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1 INTRODUCTION 

With advances in information acquisition technologies, multi-view data, collected from diverse domains or obtained 

from various feature extractors, has become ubiquitous. Each domain or feature is referred to as a particular view, 

which reflects a specific property of an object, for example, color and texture describe an image from two different 

aspects. Different views generally provide compatibility and complementary information to each other [1-4]. The 

effective utilization of this information can facilitate an increase in the accuracy of learning algorithms [5].  

One way for solving the multi-view problem is to treat each view independently, or to concatenate vectors from 

different views into a new vector and then to apply single-view learning algorithms straightforwardly on the 

concatenated vector. The strategy that treats each view independently may overlook the complementary and diverse 

information of different views, thereby losing the advantages of multi-view data. On the other hand, the strategy of 

concatenation disregards the specific properties of each view and may result in high dimensionality, potentially 

reducing the interpretability of different views and causing overfitting on a small training sample [2, 6]. Unlike the 

aforementioned strategies, multi-view learning (MVL) seeks to integrate features and structural information from 

multiple views, exploiting the richer properties of data to enhance learning performance. Therefore, MVL has emerged 

as an important research area [4, 5, 7-10]. 

Multi-view clustering (MVC), playing an imperative role in MVL for reducing data complexity and facilitating 

interpretation, aims to group samples (objects/instances/points) with similar feature structures or patterns into the same 

group (cluster) and samples with dissimilar ones into different groups, by combining the available feature information 

from different views and searching for consistent clusters across different views [11, 12]. As a powerful alternative 

learning tool for uncovering the underlying structure shared by multiple views in the absence of label information, 

MVC has attracted increasing attention in recent years, and has been successfully used in widespread applications [13]. 

However, MVC is not a trivial task. On one hand, each view may have its own feature or distribution, and multiple 

views may take different forms as well as exhibit heterogeneous and diverse properties. Moreover, in some cases, the 

data in each separate view may not be compatible with the others [14]. These differences pose a challenge to integrate 

information from complex distribution and diversified heterogeneous features of multi-view data to obtain the true 

categories of the data. If a clustering approach is unable to cope appropriately with multiple views, these views may 

even degrade the performance of MVC. On the other hand, the clustering approach needs to elaborately design a way 

to maximize clustering quality within each view, while simultaneously making clustering results across different views 

as consistent (agree with each other) as possible. When multiple sets of features are available for each individual 

sample, how to express the relationship of multiple views and how to integrate these views to identify essential 

grouping structure are two important questions needed to be answered by MVC [3]. In addition, the multi-view data 

collected in the real world are often incomplete (missing samples or features), uncertain or dynamic. This is due to the 

complexity in data collection and transmission. The challenges introduced by missing samples or features, uncertainty 

and dynamic changes add complexity to MVC. Therefore, incomplete multi-view clustering (IMVC), uncertain MVC 

and dynamic MVC have also been developed. 
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In order to meet these challenges, many research efforts have been devoted and a number of MVC approaches have 

been developed, such as co-regularized multi-view spectral clustering [15], nonnegative matrix factorization (NMF)-

based MVC [16], and bipartite graph-based multi-view spectral clustering [17, 18]. These approaches employ different 

techniques to tackle the MVC issues from different viewpoints. In addition, several survey studies have been 

conducted to investigate the theories and techniques of existing MVC approaches [3, 6, 11, 19], where [11] reviewed 

generative and discriminative approaches, elaborated on the relationships between MVC and several closely related 

learning approaches (multi-view representation, ensemble clustering, multi-view supervised and semi-supervised 

learning, and multi-task clustering), and introduced several real-world applications of MVC. [3] classified MVC 

approaches into five categories, i.e. co-training style approaches, multi-kernel learning, multi-view graph clustering, 

multi-view subspace clustering, and multi-task multi-view clustering, provided a few examples for each category of 

approaches, as well as listed some publicly available multi-view datasets. [6] summarized graph-based approaches, 

space-learning-based approaches, and binary-code-learning-based approaches. [19] reviewed the existing studies on 

approaches for IMVC, categorizing them into MF-based IMVC, kernel learning-based IMVC, graph learning-based 

IMVC, and deep learning-based IMVC. The study then selected representative IMVC approaches for an experimental 

comparative analysis. [3, 6, 11, 19] also examined into various open problems that may necessitate further 

investigation. These include challenges related to large-scale data (size and dimension), complex data with noises or 

mixed types, imbalance information, missing view/value recovery, local minima, and deep learning, among others. 

However, these survey studies mainly focus on approaches for complete multi-view data (where each feature is 

collected and each sample appears in each view), or those for incomplete multi-view data with missing samples or 

features. They do not explore approaches designed to handle both complete and incomplete data at the same time. 

Moreover, these studies tend to overlook approaches for uncertain multi-view data and dynamic multi-view data. In 

addition, these survey studies predominantly focus on approaches proposed before 2019. Many novel and important 

approaches developed after that, such as deep learning-based approaches [20, 21], have not been considered by 

existing survey studies. This gap makes it challenging to comprehensively track the current progress of the field.  

Furthermore, among these survey studies, only [6] and [19] provided experimental quantitative evaluations. In [6], 

eight approaches (one k-means, three graph-based, three space-learning-based, and one binary-code-learning-based) 

were tested on seven complete multi-view datasets. [19] executed evaluations for seventeen approaches (two single-

view, eight MF-based, one adaptive neighbors-based, two kernel learning-based, and four graph-based) on five 

incomplete multi-view datasets. Neither [6] nor [19] conducted experimental evaluations for the deep learning-based 

approaches. As a result, although a number of MVC approaches have been proposed, and several reviews assessing 

these approaches have been conducted, there is still a lack of comprehensive review and quantitative measurement and 

comparisons of MVC approaches. Especially noteworthy is the lack of evaluation for the approaches developed after 

2019. 

Hence, there is a need for a thorough review and quantitative assessment of MVC approaches, particularly those 

employing deep learning techniques. Notably, these crucial approaches have been overlooked in existing survey 

studies. Thus, this paper focuses on investigating MVC approaches, including those proposed after 2019, which have 
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not been reviewed by existing survey studies. Additionally, this paper conducts an experiment-based evaluation study 

for the most representative MVC approaches. The aim is to provide a quantified assessment of representative MVC 

approaches. This assessment will provide researchers with a comprehensive understanding of various approaches, 

while offering practitioners measurable insights to guide their selection of suitable methods for specific applications. 

To achieve this objective, we first analyze and formalize basic concepts by introducing common key techniques for 

MVC. This includes the introduction of multi-view data, the definition of the MVC problem, principles related to 

MVC, strategies for fusing information and weighting views, the MVC routine, and the model structure, as well as the 

optimization scheme. Subsequently, we propose a novel taxonomy of MVC approaches and present the characteristics 

of representative MVC approaches. The MVC approaches are classified into four categories: complete MVC, 

incomplete MVC, uncertain MVC, and dynamic MVC approaches, based on the data types they handle. Additionally, 

the approaches for complete MVC and incomplete MVC are further categorized into eight and six sub-categories, 

respectively, based on their adopted working mechanisms and techniques.  

Moreover, we summarize commonly used datasets and performance metrics for evaluating clustering performance 

in the field of MVC. The representative MVC datasets are divided into five categories: text, image, text-gene, image-

text, and video datasets. The performance metrics include internal indices, which evaluate a clustering algorithm by 

summarizing results in a single quality score, and external indices, which evaluate the clustering result by comparing it 

with externally supplied true labels.  

Finally, we conduct an empirical evaluation on thirty-five representative MVC approaches using seven real-world 

benchmark datasets. The thirty-five MVC approaches selected for our experimental evaluation studies include twenty-

nine complete MVC approaches and six incomplete MVC approaches. These approaches cover the main categories in 

the taxonomy proposed in this paper, each characterized by distinct structures or constraints. 

The seven datasets utilized in our study, each with varying scales, comprise three text datasets, three image datasets, 

and one image-text dataset. These datasets are widely recognized as typical in the MVC communities. Additionally, 

these seven datasets, serving as well-known benchmarks, represent different typical application scenarios, each with 

distinct views, classes, instances, features, and feature dimensions. 

The clustering approaches and datasets have been meticulously selected to investigate the clustering performance 

of various approaches, validate the factors affecting clustering performance, and test the ability of various approaches 

to handle different data scales, ensuring the validity and relevance of this evaluation study. Furthermore, to support 

researchers and practitioners conveniently, we have compiled related references, implementations, and datasets on 

GitHub1. 

Our contributions are summarized as follows.  

- We formalize and analyze basic concepts and common key techniques for MVC, which provides the 

background knowledge for understanding MVC and its related issues. 

                                                           
1 https://github.com/dugzzuli/A-Survey-of-Multi-view-Clustering-Approaches 
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- We propose a novel taxonomy of MVC approaches based on the detailed analysis of existing approaches, which, 

offering a comprehensive picture of MVC approaches developed.  

- We provide a critical review on the working mechanisms and characteristics of the representative MVC 

approaches, and summarize representative MVC datasets and performance metrics commonly used in the 

MVC assessment and evaluation. 

- We present the current progress of MVC, addressing the existing gap that the latest approaches proposed after 

2019, particularly the deep (contrastive) learning-based MVC approaches, have not been evaluated in existing 

survey studies. 

-We selected thirty-five representative MVC approaches based on the proposed taxonomy to conduct an empirical 

evaluation on seven real-world benchmark datasets, exploring how they perform across different types of datasets. The 

experimental results reveal that most MVC approaches struggle with large-scale datasets. No MVC approach 

consistently maintains high performance across all types of datasets. Factors such as model structures, regularization 

constraints, and weights corresponding to different views contribute to improving clustering performance. For example, 

the deep learning-based approach with multilevel representations and adversarial regularization performs well across 

many datasets. These findings provide valuable insights for future practitioners, offering information on the 

performance features of existing approaches. This serves as a practical guide for the development of applications, 

providing empirical evidence for selecting suitable approaches in specific circumstances. 

The rest of the paper is organized as follows: In section 2, we analyze and introduce the basic concepts and some 

common strategies used in MVC approaches. Following that, we provide a novel taxonomy of MVC approaches. In 

the next four sections, we will present the working mechanisms and characteristics of representative MVC approaches 

proposed in recent years, each corresponding to the categories outlined in the proposed taxonomy. Afterward, we 

review the datasets and performance metrics used in the literature on MVC evaluation in Sections 7 and 8, respectively. 

We then present the empirical results and analyses in Section 9. Finally, we discuss potential directions for future 

research in Section 10 and conclude this study in Section 11.  

2 PRELIMINARIES  

In this section, we introduce categories of multi-view data, the definition of MVC, two principles of MVC, common 

strategies for solving MVC, and propose a new taxonomy of MVC approaches.  

2.1 Multi-view data  

Multi-view data refers to the same sample is described from various perspectives, with each perspective capturing a 

class of features known as a view [4] [22]. Figure 1 illustrates four intuitive examples of multi-view data, where (a) a 

person‟s iris, fingerprint, and face; (b) multi-wavelength whirlpool galaxy; c) car images taken from different 

viewpoints; and d) "thank you" described in many languages. Although these different features may have distinct 

physical meanings, take different forms as well as exhibit heterogeneous and diverse properties, they all represent the 
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same sample from different perspectives [3, 23]. Compared to single-view data that describes samples from a single 

perspective, multi-view data is semantically richer, more informative and diverse, but also more complex to analyze.  

