensional hypercube, the number of vertices is 2n. So, for a 3D hypercube:

V = 23 = 8 (3.26)

Edges:

Each vertex of a cube is connected to 3 other vertices. So, for 8 vertices, we might think there
are 8× 3 = 24 edges. However, this counts each edge twice (once for each of its vertices).

So for a 3D hypercube (cube):

E = 8× 3
2 = 12 (3.27)

So, generally, for an n-dimensional hypercube, edges are added for each additional dimension.
The formula becomes:

E = n× 2(n−1) (3.28)

... and for the 3D hypercube:

E = 3× 2(3−1) = 3× 4 = 12 (3.29)

Diameter:

For a 3D hypercube, the diameter is the longest distance between any two vertices. In the
case of a cube, it is the space diagonal passing through all three dimensions. Thus:

D = 3

For a general n-dimensional hypercube, the diameter is n, as you can move from one ”corner”
vertex to the opposite ”corner” vertex by changing the state (0 to 1 or vice versa) for each
dimension once.

Connectivity: Another aspect to consider is node connectivity. For a 3D hypercube, each
vertex is connected to 3 other vertices, which is evident from its cube structure. In general,
for an n-dimensional hypercube, each node is connected to n other nodes, as we can flip the
state in each dimension.
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Faces: A 3D hypercube (cube) has 6 faces. In the context of hypercubes, each ”face” can be
considered an (n-1)-dimensional hypercube. So, for a 3D hypercube, its faces are 2D squares.

To summarise for the 3D Hypercube:

V = 8 (3.30)

E = 12 (3.31)

D = 3 (3.32)

Faces = 6 (3.33)

(which are 2D squares)

Connectivity = 3 (3.34)

(this is the connectivity per vertex value)

For general n-dimensional hypercube:

V = 2n (3.35)

E = n× 2(n−1) (3.36)

D = n (3.37)

Connectivity = n (3.38)

The Faces (or (n-1)-dimensional sub-hypercubes) is a complex combinatorial expression
depending on n, but for the 3D case, it is 6.

Next, we are now going to lay the foundations for the remaining topologies of interest, as
follows:

3D Torus:

A torus is a structure where the endpoints are connected. In a grid or mesh context, a 3D
torus is formed when the grid is ”wrapped” so that the edges connect opposite sides.

Vertices: Like the 3D Mesh, the 3D Torus has dimensions n×m× p, so:

V = n×m× p

Edges: Edges in a 3D torus are similar to the 3D mesh but with additional edges connecting
the boundary vertices.

1. Along the n dimension: n×m× p
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2. Along the m dimension: n×m× p

3. Along the p dimension: n×m× p

Thus, the total edges E are:
E = 3× n×m× p (3.39)

Diameter: In a 3D torus, the diameter is the longest shortest path between any two nodes.
It is half the length, width, or depth, whichever is largest since the torus can be traversed in
either direction (it’s ”wrapped around”). So:

D = max(n, m, p)/2(rounded up ifnecessary). (3.40)

3D Folding Torus: A 3D Folding Torus is a 3D Torus with additional diagonal connections.

Nodes (Vertices): Same as the 3D Torus:

V = n×m× p (3.41)

Edges:

Edges in a 3D folding torus include all the edges from the 3D torus plus the additional diagonal
connections:

1. All edges of 3D Torus: 3× n×m× p

2. Diagonal connections: n×m× p

Edges E:

E = 4× n×m× p (3.42)

Diameter:

The diameter has been reduced since we now have diagonal shortcuts. However, finding
the exact diameter is more complicated because it depends on the exact configuration and
dimensions of the grid. Typically, it will be less than the standard 3D torus. However, exact
calculation would require considering the most efficient path using the diagonal shortcuts.

So to compare the two variants of 3D Torus:

3D Torus:

60



Chapter 3 A.Al-Alousi (2024)

V = n×m× p (3.43)

E = 3× n×m× p (3.44)

D = max(n, m, p)/2 (3.45)

Where D is rounded up, if necessary

3D Folding Torus:

V = n×m× p (3.46)

E = 4× n×m× p (3.47)

D is Less than the 3D torus but requires more detailed analysis for an exact value.

3D Folding Torus: The exact nature and configuration of a ”folding torus” can vary based
on definitions. This is a common understanding, but specific research or context could adjust
or refine these definitions and calculations. We shall make some assumptions regarding this
and discuss it at the appropriate point.

3.5 Latency, Bandwidth, and Throughout as Performance
parameters for topologies of interest

In the preceding sections, we decomposed the characterisation of the NoC topologies under
consideration as hypergraphs. We further disseminated characteristics such as vertices, edges,
and diameter to model each topology and its physical characteristics.

In the following sections, we will explore the performance aspects of each topology in detail,
focusing on the bandwidth, latency, and throughput. Our goal is to develop a more compre-
hensive understanding of these parameters through mathematical principles utilising graph
theory.

3.5.1 Latency

Latency is the time delay between sending a signal and receiving a response. However, the
specific definition and implications of latency can vary depending on the context.

In networking, latency refers to the time it takes for a packet of data to travel from the source
to the destination [99]. It is usually measured in milliseconds. It encompasses all delays from

61



Chapter 3 A.Al-Alousi (2024)

data encoding into a packet, its propagation across the network, routing through intermediate
devices such as switches and routers, and decoding at the destination [100].

In the context of the NoC domain, latency is the time it takes for a packet (or flit) to cross
from its originating core or IP block to its destination somewhere else in the network [101].
More importantly, the aspect of latency in 3D NoCs is critically affected by the interdimensional
links in silicon, known as Through-Silicon Vias (TVS) [102]).

Furthermore, the latency in a 3D NoC critically affects the overall performance of the whole IC,
especially with concurrent communications between multiple cores or blocks [103]. Here, factors
such as topology, routing algorithms, traffic patterns, and the architectural characteristics of
individual components contribute to overall latency [104].

Thus, low latency is essential to the performance of multi-core systems to ensure that the
advantages of parallelism in multi-core systems are not dominated by communication delays.

Now, for the topologies discussed so far, wlog, let us assume that each link traversed costs
one single resource unit of latency. Then, let us now consider the latency expressions for all
topologies using Dijkstra algorithm, [105] to traverse each topology. The latency for traversing
a graph using Dijkstra’s algorithm depends on the shortest path between the source and
destination nodes.

The shortest path will depend on the topology of the network and the weights (costs) associated
with each edge. Given that each link traversed costs one single resource unit of latency, the
latency in terms of Dijkstra’s algorithm would equal the number of hops (edges) in the shortest
path.

For each topology, the latency expressions are as follows:

3D Mesh:

The Maximum Latency occurs when the source is one corner of the mesh, and the destination
is the diagonally opposite corner. The number of hops (edges) in the shortest path would be
n + m + p− 3. (Subtracting 3 since we count nodes but not edges.)

Latency Expression:
L = n + m + p− 3 (3.48)

3D Torus: Given that a Torus, by its very definition wraps around. The maximum distance
and The Maximum Latency would be half the size of any of its dimensions. The worst-case
scenario would be the largest dimension divided by 2 (since you can traverse the torus in either
direction and thus more efficient to take the shorter route).

Latency Expression:
L = max(n, m, p)/2 (3.49)

(rounded up if necessary)
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3D Hypercube:

Maximum Latency is the longest path in a hypercube (simply a cube), its space diagonal.
Thus, the maximum latency is 3 hops.

Latency Expression:
L = 3 (3.50)

3D Folding Torus:

Given the diagonals in the folding torus, the exact maximum latency would require more
detailed analysis. However, having diagonal connections reduces the number of hops needed to
reach the opposite corner of the topology, potentially halving the latency in certain scenarios
compared to a regular 3D torus.

While the exact number may require detailed computation, let us assume, wlog, that under
worst-case distance traversal between two nodes, the diagonal routes can reduce latency by
half compared to travelling across the 3D torus. Therefore:

Latency Expression:
L = max(n, m, p)/4 (3.51)

(rounded up if necessary)

It is noteworthy that the above expressions represent the worst-case scenarios (maximum
latencies) for each topology. In practice, the latency for a specific source-destination pair
would depend on their relative positions in the topology.

One popular method to find the shortest path between two nodes is to employ the Dijkstra
algorithm for the shortest path, but the actual number of hops (and hence the latency) would
vary based on the specific nodes traversed.

3.5.2 Bandwidth & Throughput

The concepts of bandwidth and throughput are closely related but represent different measures
in network communication. Specifically:

• Bandwidth: Bandwidth is the maximum data transfer rate across a network[106, p. 20, p.
150]. It is the capacity of the physical or logical links. For instance, if a link can carry 1
Gbps, its bandwidth is 1 Gbps.

• Throughput: Throughput is the actual observed data transfer rate. Due to various factors
like network congestion, protocol overhead, and other interference, the throughput is often
less than the bandwidth.

Now, for our topologies, assuming that every link has the same bandwidth (B ) (measured in
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units such as Mbps or Gbps), we can derive expressions for total bandwidth and throughput
for each topology as follows:

3D mesh: For the 3D mesh topology, performance parameters are modelled as follows:

Bandwidth: Each node connects to its neighbours in 3 dimensions; each will contribute 3B
units to the total bandwidth. However, since each link is shared between two nodes, the total
bandwidth is more conformant with:

Btotal = 1.5 (3.52)

Throughput: Assuming the shortest path according to Dijkstra, throughput is:

Throughput = B (3.53)

given that only one link is active for the data transfer.

3D Torus: Bandwidth: Similarly to the 3D Mesh topology, each node connects to its

neighbours in 3 dimensions; however, the nodes on the network also connect to the nodes on
the opposite edge, by the very definition of the torus geometry. The total bandwidth thus
remains:

Btotal = 1.5× V ×B (3.54)

Throughput: Given the torus geometry of the structure and that data can take a shortcut
via the wrap-around, the throughput for a typical path would be:

Throughput = B (3.55)

3D Hypercube: Bandwidth: Each node in the hypercube has three links. Then:

Nodes = 23 = 8 (3.56)

Bandwidth = Btotal = 1.5× 8×B = 12B (3.57)

Throughput: For a direct connection between any two nodes in the hypercube, the throughput
would be B.

3D Folding Torus:

Bandwidth: In addition to the regular torus connections, the folding torus has diagonal
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connections, making four connections per node:

Btotal = 2× V ×B (3.58)

Throughput: Given the diagonal shortcuts, the throughput for a typical path would still be B

since the route would be shorter.

3.6 Performance, Topology and Routing

Based on the preamble earlier in the chapter, simulations were carried out to investigate the
following areas:

• Relationship between network size, latency, throughput and message size
• Relationship between latency, throughput and routing algorithm

The simulation was carried out for a variety of different network sizes, using a configurable
traffic generator, the code and configurations of which appear in Appendix A. A detailed
presentation and further elaboration appears later in Section 3.11, Section 3.12, Section 3.13,
and their respective subsections.

The results were then plotted for the topologies of interest, and appear later on in this chapter
and the specific use cases of Chapter 4 and Chapter 5, but can be briefly summarised graphically,
as in Figure 3.5, Figure 3.6 and Figure 3.7. We can observe a clear correlation between message
size, latency and throughput. We can further observer that this is independent of the routing
algorithm chosen, despite routing having a clear impact on all of these. We can further observe
that there is an optimal message and network size for a given topology, size and routing
protocol.

3.7 Determining The most performant topology

To determine the highest-performing topology regarding latency, bandwidth, and throughput
versus the number of links utilised, we should consider a performance metric for each aspect
and then rank the topologies accordingly.

For simplicity, we will ignore aspects such as congestion and traffic patterns as out of the
scope of this work. One reference on this issue is [107], where the impact of data serialisation
over TSVs is considered; another reference is [108] in which the propagation delay over TSVs
is modelled.

We will next develop the concept of Performance-Cost Ratio functions for the performance
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(a) 3D Hypercube/Dijkstra

(b) 3D Hypercube/XYZ

Figure 3.5: Performance comparison for 3D Hypercube

elements of latency, bandwidth and throughput discussed earlier, focusing on each of the
topologies we studied earlier.

Assumptions:

1. Latency: Lower is better.
2. Bandwidth: Higher is better.
3. Throughput versus Number of Links utilised: Higher throughput per link is better.

Given: Each link has a bandwidth of B.

3D Mesh:

Latency: L = n + m + p− 3 (3.59)

Total Bandwidth: Btotal = 1.5× V ×B (3.60)

Throughput per Link: T = B

3 (3.61)
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(a) 3D Mesh/Dijkstra

(b) 3D Mesh/XYZ

(c) 3D Torus/Dijkstra

Figure 3.6: Performance comparison for 3D Mesh and Torus (Part 1)

3D Torus:
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(a) 3D Torus/XYZ

Figure 3.7: Performance comparison for 3D Torus (Part 2)

Latency: L = max(n, m, p)/2 (3.62)

Total Bandwidth: Btotal = 1.5× V ×B (3.63)

Throughput per Link: T = B

3 (3.64)

3D Hypercube:

Latency: L = 3 (3.65)

Total Bandwidth: Btotal = 12B (3.66)

Throughput per Link: T = B (3.67)

3D Folding Torus:

Latency: L = max(n, m, p)/4 (3.68)

Total Bandwidth: Btotal = 2× V ×B (3.69)

Throughput per Link: T = B

4 (3.70)

Observations:

Based on the PCR analysis and simulation results, the 3D Hypercube with XYZ routing
emerges as the most efficient topology when considering all performance metrics:
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Table 3.5: For a 3× 3× 3 configuration:

Topology Latency Bandwidth Throughput per link
3D Mesh 6 13.5B B

3
3D Torus 2 13.5B B

3
3D Hypercube 3 12B B

3D Folding Torus 1 18B B
4

• Best throughput per link utilisation
• Most efficient resource usage
• Best scalability characteristics
• Lowest computational overhead for routing

While the 3D Folding Torus shows advantages in theoretical maximum bandwidth, the practical
overhead of implementing folding connections and managing diagonal routes makes it less
efficient overall, in comparison to the Hypercube’s balanced characteristics make it the optimal
choice for most high-performance applications.

With that in mind, if latency advantages of a well proliferated topology are the primary
concern, the 3D Folding Torus is a good choice; If bandwidth is the primary concern, the
3D Folding Torus is the best choice.

If the primary concern is maximising throughput per link utilised, the 3D Hypercube wins,
and the results substantiate the observation.

Considering all factors, the 3D Folding Torus has the highest overall latency and bandwidth
performance. However, if the efficient utilisation of each link is a priority (i.e., the highest
throughput per individual link), the 3D Hypercube is superior.

The choice would thus depend on the specific requirements of a given application or use case.
If overall speed (latency) and total data capacity (bandwidth) are paramount, the 3D Folding
Torus seems best. If efficient utilisation of every connection (throughput per link) is critical,
the 3D Hypercube topology will be the winner.

3.7.1 Resource Utilisation and Performance to Cost Ratio (PCR)

For any design space framework to be effective, there needs to be a quantifiable means of
measuring the goals of interest [109]. This enables objective comparison and evaluation
of different design points within the framework, facilitating informed design decisions and
optimisation.

We’ve thus far developed the idea of modelling 3D NoC architectures as hypergraphs, which
are well understood mathematical structures. We now need to devise some means of measuring
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our characteristics of interest, such that we can gauge the effectiveness of a given topology in
achieving our goals.

These characteristics could include network diameter, bisection bandwidth, or average hop
count, which are crucial parameters for evaluating NoC performance and have been extensively
studied in recent NoC literature [110], as well as in this chapter.

Efficient metrics and evaluation methods are essential for exploring large design spaces and
optimising NoC architectures under various constraints, especially as NoC designs grow in
complexity and scale [111].

With computational efficiency in mind, the simpler the means, the lower the modelling overhead,
and ultimately computation time expended in the simulation.

This is particularly important when dealing with the analysis of 3D NoCs, where the design
space is significantly larger compared to 2D NoCs.

We will now introduce the concept of Performance-to-Cost-Ratio concept as just such means.

For simplicity, we can define:

Performance-to-Cost Ratio(PCR) = Performance Metric

Resource Cost(Links + Nodes) (3.71)

Given the above, let us rank the topologies according to PCR, but first, let us get some
assumptions out of the way:

Latency: For latency, lower is better. So, a modified PCR for latency can be:

PCRlatency = 1
L× (Links + Nodes) (3.72)

Bandwidth: Higher bandwidth per link is preferable, which indicates that the network can
carry more data simultaneously. Thus, the PCR for bandwidth can be expressed as:

PCRbandwidth = Bandwidth per Link

Links + Nodes
(3.73)

Just as with throughput, when considering bandwidth, we are looking at how much data can
be transferred through the network relative to the resources it consumes. Thus, the formula
remains similar.

Throughput: Higher throughput per link is better. PCR for throughput is:

PCRthroughput = Throughput per Link

Links + Nodes
(3.74)
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For a 3× 3× 3 configuration: 3D Mesh:

Nodes = 27 (3.75)

Links = 3pernode, shared between two nodes; 1.5× 27 = 40.5
(3.76)

Latency PCR = 1
6× (27 + 40.5) (3.77)

Throughput PCR = B/3
27 + 40.5 (3.78)

3D Torus:

Nodes = 27 (3.79)

Links = 3pernode, shared between two nodes, so1.5× 27 = 40.5
(3.80)

Latency PCR = 1
2× (27 + 40.5) (3.81)

Throughput PCR = B/3
27 + 40.5 (3.82)

3D Hypercube: (Note: Hypercube dimensionality does not increase linearly, but we will use
it for comparison.)

• Nodes: 8
• Links: 3 per node, shared, so 1.5× 8 = 12
• Latency PCR: 1

3×(8+12)

• Throughput PCR: B
8+12

3D Folding Torus:

• Nodes: 27
• Links: 4 per node, shared, so 2× 27 = 54
• Latency PCR: 1

1×(27+54)

• Throughput PCR: B/4
27+54

The PCR values will determine the topology with the best performance-to-resource cost. Exact
values of the above expressions are required for a complete comparison. However, qualitatively,
we can make the following observations:

• The 3D Hypercube might emerge as the most efficient for a small number of nodes (8
nodes) and fewer links. However, it might not scale well for larger configurations.

• The 3D Folding Torus offers exceptional performance (in terms of low latency) but
demands more resources, especially links.

• 3D Mesh & 3D Torus are somewhat in the middle ground.
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In summary, if the requirement is to achieve the best performance with the smallest number
of nodes and links, then the 3D Hypercube is a good candidate. However, if we are open to
more resource usage for exceptional performance, especially in larger configurations, then the
3D Folding Torus is preferable.

3.8 Theoretical Bounds of 3D NoC Topologies

This section will delve into the theoretical bounds of 3D NoC topologies. We will explore
the characteristics and hypergraph representations of three specific 3D architectures: the 3D
Mesh, the 3D Torus, and the 3D Hypercube. These architectures offer distinct connectivity
options, performance advantages, and scalability features, making them suitable for various
applications in network-on-chip topologies. We will analyse the hypergraph representations
of these architectures, their diameter, average latency, and other key performance attributes.
Additionally, we will discuss their theoretical bounds and the implications of these bounds on
their practical implementation in large-scale systems.

To accurately evaluate the performance of different network-on-chip architectures, it is essential
to use standard metrics that capture key aspects such as throughput, latency, energy dissipation,
and silicon area overhead[112]. Throughout, we shall use (n) to denote the number of nodes
or communication entities in a topology, and (B) to refer to the individual link’s bandwidth,
each link being a hyperedge.

3.8.1 Hypergraph Characteristics of 3D Mesh Architecture

The 3D Mesh architecture can be represented as a hypergraph with the following characteristics:

• Vertices: The set of vertices, V, for the 3D Mesh architecture is given by:

V = {vijk|0 ≤ i < n, 0 ≤ j < m, 0 ≤ k < p} (3.83)

• Hyperedges: The set of hyperedges, E, for the 3D Mesh architecture is given by:

E = {(vijk, v′
i′j′k′)||i− i′|+ |j − j′|+ |k − k′| = 1} (3.84)

• Diameter: The diameter, D, of the 3D Mesh hypergraph is given by:

D = 2(n− 1 + m− 1 + p− 1) (3.85)

• Throughput: The average Throughput, T, for the 3D Mesh architecture depends on factors
such as the number of nodes, the communication patterns, and the routing algorithms. For
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simplicity, we can approximate throughput to be (wolog):

n×B (3.86)

Where (B) is the bandwidth of an individual link, and (n) is the total number of links in
the network, each link being a hyperedge.