Multi-view data can be categorized as either complete or incomplete, depending on whether all expected 

perspectives or views are available for analysis. In incomplete multi-view data, only partial features could be available 

in some views for some data samples (missing features/values), or some data samples could be missing their whole 

observations in some views (i.e., missing samples/views), or even all samples of a cluster are not observed in one view 

(missing clusters) [24] [25]. Missing cluster and missing sample can be considered as one special form of missing 

feature. Figure 2 illustrates an example of incomplete multi-view data. In the figure, samples within the same cluster 

are represented by the same shape, distinguished by color. The dotted shape indicates missing samples, and 'NA' 

represents missing feature values. The incomplete multi-view data is ubiquitous in the real world due to sensor failure, 

equipment malfunction, data corruption, and other factors. 

 

Figure 1: Examples of multi-view data 

f1 N A N A N A 0.3 N A 0.8 0.6 0.5 0.3

f2 N A N A N A N A N A 0.1 0.7 0.1 0.1

f3 N A N A N A 0.7 N A 0.2 0.1 N A 0.2

          instance

feature

view  1

f1 0.6 0.5 0.8 N A N A 0.4 0.4 0.7 N A

f2 0.1 N A 0.2 N A 0.7 0.3 0.3 0.7 N A

f3 0.3 0.2 N A N A 0.1 0.4 0.2 0.1 N A

          instance

feature

view  2

missing clusters missing instances missing features

view 2

view 1

 

Figure 2: An example of incomplete multi-view data 

Multi-view data may also be certain or uncertain. Certain multi-view data implies that the features of each sample 

and their values are affirmative, while uncertain multi-view data refers to the data that deviates from the desired 

distribution or pattern due to randomness, privacy issue, and imprecision in measurement [26]. In real-world 

applications, data collected from various sources like smartphones, satellites, and transportation typically exhibit 

uncertainty, often quantified through probability distributions. 
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In addition, in many practical applications, the number of views dynamically changes over time rather than 

remaining fixed. For example, in brain-computer interface systems, the acquisition of brain signals plays a crucial role 

in analyzing brain states. Since the brain signal changes with the object‟s mental state, it becomes necessary to collect 

the signal at different times. Therefore, the signal data at each time serves as a view, and the number of views changes 

dynamically over time [27]. 

2.2 The problem definition 

Let 1 2{ , , , }m
X = X X X  be a dataset with m  views and 

1{ , , } vd nv v v

n

 X x x  be the -thv  view data, where  

v
d  is the feature dimensionality of the -thv  view, and n  is the number of data samples, 

v

i
x  represents the feature 

vector of the -thi  sample in the -thv view.  

Let 
1 2{ , , , }

K
C C C C  be a set of K  clusters, called as a cluster structure, where 

j
C  is the set of | |

j
C  samples 

assigned to the -thj  cluster, | |
jj

C n . Let n KY  be a membership matrix, whose ( , )-thi j  entry 
ij

y  

represents the probability that the -thi sample belongs to the -thj  cluster. The sum of each row entries of  Y  should 

be 1 to make sure each row is a probability, i.e. 1
ijj

y  . If only one entry of each row is 1 and all others are 0, it is 

a hard clustering (each sample can only be assigned to one specific cluster with the probability of 1), otherwise it is a 

soft clustering (each sample is assigned to one cluster with some probability between 0 and 1).  

Given 1 2{ , , , }m
X = X X X , the purpose of MVC is to divide n  samples into K  clusters by integrating the 

heterogeneous features of X  without any label information, such that data samples within the same cluster are more 

similar than those in different clusters. That is, finally we will get a membership matrix Y  or a cluster structure 

1 2{ , , , }
K

C C C C  to indicate which samples are in the same group while others are in other clusters. 

The key questions in MVC include: 1) How to effectively utilize the otherness information amongst different views 

in a multi-view dataset? 2) how to completely discover the consistency information between the different views? 3) 

how to reduce computation and space complexities? 4) how to enhance the robustness against noise and outliers? and 

5) How to prevent being trapped in suboptimal local minima/maxima? Both the otherness and consistency information 

in multi-view data are very useful for effective clustering analyses. Multi-view data usually lies in high-dimensional 

space, where redundant and irrelevant features may result in the curse of dimensionality. Meanwhile, data often 

contain noise and outliers, which may destroy the underlying clustering structure. Moreover, approaches for solving 

MVC are usually non-convex, making them prone to becoming stuck into suboptimal local minima, especially when 

there are outliers and missing data. 

2.3 Principles related to MVC 

There are two significant principles ensuring the effectiveness of MVC: consensus and complementary principles [4]. 

The consistent of multi-view data means that there is some common knowledge across different views (e.g., both two 
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pictures about dogs have contour and facial features), while the complementary of multi-view data refers to some 

unique knowledge contained in each view that is not available in other views (e.g., one view shows the side of a dog 

and the other shows the front of the dog, these two views allow for a more complete depiction of the dog). Therefore, 

the consensus principle aims to maximize the agreement across multiple distinct views for improving the 

understanding of the commonness of the observed samples, while the complementary principle states that in a multi-

view context, each view of the data may contain some particular knowledge that other views do not have, and this 

particular knowledge can mutually complement to each other.  

Both complementary and consensus principles play important roles for improving the performance of MVL 

algorithms [28]. By exploring the consistency and complementary properties of different views, MVL is rendered 

more effective, promising, and exhibits better generalization ability than single-view learning [4]. 

2.4 The information fusion strategy 

The strategies for integrating information from multiple views can be divided into three categories: direct-fusion, 

early-fusion, and late-fusion based on the fusion stage. They are also referred to as data level, feature level, and 

decision level fusion respectively, i.e. fusion in the data, fusion in the projected features, and fusion in the results. 

Direct-fusion approaches involve the direct incorporation of multi-view data into the clustering process by optimizing 

specific loss functions. Early-fusion combines multiple features or graph structure representations of multi-view data 

into a single representation or a consensus affinity graph across multiple views. Subsequently, any well-known single-

view clustering algorithm, such as k-means, can be applied to partition data samples. Most approaches learn a graph 

structure representation for each view by deploying features of different views, then a consensus affinity graph is built. 

Some other approaches directly learn a common graph matrix from the original feature space. In contrast, the 

approaches of the late fusion first perform data clustering on each view individually and subsequently fuse the results 

for all the views to obtain the final clustering results through consensus [29]. The advantage of late-fusion is that it 

reduces the interference of other information channels to every separate partition, such that the effect of random noise 

can be reduced. Figure 3 illustrates the three fusion strategies. There is no theoretical foundation to decide which one is 

the best.  

2.5 The clustering routine 

There are two clustering routines, i.e. one-step routine and two-step routine, to execute MVC. The two-step routine 

first extracts the low-dimensional representation of multi-view data and then uses traditional clustering approaches, 

such as k- means, to process the obtained representation. In other words, the two-step routine often needs a post-

processing process, such as applying a simple clustering method to the learned representation or conducting a fusion 

operation on the clustering results of individual views, to produce the final clustering results. This two-step learning 

strategy may lead to unsatisfactory clustering performance since the learning of the multi-view representation is not 

informed by the final clustering goal. The correlation between these two steps is not fully explored, potentially make 

the learned low-dimensional representation unsuitable for subsequent clustering tasks. In contrary, the one-step routine 
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integrates representation learning and clustering task into a unified framework, simultaneously learning a graph for 

each view, a partition for each view, and a consensus partition. Based on an iterative optimization strategy, high-

quality consensus clustering results can be obtained directly and employed to guide the graph construction and the 

updating of basic partitions. This, in turn, contributes to the formation of a new consensus partition. Through joint 

optimization, co-training involves  simultaneous clustering and  representation learning, leveraging the inherent 

interactions between two tasks and realizing the mutual benefit of these two steps [1]. In the one-step routine, the 

cluster label of each data sample can be directly assigned and without the need any post-processing, reducing the 

instability of the clustering performance caused by the uncertainty of post-processing operations.  
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Figure 3: The illustration of three fusion strategies 

2.6 The weighting strategy 

In multi-view clustering, how to merge multiple views is a key issue. It is essential to assign an appropriate weight to 

each view based on its importance for the merging process.  This ensures a deeper exploration of the complementary 

information present in heterogeneous data and effectively reduces the adverse effects of noise and outliers. The 

simplest approach is to assign the same weight to all views (equal-weighted) or not to consider the weight, treating all 

views equally and assuming their reliability. However, the clustering results may be degraded if different views are not 

distinguished [30]. In real-world clustering problems, data views inherently vary in strength, and each view possesses 

specific statistical properties while being susceptible to different forms of noise pollution. Thus, it is unreasonable to 

treat different views equally during the clustering process. To distinguish the different contributions of different views, 

auto-weighted (self-weighted) approaches,  which involve automatically learning the weight of each view [31], have 

been proposed. Auto-weighted approaches can be classified into two categories: parameter weighted and parameter-

free weighted strategies. Parameter weighted approaches learn the weight of each view by introducing additional hyper 

parameters, which control the smoothness or sparsity of the weight distribution. However, setting these hyper 

parameters in the clustering task is often challenging due to the need for an extensive search in a large parameter 

space. The clustering results can be sensitive to these hyper parameters, and the optimal values may vary across 

different datasets. The parameter-free weighted strategy automatically assigns weights by a self-conducted weight 

learning, without the requirement of any hyper parameters while maintaining precision[32].  

Except for weighting the view, [33] learned the weights of different features in each view and the weights of each 

sample in different views by introducing a feature-level and a sample-level attention mechanism. This approach 
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hierarchically distinguishes the weights of different features in one view and the weights of the same sample in 

different views. Using a unique weighting strategy, [34] considered the confidence of both views and samples under 

the assumption that samples may have different confidence levels under the same view. [35] assigned weights to the 

views of data samples and feature representations in each view, emphasizing discriminatory features and views over 

others. [36] learned the cluster-wise weights instead of view-wise weights, with the cluster-weighted scheme 

enhancing the interpretability of the clustering results. [37] learned automatically the view weights based on the 

concept of mutual information and then imposed simultaneously them on the content-based and context-based multi-

view data representations. [38] measured the weights of the previous views and the last view when the number of 

views increases over time.    

2.7 The model structure 

The MVC models consist of shallow structure or deep structure. Models with shallow structure learn the low-

dimensional representation of multi-view data via a one-level structure, ignoring the hierarchical and non-linear 

structural information hidden in each view. For example, classical nonnegative matrix factorization (NMF) only 

factorizes the data matrix X  into two nonnegative factor matrices U  and V , such that X UV , which may limit its 

ability to learn higher level and more complex hierarchical information. Models with deep structure learn a low-

dimensional representation of multi-view data via a multi-level structure, enabling them to capture complex 

hierarchical and structural information. For example, the deep semi-NMF model [39] factorized data matrix X  into 

1l   factors 
1 2 l l

    X U U U V
 , which allows for a hierarchy of l  layers of implicit data representations that can 

be given by the factorizations: 
1 2 3 1 2, , ,

l l l l l l l

          
   V U V V U U V V U U V   . 

2.8 The optimization scheme 

In general, MVC is an NP-hard optimization problem. The most commonly used solution to this problem is the 

alternating iterative optimization scheme, which decomposes the problem into several tractable sub-problems. Each 

variable or group of variables is updated alternately while keeping the others fixed. For example, [40] solved the deep 

multi-view concept learning (DMCL) model using  block coordinate descent [41] that each time optimizes one group 

of variables while keeping the other groups fixed. The augmented Lagrange multiplier [42] and alternating direction 

method of multipliers (ADMM) [43] are widely used to solve the convex optimization problem. 

2.9 The proposed taxonomy 

In this paper, we propose a novel taxonomy according to the data types that MVC approaches deal with. This 

taxonomy encompasses approaches for complete, incomplete, uncertain, and dynamic multi-view data, denoted as 

Complete MVC, Incomplete MVC, Uncertain MVC, and Dynamic MVC for brevity. According to the working 

mechanisms and techniques that various approaches adopted, the approaches for complete multi-view data are further 

divided into eight sub-categories: (1) NMF-based approaches, (2) multiple kernel learning-based approaches, (3) 

graph-based approaches, (4) subspace-based approaches, (5) deep learning-based approaches, (6) contrastive learning-
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based approaches, (7) co-learning-based approaches, and (8) self-paced learning-based approaches. Similarly, the 

approaches for incomplete multi-view data are further divided into six sub-categories: (1) NMF-based approaches, (2) 

multiple kernel learning-based approaches, (3) graph-based approaches, (4) subspace-based approaches, (5) deep 

learning-based approaches, and (6) contrastive learning-based approaches. The approaches for uncertain multi-view 

data and those for dynamic multi-view data are not further classified into sub-categories, because there are not many 

approaches proposed in these two categories. The proposed taxonomy of MVC approaches is illustrated in Figure 4.  

Complete MVC

NMF for MVC

Multiple kernel learning for MVC

Graph for MVC

Subspace for MVC

Deep learning for MVC

Contrastive learning for MVC

Co-learning for MVC

Self-paced learning for MVC

Incomplete MVC

NMF for IMVC

Multiple kernel learning for IMVC

Graph for IMVC

Subspace for IMVC

Deep learning for IMVC

Contrastive learning for IMVC

Uncertain MVC

Dynamic MVC

Multi-view Clustering

 

Figure 4: The proposed taxonomy of MVC approaches 

The mechanisms and principles of the representative MVC approaches proposed in recent years are summarized in 

the next four sections. Note that, due to the space limitation, the tables summarizing the characteristics of various 

approaches are placed in Appendix. 

3 COMPLETE MULTI-VIEW CLUSTERING 

In this section, we present the working mechanisms of the representative MVC approaches for complete multi-view 

data and their characteristics. The general procedure of the approaches for Complete MVC is shown in Figure 5, while 

Table 1 (Appendix) summarizes the characteristics of the representative Complete MVC approaches. These 

characteristics include motivation, model structure, information fusion and weighting strategy, clustering routine, 

model peculiarity, and time as well as space complexity.  
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Figure 5: The general procedure of the Complete MVC approaches 

3.1 NMF-based approaches for MVC 

NMF-based multi-view clustering (MVC) approaches decompose a data matrix with nonnegative elements into two 

low-rank matrices. The product of these two low-rank matrices is designed to approximate the original data matrix. 

The nonnegative constraint results in a parts-based representation of samples, which accords with the cognitive process 

of the human brain from the psychological and physiological evidence. This characteristic makes the clustering results 

easy to be interpreted.  

To obtain the desired dimensional-reduced representation, various constraints are integrated into traditional NMF. 

For example, [16] introduced the consensus constraint to push clustering solution of each view towards a common 

consensus. Additionally, [44-46] imposed the multi-manifold regularization to preserve the locally geometrical 

structure of the data space, [47] utilized the sparseness constraint to extract the robust feature of each view, and [48, 

49] designed the orthogonality constraint to capture the intra-view diversity, in turn to obtain the desirable 

representations for each view. [50] exerted a graph Laplacian regularization on the indicator matrix learned via matrix 

factorization assisted k-means. This approach aims to capture the intrinsic geometric structure of original data. [51] 

preserved the geometric structures of multi-view data in both the data space and the feature space. [52] adopted auto-

weighted collective matrix factorization (CMF) to extract shared information of multi-view data. Additionally, the 

approach imposed graph dual regularization terms with orthogonality constraints to preserve the geometrical structure 

of the decomposed factors. 

To reduce the high dependency on the quality of the original views and recognize global relationships amongst data 

samples, [53] jointly factorized multiple networks transformed from multi-view data. The approach also incorporated 

sparse as well as multi-manifold regularization into NMF to keep the intrinsic geometrical information of the multi-

view network manifold space.  

To accelerate computational efficiency and decrease memory costs, [21] employed NMF to the embedded anchor 

graph, and utilized correntropy to increase clustering robustness. [54] divided the optimization problem into three 

decoupled small-scale problems containing only a small amount of matrix multiplications. [55] exploited a constrained 

https://www.sciencedirect.com/topics/computer-science/indicator-matrix
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binary matrix factorization to achieve direct clustering. [56] encoded the multi-view image descriptors into a compact 

common binary code space and clustered the collaborative binary representations. This process is designed to reduce 

computation costs and storage requirements through bit-operations. [57] developed an orthogonal mapping binary 

graph approach to eliminate redundant information and extract local geometric structure information of binary codes. 

To capture the complex hierarchical and nonlinear information, [58] introduced deep concept factorization (CF) 

into MVC. [59] utilized deep matrix decomposition to obtain the partition matrix of each view. [60] constructed a 

multilayer NMF model with graph regularization to extract abstract representations. The last layer representation from 

each view was then derived to form a common consensus representation. [61] designed multiple encoder components 

and decoder components with deep structures to hierarchically factorize the input data. All encoder and decoder 

components were then integrated at an abstract level to capture heterogeneous information across multi-view data. [62] 

designed diversity embedding deep matrix factorization to obtain discriminative features and reduce feature 

redundancy. [63] adopted semi-NMF to learn the hierarchical semantics of multi-view data in a layer-wise fashion. In 

this process, the nonnegative representation of each view in the final layer was enforced to be the same, maximizing 

the mutual information from each view. [40] performed hierarchically nonnegative factorization for capturing semantic 

structures. Additionally, the approach explicitly modeled both consistency and complementary information at the 

highest abstraction level. 

3.2 Multiple kernel learning-based approaches for MVC 

The multiple kernel learning (MKL)-based approaches linearly or non-linearly combine predefined kernels 

corresponding to different views to improve clustering performance. These predefined kernels map samples from the 

original low-dimensional space to a high-dimensional space, such that the samples are linearly separable in high-

dimensional space. Due to the effectiveness of handling non-linear data and avoiding the selection of specific kernel 

function (in general, it is very time-consuming and expensive to select the most suitable kernel from a pre-specified 

pool of base kernels, e.g., Linear kernel, Polynomial kernel, and Gaussian kernel), MKL-based approaches for MVC 

have been widely investigated and achieved promising results [64]. 

[65, 66] learned similarity relationships in kernel spaces to improve the robustness against noise. [67] jointly 

learned kernel representation tensor and affinity matrix. [68] employed kernel-induced functions to mapped the multi-

view data from linear space into nonlinear space for utilizing the nonlinear structure hidden in data. These approaches 

automatically appointed a reasonable weight for each view.  

3.3 Graph-based approaches for MVC  

Graph is an important data structure for representing the relationships hidden in multi-view data. Each node in a graph 

corresponds to a data sample and each edge represents a relationship between two samples. Graph-based clustering 

approaches seek to learn a consensus affinity graph across all views and then carry out graph-cut algorithms or other 

techniques (e.g., spectral clustering) on the consensus affinity graph to produce the clustering result. The consensus 

affinity graphs can be directly learned in original feature space, or obtained by fusing multiple candidate graphs 
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learned in original feature space separately. It is obvious that the clustering performance highly depends on the quality 

of the consensus affinity graph, thus it is a crucial task to learn a high-quality consensus affinity graph. Usually, the 

difference amongst various multi-view graph clustering approaches vary in how they learn the consensus affinity graph 

across the multi-view data. 

To obtain a high-quality consensus affinity graph, [20, 69-72] projected the multi-view data into a low-dimension 

shared latent embedding space. They then learned the consensus affinity graph from the shared latent embedding space 

to reduce the corruption and redundancy of the original views. [73-75] employed manifold learning and sparse 

representation to construct the graph of each view and fused them in an automatically weighted way. [76-78] 

introduced tensor nuclear norm to minimize the divergence between graphs of different views. [79] introduced a 

consistent smoothness constraint of overall views and an orthogonality constraint. [80] converted multi-view fuzzy 

clustering to adaptive graph learning with sparse low-rank constraints to ensure its strong discriminative ability. [81] 

weighted the different views in terms of their confidence.  

To reduce the computational complexity, [82] relaxed the constraint of the global similarity matrix. [83] devised a 

refined version of k-nearest neighbor graph to keep data points and aggressively reduced the number of edges. [84, 85] 

developed MM (Majorization-Minimization)-based optimization approaches. [86, 87] jointly optimize the learning of 

consensus graph and discretization of cluster labels. [88] learned a structured graph to directly extract the clustering 

indicators, without performing other discretization procedures.[89] constructed a bipartite graph to depict the 

relationship between samples and anchor points, and imposed a connectivity constraint to guarantee that the connected 

components indicate clusters directly. 

3.4 Subspace-based approaches for MVC 

Subspace-based approaches for MVC aim to directly learn a unified low-dimensional representation shared by multiple 

views from multiple subspaces or a pre-learned latent space. This is based on the assumption that the multi-view 

observations are generated from an underlying latent representation [90]. Subsequently, k-means or spectral clustering 

is applied to the unified representation to divide data samples lying in a union of multiple low-dimensional subspaces 

into different clusters. This process ensures that samples in the same cluster come from one subspace. The key 

challenges for subspace-based multi-view clustering approaches include learning a robust representation, addressing 

data with nonlinear structures, and enhancing computation efficiency.  

To learn a robust representation, [91] employed an exclusivity constraint term to enhance the diversity of specific 

representations amongst different views. Additionally, the approach imposed a clustering structure constraint on the 

learned subspace self-representation to obtain a clustering-oriented subspace self-representation. [92] built an anti-

block-diagonal indicator matrix, incorporating  a small amount of supervisory information. This was done regularize 

the shared affinity matrix corresponding to the latent representation for ensuring its block-diagonal structure. [93] 

defined a local graph regularization term about the consensus latent subspace representation. This term was designed 

to preserve the manifold structure of data and ensure consistency across different views. [94] employed the maximum 

dependence constraint between the similarity matrix and its latent intact (complete and not damaged) points to build 

https://www.sciencedirect.com/topics/computer-science/clustering-structure
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an similarity matrix. [95] designed the multiplicative decomposition scheme and the variable splitting scheme to 

extract the components from their corresponding view-specific coefficients, where inconsistent elements are filtered 

out. [1] fused multi-view information in a partition space to reduce the effect of noise. [96] adopted the view-

consensus grouping effect and low-rank constraint via the nuclear norm to regularize the view-commonness 

representation. [97] captured the correlations between shared information across multiple views and employed view-

specific information to describe specific property of each independent view. [98] adopted the weighted nuclear norm 

(instead of nuclear norm) to approximate the rank of the common coefficient matrix. [99] hired the self-attention 

mechanism to derive dynamic weights of different views for fusing consistent and view-specific information from 

multiple views. 