3.8.2 Hypergraph Characteristics of 3D Torus Architecture

• Vertices: The set of vertices, V, for the 3D Torus architecture is the same as 3D Mesh:

V = {vijk|0 ≤ i < n, 0 ≤ j < m, 0 ≤ k < p} (3.87)

• Hyperedges: The set of hyperedges, E, for the 3D Torus architecture includes all edges
from the 3D Mesh, plus wrap-around edges:

E = EMesh ∪ {(vijk, vi′j′k′)|i = n− 1 and i′ = 0 (similarly for j, m and k, p)} (3.88)

• Diameter: The diameter, D, of the 3D Torus hypergraph is the same as that of the 3D
Mesh:

D = 2(n− 1 + m− 1 + p− 1) (3.89)

• Throughput: The average Throughput, T, for the 3D Mesh architecture depends on factors
such as the number of nodes, the communication patterns, and the routing algorithms. For
simplicity, we can approximate throughput to be (wolog):

n×B (3.90)

Where (B) is the bandwidth of an individual link, and (n) is the total number of links in
the network, each link being a hyperedge.

3.8.3 3D Hypercube:

n = 2d (3.91)

where d is the dimension or depth of the hypercube.

3.8.4 Throughput

Throughput embodies the data processing capabilities of a topology[6].
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• 3D Grid (Mesh) and 3D Torus: The potential throughput is

n×B (3.92)

, although the values in the real world may be lower due to issues such as contention.
• 3D Hypercube: Has a potential throughput of

n×B (3.93)

although effective throughput might be less due to the unique structure of the topology.

3.8.5 Latency

• 3D Grid (Mesh): Worst-case latency is

X + Y + Z (3.94)

hops.
• 3D Torus: Wraps around, potentially offering slightly lower worst-case latency.
• 3D Hypercube: Worst-case latency is

d (3.95)

hops.

3.8.6 Scalability

Scalability evaluates the ability to handle increasing nodes or traffic.

• 3D Grid (Mesh) and 3D Torus: The number of nodes is directly proportional to latency
and throughput.

• 3D Hypercube: Offers logarithmic scaling, where doubling the nodes adds only one
additional hop.

3.8.7 Fault Tolerance

Fault tolerance assesses the resilience of a topology to node or link failures.

• 3D Grid (Mesh) and 3D Torus: Moderate fault tolerance; alternative paths available at
the cost of increased path length [113].

• 3D Hypercube: Can tolerate failures to an extent, rerouting through other dimensions.
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3.8.8 Efficiency

Efficiency gauges the actual performance of communication relative to the theoretical maximum.

• All topologies boast high efficiency with uniformly distributed traffic.
• 3D Mesh might be less efficient during skewed or hotspot scenarios compared to 3D

Torus or 3D Hypercube.

3.9 Dynamic Adaptation in 3D NOC Topologies

3D Network-on-Chip (NoC) topologies are increasingly gaining traction due to the inherent
advantages in throughput, latency, energy consumption, and area. Their geometric alignment in
a 3D space provides numerous routing paths, allowing for enhanced parallelism and redundancy.
Given this context, we delve into the dynamics of routing, buffer sizing, and message throughput
in these intricate topologies, focusing our discussion on our topologies of interest. We then
conclude this section by examining the trends and correlations observed among performance
parameters, routing protocol choices, message sizes, and data stream rates in the context of
the SHA256 attack, which is a computationally intensive application.

3.9.1 Routing Strategies: XYZ vs. Dijkstra

Routing is pivotal for ensuring that data packets efficiently reach their destinations. For
3D NoCs, the routing strategy should take advantage of the unique topology while ensuring
minimal congestion.

We will consider two popular algorithms used in NoC routing applications: XYZ routing and
Dijkstra’s algorithm. We chose these two because of their contrast and their popularity in the
domain.

XYZ Routing

XYZ routing is a dimension order routing algorithm. It is often used in 3D Mesh topologies.
It employs a deterministic approach. Packets traverse along the X-, Y-, and finally the
Z-axis. This method is computationally less intensive due to its predictable nature and can
be represented as O(1) in Big O notation. However, its deterministic nature can lead to
bottlenecks, particularly in high traffic scenarios.

Dijkstra’s Algorithm

Dijkstra’s algorithm can provide shorter paths between nodes in an NoC compared to XYZ
routing, but it comes with increased computational overhead. The computational complexity
of this algorithm for a graph with V vertices and E edges is represented as O(V 2) or
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O(E + V log V ) with priority queue implementations. Its adaptive nature is beneficial in
scenarios with varying traffic patterns, offering flexibility. However, this adaptability comes at
the expense of higher computational overhead, potentially impacting real-time responsiveness.

For a SHA256 attack, where rapid data packet transmission and reception are pivotal, XYZ
routing offers consistent performance, ensuring a predictable throughput rate. However, the
adaptability of Dijkstra’s algorithm can cater to varying traffic patterns intrinsic to such attacks,
potentially offering better performance in certain scenarios.

3.9.2 Buffer and Message Sizing in 3D NoCs

Buffers play a crucial role in managing data flow. Proper buffer sizing ensures that data
packets are neither lost due to overflow nor lead to under-utilisation of resources [114].

Buffer Sizing

The buffer size impacts both latency and throughput. A larger buffer can accommodate more
packets, ensuring data flow continuity and potentially higher throughput. However, if the
buffer size is too large, it could increase latency as packets wait in the queue. The optimal
buffer size can be represented as a balance between these two metrics, given by:

Boptimal = Tavg ×BWmax

Msize

(3.96)

Where: Boptimal represents the optimal buffer size. Tavg is the average transmission time.
BWmax is the maximum bandwidth. Msize is the average message size.

Message Sizing

Message sizing impacts network throughput and latency. Larger messages can encapsulate
more data but might lead to congestion and higher latency. On the other hand, smaller
messages ensure quick transmission at the cost of reduced data encapsulation. The optimal
message size balances between throughput and latency, maximizing the effective data rate.

Input Stream Throughputs and Their Impact

Input stream throughput, a measure of incoming data rate, significantly impacts buffer
utilisation and message transmission efficiency. Higher input stream throughputs can lead to
buffer overflows if not managed efficiently. On the flip side, lower throughputs might result in
buffer underutilisation. Thus, understanding input stream throughput is pivotal for optimal
resource utilisation in 3D NoCs.

Bandwidth, Latency, and Throughput

Bandwidth (BW) measures the maximum data transfer rate across a network. It is an essential
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metric for evaluating network efficiency. In 3D NoCs, BW can vary based on the number of
layers, routing strategy, and buffer and message sizing.

Latency refers to the time a packet travels from source to destination. The routing algorithm,
buffer sizes, and overall network congestion influence it. In the SHA256 attack scenario,
minimizing latency ensures that data packets reach their destination promptly, contributing to
the efficiency of the attack.

Throughput measures the number of messages successfully delivered over a network in a
given time frame. It is directly influenced by bandwidth and latency. In 3D NoCs, opti-
mising throughput requires a fine-tuned balance between bandwidth availability and latency
minimisation.

Before going further, we will make use of the following definitions:

• B: Bandwidth (bits/second)
• L: Latency (seconds)
• T : Throughput (messages/second)
• M : Message size (bits)
• D: Diameter of the network (maximum node-to-node distance in hops)
• d: The average degree of a node
• α: Routing algorithm overhead factor. This represents the complexity of the routing

algorithm being used, with αXYZ for XYZ routing and αDij for Dijkstra’s algorithm.

Based on the above definitions and discussions earlier in the chapter around PCR functions,
we can identify several factors affecting NoC performance, as follows:

Bandwidth, Message Size, and Throughput

The relationship between bandwidth, message size, and throughput is given by:

T = B

M
(3.97)

This equation is derived from the idea that throughput (the number of messages delivered
per second) is limited by how fast each message can be sent (bandwidth) and the size of the
message.

Latency, Diameter, Degree, and Routing Algorithm

The relationship between latency, diameter of the network, and routing algorithm is influenced
by the number of hops a message must traverse and the time spent at each node due to the
routing algorithm. It can be given as:

L = D × (propagation delay per hop + α× routing delay per hop) (3.98)
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The propagation delay per hop is influenced by physical and architectural factors. The routing
delay per hop is a function of the routing algorithm overhead and the degree of the node.

Routing Algorithm Overhead Factor The overhead is relatively low for XYZ routing due
to its deterministic nature. On the other hand, Dijkstra’s algorithm involves computing the
shortest path. Its complexity is related to the degree of nodes and may vary depending on the
specific implementation. We can approximate:

αXYZ = k1 × d (3.99)

αDij = k2 × d log d (3.100)

Where k1 and k2 are constants that reflect the average time it takes to process a message
through each routing algorithm for a given node degree.

Adaptation of Dijkstra’s Algorithm for 3D NoCs

Before looking to model the characteristics of the Dijkstra algorithm, when applied to NoC
routing, the algorithm is concerned and applied in structures which are not multi-dimensional,
by default.

Dijkstra’s algorithm finds the shortest path between nodes in a weighted graph. In NoCs, nodes
represent cores or routers, and edges represent communication links. The weights associated
with these edges are typically based on distance or potential congestion points.

The following considerations were made to adapt Dijkstra’s algorithm for 3D NoCs:

1. Vertices and Edges: Nodes now have three coordinates (x, y, z) instead of two. Conse-
quently, the potential edges for each node expand as connections can now be made in the
z-direction (upwards or downwards to different layers).

2. Weight Assignment: Weights in a 3D scenario can be influenced by distance, congestion,
or power consumption. Inter-layer communication costs might lead to different weights
when traversing between layers (along the Z-axis).

3. Path Calculation: The path calculation remains conceptually the same but with added
complexity due to the Z-axis. The algorithm considers paths that traverse layers with lower
weights.

3.10 Performance Metrics and Simulation

In the previous sections, we extensively detailed the modelling of chosen topologies as hy-
pergraphs. Section 3.2 and Section 3.3 providing the mathematical grounding. Section 3.4
and Section 3.5 discuss the performance parameters of our topologies of interest. We then
discussed the correlation between our selected performance parameters from a routing point of
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view in Section 3.6. The results strongly indicate that the Hypercube topology is the most
performing candidate. with section Section 3.7 elaborating the details.

This section presents the methodology for optimising the topologies using hypergraph modelling
and genetic algorithms. In the forthcoming sections, we will discuss the optimisation framework
used, the genetic algorithm setup, and the expected latency, throughput, and bandwidth gains.

3.10.1 Methodology Overview

The proposed methodology for optimising topologies’ performance consists of two main
components:

• Hypergraph-based modelling: as discussed earlier, hypergraphs provides a robust mathe-
matical framework for representing and analyzing the intricate relationships among nodes
and links in 3D NoC architectures. By leveraging the properties of hypergraphs, we can
accurately capture the structural characteristics of different NoC topologies and evaluate
their performance metrics.

• Genetic Algorithms: The genetic algorithm-based optimisation technique efficiently explores
the vast design space and identifies the optimal combination of topology and routing
algorithm for a given set of application requirements. Genetic algorithms[115] are inspired
by the principles of natural evolution. They operate on a population of candidate solutions
and iteratively evolve them through selection, crossover, and mutation operations. The
fitness of each candidate solution is evaluated based on the defined objective functions,
which consider the desired performance metrics and constraints.

Hypergraph-based Modelling

Here, we represent the 3D NOC architectures as hypergraphs, where nodes are mapped to
vertices and links as hyperedges. This allows us to capture the higher-order connectivity
patterns in 3D NoC topologies, enabling more accurate analysis of their structural properties
and performance characteristics.

The modelling process involves the following steps:

1. Define the set of vertices V, where each vertex represents a processing core or router in the
NoC architecture.

2. Define the set of hyperedges E, where each hyperedge represents a set of vertices intercon-
nected in the 3D NoC topology.

3. Construct the hypergraph representation of the NoC topology by specifying the vertex and
hyperedge sets based on the topology’s interconnection pattern.

4. Analyse the structural properties of the hypergraph, such as vertex degree, hyperedge
cardinality, and diameter, to gain insights into the NoC topology’s characteristics.
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5. Evaluate the performance metrics, such as latency, bandwidth, and throughput, using the
mathematical properties of the hypergraph and the defined PCR functions.

6. The hypergraph-based modelling approach provides a solid foundation for the subsequent
optimisation process, enabling a comprehensive analysis of NoC performance metrics and
facilitating the identification of optimal topology and routing algorithm combinations.

Figure 3.8 below shows an example mutation output of the framework, where Hypercube was
being evaluated, and GA applied:

3.11 Modelling and Simulation Framework

Building on the mathematical analysis presented throughout the chapter, we now lay the
foundations and eloqute the structure of the proposed framework, discussing the modelling
and simulation methodologies. This section is structured as followed:

• Section 3.11.1 and subsections deals with the first part of the proposed framework. It
focuses on the characterisation of a given topology as an hypergraph.

• Section 3.11.2: and subsection deals with the second part of the proposed framework.
It focuses on applying the NSGA-II[116] GA framework as an optimisation tool for our
objectives of interest.

• Section 3.11.3: this ties the framework together, by detailing how the GA is applied to
the hypergraph model, to arrive at an optimal characterisation of topology and routing
algorithm, which meets the optimisation objectives.

• Section 3.13 and subsections, deal with the subject of the development and application of
the cycle accurate simulator used to prove the framework, for the two chosen us use cases
presented in Chapter 4 and Chapter 5

3.11.1 Hypergraph Modelling

As detailed in 3.2, hypergraph-based modelling is employed to represent the 3D NoC architecture
and capture the complex interconnections and dependencies among the processing elements. A
hypergraph is a generalisation of a graph, where an edge (hyperedge) can connect any number
of vertices [117, p. 1].

In the context of NoC modelling, the vertices of the hypergraph represent the processing
elements (cores or accelerators), and the hyperedges represent the communication links between
them. The hypergraph model lets us capture multi-way communication patterns and accurately
analyse the NoC’s performance characteristics.

The hypergraph-based modelling approach involves the following steps:
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1. NoC Topology Representation: a 3D NoC topology is represented as a hypergraph
H = (V, E), where V is the set of vertices (processing elements) and E is the set of
hyperedges (communication links). Each vertex vi ∈ V is associated with a set of attributes,
such as the processing power, memory capacity, and communication bandwidth. Each
hyperedge ej ∈ E connects a subset of vertices and represents their communication
dependencies.

2. Communication Pattern Modelling: The facial recognition workload communication
patterns are modelled using the hypergraph representation. The hyperedges capture the
data dependencies and communication requirements between the processing elements. The
weight of each hyperedge represents the communication volume or the criticality of the
communication link.

3. Performance Metric Evaluation: The performance metrics relevant to the problem of
interest latency, throughput, andresourceutilisationinourcase are evaluated using the
hypergraph model of a given baseline topology. We have elected to use 3D Mesh as the
basline architecture due to its prevelance in 3D NoCs, and uniform graph characteristics.
The shortest paths between the vertices are calculated in accordance with both algorithms
of interest, namely XYZ routing and Dijkstra to determine the communication latency. The
bandwidth and capacity of the hyperedges are analysed to estimate the throughput and
resource utilisation.

4. Bottleneck Identification: The hypergraph model enables the identification of communi-
cation bottlenecks and critical paths in the NoC. The bottleneck links and the most critical
communication paths can be determined by analysing the hyperedges’ connectivity and
weights. This information is valuable for optimising the NoC architecture and improving
the overall performance.

This hypergraph-based modelling approach provides a comprehensive and accurate repre-
sentation of the 3D NoC architecture, capturing the intricate communication patterns and
dependencies. It forms the basis for the subsequent genetic algorithm-based optimisation
process.

3.11.2 Optimisation Using Genetic Algorithms

The next step in the proposed framework is to then apply a Genetic Algorithm approach to
hypergraph model, which maps the 3D NoC under consideration.

This involves applying NSAGA-II GA to the hypergraph model. This effectively ties the problem
under consideration to a set of optimisation objectives, thus evolving and arriving at the
optimal combination of routing algorithm and topological features, for the objectives, these
being latency, throughput and resource utilisation in our case.
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The principles of natural evolution inspire Genetic Algorithms (GAs) and have proven effective
in solving complex optimisation problems across various domains [118, p. 1].

The optimisation problem is formulated as follows: given a set of NoC topologies T =
t1, t2, ..., tn and a set of routing algorithms R = r1, r2, ..., rm, find the optimal topology
combination t∗ ∈ T and routing algorithm r∗ ∈ R that maximises the objective function
f(t, r), subject to application-specific requirements and performance constraints. The objective
function f(t, r) is a weighted combination of various performance metrics, such as latency,
bandwidth, and throughput, tailored to the specific needs of the target application.

The genetic algorithm operates on a population of candidate solutions, each representing a
combination of topology and routing algorithms. The initial population is generated randomly,
and the fitness of each candidate solution is evaluated based on the objective function f(t, r).
The fitter solutions are then selected to serve as parents for the next generation, and genetic
operators such as crossover and mutation are applied to create new offspring solutions. This
process is repeated until a termination condition, such as a maximum number of generations
or convergence criteria, is met.

By iteratively evolving the population of candidate solutions, the genetic algorithm effectively
explores the solution space and converges towards optimal or near-optimal topology and routing
algorithm combinations. The hypergraph-based modelling framework is integrated into the
fitness evaluation process, enabling accurate assessment of the performance metrics for each
candidate solution.

Throughout this work, GA optimisation consistently identified the 3D Hypercube topology
with XYZ routing as the optimal configuration, due to:

• Lower routing computation overhead
• Better scalability with network size
• More efficient resource utilisation
• Superior performance-to-cost ratio

3.11.3 Integrating Hypergraph Modelling and Genetic Algorithms

Integrating hypergraph modelling and genetic algorithms forms the core of our proposed
optimisation framework. The hypergraph-based modelling component provides a comprehensive
and accurate representation of 3D NoC architectures, enabling the evaluation of performance
metrics for each candidate solution generated by the genetic algorithm.

The optimisation process begins with defining the search space, which includes the set of
NoC topologies T and routing algorithms R. The genetic algorithm initialises a population of
candidate solutions, each representing a specific topology and routing algorithm combination.
The hypergraph-based modelling framework was used to evaluate the fitness of each candidate
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solution based on the objective function f(t, r), which considers application-specific requirements
and performance constraints.

During the fitness evaluation, the hypergraph representation of the corresponding 3D NoC
topology is constructed. The selected routing algorithm is applied to determine the paths
data packets take. The performance metrics, such as latency, bandwidth, and throughput, are
calculated using the mathematical properties of the hypergraph. This calculation considers
hop count, vertex degree, and congestion.

The genetic algorithm then proceeds with the selection, crossover, and mutation operations to
evolve the population of candidate solutions. The selection process favours fitter solutions,
ensuring that the most promising topology and routing algorithm combinations are propagated
to the next generation. Crossover and mutation operations introduce diversity and explore
new regions of the search space, enabling the discovery of potentially better solutions.

The iterative fitness evaluation, selection, crossover, and mutation process continues until the
termination criteria are met. The best solution found by the genetic algorithm represents the
optimal combination of topology and routing algorithm that maximises the objective function
f(t, r) while satisfying the application-specific requirements and performance constraints.

Integrating hypergraph modelling and genetic algorithms provides a powerful and efficient
approach for optimising 3D NoC performance. The hypergraph-based modelling framework
enables accurate representation and analysis of NoC architectures, while the genetic algorithm
effectively explores the vast design space to identify optimal solutions. This synergistic
combination allows for the systematic evaluation and optimisation of NoC performance metrics
tailored to the specific needs of the target application.

3.12 Simulation Setup and Performance Metrics

To evaluate the effectiveness of our proposed optimisation framework, we conduct extensive
simulations using a custom-built simulator. The simulator incorporates the hypergraph-based
modelling framework and the genetic algorithm-based optimisation technique, allowing for
evaluating various 3D NoC architectures and routing algorithms.

3.12.1 Simulation Environment

The simulations are performed on a high-performance computing cluster equipped with multiple
nodes, each consisting of Intel Xeon D-2899NT [119] Processors and NVIDIA RTX 3060 Ti
GPUs [120]. The simulator is implemented in C++, leveraging the OpenMP library for parallel
processing [121] and the CUDA toolkit for GPU acceleration [122].
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The Operating system chosen to host the simulation setup was Ubuntu Linux 22.04 LTS 1.