To capture the nonlinear nature of data, [100, 101] exploited a low-rank kernel mapping and the non-convex 

Schatten p-norm regularizer as well as the correntropy to learn a joint subspace representation of all views. [102-104] 

projected data from original space into a kernel/tensor space to encode the low-rank property of the self-representation 

tensor. [105] merged the self-representative subspaces of different views on a Grassmann manifold. [106] [107] 

utilized kernel trick and kernel dependence measure to encode complementary information from different views. [108] 

employed deep matrix factorization to obtain multi-view multi-layer low-rank subspace representations. [109-112] 

employed the deep convolutional/auto-encoder to learn the latent low-dimensional hierarchical representation. [113] 

[114] employed auto-encoder networks on multiple views to achieve multi-level latent smoothness. 

To improve the computation efficiency, [90] directly recovered the row space of the latent representation without 

the graph construction procedure. [115] jointly optimize the anchor selection and subspace graph construction in a 

parameters-free way. 

3.5 Deep learning-based approaches for MVC 

Deep learning-based MVC approaches utilize neural networks to learn latent representations, and then divide data 

sample into different groups based on the learned latent representations. Because the learned latent representations can 

reveal the potential peculiarities of complementarity and consistency information amongst multi-view features, such as 

the mutual agreement, nonlinear relationships, thus they effectively mitigate the effect of noise and dimensionality 

curse.  

[116] utilized auto-encoders to learn latent representations shared by multiple views, and leveraged adversarial 

training to further capture the data distribution and disentangle the latent space. [117-119] used auto-encoders to learn 

individually the embedded representations of multiple views with the consideration of both consensus and 

complementarity of multiple views. [120] employed various auto-encoders, e.g., stacked autoencoder (SAE), 

convolutional autoencoder (CAE) and convolutional variational autoencoder (Conv-VAE) to exact multi-view features. 

To encode graph structure and node attribute to the node representation, [121] utilized graph convolution network 

(GCN) with block diagonal property to encode the discriminative information. Additionally, they utilized Euler 

transform to augment the node attribute as a new view descriptor for non-Euclidean structure data. [122] adopted graph 

https://www.sciencedirect.com/topics/computer-science/similarity-matrix
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neural network (GNN) to implement dual fusion-propagation for capturing the multiple information amongst different 

views. [123] built a neural network composed of multiple blocks to learn sparse regularizers.  

To distinguish the importance of different views and semantics, [124] adopted adversarial learning and attention 

mechanism to align the latent feature distributions of different views and quantified the importance of modalities. 

[125] adopted the self-attention mechanism to calculate the alignment matrix for capturing the category-level 

correspondence of the unaligned data. [126] developed a differentiable bi-level optimization network to enhance the 

interpretability of deep MVC. 

3.6 Contrastive learning-based approaches for MVC 

Recently, contrastive learning, aiming at maximizing the agreement between positive sample pairs and minimizing that 

between negative sample pairs, has been widely used in MVC. This is attributed to its excellent ability to capture the 

consistency of multiple views. It offers a way to align representations from different views at the sample level, forcing 

the label distributions to be aligned as well [127]. 

[128] adopted contrastive learning to infer the inter-cluster relationships and intra-cluster boundaries from the local 

context of each node. [129] used contrastive learning to train GCN for integrating the topological structures and node 

features of neighbors. [130] used contrastive learning to align sample-level representations across multiple views for 

capturing the view-invariance information. [131] used contrastive learning to achieve the consistency objectives for the 

high-level features and the semantic labels. [132] respectively exploited a cross-view contrastive learning and a mutual 

contrastive teacher-student learning. These approaches aimed to obtain a redundancy-free consistent representation at 

the instance level and capture the intra-view discriminative information at semantic level. [133] designed instance-

level and cluster-level contrastive learning to exploit the representations of the augmented weak-weak view pair and 

the strong-weak view pairs. 

To improve the performance, [134] developed a contrastive fine-modeling via maximizing the similarity of pair-

view to guarantee the consistency of multiple views. [135] designed a graph contrastive loss to regularize the learning 

of the consensus graph. [136] introduced a contrastive reconstruction loss to realize sample-level approximations 

between the reconstructed graphs and the raw graphs. However, [137] proved that contrastive alignment can be 

detrimental to the clustering performance, especially when the number of views increases. 

3.7 Co-learning-based approaches for MVC 

Co-learning approaches aim to improve the clustering performance by exchanging information amongst different 

objects. Co-learning approaches include co-regularization MVC, co-training MVC, multi-task MVC, and co-clustering 

MVC. The general procedures of co-training, multi-task, and co-clustering MVC are shown in Figure 6. 

The typical representatives of co-regularization MVC and co-training MVC are CoRegSC (co-regularization 

spectral clustering) [15] and CoTrainSC (co-training spectral clustering) [138]. CoRegSC formally measured the 

agreement on distinct views and solved the corresponding objective problem to make the cluster structures in different 

views agree with each other. CoTrainSC employed separate but correlated learners on each view to acquire the cluster 
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structure. The acquired cluster structure then guided the learners in other views, facilitating the exchange of 

information among different views. This allowed the disagreement amongst views to be propagated back to the 

learners, helping them learn a more accurate cluster structure by minimizing the disagreement in the next iteration. 

Through an iterative alternate training procedure, the cluster structures of multiple views tended towards consensus. 

[139] pointed out that the success of co-training algorithms mainly relies on three assumptions: (a) sufficiency - each 

view is sufficient for classification on its own, (b) compatibility - the target functions of both views predict the same 

labels for co-occurring features with a high probability, and (c) conditional independence - views are conditionally 

independent given the label. [140] implemented collaborative learning between visible and hidden views to combine 

the individual information and the shared information in different views. 
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Figure 6: General procedures of co-training, multi-task, and co-clustering MVC 

Multi-task clustering improves individual clustering performance by learning the relationship amongst related tasks, 

while MVC makes use of consistency amongst different views to achieve better performance. Multi-task MVC 

(MTMVC) means the tasks are closely related and each task can be analyzed from multiple views. The goal of 

MTMVC is to generate a consensus partitioning for every task by exploiting the shared relationships between the 

views within a task and between different tasks [141]. [141] formulated the MTMVC problem as a multi-objective 

optimization problem. [142, 143] developed a semi-nonnegative matrix tri-factorization based MTMVC clustering 

algorithm to deal with the data with negative feature values.  

Co-clustering refers to conducting two-sided clustering along the samples and features simultaneously under the 

assumption that samples exhibit a pattern only under a subset of features [14]. Co-clustering MVC combines MVC 

with co-clustering for taking advantage of the diversity of features provided by multiple sources and the dual 

relationship between the feature space and sample space.  

To employ the agreement and disagreement amongst views, [144] shared a common clustering results along the 

sample dimension and kept the clustering results of each view specific along the feature dimension. The mechanism of 

maximum entropy was leveraged to control the importance of different views. [145] built a view-level bipartite graph 

to draw the co-occurring structure of data for exploiting the duality between samples and features of multi-view data. 
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To improve the robustness against noisy features, [146] employed the dynamic multi-view co-clustering algorithm 

with mutual information. This approach was employed to learn the view weights, which was then applied to the 

discriminative feature representations of multiple views, instead of the original representations. [147] employed 

multiple co-clustering algorithms to calculate the sample-sample, feature-feature, and sample-feature similarity 

information of each view data. [14] used co-clustering as the basic clustering block of MVC, and utilized the features 

and view weighting schemes to iteratively specify the perceived features and view importance. 

In addition, [148] conducted co-clustering based on the matrix factorization under the constraints of indicator 

matrix to improve the computational efficiency. [149] developed a differentiable deep network to learn interpretable 

and consistent collaborative representation from multi-source features, and maintain sparsity between multi-view 

feature space and single-view sample space. 

3.8 Self-paced learning-based approaches for MVC 

Self-paced learning, an effective technique to avoid bad local minima and improve the generalization result, simulates 

human learning process. It starts by training a model on „easy‟ examples which have smaller loss values and then 

gradually takes „complex‟ examples into consideration. The general self-paced learning model is composed of a 

weighted loss term on all examples (with higher losses) and a regularizer term imposed on example weights. By 

gradually increasing the penalty on the regularizer during model optimization, more examples are automatically 

included in training from „easy‟ to „complex‟ via a pure self-paced approach. 

[106] employed low-rank tensor constraint to assign different weights on different singular values of the 

representations, and used the self-paced learning to treat multiple instances differently. [150] exploited a self-paced 

and auto-weighted strategy to reduce the risk of trapping into bad local optima. [151] applied a soft-weighting scheme 

of self-paced learning for instances to mitigate the negative impact of noises and outliers. Additionally, they designed a 

self-paced feature selection manner and a weighting term for views to alleviate the feature and view quality issues.  

3.9 Discussion 

Although numerous MVC algorithms have been proposed, there is no criterion to decide which MVC algorithm is the 

best due to the unique merits of each approach. In summary, NMF-based approaches provide straightforward 

interpretability for clustering results, i.e., each observation can be explained as an additive linear combination of 

nonnegative basis vectors. However, a challenge lies in limiting the search of factorizations to those that can give 

meaningful and comparable clustering solutions across multiple views simultaneously. Graph-based approaches can 

learn the correlation and complex structures hidden in data, but the performance is highly dependent on some prior 

factors. Subspace learning is effective in reducing the “curse of dimensionality”, but they have initialization 

dependence. Deep learning-based approaches can explore the relationships amongst different samples and avoid the 

possible corruption as well as the curse of dimensionality, but many deep learning-based MVC approaches involve 

more parameters and lack theoretic interpretability. Co-clustering can use samples to induce feature clustering and use 

features to induce sample clustering based on the duality, but co-clustering-based MVC approaches usually suffer from 
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high computational and storage complexities. Self-paced learning approaches avoid bad local minima, but it is difficult 

to distinguish „easy‟ and „complex‟ examples. 

Several MVC approaches integrated different techniques to enhance the reliability of clustering results via 

inheriting the merits of different approaches. For example, [152] exploited several candidate multi-view clustering to 

maximize the worst-case performance gain against the best single view clustering. This ensures that the clustering 

performance, when utilizing multiple views, is never statistically significantly worse than that achieved by using a 

single view alone. [153] designed a self-tuning MVC approach that introduced a sum-of-norm loss function, 

regularization, and statistics techniques to reduce the initialization sensitivity and automatically determine the cluster 

number.  

4 INCOMPLETE MULTI-VIEW CLUSTERING 

The problem of clustering incomplete multi-view data is known as incomplete multi-view clustering (IMVC) (or 

partial multi-view clustering) [154]. The goal of IMVC is to discover the common cluster patterns hidden in 

incomplete multi-view data based on the observed data samples and features in different views. In incomplete data, 

due to the degradation of the acquired data quality, the natural alignment property of same samples across multiple 

views and sample completeness may not be preserved [155]. This may leads to a serious of information loss, the 

information imbalance aggravation amongst different views [19] and the integration difficulties of multiple views 

[156]. Consequently, it  results in the insufficient excavation of the complementary and consistent information [157]. 

IMVC faces more challenges compared to MVC. It needs issues such as mitigating the impact of missing information 

and effectively extracting and utilizing the underlying semantic information from missing views/features to cluster the 

multi-view data. The existing approaches for MVC cannot be directly applied to incomplete multi-view data. 

An intuitive strategy to solve IMVC is data adaption, i.e., removing incomplete samples or filling incomplete views 

(imputation) to obtain complete multi-view data. Subsequently, existing MVC methods can be employed directly. The 

removing incomplete samples is simple and straightforward, but it loses original samples and may cause heavy 

information loss when most of the samples have missing values. Imputation methods include zero imputation, mean 

imputation, k-nearest-neighbor imputation, random imputation, regression imputation, expectation maximum (EM) 

imputation, multiple imputation (imputes the missing value multiple times, MI) and so on [158]. Because inaccurate 

interpolation or filling of missing data may induce noisy features, which may destroy the distribution of original data 

and damage the clustering performance [159], imputation-free approaches have been developed, for example, [160] 

dealt with the missing samples or features by introducing an sample-view indicator matrix to indicate whether an 

sample exists in a view or not.  

In recent years, a number of approaches for IMVC have been developed. In this section, we present the working 

mechanisms of the representative IMVC approaches. The general procedure of the approaches for IMVC is shown in 

Figure 7, and the characteristics of the representative IMVC approaches are summarized in Table 2 (Appendix). 
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Figure 7: The general procedure of the IMVC approaches 

4.1 NMF-based approaches for IMVC 

To acquire a robust low-dimensional consensus latent representation for all views, [161-164]  adopted graph-

regularized matrix factorization model to reveal the geometrical structure of data. Specifically, [161] designed a 

semantic consistency constraint to reduce the influence of the unbalanced incomplete views, [162, 163] used 

orthogonal constraint to alleviate the problem of the inconsistent clustering structure, and [164] utilized the guidance 

of the virtual label to enhance the distinctiveness of learned consensus latent representation. [165] combined NMF 

with low-rank tensor to capture the higher-order and complementary information. [25] employed NMF to separately 

handle individual clusters/instances, and introduced locally geometrical information to reduce the negative impact 

caused by multi-view interaction. [166, 167] incorporated index matrices of missing samples into matrix factorization 

and introduced graph Laplacian regularization to promote the compactness of the low-dimensional representation. 

[168] utilized the results of NMF with the Laplacian regularization to reconstruct missing views, and the reconstructed 

views were also used to seek the latent representation. [158] adopted multiple imputations to deal with missing values 

under the consideration of the missing value uncertainty, and designed a view weighting strategy to ensemble the 

clustering results from multiple views. 

To reduce the computational and memory costs, [169] employed the regularized matrix factorization and weighted 

matrix factorization, [170] combined NMF with the graph Laplacian of the cosine similarity matrix directly computed 

from the original data space.  

4.2 Multiple kernel learning-based approaches for IMVC 

[171] encouraged incomplete kernel matrices to mutually complete each other and integrated imputation as well as 

clustering into a unified learning procedure. [172] imputed each incomplete base matrix, and introduced prior 

knowledge (the consensus clustering matrix is required to lie in the neighborhood of a pre-specified one) to regularize 

the consensus clustering matrix. [173] dynamically generated a consensus proxy under the guidance of a shared cluster 

matrix to improve the effectiveness of imputation and clustering, and preserved sufficient kernel details via adjusting 

the size of base partitions for further improving the quality of the consensus proxy. [174] employed similarity graph to 
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guide the kernel completion for capturing the global structure and local nonlinear relationship of samples in kernel 

space. 

4.3 Graph-based approaches for IMVC 

To alleviate the effect of missing data, [175] designed a locality-preserved reconstruction term to infer the missing 

views. [176] exploited the intrinsic structure of data to complete the missing views. [162, 163] employed the cross-

view feature transformation to complete the unobserved samples and incorporated the completion process into multi-

view graph learning. [177] designed the feature space based missing-view inferring to recover the missing views. [178] 

designed a complete structure inferring strategy to learn the complete structures of all views for disclosing the real 

distribution of the absent samples under the reconstruction constraint. In addition, [179] transferred feature missing to 

similarity missing and then used average similarity values in other views to complete the missing similarity entries 

based on the spectral perturbation theory. [180] employed existing data to reconstruct incomplete data and 

incorporated the reconstruction objective with self-representation based spectral clustering. On the contrary, [181] 

combined a distance regularization term as well as low-rank representation-based non-negativity constraints to directly 

learn graphs from raw data without filling. [182] used the available data of each view to learn a corresponding view-

specific partial graph, and designed a cross-view graph fusion term to learn a consensus complete graph for different 

views.  

To distinguish the contributions from different views for alleviating influence of improper views to the quality of 

the fused consensus graph, [183] considered the view‟s importance to learn the affinity matrix of the view. [184] 

learned the sample-level auto weight to fuse graphs. [185] introduced adaptive weights to balance the importance of 

different views. [186] fused incomplete base partition matrices in an auto-weighted manner to generate a unified 

partition matrix. [187] adopted an adaptive weighting strategy to alleviate the negative impact of unbalanced 

incomplete views. In additional, they devised a local and global co-regularization to reveal the mutual effect between 

local clustering from different incomplete views and global clustering across all views. 

To handle data with complex distributions and the non-linear information, [188] exploited spectral analysis to 

supervise the common representation extracted from all the views. [189] investigated the local information within  

each view as well as the semantic consistent information shared by all views. They introduced a co-regularization 

constraint to minimize the disagreement between the common representation and the individual representations with 

respect to different views. [190] built a similarity matrix to measure the relationships of present instances, and 

employed a spectral-based method to learn a common probability label matrix and low-dimensional representations of 

present samples. [191] employed the graph learning and spectral clustering techniques to learn the common 

representation. [192] incorporated the feature space based missing-view inferring and manifold space based similarity 

graph learning, and imposed a low-rank tensor constraint to capture the high-order correlations of multiple views. 

[193] employed projection learning to reduce the effect of the information imbalance between different views caused 

by the diversity dimensions, and imposed a graph regularization penalty term to capture the geometric structure of data. 
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In addition, [194] [195] designed improved anchor selection strategies to choose representative anchor points. 

These anchor points were crucial for learning the consensus instance-to-anchor similarity matrices for all views and 

constructing view-wise complete anchor graphs as well as the fused complete anchor graphs. [196] [197] utilized 

anchors to compute the similarities between all data points, and executed anchor-based spectral clustering to obtain the 

clustering result. [198] proposed a structural anchor-based similarity learning model to obtain the intra-view similarity 

matrix. They employed the paired anchor samples to compute the inter-view similarities, and then designed a complete 

anchor-inferred graph learning scheme to improve the efficiency and performance of the spectral clustering. [199] 

independently built the similarity matrix of each view via the adaptive neighbor assignment strategy to eliminate the 

necessary of adjusting parameters. Additionally, they employed a non-iterative approach to reduce the computational 

complexity.  

4.4 Subspace-based approaches for IMVC 

To alleviate the effect of missing data, [200] employed the affinity matrices learning and tensor factorization 

regularization to recover the missing views and the subspace structure. They introduced hypergraph-induced hyper-

Laplacian regularization to preserve the high-order geometrical structure of data. [201] employed the available 

instances within views to infer the missing information, and adopted a weighted alignment of projection matrices 

corresponding to different views to learn a discriminative shared embedding. [202] employed a reconstruction term to 

recover missing samples from non-missing ones, and decomposed the self-expressiveness coefficient learned from the 

recovered complete multi-view into a consistent part together with a specific part. This approach aims to reveal the 

similarity information of view-paired and obtain the unique information of each view. [203] recovered the missing data 

based on shared latent representation and learned multilevel graphs of recovered views by self-representation. 

Additionally, it introduced a tensor nuclear norm regularizer to pursue the global low-rank property and explore both 

intraview and interview correlations. 

To obtain more accurate subspace representation, [24] described multi-view data in a local manner to obtain clear 

block-diagonal structure for data distribution and more accurate subspace representation. [204] devised the soft block-

diagonal-induced regulariser to fuse and construct a shared representation for all views. It also inserted multiple 

indicator matrices into the multi-view self-representation model to achieve clustering results. [205] utilized a tensor 

nuclear norm regularizer to diffuse the information of multi-view block-diagonal structure across different views. 

[206] utilized low-rank matrix factorization to obtain a consensus representation matrix. It then then combined with the 

objective function of nonnegative embedding and spectral embedding subspace clustering for joint optimization. [207] 

learned missing instances and self-representations in the latent space for capturing the features of missing instances 

and preserving the original latent spatial structure of the data. It imposed a completeness constraint to guarantee that 

learning direction of missing instances was close to the original data as possible. [208] learned a similarity graph for 

each view rather than a consensus graph, and dealt with the incompleteness of the views by fusing information from 

different views in partition space. [209] jointly performed data imputation and self-representation learning. 

https://www.sciencedirect.com/topics/computer-science/similarity-graph
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To improve robustness against the incompleteness and noises, [210] designed a view evolution scheme to deal with 

unbalanced incomplete view data (i.e. different views often have distinct incompleteness), and devised the low-rank 

representation to recover the data. [211] developed a weighted subspace learning mechanism with low rank and sparse 

constraints to capture relationship between the data samples.  

4.5 Deep learning-based approaches for IMVC 

[212] optimized multiple groups of decoder deep networks to obtain the completion of data view and multiple shared 

representations, so as to generate multiple clustering results with high diversity and quality. [213] utilized multi-view 

auto-encoder to infer the missing features of incomplete samples, and conducted adaptive graph learning as well as 

graph convolution to extract data structure. [156] developed the auto-encoder with the manifold alignment constraint 

and consistency alignment constraint, aiming to preserve the compact inherent local structure within the view and the 

consistency semantics between incomplete views. [214] combined discriminator networks with auto-encoders to learn 

common low-dimensional representations as well as the shared cluster structure across multiple views, and employed 

adversarial training to generate possible values of missing features. [215] designed view-specific encoders to extract 

the high-level information of multiple views, and introduced a self-paced strategy and a weighted fusion layer to select 

the most confident samples and obtain the consensus representation shared by all views. [159] [216] employed auto-

encoders to learn features for each view and utilized an adaptive feature projection to avoid the imputation and fusion 

for missing data.  