The simulator inputs the set of NoC topologies T, routing algorithms R, and application-
specific requirements and constraints. It generates a population of candidate solutions, each
representing a combination of topology and routing algorithms. The fitness of each candidate
solution is evaluated using the hypergraph-based modelling framework, considering the specified
performance metrics and constraints.

The genetic algorithm is implemented using the NSGA-II framework, which is well-suited for
multi-objective optimisation problems. The algorithm parameters, such as population size,
crossover rate, and mutation rate, are tuned based on preliminary experiments to ensure
optimal performance and convergence.

3.12.2 Performance Metrics

To assess the performance of the optimised 3D NoC architectures, we consider the following
key metrics:

1. Latency: refers to the time it takes a data packet to travel from a given source to a
destination from source to its intended destination in the NoC. It is measured in clock
cycles and is directly related to the hop count, which represents the number of intermediate
nodes a packet must traverse. Lower latency indicates faster communication and improved
overall system performance.

2. Bandwidth: represents the maximum amount of data that can be transferred through
the NoC architecture per unit time. It is typically measured in bits per second (bps) and
is determined by the number of links (or hyperedges) available for data transfer. Higher
bandwidth enables faster data transmission and increased system throughput.

3. Throughput: denotes the actual amount of data that is successfully transferred through
the NoC architecture per unit of time, considering factors such as congestion, routing
efficiency, and resource utilisation. It is measured in bits per second (bps) and is influenced
by latency and bandwidth. Higher throughput indicates better overall system performance
and efficient utilisation of resources.

4. Power Consumption: this is a critical metric in NoC architectures, as it directly impacts
the overall energy efficiency of the system. It is measured in watts (W) and is influenced by
factors such as the number of active components, switching activity, and clock frequency.
Lower power consumption is desirable for energy-constrained applications and helps in
reducing the overall system cost.

5. Area Overhead: refers to the additional silicon area required to implement the NoC
architecture, including the routers, links, and associated control logic. It is measured in
square millimetres (mm2) and is an essential consideration in the design of area-constrained
1https://ubuntu.com/blog/tag/22-04-lts
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systems. Lower area overhead enables more efficient utilisation of chip resources and reduces
manufacturing costs.

These performance metrics comprehensively evaluate the optimised 3D NoC architectures,
considering various aspects such as communication efficiency, resource utilisation, energy
efficiency, and area constraints. By analysing these metrics, we can assess the effectiveness of
our proposed optimisation framework in enhancing the target application’s overall performance.

3.12.3 Genetic Algorithm-based Optimisation

Genetic algorithms are used to explore the vast design space of NoC configurations and identify
the optimal topology and routing algorithm for real-time facial recognition. The principles of
natural evolution inspired Genetic Algorithms, which have been successfully applied to various
optimisation problems.

The genetic algorithm-based optimisation process involves the following steps:

1. Chromosome Encoding: Each candidate solution (NoC configuration) is encoded as
a chromosome, which represents the topology, routing algorithm, and other relevant
parameters. The chromosome is typically represented as a binary string or a sequence of
integers, where each gene corresponds to a specific parameter of the NoC configuration.

2. Fitness Evaluation: The fitness of each chromosome is evaluated based on the performance
metrics obtained from the hypergraph-based modelling. The fitness function quantifies the
quality of the NoC configuration in terms of latency, throughput, and resource utilisation.
The goal is to maximise the fitness value, which represents the optimality of the configuration
for real-time facial recognition.

3. Selection: The selection operator chooses the fittest individuals from the current population
to serve as parents for the next generation. Common selection methods include tournament
selection, roulette wheel selection, and rank-based selection. The selection process aims to
specifically preserve evolved high-quality solutions and promote their propagation to the
next generation.

4. Crossover: The crossover operator combines the genetic information from two parent
chromosomes to create offspring. It exchanges portions of the chromosomes between the
parents, generating new NoC configurations that inherit characteristics from both parents.
The crossover operation aims to explore new regions of the search space and exploit the
promising features of the parent solutions.

5. Mutation: The mutation operator introduces random changes to the genes of the chro-
mosomes. It helps maintain population diversity and prevents premature convergence to
suboptimal solutions. The mutation rate determines the probability of gene modification.
Mutation allows the algorithm to explore new configurations and escape local optima.

6. Termination: The genetic algorithm iterates through multiple generations until a termina-
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tion criterion is met. Common termination criteria include reaching a maximum number of
generations, achieving a satisfactory fitness level, or observing convergence of the population.
Once the termination criterion is satisfied, the algorithm will find the best solution, which
is considered the optimal NoC configuration for real-time facial recognition.

The genetic algorithm-based optimisation process efficiently explores the design space and
evolves a population of NoC configurations towards the optimal solution. The hypergraph-
based modelling approach is integrated into the fitness evaluation step, providing accurate
performance metrics for each candidate solution.

3.12.4 Integration of Hypergraph-based Modelling and Genetic
Algorithm-based Optimisation

The proposed methodology combines hypergraph-based modelling and genetic algorithm-
based optimisation to effectively optimise the performance of 3D NoCs for real-time facial
recognition. Integrating these two components enables a comprehensive and efficient design
space exploration.

The hypergraph-based modelling approach captures the complex communication patterns and
dependencies of the facial recognition workload, accurately representing the NoC architecture. It
allows for evaluating performance metrics, such as latency, throughput, and resource utilisation,
which are crucial for real-time processing.

The genetic algorithm-based optimisation process utilises the performance metrics obtained
from the hypergraph model to guide the search for the optimal NoC configuration. The
fitness evaluation step incorporates the hypergraph-based analysis to assess the quality of each
candidate solution. The genetic operators, such as selection, crossover, and mutation, are
applied to evolve the population and explore the design space effectively.

Integrating these two components creates a synergistic optimisation framework. The hypergraph
model provides accurate performance evaluation, while the genetic algorithm efficiently searches
for the optimal configuration. The iterative nature of the genetic algorithm allows for the
gradual improvement of the NoC configurations, converging towards the best solution for
real-time facial recognition.

3.13 Cycle Accurate Simulation

As introduced in Chapter 1 and elaborated in this chapter, a core motivation of this work is
to provide an accessible, well understood framework to accurately model and optimise NoC,
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without reliance on vendor-specific and/or costly commercial toosl. In order to achieve this
objective, the framework relies on hypergraphs and genetic algorithms as its two main facets.

With that in mind, and to pave the way to apply the framework to problems of choice, it then
becomes necessary to use accurate simulation tools, which will validate and test the outcome
of the framework results, in real life situations, particularly at the early stages of design space
exploration. That’s where Cycle-accurate simulation comes in.

Cycle-accurate simulation is a technique where the simulator meticulously tracks and reproduces
the behaviour of a system at each clock cycle [123]. This involves modelling the detailed timing
of events, including signal propagation delays, component latencies, and resource contention
[124]. This is in contrast with discrete-event simulation focuses on modelling events that
change the system state, without necessarily adhering to a strict clock cycle timeline [125].

Without overly elaborating and discussing simulation, which is out of scope for this research,
it’s worth listing the relative merits of cycle-accurate simulation, in the context of this work.
These include:

• Accuracy: By capturing the precise timing of events, cycle-accurate simulation provides a
more accurate representation of NoC performance, particularly in scenarios where timing
dependencies and resource contention are critical [126]. This is crucial for evaluating the
impact of design choices on real-time applications and overall system performance [127].

• Detailed Analysis: Cycle-accurate simulators allow for detailed analysis of NoC behaviour,
including buffer utilisation, latency distributions, and power consumption [128]. This
level of granularity enables the identification of performance bottlenecks and optimisation
opportunities [129].

• Design Validation: Cycle-accurate simulation can be used to validate NoC designs before
implementation, ensuring that the system meets its performance requirements and avoids
potential timing-related issues [130].

However, cycle-accurate simulation also has some drawbacks. These include:

• Computational Cost: Due to its fine-grained nature, cycle-accurate simulation can be
computationally expensive, particularly for large and complex NoCs [131]. This can limit
the scalability of the simulation and increase simulation time.

• Model Complexity: Developing accurate cycle-accurate models for NoC components can
be complex and time-consuming, requiring detailed knowledge of their internal architecture
and timing characteristics [132].

In view of the above merits and drawbacks, cycle-accurate simulation is a valuable tool for NoC
research and development, especially when high accuracy and detailed analysis are required
[133]. This is a key the focus of the research, and therefore the choice of cycle-accurate
simulation as the way forward is justified.

87



Chapter 3 A.Al-Alousi (2024)

To close, cycle-accurate simulation results consistently showed XYZ routing outperforming
Dijkstra’s algorithm across all tested configurations, with key advantages of lower per-hop
processing time (2 cycles vs 3 cycles), reduction in buffer overhead, better predictability of path
selection, and lower implementation complexity, further vindicating the choice of simulation
technique.

3.13.1 Choice of Simulator

With the choice of cycle-accurate simulation as a tool, our attention must then centre on
the choice of actual simulator to use. Despite NoC design space exploration and integration
being a very active research topic, choices available to researchers are somewhat limited and
disparate, often requiring trade-offs between accuracy, flexibility, and ease of use [134].

Furthermore, the development of new cycle-accurate simulators specifically tailored for NoC
evaluation seems to have slowed down in recent years, with many researchers relying on
adapting existing general-purpose simulators or older NoC-specific tools [133], [135].

This scarcity of dedicated and up-to-date tools proved a real challenge to this work, hindering
the exploration of novel NoC architectures and evaluation of complex interconnect designs,
made possible by the proposed framework.

Finally, the availability of good research material focussing on the question of cycle-accurate
simulators in an NoC context, and even less so in 3D NoC contexts, proved both frustrating
and bewildering, at the same time.

With that in mind, the author set out to evaluate the landscape of what’s available, to arrive
at a suitability view, as well as to decide on what level of coding was necessary to progress the
work. This was another challenge, which took a great deal of time and effort, given the lack of
robust support for most evaluated code bases, as well as the sometimes massive gaps between
whatever documentation was made available, and the actual code bases for the simulators.
This is summarised in Table 3.6 below.

Its noteworthy that a major part of the evaluation effort went into getting the codebases for
the different simulators to compile, with recent OS libraries. This proved most challenging in
the BookSim and BookSim 2 cases, where extensive modofications had to be made to both
the build Makefiles and updates to the C/C++ code, just to get the compilation process to
succeed without errors, at first, and then to address compilation warnings and runtime errors
after that.

Next hardest was NoCSim and ROSS, with little or no support from whatever NoCSim
community is out there. The developers’ own page has out of date contact information, and
emails sent to them bounced.

ROSS was chosen as the simulator to us, due to the reasons listed in Table 3.6 above. That
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Simulator 3D NoC Simulation Capabilities and Development Experience
ROSS [136] Most capable and developer-friendly among evaluated simulators. Despite

older documentation, the developers generous support facilitated both
compilation and model development of the current codebase. Successfully
implemented multiple 3D NoC topologies with reasonable code extension
and model development effort [137].

NoCSim [138] Supports 3D NoCs in theory, but only 3D Mesh model functions correctly.
Other included models contain critical bugs. Documentation is outdated
and frequently misaligned with current codebase, making development
challenging [139].

Gem5 [140] Capable simulation environment. Provides up-to-date simulation capabili-
ties. The only example provided in a 3D NoC context is 3D Mesh topology.
Documentation is both outdated and insufficient for new model devel-
opment. Creating new models is notably time-intensive due to complex
architecture [141].

BookSim [142] Limited to 2D NoC simulations with restricted model options. 3D topology
development not possible within existing framework [143].

BookSim 2 [144] Supports 3D NoC simulation but restricted to 3D Mesh topology. Exten-
sion to other 3D topologies requires prohibitive development time and
effort [145].

Table 3.6: Comparison of Cycle-Accurate NoC Simulators

being said, the actual documentation and code examples provided in the codebase were both
outdated and buggy, with the build process breaking at every step, despite endless late nights
trying to fix that.

It was only possible to arrive at a successful build of the codebase with invaluable support
from the developers, who also gave advise during the model development stage.

3.13.2 Simulation Models and Traffic Generator

The ROSS simulator was tacked in the following areas:

1. Successful build and run with GNU-14 toolchain: the current codebase would not
build with the latest stable GNU toolchain (14.2). This was due to a number of issues,
amongst which are stricture compliance with c++ standards, reliance on outdared versions
of the MPI library, removal of deprecated features in the newer gcc/c++ 14 compiler, to
mention but a few.

2. Fix the included 3D Mesh model: this model is included in the codebase, but is
extremely outdated and suffers basely from the effects of code refactoring changing the
available functions, and their prototypes.

3. Development of new Models: three baseline 3D NoC models were developed, namely
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3D, hypercube and 3D Torus, together with permutations with XYZ and Dijkstra routing
algorithm, bringing the total permutations to six.

4. Dimensionally-aware 6-port Router Model: a router model with six bi-directional ports
and dimension awareness was developed. The router is also dimensionally-aware, which is
necessary in handling dimension ordering when performing XYZ routing.

5. Timing and Statistics: timing models and statistics gathering methods were added into
the new topology models. The timing model automatically accounts for router delay, link
delay and credit return delay, while the statistics methods provide accurate packet count,
average latency, throughput, resource utilisation and per-router statistics.

6. Traffic Generation: a sophisticated traffic generator was implemented, proving flexibility
in specifying flit size (specified in bits) and generation rates in the mega-, giga- and tera-
messages or mega-, giga- and tera-bits. This is so that the traffic generator is appropriate
in a NoC context, where transfer rates are extremely high, due to silicon implementation
characteristics.

7. IP Behaviour Shaping: the models were implemented so that the nodes can be made to
behave in one of two ways: either as a PE (Processing Element), in which case the node
models an IP like CPU-core, or by specifying the behaviour in terms of Big O complexity.

The source code and configurations for the topology models and traffic generator used to
simulate the use cases discussed in Chapter 4 and Chapter 5, are shown in the Appendix A,
A.1 and A.2 respectively.

3.14 Chapter Summary

Resource optimisation in 3D NoC topologies remains an open and expansive area of research.
A holistic approach can be formulated by examining routing strategies and considering buffer
and message sizing alongside bandwidth and latency factors. As evidenced by our analyses,
the interplay of these factors can significantly impact overall performance, making it essential
to fine-tune these parameters per the specific application needs.

Building on the foundations laid out in Section 3.11 above, two compute-intensive, yet different
use cases were used to prove the methodology, namely the double SHA256 attack used in
Bitcoin mining, and real-time facial recognition in 30 FPS video streams. These are discussed
and elaborated in Chapter 4 and Chapter 5.
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(a) Initial3DHypercubeGraphRepresentation

(b) 1st gen GA

(c) 2nd gen GA

Figure 3.8: Hypergraph & GA Selection Example
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Chapter 4

Optimisation of 3D NoC Performance
for Double SHA256

4.1 Introduction

The advent of multi-core processors and the increasing complexity of System-on-Chip (SoC)
architectures have necessitated the development of efficient communication infrastructures.

Network-on-chip (NoC) architectures have emerged as a promising solution to address the
communication challenges in these complex systems. As discussed in Chapter 3, the performance
of NoC architectures is heavily influenced by topology, routing algorithms, and application-
specific requirements.

In this chapter, we applied the work developed in Chapter 3 to the Double SHA256 function use
case, as used in Bitcoin mining. It is a novel approach to optimise 3D NoC performance through
hypergraph modelling and genetic algorithms. Building upon the foundation laid in Chapter 3,
we leverage the mathematical rigour of hypergraph theory to accurately represent and analyse
the intricate relationships among nodes and links in 3D NoC architectures. Furthermore, we
employ genetic algorithms to efficiently explore the vast design space and identify the optimal
combination of topology and routing algorithms tailored to specific application requirements.

This chapter’s and Chapter 5’s primary focus is to demonstrate the performance gains achieved
through our proposed optimisation techniques in two critical use cases: real-time facial
recognition and SHA256 cryptographic attacks, respectively. By applying our hypergraph-based
modelling and GA-based optimisation framework, we showcase the potential to enhance the
efficiency and performance of these computationally intensive applications.

The chapter is structured as follows:

• Section 4.2 details with the methodology used in simulating the Bitcoin mining operation
and implementation thereof
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• Section 4.2.3 gives an overview of Cryptocurrencies, Bitcoin and the mathematical
principles

• Section 4.2.4 gives an overview of the Bitcoin mining operation.
• Section 4.3.1 and later subsections deal with the mathematical and algorithmic aspects

of the SHA256 hash function.
• Section 4.3 then delves into how the mining operation was mapped into a 3D NoC

problem.
• Section 4.5 focuses on the double SHA256 cryptographic attack scenario, demonstrating

our optimisation technique’s benefits in terms of latency, bandwidth, and throughput, as
well as the gains obtained through optimisation, and the correlation between latency and
various factors such as network size, topology, routing algorithm, and message size.

• Section 4.6 is the chapter summary.

4.2 Methodology

The proposed methodology for optimising 3D NoC performance consists of two main compo-
nents: (1) hypergraph-based modelling of 3D NoC architectures and (2) genetic algorithm-based
optimisation for topology and routing algorithm selection. This section provides an overview
of each component and their integration into a comprehensive optimisation framework.

4.2.1 Hypergraph-based Modelling of 3D NoC Architectures

As introduced in Chapter 3, hypergraphs offer a robust mathematical framework for representing
and analysing the complex interconnections among nodes and links in 3D NoC architectures.
Hyperedges connect multiple vertices, allowing hypergraphs to capture higher-order relationships
inherent in these architectures. It provides a more accurate and comprehensive representation
than traditional graph-based models.

4.2.2 Application-Specific Requirements and Constraints

As mentioned earlier in Chapter 3, we considered double SHA256 as one of our compute-
intensive use cases, to demonstrate the effectiveness of our combined modelling and optimisation
framework.

Double SHA256 is a widely used cryptographic hashing algorithm that forms the basis of many
blockchain systems, including Bitcoin. Cryptographic attacks, such as brute-force or collision
attacks, exploit vulnerabilities in the algorithm to compromise the system’s security.
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4.2.3 Introduction to Cryptocurrencies, Bitcoin and Double SHA256

In any economic system, trust is crucial to transactions and payments. In essence, users in
an economic system, which include individuals, business and organisations, need assurances
that transactions are processed both fairly and safely - a constraint which places financial
intermediaries, such as banks front and centre in this paradigm[146].

With that in mind, recent past events, such as the spectacular collapse of Lehman Brothers [147]
in 2012, and the subprime mortgage crises which culminated in that collapse [148], lead many
to search for alternative trust models, which are not reliant on financial intermediaries. This
led to the introduction of Bitcoin [149], which led to the subsequent rise of cryptocurrencies
[150].

Indeed, cryptocurrencies, such as Bitcoin, Ethereum, and Ripple, are characterised as novel
digital currencies underpinned by cryptographic techniques to protect and regulate transactions
and the circulation of digital currency [151], in contrast with traditional paper currencies, also
known as Fiat currencies, that are supported by governments.

Cryptocurrencies are characterised by three fundamental characteristics distinguishing them
from both fiat currencies and their digital equivalents:

1. Lack of a central authority, hence rendering them purportedly immune to governmental
interference and manipulation. This is particularly important in economies with volatile
currencies [152].

2. Use of blockchain technology, characterised by a distributed and consensus-driven
database with advanced cryptography and transparency. This facilitates a distributed and
immutable ledger, rendering each transaction tamper-proof and negating the necessity for
a trusted third party [153].

3. Cryptocurrencies can be effortlessly utilised and transferred over international boundaries,
due to their digital characteristics.

Of the characteristics above, the blockchain constitutes the foundation of cryptocurrencies.
It is characterised as a decentralised and distributed database shared among a network of
computers known as nodes.

Every block in the chain encompasses a sequence of transactions, and contains the following
information:

1. Previous hash: This attribute stores the value of the hash of the previous block, and
that’s how the blocks are linked to one another.

2. Data: This is the aggregated set of transactions included in this block—the set of
transactions that were mined and validated and included in the block.

3. Nonce: In a Proof of Work consensus algorithm, which bitcoin uses, the nonce [154, p.
127] is a random value used to vary the output of the hash value. Every block is supposed
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to generate a hash value, and the nonce is the parameter that is used to generate that hash
value. The proof of work is the process of transaction verification done in blockchain.

4. Hash: This is the value obtained by passing the previous hash value, the data and the
nonce through the SHA-256 algorithm twice (hence double SHA-256). It is the digital
signature of the block.

Every node in the network can access the data on the blockchain. Every block possesses
a distinct identification known as a hash, which is derived from the block’s content and is
incorporated into the subsequent block. A new block, generated every 10 minutes, encompasses
the hash value of the preceding block and the transactions of the current block.

Figure 4.1: Representation of the Blockchain Data Structure

Backdating, modifying, interfering with, or deleting any blocks will alter the hash value, resulting
in a discrepancy among the blocks in the blockchain, as this modification will effectively remove
the modified block from the blockchain. This is shown in Figure 4.2.

Our interest and focus here is on the mining operation. More specifically, the Double SHA256
function used to process the hashes in the blockchain.

Bitcoin mining, the cornerstone of the Bitcoin network’s security and operation, relies on
the computationally intensive process of finding a valid block hash that satisfies specific
cryptographic constraints [155].

This process, known as Proof-of-Work (PoW), employs the Double SHA256 hash function to
ensure the integrity and immutability of the blockchain.

Double SHA256, as the name implies, involves applying the SHA256 hashing algorithm twice
to the input data [156].
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Figure 4.2: Intermediate Block Modification Attempt

This two-step process significantly increases the complexity of the hash output, making it
computationally infeasible to reverse the process or find collisions [157, p. 114].

The output of the first SHA256 round becomes the input for the second round, producing the
final block hash, hence the double in the function or process name. Expressed mathematically,
this is simply:

DoubleSHA256(x) = SHA256(SHA256(x)) (4.1)

As illustrated in Figure 4.3 and earlier in Figure 4.1, the hashed block header contains essential
information such as the previous block’s hash, transaction data, and a timestamp, is first
hashed in the first round of SHA256. The resulting hash is then hashed again with SHA256,
producing the final block hash. This process is crucial for creating a tamper-proof chain of
blocks, as any modification to a block’s content would necessitate recomputing all subsequent
block hashes.

4.2.4 Mining

Simply put, Bitcoin mining can be surmised as follows:
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Figure 4.3: Illustration of the Double SHA256 Hash function or process, which applied to
block header

1. Solving a cryptographic puzzle: Miners compete to solve a complex mathematical problem
(using the SHA-256 hash function twice - hence double SHA256). This is the core of the
Proof of Work PoW system.

2. Creating a valid block: The first miner to solve the puzzle gets to create a new block of
transactions. This block includes a record of recent Bitcoin transactions, a reference to the
previous block linking it to the chain, and the solution to the puzzle.

3. Adding the block to the blockchain: The miner broadcasts the new block to the network.
Other nodes verify its validity and, if correct, add it to their copy of the blockchain. Miner,
in this context, is simply a node on the Bitcoin network, collaborating to achieve the
operations summarised above. Node refers to any participant in the network.

4.2.5 The Mining Puzzle

The Bitcoin mining puzzle involves finding a nonce, a random number, that when combined
with the block header and hashed with Double SHA256, results in a hash value that falls
below a predefined target. This target, dynamically adjusted based on the network’s hashrate,
determines the difficulty of the mining puzzle [158]. This is illustrated in Figure 4.4:

To be useful in actual Bitcoin mining operations, a circuit implementation of Double-SHA256
needs to be both hardware- and energy-efficient, as well as being fast enough. The drive for
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Figure 4.4: Summary of how the Bitcoin mining puzzle is solved

performance naturally lent itself to the application of the fully unrolled SHA-256 datapath for
Bitcoin mining applications, which also lends itself very well to ASIC implementations [159].
An ecellent round-up of mining hardware trends, as of 2022, is presented in [160].

4.2.6 Security Implications

The computational complexity of the Double SHA256 hash function and the dynamic difficulty
adjustment mechanism make it extremely difficult for malicious actors to manipulate the
Bitcoin blockchain [161]. However, potential vulnerabilities, such as 51% attacks, where a
single entity controls a majority of the network’s hashrate, remain a concern. Researchers are
actively investigating ways to improve the security and efficiency of Bitcoin mining, including
the development of alternative consensus mechanisms and energy-efficient mining hardware
[162].

The key requirements and constraints for this use case include:

• High throughput: The NoC architecture must support high-throughput hashing operations
to enable efficient cryptographic attacks [163]. A throughput of several billion hashes per
second (Giga H/s) is desired to perform large-scale attacks [97].

• Low latency: The latency of individual hashing operations should be minimised to reduce
the overall attack time. A latency of less than 1 microsecond per hash is typically desired.

98



Chapter 4 A.Al-Alousi (2024)

• Scalability: The NoC architecture should be scalable to accommodate a large number
of processing cores or specialised hashing units to parallelise the attack process. The
architecture should efficiently distribute the workload and manage the communication
among the cores.

• Resource efficiency: Cryptographic attacks often require significant computational resources,
including processing power and memory. The NoC architecture should efficiently utilise
these resources to maximise the attack performance while minimising the overall system
cost.

Considering these application-specific requirements and constraints, our proposed optimisation
framework can identify the best topology and routing algorithm combination for each use case.
The hypergraph-based modelling approach enables accurate representation and analysis of the
NoC architectures, while the GA efficiently explores the design space to find the most suitable
solutions. The following sections present the simulation results and discuss the performance
gains achieved through our optimisation framework for real-time facial recognition and double
SHA256 cryptographic attack use cases.

4.3 SHA256 Algorithm Details and Bitcoing Mining

As introduced earlier, Bitcoin mining, known as Proof-of-Work (PoW), is the cornerstone
of the Bitcoin network’s security and operation employs the SHA256 hash function twice
(hence double) to ensure the integrity and immutability of the blockchain, as discussed in
Section 4.2.3 and subsequent sections.

4.3.1 The SHA256 Hash Function

SHA256 is a cryptographic hash function that takes an input message of arbitrary length and
produces a 256-bit (32-byte) hash value. This hash value serves as a unique fingerprint for the
input message, making it extremely difficult to find two different messages that produce the
same hash [164].

The SHA256 algorithm can be mathematically defined as a series of transformations applied to
the input message. These transformations involve bitwise operations, modular addition, and
logical functions. The core of the algorithm lies in the compression function, which operates
on 512-bit blocks of the input message and updates an internal state consisting of eight 32-bit
words [165].
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The compression function can be represented mathematically as follows:

(H0, H1, ..., H7)← Initial Hash Values (4.2)

(M1, M2, ...)← Message Blocks (512-bit)

for each Mi ∈ (M1, M2, ...) :

(W0, W1, ..., W63)← Message Schedule(Mi)

(a, b, c, d, e, f, g, h)← (H0, H1, ..., H7)

for t from 0 to 63 :

T1 ← h + Σ1(e) + Ch(e, f, g) + Kt + Wt

T2 ← Σ0(a) + Maj(a, b, c)

h← g, g ← f, f ← e

e← d + T1, d← c, c← b

b← a, a← T1 + T2

(H0, H1, ..., H7)← (H0 + a, H1 + b, ..., H7 + h)

where:

• H0 to H7 are the initial hash values (predefined constants)
• M1, M2, . . . are the 512-bit message blocks obtained by padding and parsing the input

message
• Message Schedule(Mi) generates a schedule of sixty-four 32-bit words (W0 to W63) from

block Mi

• a to h are working variables used in the compression function
• Σ0, Σ1, Ch, Maj are logical functions
• Kt are round constants defined for each of the 64 rounds

This is represented as pseudocode, in listing 1 below.

Double SHA256, as previously mentioned, involves applying the SHA256 hashing algorithm
twice to the input data. This can be represented mathematically as:

DoubleSHA256(x) = SHA256(SHA256(x)) (4.3)

This two-step process significantly increases the complexity of the hash output, making it
computationally infeasible to reverse the process or find collisions.

Figure 4.4 earlier illustrated the Double SHA256 process applied to a Bitcoin block header. The
block header, containing essential information such as the previous block’s hash, transaction
data, and a timestamp, is first hashed with SHA256. The resulting hash is then hashed
again with SHA256, producing the final block hash. This process is crucial for creating a
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Algorithm 1 Calculate SHA256 Hash
1: (H0, H1, ..., H7)← (0x6a09e667, 0xbb67ae85, ..., 0x5be0cd19)
2: padded_message← pad(message)
3: (M1, M2, . . . )← parse(padded_message)
4: for all message_block ∈ (M1, M2, . . . ) do
5: (W0, W1, . . . , W63)← Message Schedule(message_block)
6: (a, b, c, d, e, f, g, h)← (H0, H1, . . . , H7)
7: for t from 0 to 63 do
8: T1 ← h + Σ1(e) + Ch(e, f, g) + Kt + Wt

9: T2 ← Σ0(a) + Maj(a, b, c)
10: h← g; g ← f ; f ← e
11: e← d + T1; d← c; c← b
12: b← a; a← T1 + T2
13: end for
14: H0 ← H0 + a; H1 ← H1 + b; . . . ; H7 ← H7 + h
15: end for
16: hash← H0 ‖ H1 ‖ · · · ‖ H7
17: return hash

tamper-proof chain of blocks, as any modification to a block’s content would necessitate
recomputing all subsequent block hashes.

4.4 Results and Observations

In the following sections, we will discusses the simulation results obtained for the double
SHA256 cryptographic attack use case. We compared the performance of our optimised 3D
NoC architecture with a baseline unoptimised architecture. The results demonstrate that
our approach effectively enhances the performance metrics relevant to cryptographic attack
applications.

4.4.1 Mapping the Mining Operation to NoC

Before simulating the mining operations, a mapping needed to be created between the
algorithmic features and the NoC architecture.

4.4.2 Baseline Architecture

For the baseline architecture, we consider a 3D mesh topology with dimensions of 6x6x6,
resulting in 216 nodes. Each node represents a processing core or a specialised hashing unit, and
the nodes are interconnected using bidirectional links. The XYZ routing algorithm is employed
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for packet routing, a simple and deterministic algorithm commonly used in mesh-based NoC
architectures.

The baseline architecture is simulated under the same conditions as the optimised architecture,
considering the application-specific requirements and constraints discussed in Section 4.2.2.
The performance metrics, including latency, bandwidth, throughput, power consumption, and
area overhead, are evaluated and serve as a reference for comparison.

4.4.3 Optimised Architecture

Using our proposed optimisation framework, we identify the optimal combination of topology
and routing algorithm for the double SHA256 cryptographic attack use case. The hypergraph-
based modelling approach accurately represents the NoC architecture, capturing the complex
relationships among the nodes and links. The genetic algorithm explores the design space,
considering various topologies (e.g., mesh, torus, hypercube, folding torus) and routing
algorithms (e.g., XYZ, Dijkstra’s algorithm, adaptive routing).

The optimisation process considers the application-specific requirements and constraints, such
as high throughput, low latency, scalability, and resource efficiency. The genetic algorithm
evolves a population of candidate solutions, each representing a specific topology and routing
algorithm combination. The fitness of each solution is evaluated based on the objective function,
which is a weighted combination of the performance metrics tailored to the cryptographic
attack application.

After numerous iterations of the genetic algorithm, the optimal solution is identified as a 3D
Hypercube topology with XYZ routing algorithm, showing superior performance in throughput
(845 Gbps vs 752 Gbps for Dijkstra), power efficiency (1000mW vs 1050mW), and energy per
hash (1.18 pJ vs 1.40 pJ).

Next inline was the folding torus topology, which balances connectivity and scalability, enabling
efficient communication among the nodes while supporting a large number of processing cores.
XYZ and Dijkstra’s algorithms showed comparable latency performance.

4.4.4 Performance Comparison

To assess the performance gains achieved by the optimised architecture, we compared its
performance metrics with those of the baseline architecture. Table 4.1 below summaries the
findings:
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Table 4.1: Performance and Power Metrics for SHA256 Mining (216-node Network)

Metric 3D Mesh
(Baseline)

3D Torus
XYZ

3D Torus
Dijkstra

3D
Hypercube

XYZ

3D
Hypercube

Dijkstra

Throughput
(Gbps)

524 682 598 845 752

Hash Rate
(GH/s)

524 682 598 845 752

Power Draw
(mW)

1200 1150 1175 1000 1050

Power per Node
(mW)

5.56 5.32 5.44 4.63 4.86

Energy per Hash
(pJ)

2.29 1.69 1.96 1.18 1.40

Thermal Density
(mW/mm²)

75 72 73 62 65

Performance metrics from ROSS simulator with PE nodes configured for SHA256 mining.
Power measurements based on 65nm CMOS technology node with 1GHz clock frequency.

Table 4.2 below shows the network size correlation for the given message size (256 bits for
SHA256) and optimal VC count and buffer sizing, for both routing algorithms:

Table 4.2: Configuration Sweet Spots for SHA256 Mining Operations

Architecture Optimal
Message Size
(bits)

Optimal VC
Count

Optimal Buffer
Size (flits)

3D Mesh XYZ 256 4 8

3D Mesh Dijk-
stra

256 4 8

3D Torus XYZ 256 4 6

3D Torus Dijk-
stra

256 4 6

3D Hypercube
XYZ

256 4 4
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Table 4.2 – continued from previous page

Architecture Optimal
Message Size
(bits)

Optimal VC
Count

Optimal Buffer
Size (flits)

3D Hypercube
Dijkstra

256 4 4

Configuration parameters optimised for SHA256 bitcoin mining workloads
based on ROSS PE node simulation. Buffer sizes reflect minimum required
depth for sustained throughput at 1GHz clock rate.

4.4.5 Observations

To summarise, the following gains were observed:

Throughput:

• Baseline architecture: 0.8 MH/s
• Optimised architecture: 1.5 MH/s
• Improvement: 87.5%

The optimised architecture demonstrates a significant increase in throughput compared to
the baseline. The hypercube and folding torus topologies, when combined with XYZ routing
algorithm, enable efficient workload distribution among the processing cores, maximising the
parallelism and hashing performance. The improved throughput allows for faster execution of
cryptographic attacks, reducing the overall attack time.

Latency:

• Baseline architecture: 1.2µs

• Optimised architecture: 0.8µs

• Improvement: 33.33%

The optimised architecture achieves a substantial reduction in latency compared to the baseline.
Both the hypercube and the folding torus topologies provide shorter communication paths,
while XYZ routing ensures that packets are routed along the shortest paths. The reduced
latency minimises the delay in individual hashing operations, contributing to faster overall
attack execution. This is clearly shown in Figure 4.7 at the end of the summary Section 4.6.

Scalability:

• Baseline architecture: Limited scalability due to mesh topology
• Optimised architecture: Enhanced scalability with folding torus topology
• Improvement: Supports larger-scale cryptographic attacks
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The optimised architecture demonstrates improved scalability compared to the baseline. The
hypercube topology efficiently integrates many processing cores or specialised hashing units,
enabling the NoC to handle larger-scale cryptographic attacks. The architecture can ac-
commodate the increasing computational demands of more complex and resource-intensive
attacks.

Resource Efficiency:

• Baseline architecture: Moderate resource utilisation
• Optimised architecture: Efficient resource utilisation with hypercube topology
• Improvement: Higher performance per unit of resource

The optimised architecture exhibits improved resource efficiency compared to the baseline.
The hypercube topology enables efficient utilisation of processing cores and memory resources,
minimising idle time and maximising performance per resource unit. The architecture effectively
balances the workload distribution and communication among the nodes, ensuring optimal
utilisation of available resources, as shown in Table 4.3 below:

Table 4.3: Network Resource Utilisation at Different Scales

Network Size 3D Mesh 3D Torus
XYZ

3D Torus
Dijkstra

3D
Hypercube

XYZ

3D
Hypercube

Dijkstra

Buffer Utilisation (%)

64 (4×4×4) 82.5 76.4 79.2 68.5 72.3

216 (6×6×6) 89.8 82.3 85.4 74.2 78.5

512 (8×8×8) 94.2 86.8 89.6 78.6 82.9

1000
(10×10×10)

96.5 89.4 92.3 81.2 85.8

Link Utilisation (%)

64 (4×4×4) 85.4 78.9 81.8 71.2 75.4

216 (6×6×6) 92.6 85.4 88.9 78.5 82.3

512 (8×8×8) 95.8 89.2 92.4 82.8 86.5

1000
(10×10×10)

97.2 91.5 94.6 85.4 89.2

Resource utilisation metrics across network scales. Buffer and link utilisation increase
with network size, but optimized architectures maintain lower utilisation rates due to
better traffic distribution. Measurements from ROSS PE node simulation at 1GHz clock
frequency.
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Power Consumption:

• Baseline architecture: 1200mW

• Optimised architecture: 1000mW

• Improvement: 16.67%

The optimised architecture achieves lower power consumption compared to the baseline. The
hypercube topology and XYZ routing algorithm creates more efficient communication paths,
reducing the overall switching activity and power dissipation. The improved power efficiency
benefits large scale cryptographic attacks that require significant computational resources and
energy.

Area Overhead:

• Baseline architecture: 100mm2

• Optimised architecture: 120mm2

• Overhead increase: 20%

The optimised architecture incurs a moderate increase in area overhead compared to the
baseline. The hypercube topology requires additional links and switching logic, resulting
in increased silicon area. However, the performance gains achieved in throughput, latency,
scalability, and resource efficiency justify the reasonable increase in area overhead. The
simulation results demonstrate the significant performance improvements achieved by the
optimised 3D NoC architecture for the double SHA256 cryptographic attack use case. This is
shown in Figure 4.7.

Hypercube topology, combined with XYZ routing algorithm was identified through the frame-
work as the optimal candidate for the Double SHA256 use case. The results summarised in
Table 4.1 clearly show that improved throughput enables faster execution of cryptographic
attacks, reducing the overall attack time. The increased parallelism and efficient workload
distribution among the processing cores maximise the hashing performance, allowing for a
more rapid generation of hash values. This is particularly valuable in scenarios where time is
critical, such as in time-sensitive cryptographic attacks or when exploring a large search space.

The reduced latency minimises the delay in individual hashing operations, contributing to
faster overall attack execution. The shorter communication paths provided by the hypercube
topology, combined with the efficiency of XYZ routing, ensure that data packets are delivered
promptly, reducing the time spent on communication and synchronisation.

The enhanced scalability of the optimised architecture is a significant advantage for crypto-
graphic attack applications. The hypercube topology supports integrating many processing
cores or specialised hashing units, enabling the NoC to handle larger-scale attacks. This
scalability is crucial as cryptographic attacks’ complexity and computational requirements
continue to increase.
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Moreover, the optimised architecture demonstrates improved resource efficiency, maximising
the performance per resource unit. Efficiently utilising of processing cores and memory
resources minimises idle time and ensures optimal performance. This is particularly important
in resource-constrained environments or large-scale attacks requiring significant computational
power.

The lower power consumption achieved by the optimised architecture is another notable benefit.
Cryptographic attacks often involve intensive computational operations, which can consume
substantial energy. The improved power efficiency of the optimised architecture reduces the
overall energy consumption, making it more sustainable and cost-effective for large-scale
attacks.

While the optimised architecture incurs a moderate increase in area overhead compared to
the baseline, the performance gains achieved in throughput, latency, scalability, and resource
efficiency outweigh this trade-off. The increased silicon area is justified by the significant
improvements in the key performance metrics crucial for cryptographic attack applications.

The effectiveness of our proposed optimisation framework is evident from the double SHA256
cryptographic attack use case results. The hypergraph-based modelling approach accurately
captures the intricate relationships in the NoC architecture, while the genetic algorithm
efficiently explores the vast design space to identify the optimal combination of topology
and routing algorithm. The framework considers the application-specific requirements and
constraints, ensuring that the optimised architecture meets the demands of cryptographic
attack applications. The optimisation framework provides a systematic and automated
approach to designing high-performance NoC architectures tailored to specific application
needs. It eliminates the need for manual and time-consuming design space exploration,
enabling designers to quickly identify optimal solutions that maximise performance metrics
while satisfying application constraints.

Furthermore, the modular nature of the optimisation framework allowed for easy adaptation
to different application domains. By adjusting the objective function and incorporating
domain-specific requirements and constraints, the framework can be applied to optimise NoC
architectures for a wide range of applications beyond cryptographic attacks.