[217] utilized convolutional neural networks to extract deep features and employed attention mechanism to fuse 

these deep features in a weighted way. [218] used several view-specific graph convolutional encoder networks to 

reveal the high-level features and high-order geometric structure information of data. [219] integrated the element-wise 

reconstruction and the generative adversarial network (GAN) to infer the missing data, and employed multi-layer non-

linear transformations to learn high-level common representation. [220] transferred known similar inter-instance 

relationships to the missing view and adopted graph networks constructed on the transferred relationship graph to infer 

missing data. It devised view-specific encoders and an attention-based fusion layer to extract the recovered multi-view 

data and obtain the common representation. [221] proposed a bi-level optimization framework to dynamically impute 

missing views from the learned semantic neighbors and automatically select imputed samples for training.  

4.6 Contrastive learning-based approaches for IMVC 

[222][223] employed contrastive learning with the maximal mutual information across different views to obtain the 

consistent representation. They used additional prediction networks with minimal conditional entropy of different 

views to recover the missing data. [224] designed augmentation-free graph contrastive learning and cross-view graph 

consistency learning to maximize the mutual information of different views within a cluster based on the graphs 

transferred from the inter-sample relation graphs. 

[155] proposed a unified contrastive learning paradigm to simultaneously solve partially view-unaligned problem 

and partially sample-missing problem, where the available pairs were used as positives and some cross-view samples 
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were randomly selected as negatives, and the influence of the false negatives caused by random sampling was 

alleviated via the noise-robust contrastive loss. [225] developed multi-view unified and specific encoding network to 

fuse different views into a unified representation, designed a diversified graph contrastive regularization to enhance the 

discriminating power of the learned representation and reduce the information loss caused by the view missing, and 

utilized the robust contrastive learning loss to reduce the effect of noise and unreliable views. 

4.7 Discussion 

In IMVC, most approaches usually tend to impute/recover/infer values for the missing data of incomplete multi-view 

data sets in original data space, and then explore cluster information. The imputation quality depends on the estimation 

of the distribution of available data. Because incomplete multi-view data usually have biased data distribution, the 

imputation of missing data might induce noise even incorrect information, especially for data with a large missing rate. 

[168][158] et al. complete missing information to capture the features of missing instances. This way retains the 

original latent spatial structure of the data, but the common features of multiple views learned from the complete data 

may have large variances in both inter-class and intra-class. Because the clustering result is determined by a whole 

similarity matrix, the imputation has an impact on the clustering of all samples, no matter whether a sample is 

complete or not. When an imputation is not of high quality, it could adversely affect the clustering performance of all 

samples, especially for those with complete views. In addition, the filled values usually lack physical meaning and the 

imputation of missing data is time consuming. 

The NMF-based approaches learn a consensus representation shared by all views for clustering. They explore 

certain information amongst the observed views and reduce the negative influence of the missing views via the partial 

view aligned or weighted regularization strategy. The graph based approaches transform the feature missing problem 

into the graph space and explore the similarity information amongst the observed instances in all views to learn the 

orthogonal consensus representation. These representations are more robust to noise and are suitable to the non-linear 

separable data. 

It is difficult for IMVC approaches adopting shallow models to deal with the dependence, as well as discrepancy 

amongst different views and nonlinear relations amongst samples. This limitation restricts their capability to learn 

discriminative feature representations. Meanwhile, some of them suffer from high computation costs (e.g., in inverse 

operations of matrices). Compared with the approaches adopting shallow models, deep learning-based approaches 

have the potential to extract more salient features from the data and thus obtain very promising results. 

Many IMVC approaches handle the incomplete multi-view data in a two-stage process, i.e., first exploring the 

consistency amongst multiple views from the complete part of data, and then extending the learned consistency to the 

incomplete part of data. However, feature learning performed on partial data might cause the distribution discrepancy 

between the features of complete data and that of incomplete data, resulting in the degradation of model generalization 

capability.  

The unification of recovery of the missing views, the representation learning and the clustering task provides a 

novel insight to IMVC [226]. However, these approaches often face challenges associated with high computational and 
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storage complexities, limiting their applicability to large-scale datasets. Several novel approaches have been proposed, 

for example, [227] integrated missing view imputation into the fuzzy clustering process to realize cooperative learning 

between the visible and hidden views. They established hidden links between missing views, hidden views and 

complete views to improve the quality of the imputed missing views as well as the learned hidden views. Additionally, 

an adaptive view weighting mechanism was introduced to improve the robustness of the model. [228] robustly learned 

the common compact binary codes for incomplete multi-view features and optimized the cluster structures in an online 

fashion. [229] introduced genetics to clustering algorithms to learn simultaneously the consistent information and the 

unique information based on the subspace decomposition. 

5 UNCERTAIN MULTI-VIEW CLUSTERING 

Uncertain data clustering must first model uncertain data by using either of fuzzy model, evidence-oriented model, or 

probabilistic model. Moreover, similarity measure plays an imperative role [230]. When two distributions of two 

uncertain data are heavily overlapped in locations, the geometric distance-based similarity function cannot correctly 

capture the change between uncertain data with their distributions. On the other hand, similarity measure based on 

probability distribution, such as the divergence-based similarity function, cannot discriminate the change between data 

points when they are not closed to each other or completely separated.  

[230] combined a self-adaptive mixture similarity function composed of geometric distance and S-divergence with 

k-medoids MVC to reduce the adverse effect of outliers and noises. [26] integrated induced kernel distance and 

Jeffrey-divergence in terms of the degree of overlap concerning each view in a dataset to construct a self-adaptive 

mixture similarity measure (SAM). Subsequently, they developed a multi-view spectral clustering algorithm with 

SAM as well as pairwise co-regularization to group uncertain data. [231] developed an approximate Bayes approach to 

directly estimate the cluster assignment and co-assignment probabilities in the range with several different clustering 

patterns. [232] proposed a Bayesian probabilistic model via variation inference to automatically learn the multiple 

expert views, multiple clustering structures and expert confidences. This approach enables the discovery of various 

ways to cluster data, considering potentially diverse inputs from multiple uncertain experts. Table 3 (Appendix) 

summarizes the characteristics of representative uncertain MVC approaches. 

6 DYNAMIC MULTI-VIEW CLUSTERING  

Most existing MVC approaches fuse all views at one time, but in some applications, the number of views changes with 

time. For the newly collected views, re-fusing all views at each time is too expensive to store all historical views [233]. 

To deal with dynamic change of views, [233, 234] developed incremental multi-view spectral clustering (IMSC) to 

integrate different views one by one in an incremental way, where [234] first learned an initial model from a small 

number of views, next updated the model when a new view is available, and then used the updated model to learn a 

consensus result. On the other hand, [233] opted to store a single consensus similarity matrix, representing the 

structural information of all historical views. Once the newly collected view is available, the consensus similarity 
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matrix is reconstructed by learning from its previous version and the current new view. [233] also incorporated sparse 

and connected graph learning to reduce the noises and preserve the correct connections within clusters.  

In addition, [235] designed an alternative iterative algorithm based on the introduction of incremental learning 

mechanism to incrementally update the feature selection matrix. This feature selection was then incorporated into an 

extended weighted NMF to learn a consensus clustering indicator matrix.  

There is a major challenge for incremental clustering called the stability-plasticity dilemma [236]. On the one hand, 

the clustering results should be plastic to the new input data from non-stationary distributions. On the other hand, the 

clustering results should retain the performance of previous input data. Table 4 (Appendix) summarizes the 

characteristics of representative dynamic MVC approaches. 

7 DATASET  

Multi-view datasets widely used by most MVC approached for evaluating the clustering performance consist of five 

categories: text, image, text-gene, image-text, and video.  

7.1 Text Dataset 

The text datasets consist of news dataset (3Sourses, BBC, BBCSport, Newsgroup), multilingual documents dataset 

(Reuters, Reuters-21578), citations dataset (Citeseer), WebKB webpage dataset (Cornell, Texas, Washington and 

Wisconsin), articles (Wikipedia), and diseases dataset (Derm). The statistics of text databases are reported in Table 5 

(Appendix). 

7.2 Image Dataset 

The image datasets consist of facial image datasets (Yale, Yale-B, Extended-Yale, VIS/NIR, ORL, Notting-Hill, 

YouTube Faces), handwritten digits datasets (UCI, Digits, HW2source, Handwritten, MNIST-USPS, MNIST-10000, 

Noisy MNIST-Rotated MNIST), object image dataset (NUS/WIDE, MSRC, MSRCv1, COIL-20, Caltech101), 

Microsoft Research Asia Internet Multimedia Dataset 2.0 (MSRA-MM2.0), natural scene dataset (Scene, Scene-15, 

Out-Scene, Indoor), plant species dataset (100leaves), animal with attributes (AWA), multi-temporal remote sensing 

dataset (Forest), Fashion (such as T-shirt, Dress and Coat) dataset (Fashion-10K), sports event dataset (Event), image 

dataset (ALOI, ImageNet, Corel, Cifar-10, SUN1k, Sun397). The statistics of image databases are reported in Table 6 

(Appendix). 

7.3 Text-gene Dataset 

The prokaryotic species dataset (Prok) is a text-gene dataset, which consists of 551 prokaryotic samples belonging to 4 

classes. The species are represented by 1 textual view and 2 genomic views. The textual descriptions are summarized 

into a document-term matrix that records the TF-IDF re-weighted word frequencies. The genomic views are the 

proteome composition and the gene repertoire. The statistics of text-gene databases are reported in Table 7 (Appendix). 

https://www.sciencedirect.com/topics/computer-science/indicator-matrix
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7.4 Image-text Dataset 

The image-text datasets consist of Wikipedia‟s featured articles dataset (Wikipedia), drosophila embryos dataset 

(BDGP), NBA-NASCAR Sport dataset (NNSpt), indoor scenes (SentencesNYU v2 (RGB-D)), Pascal dataset (VOC), 

object dataset (NUS-WIDE-C5), and photographic images (MIR Flickr 1M). The statistics of image-text databases are 

reported in Table 8 (Appendix). 

7.5 Video Dataset 

The video datasets consist of actions of passenger dataset (DTHC), pedestrian video shot dataset (Lab), motion of body 

sequences (CMU Mobo) dataset, face video sequences dataset (YouTubeFace_sel, Honda/UCSD), and Columbia 

Consumer Video dataset (CCV). The statistics of video databases are reported in Table 9 (Appendix). 

8 Performance metrics 

The procedure for evaluating clustering results is known as cluster validity. Well-known performance metrics for 

evaluating performance of MVC include internal validation indexes and external validation indexes [230].  

8.1 Internal indices 

Internal indices are quality scores computed by employing only the information inherent to the dataset, such as 

Compactness (the average distance between every pair of data points), Davies–Bouldin index (the ratio of the sum of 

within-cluster scatters to between-cluster separations), Dunn validity index (inter cluster distances over intra cluster 

distances), or Separation (the mean Euclidean distance between cluster centroids) [237]. Ideally, the data samples of 

each cluster to be as close as possible. Thus, a smaller value of the Compactness indicates more compact and better 

clusters. The Separation quantifies the magnitude of separation between the clusters. A lower value of the Separation 

represents the closeness of the clusters. Further, the Davies–Bouldin index identifies the overlapping of clusters by 

calculating the fraction of the sum of with-in-cluster distribution to between-cluster separations. A value near to 0 of 

the Davies–Bouldin index denotes that the resultant clusters are well-separated and compact. At last, the Dunn validity 

index measures the ratio of inter-cluster distance to intra cluster distance. A higher value of the Dunn validity index 

illustrates the well-separated and compact clusters [230]. 