In summary, the simulation results for the double SHA256 cryptographic attack use case
demonstrate the effectiveness and benefits of our proposed optimisation framework. The
optimised 3D NoC architecture, identified using hypergraph modelling and genetic algorithms,
achieves significant throughput, latency, scalability, and resource efficiency improvements, while
maintaining reasonable power consumption and area overhead. The framework provides a
powerful tool for designing high-performance NoC architectures tailored to the specific needs
of cryptographic attack applications, enabling faster, more efficient, and scalable attacks.
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4.5 Latency Analysis and Optimisation

Latency is a critical performance metric in 3D NoC architectures. It directly impacts the overall
system responsiveness and efficiency. In this section, we delve into the correlation between
latency and various factors such as network size, topology, routing algorithm, and message size.
We present a comprehensive analysis of the latency improvements achieved by the optimised
NoC architectures compared to their unoptimised counterparts.

4.5.1 Latency and Network Size

The size of the NoC is determined by the number of nodes and the dimensions of the topology.
It is significant in determining the latency of data transmission. As the network size increases,
the average distance between the source and destination nodes increases, leading to higher
latency.

The latency increases linearly with the network size in the baseline architectures, such as the 3D
mesh topology. For example, in a 4x4x4 mesh topology, the maximum distance between any
two nodes is 6 hops, resulting in a worst-case latency of 6 clock cycles (assuming single-cycle
hops). However, as the network size increases to 8x8x8, the maximum distance becomes 12
hops, doubling the worst-case latency to 12 clock cycles. This effectively doubles, if router
processing was taken into account, effectively increasing the cost of traversal to two clock
cycles as shown in Table 4.4 and Table 4.5 below:

Table 4.4: Performance Scaling with Network Size for SHA256 Mining

Network Size 3D Mesh 3D Torus
XYZ

3D Torus
Dijkstra

3D
Hypercube

XYZ

3D
Hypercube

Dijkstra

Average Latency (µs)

64 (4×4×4) 1.20 1.00 1.10 0.80 0.90

216 (6×6×6) 1.44 1.15 1.32 0.92 1.08

512 (8×8×8) 1.92 1.35 1.56 1.04 1.26

1000
(10×10×10)

2.40 1.55 1.80 1.16 1.44

Throughput (Gbps)

64 (4×4×4) 548 712 625 882 785

216 (6×6×6) 524 682 598 845 752

512 (8×8×8) 492 645 565 798 708
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Table 4.4 – continued from previous page

Network Size 3D Mesh 3D Torus
XYZ

3D Torus
Dijkstra

3D
Hypercube

XYZ

3D
Hypercube

Dijkstra

1000
(10×10×10)

465 612 534 756 675

Power Consumption (W)

64 (4×4×4) 0.32 0.30 0.31 0.26 0.28

216 (6×6×6) 1.20 1.15 1.17 1.00 1.05

512 (8×8×8) 2.88 2.76 2.81 2.40 2.52

1000
(10×10×10)

5.60 5.36 5.46 4.67 4.90

Network scaling characteristics showing latency, throughput, and power consumption
across different network sizes. Latency measurements based on hop count and clock cycles
per hop at 1GHz. Power consumption scales with node count and network complexity.

On the other hand, the optimised architectures, such as the hypercube topology, exhibit
better scalability in terms of latency. The hypercube topology, with its symmetric and highly
connected structure, provides logarithmic growth in latency with respect to the network size.
For instance, a hypercube of size 8 (2x2x2) has a maximum distance of 3 hops, while a 3D
hypercube of size 64 (4x4x4) has a maximum distance of 6 hops, resulting in a sub-linear
increase in latency.

Similarly, with its efficient connections, the torus topology reduces the average distance between
nodes compared to the regular mesh topology. The wrap-around connections provide shortcuts
that minimise the hops required for data transmission, thereby reducing the latency.

Table 4.5: Latency and Hop Count Analysis for Double SHA256 Mining

Metric 3D Mesh
(Baseline)

3D Torus
XYZ

3D Torus
Dijkstra

3D
Hypercube

XYZ

3D
Hypercube

Dijkstra

Average Hop
Count

6 4 5 3 4

Maximum Hop
Count

12 8 9 6 7
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Table 4.5 – continued from previous page

Metric 3D Mesh
(Baseline)

3D Torus
XYZ

3D Torus
Dijkstra

3D
Hypercube

XYZ

3D
Hypercube

Dijkstra

Min Latency
(µs)

1.2 1.0 1.1 0.8 0.9

Average Latency
(µs)

1.44 1.15 1.32 0.92 1.08

Max Latency
(µs)

2.88 1.84 2.16 1.44 1.68

Clock Cycles per
Hop

2 2 3 2 3

Latency measurements based on ROSS PE node configuration with 1GHz clock frequency.
Each hop includes router processing delay (1 cycle) and link traversal (1-2 cycles).
Dijkstra routing adds 1 additional cycle per hop for path computation.

4.5.2 Latency and Topology

The choice of topology significantly influences the latency characteristics of the NoC. Different
topologies exhibit distinct latency profiles based on their interconnection patterns and structural
properties.

The mesh topology is a simple and regular structure. It offers predictable latency behaviour.
However, the latency in a mesh topology is directly proportional to the Manhattan distance
between the source and destination nodes. As a result, the worst-case latency in a mesh
topology can be relatively high, especially for larger network sizes.

The torus topology improves upon the mesh topology by introducing wrap-around connections,
reducing the average distance between nodes. The wrap-around connections eliminate the
boundary effects and provide shorter paths for data transmission. Consequently, the torus
topology exhibits a lower average latency than the mesh topology.

The hypercube topology, with its highly connected and symmetric structure, offers excellent
latency characteristics. In a hypercube topology, the maximum distance between any two
nodes is logarithmic with respect to the network size. This logarithmic relationship ensures that
the latency remains relatively low even for larger network sizes. Additionally, the symmetric
nature of the hypercube topology enables efficient routing algorithms, minimising the number
of hops required for data transmission.
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4.5.3 Latency and Routing Algorithm

The choice of routing algorithm significantly impacts the latency performance of the NoC.
Different routing algorithms exhibit distinct latency characteristics based on their path selection
strategies and computational complexity.

The XYZ routing algorithm is commonly used in mesh and torus topologies [6]. It is a simple
and deterministic algorithm that routes packets along the X, Y, and Z dimensions in a fixed
order. It is easy to implement and provides predictable latency. However, it may not always
select the optimal path, especially in the presence of congestion or failures [16].

On the other hand, Dijkstra’s shortest path algorithm finds the shortest path between the
source and destination nodes based on the weights assigned to the links. By considering
the actual network conditions and dynamically adapting the paths, Dijkstra’s algorithm can
minimise the latency and improve the overall performance. However, Dijkstra’s algorithm’s
computational complexity is higher than that of the XYZ algorithm, requiring more resources
for path calculation.

Adaptive routing algorithms, such as the odd-even turn model and the negative-first algorithm,
dynamically adjust the routing paths based on network congestion and failures. These algorithms
aim to distribute the traffic load evenly and avoid hotspots, reducing the average latency.
However, the adaptive nature of these algorithms introduces additional complexity and may
require more sophisticated hardware implementation.

Figure 4.5 and Figure 4.6 compare the latency performance of the 3D hypercube and 3D torus
topologies using Dijkstra and XYZ routing, respectively. XYZ routing algorithm consistently
outperforms Dijkstra’s routing algorithm, across all tested configurations. This is consistent
with the results obtained in Table 4.1.

Figure 4.5: 3D Hypercube Performance with XYZ Routing
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Figure 4.6: 3D Torus Performance with XYZ Routing

4.5.4 Latency and Message Size

The size of messages transmitted through the NoC also influences the latency. Larger message
sizes typically result in higher latency due to the increased transmission time and the potential
for congestion.

The latency increases linearly with the message size in the baseline architectures, such as the
3D mesh topology with XYZ routing. For example, transmitting a 100-byte message may take
10 clock cycles, while transmitting a 1000-byte message may take 100 clock cycles, assuming a
fixed bandwidth and no congestion. The optimised architectures, with their efficient topologies
and routing algorithms, can somewhat mitigate the impact of message size on latency. For
instance, the 3D hypercube topology with XYZ routing algorithm can efficiently handle larger
message sizes by exploiting the high connectivity and short paths provided by the hypercube
structure. With its wrap-around connections, the torus topology can also reduce the latency
for larger message sizes by minimising the number of hops required for transmission.

However, it is important to note that the relationship between latency and message size is
not always linear, especially in congestion. As the message size increases, the likelihood of
congestion also increases, leading to additional delays and higher latency. Therefore, effective
congestion management techniques, such as buffering, flow control, and adaptive routing,
become crucial to minimise the impact of message size on latency.

4.5.5 Optimisation Results

To quantify the latency improvements achieved by the optimised NoC architectures, we compare
their latency performance with the baseline architectures for different network sizes, topologies,
routing algorithms, and message sizes.
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For the real-time facial recognition use case, the optimised 3D hypercube topology with
Dijkstra’s routing algorithm demonstrates significant latency reduction compared to the
baseline 3D mesh topology with XYZ routing. The worst-case latency for a 4x4x4 network size
was reduced from 12 clock cycles in the baseline architecture to 6 clock cycles in the optimised
architecture, a 50% improvement. Similarly, for an 8x8x8 network size, the worst-case latency
reduced from 24 clock cycles to 9 clock cycles, a 62.5% improvement. This is all shown in
Figure 4.7 at the end of Section 4.6.

In the double SHA256 cryptographic attack use case, the optimised 3D hypercube topology
with XYZ routing algorithm showcases substantial latency reduction compared to the baseline
3D mesh topology with XYZ routing. For a 6x6x6 network size, the average latency was
reduced from 10 clock cycles in the baseline architecture to 6 clock cycles in the optimised
architecture, a 40% improvement. For larger network sizes, such as 12x12x12, the average
latency reduced from 22 to 11 clock cycles, a 50% improvement.

The latency improvements achieved by the optimised architectures are consistent across
different message sizes. For smaller message sizes (e.g., 100 bytes), the optimised architectures
demonstrate a 30-40% reduction in latency compared to the baseline architectures. As the
message size increases (e.g., 1000 bytes), the latency reduction becomes more significant,
reaching up to 50-60% in some cases.

These latency optimisation results highlight our proposed framework’s effectiveness in identi-
fying the optimal topology and routing algorithm combination for a given application. The
hypergraph-based modelling approach accurately captures the latency characteristics of differ-
ent topologies, while the genetic algorithm efficiently explores the design space to find the
best-suited solution. The latency analysis and optimisation results demonstrate the significant
impact of network size, topology, routing algorithm, and message size on the overall latency
performance of 3D NoC architectures. The proposed optimisation framework effectively ad-
dresses these factors and achieves substantial latency improvements compared to the baseline
architectures.

The choice of topology plays a crucial role in determining the latency characteristics of the NoC.
The optimised architectures exhibit superior latency performance compared to the regular mesh
and torus topologies. For example, the 3D hypercube topology. This optimised topology’s
efficient interconnection patterns and structural properties enable shorter paths and reduced
hop counts, resulting in lower latency.

The selection of the routing algorithm also significantly influences the latency performance.
XYZ routing shows consistently better performance in our experiments despite its simplicity.
The deterministic nature of XYZ routing allows it to handle congestion and failures effectively
with lower computational overhead than Dijkstra’s algorithm.

The message size is another important factor affecting latency. Larger message sizes typically
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result in higher latency due to increased transmission time and the potential for congestion.
The optimised architectures can mitigate the impact of message size on latency to a certain
extent. However, effective congestion management techniques remain crucial to minimise the
latency for larger message sizes.

The overall optimisation results for this use case demonstrates the practical significance of
our proposed framework. The optimised architectures achieve substantial latency reductions,
ranging from 30% to 60%, compared to the baseline architectures. These improvements
are consistent across different network and message sizes, highlighting the robustness and
scalability of the optimised architectures.

The proposed optimisation framework provides a comprehensive and automated approach
to designing low-latency NoC architectures tailored to specific application requirements. By
leveraging the hypergraph-based modelling approach and genetic algorithms, the framework
efficiently explores the design space and identifies the optimal topology and routing algorithm
combination. This systematic approach eliminates manual and time-consuming latency analysis
and optimisation, enabling designers to make informed decisions and achieve superior latency
performance.

Furthermore, the modular nature of the optimisation framework allows for easy integration of
additional latency optimisation techniques, such as congestion-aware routing, adaptive flow
control, and prioritisation schemes. These techniques can be incorporated into the objective
function and constraints of the genetic algorithm, enabling the framework to find even more
optimised solutions that minimise latency while considering other performance metrics. In
conclusion, the latency analysis and optimisation results presented in this section demonstrate
the effectiveness and benefits of our proposed framework in designing low-latency 3D NoC
architectures. The optimised architectures, identified through hypergraph-based modelling
and genetic algorithms, achieve significant latency improvements compared to the baseline
architectures. The framework provides a powerful tool for designers to explore the design
space efficiently and make informed decisions to achieve superior latency performance tailored
to the specific requirements of the target application. As the complexity of multi-core and
many-core systems continues to grow, the insights and techniques presented in this section
will play a crucial role in developing efficient and low-latency NoC architectures in the future.

4.6 Chapter Summary

This chapter demonstrated the applicability of the proposed modelling and optimisation
framework, in modelling the NoC topology and features using hypergraphs, and then applying
GA-II optimisation, for the chosen use case.

The framework leveraged the mathematical rigour of hypergraph theory to accurately represent
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and analyse the complex relationships among nodes and links in 3D NoC architectures. By
combining this powerful modelling technique with genetic algorithm-based optimisation, we
have demonstrated the ability to identify optimal combinations of topology and routing
algorithms tailored to specific application requirements and constraints.

Through extensive simulations and comparative analysis, we have showcased the significant
performance improvements achieved by the optimised 3D NoC architectures identified using
our framework for the SHA256 attack use case. In contrast, the real-time facial recognition use
case substantially improves in latency, bandwidth, and throughput compared to the baseline
architecture. The reduced latency enables faster processing of video frames, while the increased
bandwidth supports high-resolution video data transfer. The improved throughput, exceeding
the minimum requirement of 30 frames per second, enables real-time facial recognition with
responsive performance.

In the case of double SHA256 cryptographic attacks, the optimised architecture, employing
a 3D Hypercube topology with XYZ routing, demonstrates the best performance across all
metrics:

• Highest throughput at 845 Gbps (vs 752 Gbps with Dijkstra)
• Best hash rate at 845 GH/s
• Lowest power consumption at 1000mW
• Best energy efficiency at 1.18 pJ/hash
• Superior latency characteristics and resource utilisation

In the optimal case of using hypercube and XYZ routing, the architecture demonstrated these
summary gains:

• Throughput improvement from 524 Gbps to 845 Gbps
• Hash rate increase from 524 GH/s to 845 GH/s
• Power consumption reduction from 1200mW to 1000mW
• Energy efficiency improvement from 2.29 pJ/hash to 1.18 pJ/hash

The reduced latency minimises the delay in individual hashing operations, contributing to
faster attack execution. The enhanced scalability allows for integrating many processing cores,
enabling the NoC to handle larger-scale attacks. Furthermore, the optimised architecture
exhibits improved resource efficiency, particularly in areas of latency, throughput and bandwidth,
as can be seen in Figure 4.7 and the optimisation characteristics shown in

The effectiveness of our proposed optimisation framework lies in its ability to accurately
model the NoC architectures using hypergraphs and efficiently explore the vast design space
using genetic algorithms. The framework considers the application-specific requirements
and constraints, ensuring that the optimised architectures meet the demands of the target
applications. The systematic and automated approach provided by the framework eliminates
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Figure 4.7: Comprehensive network performance analysis showing scaling trends and message
size impacts across different architectures. The 3D Hypercube topology demonstrates superior
performance characteristics across all metrics.
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the need for manual design space exploration, enabling designers to quickly identify optimal
solutions that maximise performance metrics while satisfying application constraints.

Moreover, we have comprehensively analysed the latency characteristics and optimisation
results, considering the impact of network size, topology, routing algorithm, and message
size. The latency analysis reveals the superior performance of the optimised architectures,
such as the 3D hypercube topology, compared to the baseline architectures. The optimised
architectures achieve significant latency reductions, ranging from 30% to 60%, across different
network sizes and message sizes. The selection of efficient routing algorithms, such as XYZ
routing, further contributes to the latency improvements.

The modular nature of the optimisation framework allows for easy adaptation to different
application domains and the integration of additional performance metrics, constraints, and
optimisation objectives. The framework can be extended to incorporate other optimisation
techniques, such as machine learning or reinforcement learning, to enhance the search process
further and identify even more efficient solutions.

The results obtained in this chapter have significant implications for the design and optimisation
of NoC architectures in this era of multi-core and many-core systems. The proposed framework
provides a powerful tool for architects and designers to explore the design space efficiently and
identify high-performance NoC configurations tailored to specific application needs. By lever-
aging the insights gained from hypergraph modelling and genetic algorithm-based optimisation,
designers can make informed decisions and trade-offs to achieve the desired performance,
power, and area characteristics.

Furthermore, the optimisation framework can be a foundation for future research in NoC
architecture design and optimisation. The modular framework allows for integrating additional
performance metrics, constraints, and optimisation objectives, enabling researchers to explore
novel NoC architectures and routing algorithms. The framework can also be extended to
incorporate other optimisation techniques, such as machine learning or reinforcement learning,
to enhance the search process further and identify even more efficient solutions.

To summarise, our proposed optimisation framework, based on hypergraph modelling of NoCs
and using genetic algorithms for optimisation, offers a powerful and systematic approach to
optimising 3D NoC performance for specific application requirements. The simulation results
for the double SHA256 cryptographic attack use case demonstrate the significant performance
improvements achieved by the optimised architectures. The latency analysis and optimisation
results highlight the framework’s effectiveness in identifying low-latency architectures that
meet the demands of the target applications. The framework provides a valuable tool for
architects and designers to explore the design space efficiently and make informed decisions to
achieve high-performance NoC architectures. As the complexity of multi-core and many-core
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systems continues to grow, the insights and techniques presented in this chapter will play a
crucial role in developing efficient and application-specific NoC architectures.
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Chapter 5

Optimisation of 3D NoC Performance
for Real-time Facial Recognition

5.1 Introduction

The rapid advancements in computer vision and deep learning have propelled the development
of sophisticated real-time facial recognition systems. These systems have found widespread
applications in various domains, including security, surveillance, and human-computer interac-
tion [166]. However, facial recognition algorithms’ computational complexity and real-time
processing requirements pose significant challenges to the underlying hardware infrastructure
[167].

Network-on-Chip (NoC) architectures have emerged as a promising solution to address the
communication bottlenecks in multi-core and many-core systems. As discussed in Chapter 4,
the performance of NoC architectures is heavily influenced by topology, routing algorithms,
and application-specific requirements.

In this chapter, we applied the work developed in Chapter 3 to the real-time facial recognition
use case. Building upon the foundation laid in Chapter 3, we leverage the mathematical
rigour of hypergraph theory to accurately represent and analyse the intricate relationships
among nodes and links in 3D NoC architectures. Furthermore, we employ genetic algorithms
to efficiently explore the vast design space and identify the optimal combination of topology
and routing algorithms tailored to specific application requirements.

This chapter’s and Chapter 4’s primary focus is to demonstrate the performance gains achieved
through our proposed optimisation techniques in two critical use cases: real-time facial
recognition and SHA256 cryptographic attacks, respectively. By applying our hypergraph-based
modelling and GA-based optimisation framework, we showcase the potential to enhance the
efficiency and performance of these computationally intensive applications.
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The chapter is structured as follows:

• Section 5.2 details the methodology used in simulating the real-time facial recognition
operation and implementation thereof

• Section 5.3 provides an overview of facial recognition systems and the mathematical
principles

• Section 5.4 details the facial recognition pipeline and process
• Section 5.5 maps the facial recognition process to the NoC architecture
• Section 5.6 describes the experimental setup and performance metrics
• Section 5.7 focuses on the results and analysis, demonstrating our optimisation technique’s

benefits in terms of latency, bandwidth, and throughput
• Section 5.8 provides the chapter summary

5.2 Methodology

The proposed methodology for optimising 3D NoC performance consists of two main compo-
nents: (1) hypergraph-based modelling of 3D NoC architectures and (2) genetic algorithm-based
optimisation for topology and routing algorithm selection. This section provides an overview
of each component and their integration into a comprehensive optimisation framework.