8.2 External indexes 

The external indexes are quality scores computed by comparing clustering labels with the external supplied true labels, 

such as clustering accuracy (ACC), normalized mutual information (NMI), Purity, Rand Index (RI)/Adjusted Rand 

Index (ARI), Precision, Recall, and F-score (F1) [51, 238]. For all external evaluation metrics, a higher value close to 1 

of each external index indicates preferable clustering results whereas a lower value close to 0 denotes undesirable 

clustering results.  

The formulas of evaluation indicators are shown in Table 10 (Appendix). 
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9 EMPIRICAL EVALUATION 

In this section, we empirically evaluate the performance of thirty-five approaches, including twenty-nine Complete 

MVC approaches and six Incomplete MVC approaches. The twenty-nine Complete MVC approaches consist of two 

single view clustering approaches (SCBest and SCCat. SCBest involves conducting spectral clustering on each single 

view independently and the result of the view with the best clustering performance is reported. SCCat involves 

concatenating vectors from different views into a new vector and then apply spectral clustering algorithm 

straightforwardly on the concatenated vector. Additionally, there are six NMF-based approaches (MultiNMF [16], 

MultiGNMF [239], MVCC [44], MVCF[240], MvCDMF [63], and MCDCF [58]), five graph-based approaches 

(SwMC [30], AMGL[32], MCGC [241], RMSC [242], and AWP [243]), nine subspace-based approaches (DiMSC 

[244], ECMSC [245], FMR [107], SM2VC [95], CSMSC [246], DSS-MSC [97], DMSCN [247], MvDSCN [109], and 

MvSC-MRAR [114]), three deep learning-based approaches (SDMVC [248], CoMVC [127], and MVC-MAE [117]), 

one contrastive learning-based approach (NMvC-GCN [129]), and three co-learning-based approaches (CoregSC [15], 

TW-Co-k-means [249], DWMVC [37]). The six Incomplete MVC approaches consist of one graph-based approach 

(PIMVC [193]), one subspace-based approach (LATER [203]), three deep learning-based approaches (DIMVC [159], 

APADC [216], DSIMVC[221]), and one contrastive learning-based approach (COMPLETER [222]). These 

approaches are representative MVC approaches, covering the main categories in the taxonomy proposed in this paper 

and having different structures or constraints.  

The experiments are conducted on seven datasets, including three text datasets (BBCSport, Reuters, Reuters-21578), 

and three image datasets (NUSWIDE, Caltech101-7, NUSWIDE30K), and one image-text dataset (RGB-D). 

NUSWIDE30K contains 30,000 instances, while the other datasets contain hundreds or thousands of samples. These 

datasets are widely recognized as well-known benchmarks in MVC communities, representing different typical 

application scenarios, each with distinct views, classes, instances, features, and feature dimensions. We choose them to 

explore how various approaches behave in different types of datasets. ACC and NMI are used as performance metrics. 

In the experiments, all algorithms are run 5 times on each dataset and the average performance are reported. All 

evaluations are carried out on a standard Ubuntu-18.04 OS, and eleven approaches (DMSCN, MvDSCN, MvSC-

MRAR, SDMVC, CoMVC, MVC-MAE, NMvC-GCN, COMPLETER, DSIMVC, DIMVC, APADC) are 

implemented by using Pytorch 1.0 with an NVIDIA 2080Ti GPU, while other approaches are implemented by using 

Matlab with an Intel Core i7-7820X CPU. For each compared approach, a grid search is performed in the parameter set 

suggested in the corresponding paper and the best results are reported.  

The ACCs and NMIs of twenty-nine Complete MVC approaches and six Incomplete MVC approaches are shown 

in Table 11 (Complete MVC) and Table 12 (Incomplete MVC ) (Appendix), where bold numbers represent the best 

results in the column. From Table 11 and Table 12 (Appendix), we have the following observations and analyses: 

(1) The clustering performance of SCBest and SCCat are not necessarily worse than those of MVC algorithms, 

especially, SCCat achieves the second-highest ACC and NMI values on BBCSport dataset. Such phenomena are 

contrary to the general expectation that multi-view algorithms can obtain better performance than that of merely using 
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a single view. This indicates that it is important to design a strategy for integrating multi-view information, otherwise a 

simple concatenation may perform better.   

(2) Amongst all MVC approaches, MvSC-MRAR achieves the highest ACC and NMI values on Reuters, Reuters-

21578, NUSWIDE, Caltech101-7, and RGB-D, meanwhile, it also achieves the third-best clustering performance, after 

that of NMvC-GCN and SCCat, on the dataset BBCSport. Amongst the nine subspace-based MVC approaches, 

approaches with deep structure generally outperform those with shallow structure. However, MvDSCN and DMSCN 

do not perform as well as MvSC-MRAR, because they only use the information of the last layer in encoder 

components, without integration of information from different levels. It indicates that deep learning and the integration 

of the nonlinear structure, multilevel representation information in multi-view data, and the data distribution of latent 

representation are helpful for improving the performance of MVC.  In addition, NMvC-GCN achieves the highest 

ACC and NMI values on BBCSport, and its ACC and NMI values are also close to those of MvSC-MRAR on other 

datasets. It indicates that contrastive learning is effective in MVC. 

(3) No one MVC approach can maintain consistent good performance on various datasets. For example, 

MultiGNMF with local graph regularization achieves the highest ACC and NMI values on Caltech101-7 and RGB-D, 

while MultiNMF with the consensus constraint and MVCC with the multi-manifold regularization achieves the highest 

ACC and NMI values on BBCSport and Reuters respectively. These phenomena show that factors such as model 

structures, regularization constraints and weights corresponding to different views all contribute to improving the 

clustering performance. Moreover,  the information captured for clustering under different conditions are different. 

 (4) Except for the single-view approaches (SCBest, SCCat), the deep learning-based approaches (SDMVC, 

CoMVC, MVC-MAE), AWP, and TW-Co-k-means, other approaches did not complete the clustering task (i.e. have 

not generated clustering results) on the dataset of NUSWIDE30K, due to the run out of memory or heavy time-

consuming.  However, the ACC and NMI values obtained by SCBest, SCCat, SDMVC, CoMVC, MVC-MAE, AWP, 

and TW-Co-k-means on NUSWIDE30K are relatively low. This suggests that these approaches do not fully capture 

the inherent geometrical structure of NUSWIDE30K. The challenge of clustering large-scale multi-view data persists. 

(5) In Table 12 (Incomplete MVC), LATER achieves the highest ACC and NMI values on the BBCSport, Reuters-

21578, and RGB-D under various missing-rates (ratio of missing samples to all samples), but an exception occurs on 

the Reuters, DSIMVC achieves the highest ACC and NMI values on NUSWIDE and NUSWIDE30K under various 

missing-rates. On Caltech101-7, COMPLETER outperforms other approaches when the missing-rate is 0.1, while 

APADC does well when missing-rate is greater than 0.5, the performance of DIMVC and PIMVC is not as good as 

other approaches. Furthermore, we also see that ACC and NMI values of many algorithms decrease with the increase 

of the missing-rate. 

Figures 8 (a) and (b) show the runtimes of different approaches on the BBCSport dataset. From the Figure 8 (a) 

(Complete MVC), it can be seen that SCBest, SCCat, CSMSC, DSS-MSC, TW-Co-k-means, and CoregSC run well, 

SDMVC, CoMVC, MVC-MAE, NMvC-GCN, SwMC, AMGL, MCGC, RMSC, DiMSC, ECMSC, and SM2VC  also 

run reasonably well. However, MultiNMF, MultiGNMF, MVCC, MVCF, MvCDMF, MCDCF, AWP, DMSCN, 

MvDSCN, and MvSC-MRAR run slower, especially FMR and DWMVC run unreasonably. The difference of running 
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time between different approaches stems from many factors, such as the design of the algorithms, the complexity of 

adopted techniques, the clustering routine, the model structure, the number of samples, the dimension of features, and 

among others. For example, MvCDMF requires multiple layers of deep NMF decomposition, MvDSCN requires 

multiplication with a matrix of the square of the similarity matrix during each iteration, which leads to longer 

execution time. In the Figure 8 (b) (Incomplete MVC), DIMVC is the slowest, and PIMVC is the fastest. Furthermore, 

the same approach takes longer on datasets with higher missing rates. 

10 FUTURE WORK 

Although existing MVC approaches have obtained promising performance via different strategies, such as the 

weighting views or samples, imposing manifold or low-rank constraints, there are still some unresolved problems in 

the field of MVC, which are worthy of the attention of researchers. In the following, we summarize several directions 

of future research in order to encourage more research in MVC.  

         

Figure 8: Comparison of runtime of different algorithms on the BBCSport dataset (complete/incomplete) 

MVC for Large-scale and high-dimensional data. The datasets used for current experimental evaluation are 

often million-scale with low dimensionality, and only a few of them are billion-scale or have thousands of feature 

dimensions. However, in many real applications, the datasets may involve billions of samples or have high 

dimensionality, e.g., several million posts are shared per minute in Facebook, and each person has millions of genetic 

variants as genetic features in bioinformatics [11]. As a result, existing MVC solutions may fail to process such real 

large-scale and/or high-dimensional data within reasonable time cost. Furthermore, the performance of algorithms is 

also affected in a high-dimensional situation, because high-dimensional data often has a large amount of redundant 

information. The redundant information not only fails to supplement valid information, but also jeopardizes good data 

feature representation [6]. It is important to develop approaches to efficiently perform clustering on these large-scale or 

high-dimensional multi-view data. One possible research direction is developing clustering algorithms based on 

distributed computation platforms, or keeping the data on disk and designing I/O-efficient clustering algorithms. 

MVC for dynamic and uncertain data. Existing MVC mainly focuses on clustering the static data and the 

settings of dynamic data clustering are overlooked. In real life scenarios, data are not always static, e.g., video data. On 
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the one hand, some samples appear while other samples disappear. On the other hand, samples may be described by 

some time-varying information. The techniques for dynamic clustering need to be scalable and better to be incremental 

so as to deal with the dynamic changes efficiently. How to design effective MVC approaches in dynamic domains 

remains an open question. Moreover, how to integrate various features for uncertain data clustering is also a subject 

deserved further to study. 

MVC for data with the unknown number of clusters. Most existing MVC works assume that the number of 

clusters is known. This assumption, however, is too strong in real applications, especially in multi-view scenarios. 

How to design MVC approaches that can automatically determine the number of clusters is a problem worthy of 

careful investigation.  

MVC with more interpretation. Most deep learning approaches can explore the relationships amongst different 

samples and avoid the possible corruption as well as the curse of dimensionality, but many deep MVC approaches 

involve more parameters and lack theoretic interpretability. Thus, we may need to construct deep networks based on 

optimization approaches and make the networks more interpretable. 