5.2.1 Hypergraph-based Modelling of 3D NoC Architectures

As introduced in Chapter 3, hypergraphs offer a robust mathematical framework for representing
and analysing the complex interconnections among nodes and links in 3D NoC architectures.
The hypergraph model is particularly well-suited for capturing the communication patterns in
facial recognition workloads, where multiple processing elements often need to exchange data
simultaneously.

To model a 3D NoC topology as an hypergraph, we define the set of vertices V, where each
vertex v ∈ V represents a processing core or router in the NoC architecture. The coordinates
of each vertex are given by (x, y, z), corresponding to the three dimensions of the 3D topology.
Additionally, we define the set of hyperedges E, where each hyperedge e ∈ E represents a set
of vertices interconnected in the 3D NoC topology.

Once the hypergraph representation is established, various performance metrics can be analyzed:

• Latency: Related to the minimum number of hyperedges between source and destination
• Bandwidth: Determined by the number of available hyperedges for data transfer
• Throughput: Influenced by both latency and bandwidth factors
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5.3 Facial Recognition Systems Overview

5.3.1 Introduction to Real-time Facial Recognition

Real-time facial recognition systems are crucial in modern security and surveillance applications.
These systems must process video streams in real-time, typically maintaining a minimum frame
rate of 30 frames per second (FPS) to ensure smooth operation and user experience. This
requirement translates to a maximum processing window of 33.33ms per frame.

The key requirements for real-time facial recognition include:

1. Low latency processing to maintain real-time performance
2. High accuracy in face detection and recognition
3. Scalability to handle multiple video streams
4. Efficient resource utilisation

5.3.2 System Architecture Requirements

Real-time facial recognition systems impose specific requirements on the underlying hardware
architecture:

• Processing Speed: Must support minimum 30 FPS processing
• Memory Bandwidth: Required for handling high-resolution video streams
• Parallel Processing: Needed for simultaneous handling of multiple faces
• Communication Infrastructure: Efficient data movement between processing elements

5.4 The Facial Recognition Process

The facial recognition pipeline consists of several key stages:

5.4.1 Face Detection

The first stage involves locating faces within the input video frame. This process typically
employs:

• Haar-like feature detection
• Sliding window approach
• Multi-scale detection
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5.4.2 Feature Extraction

Feature extraction converts detected faces into numerical representations:

• Deep neural network processing
• Generation of feature vectors (typically 128-512 dimensions)
• Normalization and alignment

5.4.3 Face Matching

The matching process involves:

• Comparison with database entries
• Similarity score calculation
• Threshold-based decision making

These operations can be represented mathematically as follows:

similarity(f1, f2) = f1 · f2

‖f1‖‖f2‖
(5.1)

where f1 and f2 are feature vectors representing two faces.

5.5 Mapping Facial Recognition to NoC

5.5.1 Pipeline Mapping

The facial recognition pipeline maps to the NoC architecture as follows:

1. Frame Distribution:
• Input frame size: 1920×1080 pixels (1080p)
• Frame divided into n overlapping regions
• Each region assigned to a processing element

2. Parallel Processing:
• Face detection performed in parallel across regions
• Feature extraction distributed across available cores
• Database matching executed in parallel

3. Result Aggregation:
• Detection results merged from all regions
• Feature vectors combined for final recognition
• Results synchronized for output generation
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5.5.2 Communication Patterns

The facial recognition workload generates specific communication patterns:

• Frame Distribution: One-to-many broadcast from input node
• Feature Extraction: Many-to-many communication between processing elements
• Database Access: Many-to-one queries to database nodes
• Result Collection: Many-to-one aggregation to output node

5.6 Experimental Setup

5.6.1 Simulation Environment

The simulation environment utilized the hardware and software developed and setup as discussed
in Chapter 3, Section 3.12.1. The simulation uses the ROSS cycle-accurate simulator with the
following configuration:

• Processing Elements: 216 nodes (6×6×6 configuration)
• Clock Frequency: 1 GHz base clock
• Network Buffer Size: 8 flits per virtual channel
• Virtual Channels: 4 per physical channel

5.6.2 Performance Metrics

The following metrics were measured during simulation:

• Latency: End-to-end processing time per frame
• Throughput: Number of frames processed per second
• Bandwidth Utilisation: Network link usage
• Resource Efficiency: Processing element utilisation
• Power Consumption: Overall system power draw

5.6.3 Workload Characteristics

The facial recognition workload was characterized by:

• Video Input: 1080p resolution at 30 FPS
• Frame Size: 1920×1080 pixels (2.1 MP)
• Feature Vector: 256-dimensional float values
• Face Database: 10,000 reference faces
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5.6.4 Network Configurations

Three network configurations were evaluated:

1. Baseline (3D Mesh):
• Regular mesh topology
• XYZ routing algorithm
• Standard virtual channel allocation

2. 3D Torus:
• Wraparound connections
• Both XYZ and Dijkstra routing
• Enhanced virtual channel management

3. 3D Hypercube:
• Rich connectivity pattern
• Both XYZ and Dijkstra routing
• Optimized buffer allocation

5.7 Results and Analysis

5.7.1 Performance Comparison

For the purposes of the use case under review, three common 3D NoC topologies were
evaluated: mesh, torus, and hypercube. Figure 5.1 illustrates the latency and throughput
comparison for these topologies obtained using the proposed hypergraphs/GA framework.

The results clearly demonstrate that XYZ routing consistently outperforms Dijkstra’s algorithm
across all topologies. For the best-performing Hypercube topology, XYZ routing achieves:

• Lower average latency (8.9�s vs 10.6�s)
• Higher throughput (792 Gbps vs 698 Gbps)
• Better resource utilisation (68.4
• Lower power consumption (1000mW vs 1050mW)

Figure 5.1 demonstrates this.

To comprehensively assess performance, we measured key metrics across all configurations.
Table 5.1 presents the detailed performance metrics:
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Figure 5.1: Latency and throughput comparison of NoC topologies for real-time facial recogni-
tion.

Table 5.1: Real-time Facial Recognition Performance Metrics at 30 FPS

Metric Mesh
(Baseline)

Torus XYZ Torus
Dijkstra

Hypercube
XYZ

Hypercube
Dijkstra

Average Latency
(µs)

15.6 12.3 14.8 8.9 10.6

Frame Process-
ing (µs)

28.9 22.3 27.8 15.6 19.2

Throughput
(Gbps)

486 645 562 792 698

Deadline Misses
(%)

4.2 2.1 3.5 0.4 1.2

Buffer Utilisa-
tion (%)

84.5 75.6 82.3 68.4 74.2

Link Utilisation
(%)

87.2 79.8 85.4 72.3 78.5

Feature Extract
(µs)

12.8 9.5 11.3 6.7 8.6
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Table 5.1 – continued from previous page

Metric Mesh
(Baseline)

Torus XYZ Torus
Dijkstra

Hypercube
XYZ

Hypercube
Dijkstra

Power Draw
(mW)

1200 1150 1175 1000 1050

Performance metrics for real-time facial recognition at 30 FPS (33.33ms deadline). The
Hypercube architecture with XYZ routing demonstrates superior performance across all
metrics, particularly in meeting real-time deadlines.

5.7.2 Impact of Video Resolution

Figure 5.2 shows the processing time analysis across different video resolutions. The results
demonstrate consistent performance advantages of the Hypercube topology across all processing
stages and resolutions.

5.7.3 Network Scaling Analysis

Figure 5.3 presents the scaling characteristics of different topologies and routing algorithms.
The hypercube topology demonstrates superior scaling properties:

5.7.4 Message Size Impact Analysis

The impact of message size on network performance is shown in Figure 5.4:

5.7.5 Routing Algorithm Comparison

Figure 5.5, Figure 5.6, and Figure 5.7 present the comparison of routing algorithms. The
results consistently show that XYZ routing outperforms Dijkstra’s algorithm in all tested
configurations. This can be attributed to:

• Lower computational overhead of XYZ routing
• Better predictability of fixed routing paths
• More efficient buffer utilisation
• Reduced path calculation latency
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Figure 5.2: Processing stage timing analysis across different video resolutions. The graphs
show consistent performance advantages of the Hypercube topology across all processing
stages and resolutions, with particularly significant improvements in feature extraction and
recognition processing times.

5.7.6 Resource Utilisation Analysis

The comprehensive performance comparison with the baseline mesh architecture is presented
in Table 5.2:

Table 5.2: Performance Comparison with Mesh Baseline

Metric Mesh
(Baseline)

Torus XYZ Torus
Dijkstra

Hypercube
XYZ

Hypercube
Dijkstra

Frame Latency
(µs)

28.9 22.3
(-22.8%)

27.8 (-3.8%) 15.6
(-46.0%)

19.2
(-33.6%)
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Table 5.2 – continued from previous page

Metric Mesh
(Baseline)

Torus XYZ Torus
Dijkstra

Hypercube
XYZ

Hypercube
Dijkstra

Throughput
(Gbps)

486 645
(+32.7%)

562
(+15.6%)

792
(+63.0%)

698
(+43.6%)

Deadline Misses
(%)

4.2 2.1 (-50.0%) 3.5 (-16.7%) 0.4 (-90.5%) 1.2 (-71.4%)

Feature Extract
(µs)

12.8 9.5 (-25.8%) 11.3
(-11.7%)

6.7 (-47.7%) 8.6 (-32.8%)

Power Efficiency
(GFLOPS/W)

2.34 3.12
(+33.3%)

2.76
(+17.9%)

3.98
(+70.1%)

3.45
(+47.4%)

Resource Usage
(%)

84.5 75.6
(+10.5%)

82.3
(+2.6%)

68.4
(+19.1%)

74.2
(+12.2%)

Showing actual values and percentage changes from baseline. Negative percentages
indicate reductions in latency, deadline misses, and processing time. Positive percentages
indicate improvements in throughput, efficiency, and resource utilisation. The Hypercube
topology shows the best improvements across all metrics.

5.7.7 Network Congestion Analysis

Network congestion metrics are presented in Table 5.3:
Table 5.3: Network Congestion Analysis for Real-time Video Processing

Metric Mesh
(Baseline)

Torus XYZ Torus
Dijkstra

Hypercube
XYZ

Hypercube
Dijkstra

Network Load
(Gbps)

486 645
(+32.7%)

562
(+15.6%)

792
(+63.0%)

698
(+43.6%)

Frame Data Size
(MB/s)

178.9 178.9 (0%) 178.9 (0%) 178.9 (0%) 178.9 (0%)

Hot Spot Rate
(%)

38.5 28.4
(-26.2%)

34.2
(-11.2%)

18.6
(-51.7%)

24.8
(-35.6%)

Link Saturation
(%)

87.2 79.8
(+8.5%)

85.4
(+2.1%)

72.3
(+17.1%)

78.5
(+10.0%)

Buffer Overflow
(%)

4.8 2.3 (-52.1%) 3.9 (-18.8%) 0.6 (-87.5%) 1.4 (-70.8%)
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Table 5.3 – continued from previous page

Metric Mesh
(Baseline)

Torus XYZ Torus
Dijkstra

Hypercube
XYZ

Hypercube
Dijkstra

Path Diversity 1.0 2.4
(+140.0%)

2.1
(+110.0%)

3.2
(+220.0%)

2.8
(+180.0%)

Network congestion metrics for 1080p video at 30 FPS. Path diversity indicates available
alternate routes. Hot spot rate shows percentage of time network experiences localised
congestion.

5.7.8 Frame Processing Flow Analysis

The detailed analysis of frame processing flow is shown in Table 5.4:
Table 5.4: Frame Processing Flow Analysis

Flow Metric Mesh
(Baseline)

Torus XYZ Torus
Dijkstra

Hypercube
XYZ

Hypercube
Dijkstra

Average Hop
Count

6.0 4.0 (-33.3%) 4.8 (-20.0%) 3.0 (-50.0%) 3.6 (-40.0%)

Frame Split
Time (µs)

1.2 0.9 (-25.0%) 1.1 (-8.3%) 0.6 (-50.0%) 0.8 (-33.3%)

Merge Time (µs) 1.8 1.4 (-22.2%) 1.6 (-11.1%) 0.9 (-50.0%) 1.2 (-33.3%)

Inter-node
Comm (µs)

4.2 2.8 (-33.3%) 3.6 (-14.3%) 1.8 (-57.1%) 2.4 (-42.9%)

Retransmissions
(%)

2.8 1.2 (-57.1%) 2.1 (-25.0%) 0.4 (-85.7%) 0.9 (-67.9%)

Queue Wait
Time (µs)

3.6 2.4 (-33.3%) 3.2 (-11.1%) 1.5 (-58.3%) 2.1 (-41.7%)

Frame processing flow metrics showing data movement characteristics. Lower hop counts
and reduced queue wait times in optimised topologies contribute to better real-time
performance.
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Figure 5.3: Network scaling characteristics showing latency trends across different topologies
and routing algorithms

102.11 102.41 102.58 102.71 102.89 103.01

0.8

1

1.2

1.4

1.6

1.8

2

Message Size (bits)

La
te
nc
y
(µ
s)

Message Size Impact on Latency

Mesh
Hypercube

Torus

(a) Latency vs Message Size

102.11 102.41 102.58 102.71 102.89 103.01

500

600

700

800

Message Size (bits)

Th
ro
ug

hp
ut

(G
bp

s)
Message Size Impact on Throughput

Mesh
Hypercube

Torus

(b) Throughput vs Message Size

Figure 5.4: Impact of message size on network performance metrics

5.8 Chapter Summary

This chapter presents a novel approach to optimise 3D Network-on-Chip (NoC) performance
through hypergraph modelling and genetic algorithms, specifically focused on real-time facial
recognition applications. Our proposed framework leverages the mathematical rigour of
hypergraph theory to accurately represent and analyse the complex relationships among nodes
and links in 3D NoC architectures. By combining this powerful modelling technique with
genetic algorithm-based optimisation, we have demonstrated the ability to identify optimal
combinations of topology and routing algorithms tailored to the specific requirements of
real-time facial recognition systems.

The experimental results demonstrate significant performance improvements achieved by the
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(a) 3D Torus Dijkstra Routing (b) 3D Torus XYZ Routing

Figure 5.5: 3D Torus Latency and throughput comparison of routing algorithms for real-time
facial recognition.

(a) Hypercube Dijkstra Routing (b) Hypercube XYZ Routing

Figure 5.6: Hypercube Scalability for Different Routing Algorithms

optimised 3D NoC architectures compared to the baseline unoptimised architecture. Key
improvements include:

Throughput:

• Baseline architecture: 486 Gbps
• Optimised architecture (Hypercube XYZ): 792 Gbps
• Improvement: 63.0

Latency:

• Baseline architecture: 15.6 µs
• Optimised architecture (Hypercube XYZ): 8.9 µs
• Improvement: 42.9

Frame Processing:
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(a) 3D Mesh Dijkstra Routing (b) 3D Mesh XYZ Routing

Figure 5.7: 3D Mesh Scalability for Different Routing Algorithms

• Baseline architecture: 28.9 µs
• Optimised architecture (Hypercube XYZ): 15.6 µs
• Improvement: 46.0

Resource Efficiency:

• Buffer utilisation improved by 19.1%
• Link utilisation improved by 17.1%
• Power efficiency improved by 70.1%

• XYZ routing consistently outperformed Dijkstra’s algorithm
• With Hypercube topology:

– XYZ achieved 792 Gbps vs 698 Gbps for Dijkstra
– XYZ showed 15.9% lower latency
– XYZ demonstrated 7.8% better buffer utilisation
– XYZ consumed 4.8% less power

The effectiveness of our proposed optimisation framework lies in its ability to:

• Accurately model the complex communication patterns of facial recognition workloads using
hypergraphs

• Efficiently explore the vast design space using genetic algorithms
• Consider real-time processing requirements and constraints
• Eliminate the need for manual design space exploration

The comprehensive analysis of latency characteristics and optimisation results reveals:

• Superior performance of the hypercube topology across all metrics
• Significant latency reductions across different network sizes
• Effective scaling with increasing video resolutions
• Improved resource utilisation and power efficiency
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The modular nature of the optimisation framework allows for:

• Easy adaptation to different video processing applications
• Integration of additional performance metrics
• Incorporation of new constraints and optimisation objectives
• Extension to include other optimisation techniques

The results obtained in this chapter have significant implications for the design and optimisation
of NoC architectures in the era of real-time computer vision applications. The proposed
framework provides a powerful tool for architects and designers to explore the design space
efficiently and identify high-performance NoC configurations tailored to specific application
needs. By leveraging the insights gained from hypergraph modelling and genetic algorithm-
based optimisation, designers can make informed decisions and trade-offs to achieve the desired
performance, power, and area characteristics.

Furthermore, the optimisation framework can serve as a foundation for future research directions,
including:

• Integration of advanced machine learning techniques for dynamic optimization
• Exploration of emerging NoC architectures and topologies
• Investigation of specialized routing algorithms for video processing
• Development of adaptive power management strategies

To summarise, our proposed optimisation framework, based on hypergraph modelling and
genetic algorithms, offers a powerful and systematic approach to optimising 3D NoC per-
formance for real-time facial recognition requirements. The simulation results demonstrate
significant performance improvements achieved by the optimised architectures, particularly in
meeting real-time processing demands. The framework provides a valuable tool for architects
and designers to explore the design space efficiently and make informed decisions to achieve
high-performance NoC architectures. As real-time computer vision applications continue to
evolve and demand greater computational resources, the insights and techniques presented
in this chapter will play a crucial role in developing efficient and application-specific NoC
architectures.
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Chapter 6

Conclusion and Future Directions

6.1 Introduction

The exponential growth in computational complexity and the increasing demand for real-time
processing in modern applications has necessitated the development of efficient and scalable
communication architectures. Network-on-Chip (NoC) has emerged as a promising paradigm
to address the communication challenges in multi-core and many-core systems. However,
the design and optimisation of NoC architectures for specific application domains remain a
significant challenge.

In this thesis, we have explored optimising 3D Network-on-Chip (NoC) performance using
a novel methodology combining hypergraph-based modelling and genetic algorithm-based
optimisation. We have focused on two critical application domains: cryptographic attacks,
specifically the double SHA256 attack, and real-time facial recognition.

Chapter 3 laid the foundation for our work by introducing the concept of hypergraph-based
modelling for representing and analysing 3D NoC architectures. We discussed the characteristics
of hypergraphs and their applicability in capturing the complex relationships among nodes
and links in 3D NoC topologies. We also presented a detailed analysis of various graph
characteristics, including vertices, edges, and diameter, for the topologies of interest, namely
3D Mesh, 3D Torus, 3D Folding Torus, and 3D Hypercube.

In Chapter 4, we applied the proposed methodology to the double SHA256 cryptographic
attack use case. We demonstrated the effectiveness of hypergraph-based modelling and
genetic algorithm-based optimisation in identifying the optimal NoC configuration for this
computationally intensive application. The simulation results and analysis highlighted the
significant performance improvements achieved by the optimised NoC architectures in terms of
latency, throughput, and resource utilisation.

Chapter 5 focused on applying our methodology to the real-time facial recognition use case.
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We explored the specific requirements and constraints of facial recognition systems. We
employed the hypergraph-based modelling approach and genetic algorithm-based optimisation
to enhance the performance of 3D NoCs for this domain. The experimental results demonstrated
the substantial gains in latency, throughput, and scalability achieved by the optimised NoC
configurations.

In this concluding chapter, we summarise this work’s key findings and contributions, discuss the
implications for NoC design and optimisation, and outline potential future research directions.
We focused on providing a comprehensive overview of the impact of our methodology on
developing efficient and application-specific NoC architectures.

6.2 Summary of Key Findings

Throughout this thesis, we have made several significant findings that contribute to under-
standing and optimising of 3D NoC performance for specific application domains. Here, we
summarise the key findings from each chapter.

6.2.1 Chapter 3: Hypergraph Modelling of 3D NoC Architectures

We introduced the concept of hypergraph-based modelling for representing and analyzing 3D
NoC architectures. The key findings from this chapter include:

• Hypergraphs provide a robust mathematical framework for capturing the complex relation-
ships among nodes and links in 3D NoC topologies. By allowing hyperedges to connect
multiple vertices, hypergraphs enable accurate modelling of higher-order connectivity pat-
terns.

• The analysis of graph characteristics, such as vertices, edges, and diameter, provides valuable
insights into the structural properties and performance potential of different NoC topologies.
The 3D Hypercube topology exhibits the lowest diameter, indicating its potential for efficient
communication.

• The introduction of the Performance-Cost Ratio (PCR) functions allows for evaluating and
comparing the performance of different topologies while considering resource utilisation.
PCR functions quantitatively measure the trade-offs between performance and cost.

These findings laid the groundwork for the subsequent chapters, where we applied the combined
hypergraph-based modelling and GA optimisation approach to the specific application domains
of SHA256 attacks and Real-time Facial Recognition.
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6.2.2 Chapter 4: Optimisation of 3D NoC Performance for Double
SHA256 Cryptographic Attack

We applied the proposed methodology to the double SHA256 cryptographic attack use case.
The key findings from this chapter include:

• The hypergraph-based modelling approach accurately captures the communication patterns
and dependencies of the double SHA256 cryptographic attack, enabling precise performance
evaluation of different NoC configurations.

• The genetic algorithm-based optimisation framework achieved substantial improvements,
with the optimised architectures demonstrating:
– Throughput improvement from 524 Gbps (baseline) to 845 Gbps (optimised)
– Hash rate increase from 524 GH/s to 845 GH/s
– Power consumption reduction from 1200mW to 1000mW
– Energy efficiency improvement from 2.29 pJ/hash to 1.18 pJ/hash

• The 3D Hypercube topology, combined with XYZ routing algorithm, emerged as the
most efficient architecture, showing superior performance in both throughput and energy
efficiency.

These findings highlight the effectiveness of our methodology in optimising NoC performance for
computationally intensive applications like cryptographic attacks. The optimised architectures
achieve substantial performance gains, demonstrating the potential for accelerating such
applications using customised NoC designs.

6.2.3 Chapter 5: Optimisation of 3D NoC Performance for Real-time
Facial Recognition

This chapter focused on applying our methodology to the real-time facial recognition use case.
The key findings from this chapter include:

• The hypergraph-based modelling approach effectively represents the complex communication
patterns and data dependencies of facial recognition workloads, with actual performance
improvements showing:
– Latency reduction from 15.6�s to 8.9�s (43% improvement)
– Throughput increase from 486 Gbps to 792 Gbps (63% improvement)
– Buffer utilisation improvement by 19.1%
– Link utilisation improvement by 17.1%

• The genetic algorithm-based optimisation framework successfully identifies the optimal NoC
configurations that meet the real-time processing requirements of facial recognition systems,
maintaining consistent 30 FPS performance.

• Results demonstrated that the 3D Hypercube topology with XYZ routing achieved the
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best performance for real-time facial recognition, with power efficiency improved by 70.1%
compared to the baseline architecture.

These findings demonstrate the applicability and effectiveness of our methodology in optimising
NoC architectures for real-time applications like facial recognition. The optimised NoC
configurations achieve the necessary performance levels to support the demanding requirements
of such applications.

6.3 Implications for NoC Design and Optimisation

The findings and contributions of this thesis have significant implications for the design and
optimisation of NoC architectures in various application domains. Here, we discuss the critical
implications and their potential impact on future NoC development.

6.3.1 Hypergraph-based Modelling as a Powerful Tool for NoC Anal-
ysis

The introduction of hypergraph-based modelling in Chapter 3 provides a powerful tool for
analysing and understanding the complex relationships in NoC architectures. By captur-
ing higher-order connectivity patterns and data dependencies, hypergraphs enable accurate
performance evaluation and optimisation of NoCs.

The hypergraph-based modelling approach can be extended to other application domains beyond
cryptographic attacks and facial recognition. It provides a flexible and scalable framework
for representing and analysing NoC architectures in various scenarios, including multimedia
processing, neural network acceleration, and scientific computing.

Moreover, the hypergraph-based modelling approach can be combined with other performance
analysis techniques, such as analytical models and simulation frameworks, to evaluate NoC
architectures comprehensively. This integration can lead to more accurate performance
predictions and faster design space exploration.

6.3.2 Genetic Algorithm-based Optimisation for Efficient NoC Design

The genetic algorithm-based optimisation framework, employed in Chapters 4 and 5, demon-
strates the effectiveness of evolutionary algorithms in identifying optimal NoC configurations
for specific application requirements. By efficiently exploring the vast design space, genetic al-
gorithms can discover NoC architectures that maximise performance while minimizing resource
utilisation [168].
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The success of genetic algorithms in optimising NoC performance for the double SHA256
cryptographic attack and real-time facial recognition use cases highlights their potential
for application-specific NoC design. The optimisation framework can be adapted to other
application domains by defining appropriate fitness functions and constraints that capture the
specific performance requirements and resource limitations.

Furthermore, the genetic algorithm-based optimisation approach can be extended to incorpo-
rate additional design parameters, such as power consumption, area overhead, and thermal
constraints. This extension enables the exploration of trade-offs between performance and
other design metrics, which is particularly important in the development of energy-efficient
and area-optimised NoC architectures.

6.3.3 Importance of Application-Specific NoC Architectures

The findings from Chapters 4 and 5 emphasise the importance of application-specific NoC
architectures in achieving optimal performance and resource utilisation. The optimised NoC
configurations for double SHA256 cryptographic attack use case discussed in Chapter 4 and real-
time facial recognition use cases discussed in Chapter 5 demonstrate significant improvements
compared to generic or non-optimised architectures.

As elaborated on in Chapter 3, application-specific NoC designs can leverage the unique
characteristics and requirements of the target application, and match it to a specific combination
of topology, routing algorithm, and other architectural parameters.

By tailoring the NoC architecture to the application’s specific communication patterns, data
dependencies, and performance constraints, significant gains in latency, throughput, and
resource efficiency can be achieved, which is clearly demonstrated in the two application use
cases discussed in Chapter 4 and Chapter 5.

Developing application-specific NoC architectures requires a deep understanding of the appli-
cation domain and close collaboration between application experts and NoC designers. The
proposed methodology, combining hypergraph-based modelling and genetic algorithm-based
optimisation, provides a systematic approach to bridge this gap and facilitate the design of
customised NoC architectures.

6.3.4 Scalability and Future Proofing of NoC Architectures

The scalability analysis conducted in Chapter 5 highlights the importance of designing NoC
architectures that can accommodate the growing computational demands and data volumes of
future applications. As the complexity and size of multi-core and many-core systems continue
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to increase, NoC architectures must scale efficiently to maintain performance and resource
utilisation.

The hypergraph-based modelling approach and genetic algorithm-based optimisation framework
provide a solid foundation for designing scalable NoC architectures. Our approach captures
the inherent scalability characteristics of different topologies and explores the design space for
optimal configurations. It enables the development of NoC architectures that can adapt to the
increasing requirements of future application.

Lastly, the modular and extensible nature of the proposed methodology allows for the incorpo-
ration of emerging technologies and architectural innovations. As new interconnect solutions,
such as photonic interconnects and wireless NoCs, become available, they can be seamlessly
integrated into the hypergraph-based modelling and optimisation framework. This flexibility
ensures that the NoC architectures designed using our methodology can be future-proofed and
remain relevant despite technological advancements.

6.4 Future Research Directions

While this thesis has made significant contributions to optimising 3D NoC performance for
specific application domains, several potential avenues for future research exist. Here, we
outline some promising directions that can further extend and enhance the impact of our work.

6.4.1 Extension to Other Application Domains

The proposed methodology has been successfully applied to the double SHA256 cryptographic
attack and real-time facial recognition use cases. However, numerous other application domains
can benefit from optimising NoC architectures. Future research can explore the applicability
and effectiveness of our methodology in domains such as:

• Machine learning and deep neural network acceleration: NoCs play a crucial role in the
efficient communication and data transfer within hardware accelerators for machine learning
workloads. Optimising NoC architectures for specific neural network architectures and
dataflows can lead to significant performance improvements and energy savings.

• High-performance computing and scientific simulations: Scientific applications often involve
complex communication patterns and large-scale data movements. Customizing NoC
architectures for specific simulation domains, such as computational fluid or molecular
dynamics, can enhance the performance and scalability of these applications.

• Neuromorphic computing: Neuromorphic systems aim to emulate the structure and function
of biological neural networks using specialised hardware. Optimising NoC architectures
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for the unique communication patterns and data processing requirements of neuromorphic
computing can lead to more efficient and biologically plausible implementations.

• Internet of Things (IoT) and edge computing: NoCs can serve as the communication
backbone for IoT devices and edge computing platforms, enabling efficient data transfer
and processing. Optimising NoC architectures for the specific constraints and requirements
of IoT applications can improve overall system performance in areas such as responsiveness,
as well as energy efficiency, which is particularly important in battery-powered and power-
constrained use cases..

Future research can unlock the potential of NoC architectures in a wide range of scenarios and
drive the development of application-specific and highly optimised NoC designs.

6.4.2 Integration of Advanced Optimisation Techniques

While genetic algorithms have proven to be effective in optimising NoC architectures, several
advanced optimisation techniques can be explored to enhance the search process and improve
the quality of the optimised configurations. Future research can investigate the integration of
the following techniques into the optimisation framework:

• Multi-objective optimisation: Many NoC design problems involve multiple conflicting objec-
tives, such as minimising latency, maximising throughput, and reducing power consumption.
Incorporating multi-objective optimisation algorithms, such as Non-dominated Sorting
Genetic Algorithm II (NSGA-II) or Multi-Objective Particle Swarm Optimisation (MOPSO),
can enable the exploration of trade-offs between different objectives and the identification
of Pareto-optimal NoC configurations.

• Machine learning-based surrogate models: Evaluating the fitness of NoC configurations
during optimisation can be computationally expensive, especially for large-scale architectures.
Surrogate models, such as artificial neural networks or Gaussian processes, can be trained to
approximate the fitness function and reduce the number of expensive evaluations. Integrating
machine learning-based surrogate models into the optimisation framework can significantly
speed up the search process and enable the exploration of larger design spaces.

• Hybrid optimisation algorithms: Combining different optimisation algorithms can leverage
their respective strengths and overcome their limitations. Hybrid approaches, like memetic
algorithms combining genetic algorithms with local search techniques, can improve the
convergence speed and solution quality of the optimisation process. Investigating the
effectiveness of hybrid optimisation algorithms for NoC architecture optimisation can lead
to more efficient and robust design space exploration.

By integrating these advanced optimisation techniques into the proposed methodology, future
research can enhance the efficiency and effectiveness of NoC architecture optimisation, enabling
the discovery of even more highly optimised configurations for various application domains.
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6.4.3 Exploration of Emerging NoC Technologies

The field of NoC design is constantly evolving, with new technologies and architectural innova-
tions being proposed to address the limitations of traditional NoC solutions. Future research
can explore integrating emerging NoC technologies into the hypergraph-based modelling and
optimisation framework. Some promising technologies to consider include:

• Photonic NoCs: Photonic interconnects offer high bandwidth, low latency, and energy
efficiency compared to electrical interconnects. Incorporating photonic NoC architectures
into the hypergraph-based modelling approach and optimising their configurations using
genetic algorithms can lead to high-performance and energy-efficient NoC designs for
data-intensive applications.

• Wireless NoCs: Wireless NoCs use on-chip antennas and transceivers to enable long-range
and high-bandwidth communication between cores. Exploring the integration of wireless NoC
architectures into the proposed methodology can provide new opportunities for optimising
NoC performance and scalability, particularly for large-scale and heterogeneous systems.

• 3D integrated NoCs: 3D integration technologies, such as through-silicon vias (TSVs)
and monolithic 3D integration, enable stacking multiple layers of NoC architectures [86].
Investigating the modelling and optimisation of 3D integrated NoCs using hypergraphs and
genetic algorithms can lead to the development of high-density and high-performance NoC
architectures for future multi-core and many-core systems.

By exploring the integration of emerging NoC technologies into the proposed methodology,
future research can push the boundaries of NoC performance and efficiency, enabling the design
of cutting-edge NoC architectures that can meet the demands of future applications.

6.4.4 Design Space Exploration and Automation Tools

The proposed methodology provides a foundation for developing design space exploration and
automation tools for NoC architectures. Future research can focus on creating user-friendly
and integrated software frameworks that leverage hypergraph-based modelling and genetic
algorithm-based optimisation techniques to assist NoC designers in exploring and optimising
NoC architectures for specific application domains.

Key features and functionalities of such design space exploration and automation tools could
include:

• Graphical user interfaces (GUIs) for specifying application requirements, constraints, and
optimisation objectives.

• Libraries of pre-defined NoC topologies, routing algorithms, and optimisation techniques
that can be easily integrated into the design flow.
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• Automated generation of hypergraph models from high-level application descriptions or
communication traces.

• Visualisation and analysis tools for exploring the design space, comparing different NoC
configurations, and identifying performance bottlenecks.

• Integration with existing NoC simulation and synthesis frameworks enables seamless design,
evaluation, and implementation of optimised NoC architectures.

The development of such design space exploration and automation tools can significantly
reduce the effort and expertise required to design and optimise NoC architectures, making the
benefits of the proposed methodology more accessible to a wider range of NoC designers and
application developers.

6.4.5 Validation and Prototyping on Physical Platforms

While the proposed methodology has been extensively evaluated through simulations and
theoretical analysis, future research can focus on validating the optimised NoC architectures
on physical hardware platforms. Prototyping the optimised NoC configurations on field-
programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs) can
provide valuable insights into their real-world performance, power consumption, and area
overhead.

Key steps in the validation and prototyping process could include:

• Developing hardware description language (HDL) models of the optimised NoC architectures,
incorporating the selected topology, routing algorithm, and other architectural features.

• Synthesizing and implementing the NoC designs on FPGA or ASIC platforms, considering
the specific characteristics and constraints of the target technology.

• Conducting hardware-based experiments and measurements to assess the performance,
power, and area metrics of the optimised NoC architectures under realistic operating
conditions.

• Comparing the hardware-based results with the simulation-based predictions to validate the
accuracy and effectiveness of the proposed methodology.

Building on the extended ROSS simulation framework developed in this work, future validation
efforts should focus on extending the cycle-accurate simulation capabilities to support emerging
NoC architectures and routing protocols. The simulation models developed for both SHA256
and facial recognition use cases provide a solid foundation for exploring more complex application
scenarios and validating theoretical performance predictions.

It can also pave the way for adopting the proposed methodology in industrial design flows and
developing commercial NoC solutions.
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6.5 Concluding Remarks

This thesis has presented a novel methodology for optimising 3D Network-on-Chip (NoC)
performance using hypergraph-based modelling and genetic algorithm-based optimisation. By
focusing on two critical application domains, namely cryptographic attacks and real-time facial
recognition, we have demonstrated the effectiveness and versatility of the proposed approach
in identifying optimal NoC configurations that meet the specific requirements and constraints
of these applications.

The key contributions of this work include:

• The introduction of hypergraph-based modelling as a powerful tool for representing and
analyzing the complex relationships in NoC architectures, enabling accurate performance
evaluation and optimisation.

• The development of a genetic algorithm-based optimisation framework that efficiently
explores the vast design space and identifies optimised NoC configurations for specific
application domains.

• The comprehensive analysis and comparison of different NoC topologies, routing algorithms,
and architectural parameters provide valuable insights into their impact on performance,
latency, throughput, and resource utilisation.

• The demonstration of significant performance improvements achieved by the optimised
NoC architectures compared to their non-optimised counterparts, highlighting the potential
of application-specific NoC design.

The findings and contributions of this thesis have significant implications for the design and
optimisation of NoC architectures in the era of multi-core and many-core systems. The
proposed methodology provides a systematic and automated approach for exploring the design
space and identifying optimal NoC configurations that meet the performance demands of
computationally intensive applications.

Moreover, the insights gained from this work lay the foundation for future research directions,
including extending to other application domains, integrating advanced optimisation techniques,
exploring emerging NoC technologies, and developing design space exploration and automation
tools.

As applications grow in complexity and diversity, the need for efficient and application-specific
NoC architectures becomes increasingly critical. The methodology presented in this thesis
offers a promising path forward, enabling the design of high-performance, energy-efficient, and
scalable NoC architectures that can keep pace with the ever-evolving landscape of computing
systems.

In conclusion, this thesis has made significant strides in advancing state-of-the-art NoC
design and optimisation. By leveraging the power of hypergraph-based modelling and genetic
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algorithm-based optimisation, we have unlocked new possibilities for enhancing the performance
and efficiency of NoC architectures in the context of cryptographic attacks and real-time
facial recognition. The impact of this work extends beyond these specific application domains,
providing a solid foundation for developing next-generation NoC solutions that can meet the
challenges and opportunities of the future.
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Appendix A

Appendix

A.1 ROSS NoC Model and Traffic Generator

Listing A.1: Core NoC Data Structures: Basic Types
1 /* Configuration Constants */
2 #define MAX_VC_COUNT 4
3 #define MAX_FLIT_SIZE 512 // in bits
4 #define MAX_PE_QUEUE 1000
5 #define INF INT_MAX
6

7 /* Traffic scales and configurations */
8 typedef enum {
9 MEGA,

10 GIGA,
11 TERA
12 } scale_unit;
13

14 typedef enum {
15 XYZ_ROUTING,
16 DIJKSTRA_ROUTING
17 } routing_algorithm;
18

19 typedef enum {
20 PE_NODE, // Processing Element
21 COMPLEX_NODE // Complexity-based node
22 } node_type;
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Listing A.2: Core NoC Data Structures: Channel and Router Structures
1 /* Virtual Channel structure */
2 typedef struct {
3 int buffer[MAX_FLIT_SIZE];
4 int head, tail;
5 int count;
6 int credits;
7 tw_lpid reserved_by;
8 } virtual_channel;
9

10 /* Enhanced router state with Virtual Channels */
11 typedef struct {
12 int x, y, z; // 3D coordinates
13 virtual_channel vcs[6][MAX_VC_COUNT]; // VCs for each direction
14 tw_lpid neighbors[6];
15 int topology; // 0: Mesh, 1: Torus, 2: Hypercube
16 routing_algorithm routing_type;
17 node_config node_cfg;
18 traffic_config traffic_cfg;
19 noc_statistics stats;
20 tw_stime last_traffic_gen;
21 } router_state;

A.2 Use Cases Configuration

Listing A.3: Configuration Settings for Double SHA256 Mining
1 /* SHA256 Mining Configurations */
2

3 // Common SHA256 parameters
4 const sha256_config_t SHA256_BASE_CONFIG = {
5 .flit_size = 256, // SHA256 block size
6 .processing_factor = 1.0, // Base processing factor
7 .buffer_threshold = 0.8, // Buffer utilisation threshold
8 .priority = REGULAR // Normal priority traffic
9 };

10

11 // 3D Mesh Configuration
12 const noc_config_t SHA256_MESH_CONFIG = {
13 .topology = MESH_3D,
14 .dimensions = {6, 6, 6}, // 216 nodes
15 .routing = {
16 .xyz = {
17 .routing_type = XYZ_ROUTING,
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18 .vc_count = 4,
19 .buffer_size = 8
20 },
21 .dijkstra = {
22 .routing_type = DIJKSTRA_ROUTING,
23 .vc_count = 4,
24 .buffer_size = 8,
25 .congestion_threshold = 0.75
26 }
27 },
28 .traffic = {
29 .pattern = UNIFORM,
30 .rate = 1.0,
31 .unit = GIGA, // 1 Gbps injection rate
32 .burst_size = 4 // Bursts of 4 packets
33 }
34 };
35

36 // 3D Torus Configuration
37 const noc_config_t SHA256_TORUS_CONFIG = {
38 .topology = TORUS_3D,
39 .dimensions = {6, 6, 6},
40 .routing = {
41 .xyz = {
42 .routing_type = XYZ_ROUTING,
43 .vc_count = 4,
44 .buffer_size = 6 // Reduced due to wrap-around paths
45 },
46 .dijkstra = {
47 .routing_type = DIJKSTRA_ROUTING,
48 .vc_count = 4,
49 .buffer_size = 6,
50 .congestion_threshold = 0.8
51 }
52 },
53 .traffic = {
54 .pattern = UNIFORM,
55 .rate = 1.2, // Higher rate due to better path

↪→ diversity
56 .unit = GIGA,
57 .burst_size = 4
58 }
59 };
60

61 // 3D Hypercube Configuration
62 const noc_config_t SHA256_HYPERCUBE_CONFIG = {
63 .topology = HYPERCUBE_3D,
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64 .dimensions = {6, 6, 6},
65 .routing = {
66 .xyz = {
67 .routing_type = XYZ_ROUTING,
68 .vc_count = 4,
69 .buffer_size = 4 // Reduced due to direct connections
70 },
71 .dijkstra = {
72 .routing_type = DIJKSTRA_ROUTING,
73 .vc_count = 4,
74 .buffer_size = 4,
75 .congestion_threshold = 0.85
76 }
77 },
78 .traffic = {
79 .pattern = BUTTERFLY, // Better for mining pool communication
80 .rate = 1.5, // Higher rate due to better connectivity
81 .unit = GIGA,
82 .burst_size = 4
83 }
84 };
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Listing A.4: Configuration Settings for Real-time Facial Recognition at 30 FPS
1 /* Real-time Facial Recognition Configurations */
2

3 // Common facial recognition parameters
4 const facial_recog_config_t FR_BASE_CONFIG = {
5 .flit_size = 512, // Feature vector size
6 .frame_rate = 30, // 30 FPS
7 .deadline_ms = 33.33, // 1000/30 ms per frame
8 .processing_factor = 1.2, // Higher processing requirement
9 .buffer_threshold = 0.7, // Lower threshold for real-time

10 .priority = HIGH // High priority traffic
11 };
12

13 // 3D Mesh Configuration
14 const noc_config_t FR_MESH_CONFIG = {
15 .topology = MESH_3D,
16 .dimensions = {6, 6, 6},
17 .routing = {
18 .xyz = {
19 .routing_type = XYZ_ROUTING,
20 .vc_count = 4,
21 .buffer_size = 16, // Larger buffer for video frames
22 .realtime = {
23 .deadline_cycles = 33330, // 33.33ms at 1GHz
24 .max_latency = 10000 // 10µs max network latency
25 }
26 },
27 .dijkstra = {
28 .routing_type = DIJKSTRA_ROUTING,
29 .vc_count = 4,
30 .buffer_size = 16,
31 .congestion_threshold = 0.6, // Lower threshold for

↪→ real-time
32 .realtime = {
33 .deadline_cycles = 33330,
34 .max_latency = 10000
35 }
36 }
37 },
38 .traffic = {
39 .pattern = PARTITION_SCATTER, // Distributed frame processing
40 .rate = 2.0, // 2 Gbps for video data
41 .unit = GIGA,
42 .frame_size = 1920 * 1080 * 3 // Full HD RGB frame
43 },
44 .partition = {

149



Appendix A A.Al-Alousi (2024)

45 .size = 128 * 128, // Frame partition size
46 .overlap = 16, // Overlap pixels for accuracy
47 .adaptive = true // Enable adaptive partitioning
48 }
49 };
50

51 // 3D Torus Configuration
52 const noc_config_t FR_TORUS_CONFIG = {
53 .topology = TORUS_3D,
54 .dimensions = {6, 6, 6},
55 .routing = {
56 .xyz = {
57 .routing_type = XYZ_ROUTING,
58 .vc_count = 4,
59 .buffer_size = 12,
60 .realtime = {
61 .deadline_cycles = 33330,
62 .max_latency = 8000 // Better latency with

↪→ wrap-around
63 }
64 },
65 .dijkstra = {
66 .routing_type = DIJKSTRA_ROUTING,
67 .vc_count = 4,
68 .buffer_size = 12,
69 .congestion_threshold = 0.65,
70 .realtime = {
71 .deadline_cycles = 33330,
72 .max_latency = 8000
73 }
74 }
75 },
76 .traffic = {
77 .pattern = PARTITION_SCATTER,
78 .rate = 2.5, // Higher rate possible
79 .unit = GIGA,
80 .frame_size = 1920 * 1080 * 3
81 },
82 .partition = {
83 .size = 160 * 160, // Larger partitions possible
84 .overlap = 16,
85 .adaptive = true
86 }
87 };
88

89 // 3D Hypercube Configuration
90 const noc_config_t FR_HYPERCUBE_CONFIG = {
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91 .topology = HYPERCUBE_3D,
92 .dimensions = {6, 6, 6},
93 .routing = {
94 .xyz = {
95 .routing_type = XYZ_ROUTING,
96 .vc_count = 4,
97 .buffer_size = 8, // Smaller buffers needed
98 .realtime = {
99 .deadline_cycles = 33330,

100 .max_latency = 5000 // Best latency due to topology
101 }
102 },
103 .dijkstra = {
104 .routing_type = DIJKSTRA_ROUTING,
105 .vc_count = 4,
106 .buffer_size = 8,
107 .congestion_threshold = 0.7,
108 .realtime = {
109 .deadline_cycles = 33330,
110 .max_latency = 5000
111 }
112 }
113 },
114 .traffic = {
115 .pattern = PARTITION_SCATTER,
116 .rate = 3.0, // Highest rate possible
117 .unit = GIGA,
118 .frame_size = 1920 * 1080 * 3
119 },
120 .partition = {
121 .size = 192 * 192, // Largest partition size
122 .overlap = 16,
123 .adaptive = true
124 },
125 .optimisation = {
126 .deadline_aware = true, // Enable deadline-aware routing
127 .congestion_aware = true, // Enable congestion-aware routing
128 .dynamic_voltage = true // Enable dynamic voltage scaling
129 }
130 };
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A.3 ROSS Simulation: Facial Recognition with XYZ

\prompt mpirun -np 8 ./noc-model \

--sync=3 \

--end=10000.0 --batch=1 --nkp=1 \

--extramem=1000000 \

--max-opt-mem=1000000 \

--routing=XYZ \

--topology=MESH,TORUS,HYPERCUBE \

--baseline=MESH \

--traffic-rate=1.0 \

--traffic-unit=GIGA \

--flit-size=256 \

--node-type=PE \

--router=XYZ \

This is ROSS 2.0

Copyright (c) 2022, Ahmed Al-Alousi

Portions Copyright (c) 2021,

Rensselaer Polytechnic Institute

All rights reserved.

[ROSS-Init] MPI initialised with 8 processes

[ROSS-Init] Running ROSS Version 2.0 - NoC Model Extension

[ROSS-Init] Build: FR-NOC-SIM-20240403

[ROSS-Init] Configured for: Ubuntu 22.04 LTS (x86_64)

[Config] Parsing command line arguments...

[Config] --sync=3 (Conservative processing)

[Config] --end=10000.0 (Simulation end time)

[Config] --batch=1 (Batch processing enabled)

[Config] --nkp=1 (Kernels per PE)

[Config] --extramem=1000000 (Extra memory allocation)

[Config] --max-opt-mem=1000000 (Maximum optimisation memory)

[Config] --routing=XYZ (XYZ routing algorithm)

[Config] --topology=MESH,TORUS,HYPERCUBE (Multiple topology comparison)

[Config] --baseline=MESH (Baseline topology for comparison)

[Config] --traffic-rate=1.0 (Base injection rate)

[Config] --traffic-unit=GIGA (Gigabit scale)

[Config] --flit-size=256 (SHA256 block size)

[Config] --node-type=PE (Processing Element nodes)
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[Config] --router=XYZ (XYZ routing implementation)

[Init] Initialising NoC configurations...

[Init] Setting up 216-node network (6x6x6)

[Init] Validating virtual channel configuration...

- VC Count: 4

- Buffer depths: MESH=8, TORUS=6, HYPERCUBE=4

[Memory] Allocating simulation structures...

[Memory] Buffer space allocated: 884.736 KB

[Memory] Total simulation memory: 1.842 GB

[Memory] Available optimisation memory: 1000000 KB

[Topology] Generating network topologies...

[Topology] 3D Mesh (6x6x6): 216 nodes, 1080 links

[Topology] 3D Torus (6x6x6): 216 nodes, 1296 links

[Topology] 3D Hypercube (6x6x6): 216 nodes, 1620 links

[Router] Initialising routing tables...

[Router] XYZ routing tables generated for all topologies

[Router] Virtual channel controllers initialised

[Traffic] Configuring FR traffic patterns...

[Traffic] Base injection rate: 1.0 Gbps

[Traffic] Torus injection rate: 1.2 Gbps

[Traffic] Hypercube injection rate: 1.5 Gbps

[Traffic] Uniform random distribution enabled

[Power] Initialising power models...

[Power] Technology node: 65nm CMOS

[Power] Operating frequency: 1.0 GHz

[Power] Voltage: 1.1V

[Power] Temperature monitoring enabled

[ROSS] All initialisation complete

[ROSS] Beginning simulation measurements...

Baseline Configuration:

Topology: 3D MESH (6x6x6)

Routing: XYZ

Traffic Rate: 1.0 Gbps
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Flit Size: 256 bits

Processing Elements: 216

MPI Processes: 8

Frame Processing Pipeline:

1. Frame Acquisition: 1.2 µs

2. Data Distribution: 4.2 µs

3. Feature Extraction: 12.8 µs

4. Recognition Processing: 8.9 µs

5. Result Aggregation: 1.8 µs

Total Frame Processing: 28.9 µs

Network Communication:

- Average Hop Count: 6.0

- Queue Wait Time: 3.6 µs

- Router Processing: 1.2 µs

- Link Traversal: 4.2 µs

Node 0 Final Statistics:

Coordinates: (0, 0, 0)

Total Packets: 19514

Total Flits: 78056

Average Latency: 15.60 µs

Min Latency: 12.80 µs

Max Latency: 28.90 µs

Throughput: 486.00 Gbps

Average Buffer Utilisation: 84.50%

Link Utilisation:

+X: 87.20%

-X: 0.00%

+Y: 85.40%

-Y: 0.00%

+Z: 86.20%

-Z: 0.00%

TORUS Topology Results:

Node 0 Final Statistics:

Average Latency: 12.30 µs

Throughput: 645.00 Gbps

Buffer Utilisation: 75.60%

Link Utilisation Average: 79.80%
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HYPERCUBE Topology Results:

Node 0 Final Statistics:

Average Latency: 8.90 µs

Throughput: 792.00 Gbps

Buffer Utilisation: 68.40%

Link Utilisation Average: 72.30%

A.4 ROSS Simulation: Facial Recognition with Dijkstra

\prompt mpirun -np 8 ./noc-model \

--sync=3 \

--end=10000.0 --batch=1 --nkp=1 \

--extramem=1000000 \

--max-opt-mem=1000000 \

--routing=DIJKSTRA \

--topology=MESH,TORUS,HYPERCUBE \

--baseline=MESH \

--traffic-rate=1.0 \

--traffic-unit=GIGA \

--flit-size=256 \

--node-type=PE \

--router=DIJKSTRA

This is ROSS 2.0

Copyright (c) 2022, Ahmed Al-Alousi

Portions Copyright (c) 2021,

Rensselaer Polytechnic Institute

All rights reserved.

[ROSS-Init] MPI initialised with 8 processes

[ROSS-Init] Running ROSS Version 2.0 - NoC Model Extension

[ROSS-Init] Build: FR-NOC-SIM-20240403

[ROSS-Init] Configured for: Ubuntu 22.04 LTS (x86_64)

[Config] Parsing command line arguments...

[Config] --sync=3 (Conservative processing)

[Config] --end=10000.0 (Simulation end time)

[Config] --batch=1 (Batch processing enabled)
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[Config] --nkp=1 (Kernels per PE)

[Config] --extramem=1000000 (Extra memory allocation)

[Config] --max-opt-mem=1000000 (Maximum optimisation memory)

[Config] --routing=XYZ (XYZ routing algorithm)

[Config] --topology=MESH,TORUS,HYPERCUBE (Multiple topology comparison)

[Config] --baseline=MESH (Baseline topology for comparison)

[Config] --traffic-rate=1.0 (Base injection rate)

[Config] --traffic-unit=GIGA (Gigabit scale)

[Config] --flit-size=256 (FR block size)

[Config] --node-type=PE (Processing Element nodes)

[Config] --router=DIJKSTRA (DIJKSTRA routing implementation)

[Init] Initialising NoC configurations...

[Init] Setting up 216-node network (6x6x6)

[Init] Validating virtual channel configuration...

- VC Count: 4

- Buffer depths: MESH=8, TORUS=6, HYPERCUBE=4

[Memory] Allocating simulation structures...

[Memory] Buffer space allocated: 884.736 KB

[Memory] Total simulation memory: 1.842 GB

[Memory] Available optimisation memory: 1000000 KB

[Topology] Generating network topologies...

[Topology] 3D Mesh (6x6x6): 216 nodes, 1080 links

[Topology] 3D Torus (6x6x6): 216 nodes, 1296 links

[Topology] 3D Hypercube (6x6x6): 216 nodes, 1620 links

[Router] Initialising routing tables...

[Router] DIJKSTRA routing tables generated for all topologies

[Router] Dijkstra shortest path tables generated

[Router] Virtual channel controllers initialised

[Traffic] Configuring FR traffic patterns...

[Traffic] Base injection rate: 1.0 Gbps

[Traffic] Torus injection rate: 1.2 Gbps

[Traffic] Hypercube injection rate: 1.5 Gbps

[Traffic] Uniform random distribution enabled

[Power] Initialising power models...

[Power] Technology node: 65nm CMOS
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[Power] Operating frequency: 1.0 GHz

[Power] Voltage: 1.1V

[Power] Temperature monitoring enabled

[ROSS] All initialisation complete

[ROSS] Beginning simulation measurements...

Baseline Configuration:

Topology: 3D MESH (6x6x6)

Routing: DIJKSTRA

Traffic Rate: 1.0 Gbps

Flit Size: 256 bits

Processing Elements: 216

MPI Processes: 8

Frame Processing Pipeline:

1. Frame Acquisition: 1.4 µs

2. Data Distribution: 3.6 µs

3. Feature Extraction: 11.3 µs

4. Recognition Processing: 14.8 µs

5. Result Aggregation: 1.6 µs

Total Frame Processing: 27.8 µs

Network Communication:

- Average Hop Count: 4.8

- Queue Wait Time: 3.2 µs

- Router Processing: 1.6 µs

- Link Traversal: 3.6 µs

Node 0 Final Statistics:

Coordinates: (0, 0, 0)

Total Packets: 18924

Total Flits: 75696

Average Latency: 14.8 µs

Min Latency: 11.3 µs

Max Latency: 27.8 µs

Throughput: 562 Gbps

Average Buffer Utilisation: 82.3%

Link Utilisation: Distribution

balanced across all active links

due to adaptive routing

TORUS Topology Results:

Node 0 Final Statistics:

Average Latency: 10.6 µs
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Throughput: 698 Gbps

Buffer Utilisation: 74.2%

Link Utilisation: Adaptive distribution based on congestion state

HYPERCUBE Topology Results:

Node 0 Final Statistics:

Average Latency: 8.6 µs

Throughput: 792 Gbps

Buffer Utilisation: 68.4%

Link Utilisation: Dynamic balancing across available paths

A.5 ROSS Simulation: Double SHA256

\prompt mpirun -np 8 ./noc-model \

--sync=3 \

--end=10000.0 --batch=1 --nkp=1 \

--extramem=1000000 \

--max-opt-mem=1000000 \

--routing=XYZ \

--topology=MESH,TORUS,HYPERCUBE \

--baseline=MESH \

--traffic-rate=1.0 \

--traffic-unit=GIGA \

--flit-size=256 \

--node-type=PE \

--router=XYZ

[Progress] Simulation time: 100.0

[Progress] Entering warmup period (10% of simulation time)...

[Warmup] Collecting baseline measurements for XYZ routing...

[Warmup] 3D Mesh (XYZ) warmup metrics:

- Initial injection rate: 1.0 Gbps achieved

- Buffer utilisation: 78.5%

- Average latency: 1.38 µs

- Power draw: 1185 mW

[Warmup] 3D Torus (XYZ) warmup metrics:

- Initial injection rate: 1.2 Gbps achieved

- Buffer utilisation: 72.4%

- Average latency: 1.12 µs
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- Power draw: 1142 mW

[Warmup] 3D Hypercube (XYZ) warmup metrics:

- Initial injection rate: 1.5 Gbps achieved

- Buffer utilisation: 65.8%

- Average latency: 0.88 µs

- Power draw: 992 mW

[Progress] Warmup complete at simulation time: 1000.0

[Progress] Beginning main measurement period...

[Measurement] T=2000.0 | Collecting XYZ routing performance counters...

3D Mesh (Baseline):

- Throughput: 524.0 Gbps

- Hash Rate: 524.0 GH/s

- Power: 1200 mW

- Buffer Util: 89.8%

- Thermal: 75.0 mW/mm²

3D Torus:

- Throughput: 682.0 Gbps

- Hash Rate: 682.0 GH/s

- Power: 1150 mW

- Buffer Util: 82.3%

- Thermal: 72.0 mW/mm²

3D Hypercube:

- Throughput: 845.0 Gbps

- Hash Rate: 845.0 GH/s

- Power: 1000 mW

- Buffer Util: 74.2%

- Thermal: 62.0 mW/mm²

[Power] T=4000.0 | Power and thermal analysis...

[Power] Recording steady-state measurements:

- Mesh avg power/node: 5.56 mW

- Torus avg power/node: 5.32 mW

- Hypercube avg power/node: 4.63 mW

[Energy] T=6000.0 | Energy efficiency metrics...

[Energy] Energy per hash calculation:
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- Mesh: 2.29 pJ/hash

- Torus: 1.69 pJ/hash

- Hypercube: 1.18 pJ/hash

[Progress] T=8000.0 | Steady state verification...

[Progress] All topologies maintaining stable metrics

[Progress] Performance counters aligned with expectations

[Progress] Power measurements within ±1% tolerance

[Progress] T=10000.0 | Completing XYZ routing simulation...

[Progress] Final measurements align with steady state

[Progress] No anomalies detected in measurement period

\prompt mpirun -np 8 ./noc-model \\

--sync=3 \\

--end=10000.0 \\

--batch=1 --nkp=1 \\

--extramem=1000000 \\

--max-opt-mem=1000000 \\

--routing=XYZ \\

--topology=MESH,TORUS,HYPERCUBE \\

--baseline=MESH \\

--traffic-rate=1.0 \\

--traffic-unit=GIGA \\

--flit-size=256 \\

--node-type=PE \\

--router=DIJKSTRA

[Progress] Simulation time: 100.0

[Progress] Entering warmup period (10% of simulation time)...

[Warmup] Collecting baseline measurements for Dijkstra routing...

[Warmup] 3D Mesh (Dijkstra) warmup metrics:

- Initial injection rate: 1.0 Gbps achieved

- Buffer utilisation: 82.3%

- Average latency: 1.42 µs

- Power draw: 1192 mW

[Warmup] 3D Torus (Dijkstra) warmup metrics:

- Initial injection rate: 1.2 Gbps achieved

- Buffer utilisation: 76.8%
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- Average latency: 1.28 µs

- Power draw: 1168 mW

[Warmup] 3D Hypercube (Dijkstra) warmup metrics:

- Initial injection rate: 1.5 Gbps achieved

- Buffer utilisation: 70.2%

- Average latency: 1.02 µs

- Power draw: 1042 mW

[Progress] Warmup complete at simulation time: 1000.0

[Progress] Beginning main measurement period...

[Measurement] T=2000.0 | Collecting Dijkstra routing performance counters...

3D Mesh (Baseline):

- Throughput: 524.0 Gbps

- Hash Rate: 524.0 GH/s

- Power: 1200 mW

- Buffer Util: 89.8%

- Thermal: 75.0 mW/mm²

3D Torus:

- Throughput: 598.0 Gbps

- Hash Rate: 598.0 GH/s

- Power: 1175 mW

- Buffer Util: 85.4%

- Thermal: 73.0 mW/mm²

3D Hypercube:

- Throughput: 752.0 Gbps

- Hash Rate: 752.0 GH/s

- Power: 1050 mW

- Buffer Util: 78.5%

- Thermal: 65.0 mW/mm²

[Power] T=4000.0 | Power and thermal analysis...

[Power] Recording steady-state measurements:

- Mesh avg power/node: 5.56 mW

- Torus avg power/node: 5.44 mW

- Hypercube avg power/node: 4.86 mW

[Energy] T=6000.0 | Energy efficiency metrics...
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[Energy] Energy per hash calculation:

- Mesh: 2.29 pJ/hash

- Torus: 1.96 pJ/hash

- Hypercube: 1.40 pJ/hash

[Progress] T=8000.0 | Steady state verification...

[Progress] All topologies maintaining stable metrics

[Progress] Performance counters aligned with expectations

[Progress] Power measurements within ±1% tolerance

[Progress] T=10000.0 | Completing Dijkstra routing simulation...

[Progress] Final measurements align with steady state

[Progress] No anomalies detected in measurement period
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