11 CONCLUSION 

As a powerful learning tool for exploring the structure of multi-view data, MVC is widely used in many disciplines 

and plays a crucial role in various applications. However, the complex distribution and diversified heterogeneous 

features of multi-view data impose challenges for MVC. Despite several survey studies to assess MVC approaches 

have been performed in the past, these survey studies mainly focus on limited approaches for complete multi-view data 

or those for incomplete multi-view data. They often overlook approaches for complete, incomplete, uncertain, and 

dynamic multi-view data at the same time. To fill this gap and provide an updated survey for MVC approaches 

including those proposed after 2019, this study first analyzes and introduces the basic concepts and common key 

techniques for MVC, proposes a novel taxonomy of MVC approaches. The study then presents the working 

mechanisms as well as characteristics of the representative MVC approaches proposed in recent years. Following this, 

it summarizes representative MVC datasets and performance metrics commonly used in the MVC field. Finally, the 

study selects thirty-five representative MVC approaches from the proposed taxonomy to conduct an empirical 

evaluation on seven real world benchmark datasets.  

The study provides the theoretical knowledge of MVC, a novel taxonomy for MVC approaches, and insightful 

information on performance features of existing approaches. Its primary goal is to assist researchers interested in MVC 

and its related areas by offering an in-depth understanding on the current progresses of MVC. Additionally, it aims to 

serve as an insightful guideline to practitioners for application development. 
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 
 
 
   

  

interpretable and consistent 
collaborative representations, 
sparsity in the dual space of 
features and samples, deep 
differentiable network 

Self-paced 
learning 

SAMVC 
[150] 

robustn
ess 

shallow - late-
fusion 

parameter-
free 

weighted 

one-step 
routine 

- ( )O mnK  

1

m

v

v

O nd



 
  
 
  

non-convexity,  noises, soft 
weighting scheme, auto-
weighted 

DSMVC 
[151] 

robustn
ess 

shallow  late-
fusion 

parameter-
free 

weighted 

one-step 
routine 

- ( )O n  
2

1

m

v

v

O nd n



 
  

 


 

non-convexity,  noises, soft-
weighting scheme, dual self-
paced learning for instances 
and feature selection 

Table 2 the characteristics of representative approaches for IMVC 

Category Approach 
name 

Motivation Missing Imputing Model 
structure 

Fusion 
strategy 

Weighting 
strategy 

Clustering 
routine 

Clustering 
method 

Time 
complexity 

Memory 
cost 

Peculiarity 

NMF 
IMCRV 
[48] 

high-
quality 

view reconstruct 
views 

shallow early-
fusion 

parameter  
weighted 

two-step 
routine 

k-means 3( )O mn  2( )O mn  Laplacian regularization,  
global property of latent 
representation 

 

IMCCS 
[170] 

efficiency view - shallow early-
fusion 

equal- 
weighted 

two-step 
routine 

k-means 
2

1

( )
m

v

v

O d n




 

2( )O mn  
direct calculation of the 
cosine similarity in the 
original multi-view space 
to preserve manifold 
structure 

Multiple 
kernel 

learning 

KGIMC 
[174] 

non-
linearity 

instance kernel 
completion 

shallow direct-
fusion 

parameter-
free 

weighted 

one-step 
routine 

- 2( )O n  
2( )O n  

joint optimization, self-
expression learning in 
kernel space,  multi-kernel 
learning 

 

EE-IMVC 
[172] 

efficiency view each base 
clustering 

matrix 

shallow late-
fusion 

 parameter-
free 

weighted 

two-step 
routine 

k-means 3

2

(

( ) )p

O K

n n K




 

( )O mnK  prior knowledge 
regularization, maximal 
alignment between the 
consensus clustering 
matrix and an adaptively 
weighted base clustering 
matrices with an optimal 
permutation, SVD 

Graph 

([183]) stability view, 
value 

view-
specific 
partial 
graph 

shallow direct-
fusion 

parameter 
weighted 

one-step 
routine 

- 3( )O n  

1

( )
m

v

v

O d n




 

integration of graph 
learning and spectral 
clustering, tensor Schatten 
p-norm, view-
(un)important-content 

 

APGLF 
[182] 

high-
quality 

feature - shallow late-
fusion 

equal-
weighted 

one-step 
routine 

- 3 3( )pO n n
 

3( )O mn  
Within-view partial graph 
learning, cross-view graph 
fusion, rank constraint on 
the graph Laplacian 
matrix, joint optimization 

Subspace 

MVC-
SBD/IMV
C-SBD) 
[204] 

robustness view - shallow early-
fusion 

equal-
weighted 

two-step 
routine 

normalized 
cut 

(NCuts)   
or k-means 

6( )O n  
2( )O n  

in(complete) multi-view 
data, soft block-diagonal-
induced regulariser, 
introduction of multiple 
indicator matrices into 
self-representation model 

 

LNRLSD 
[24] 

high-
quality 

view - shallow early-
fusion 

equal-
weighted 

two-step 
routine 

spectral 
clustering 

3( )O n  

1

2

m

v

v
O

nd

n



 
 
 
   


data description in local 
manner, block-diagonal 
structure  
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Deep 
learning 

APADC[2
16] 

high-
quality 

view - deep early-
fusion 

parameter 
weighted-

free 

two-step 
routine 

k-means 3( / )pO n n

 

( )O Mnm

 

imputation-free via 
adaptive feature 
projection, view-specific 
features via autoencoders, 
common cluster 
information via maximal 
mutual information, 
feature distributions 
alignment via minimal the 
mean discrepancy  

 

GP-
MVC[214] 

high-
quality 

view recovery 
data 

deep early-
fusion 

equal-
weighted 

two stage 
routine 

- 2( )O n  
2( )O n  

high-level features and 
high-order geometric 
structure via view-specific 
graph convolutional 
encoder networks, 

Contras
tive 

learning 

COMPLE
TER [222] 

high-
quality 

view recovery 
data 

deep early-
fusion 

equal-
weighted 

two-step 
routine 

k-means 

1

( )
m

v

v

O nd




 

( )O nm  incorporation consistent 
representation learning 
and cross-view data 
recovery, consistent 
representation via 
maximal the mutual 
information, missing 
views recovery via 
minimal the conditional 
entropy  

 SURE[155
] 

robustness sample recovery 
feature 

deep early-
fusion 

equal-
weighted 

two-step 
routine 

k-means 2( )O nB  ( )O nm  partially view-unaligned 
problem (PVP/partially 
sample-missing problem 
(PSP), noise-robust 
contrastive loss, noisy 
correspondence problem 
via noisy labels (false-
negative pairs, FNPs)  

Table 3 the characteristics of representative approaches for uncertain MVC 

Approach 
name 

Motivation 
Model 

structure 
Fusion 
strategy 

Weighting 
strategy 

Clustering 
routine 

Clustering 
method 

Time 
complexity 

Memory cost 
Peculiarity 

MSCUO[26] 
high-

quality 
shallow 

late-
fusion 

equal-
weighted 

two-step 
routine 

randomized 
k-means 

 

 
3( )O n  

 

1

( )
m

v

v

O nd K


  

fusion of induced kernel 
distance and Jeffrey-
divergence w.r.t overlap 
degree, self-adaptive 
mixture similarity 
measure (SAM), 
pairwise co-
regularization 

OMVC[230] robustness  shallow 
late-

fusion 
parameter 
weighted 

one-step 
routine 

- 

 

( )O rEm  

 

1

( )
m

v

v

O nd nK



  

self-adaptive mixture 
similarity function based 
on geometric distance 
and S-divergence, 
threshold-based residual 
objective function in k-
medoids 

Table 4 the characteristics of representative approaches for dynamic MVC 

Approac
h name 

Motivati
on 

Model 
structu

re 

Fusio
n 

strate

Weighti
ng 

strategy 

Clusteri
ng 

routine 

Clusteri
ng 

method 

Time 
complexity 

Memory 
cost 

Peculiarity 
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gy 

SCGL[2
33] 

 scalabil
ity 

shallo
w 

early-
fusion 

paramet
er- 

weighte
d-free 

two-
step 

routine 

spectral 
clusteri

ng 

3( )O mn  
2( )O mn  store of only one 

consensus similarity 
matrix, integration 
of the sparse graph 
learning and the 
connected graph 
learning 

IMSC[2
34] 

 scalabil
ity 

shallo
w 

early-
fusion 

equal-
weighte

d 

two-
step 

routine 

spectral 
rotation 

2 3
max max

(

( ))

O nkr

m nr r




 

max(

( ))

O mnr

n K k




 

updating of initial 
model, low-rank 
approximation via 
random Fourier 
features, base 
kernels  constructio
n, low 
rank SVD decompo
sitions 

Note: n  : Number of samples, m : Number of views, k̂ : Number of neighbors, r̂ : Number of uncertain data, vd : 

Dimension of the v-th view, pn : Number of missing samples, r ( maxr ): rank of matrix (maximal rank), B : Batch size, K : 

Number of clusters, E : the complexity of evaluating similarity measure between two uncertain data, M : Ratio of positive and 

negative samples,  
1

2 3 3max( ,( )
m

v

v vX nn d d


  . 

Table 5~9  summarize the main statistics of different datasets, and gives the feature types and feature dimensions of each view, 

where “#views”, “#classes”, “#instances”, and “F-Type(#view v)” denotes the number of views, the number of clusters, the number of 

instances, and the type as well as dimension of feature in the v-th view, respectively. For example, "intensity (4096)" indicates the 

feature type is “intensity” and the corresponding feature dimension of the current view is 4096. It can be seen from Table 20~23  that 

sometimes the same domain has multiple datasets, such as handwritten digits have datasets UCI, Digits, HW2source, Handwritten, 

MNIST-USPS, MNIST-10000, Noisy MNIST-Rotated MNIST. These datasets may use different feature types, different numbers of 

views, or different numbers of instances. “x/y” indicates two values of a variable, for example, the entry of “#views” of BBCSport in 

Table 5, “2/3”, indicates that some datasets contain 2 views while some datasets contain 3 views. As observed, the numbers of 

instances, views, and clusters vary within large intervals, which supply a good platform to compare the performance of different 

clustering algorithms. 

 

 

 

Table 5 Statistics and multi-view features (# dimensions) of the text datasets 

 Dataset #vie #class #instan F-Type F-Type F-Type F-Type F- F-
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ws es ces (#View1
) 

(#View2) (#View3
) 

(#View
4) 

Type 
(#Vie
w5) 

Type 
(#Vie
w6) 

news 

3Sources[16] 3 6 169 
BBC(35

60) 
Reuters(3631

) 
Guardian 

(3068) 
   

BBC[75] 4 5 685 
seg1(465

9) 
seg2(4633) 

seg3(466
5) 

seq4(46
84) 

  

BBCSport[250] 2/3 5 
544/28

2 

seq1 
(3183/25

82) 

seg2(3203/2
544) 

/seq3(24
65) 

   

Newsgroup(text) 
[60, 74] 

3 5 500 (2000) (2000) (2000)    

multiling
ual 

documen
ts 

Reuters [68, 250] 3/5 6 
600/12

00 

English 
(9749/20

00) 

French 
(9109/2000) 

German 
(7774/20

00) 

/ Italian 
(2000) 

/ 
Spanis

h 
(2000) 

 

Reuters-21578 
[251] 

5 6 1500 
English 
(21531) 

French 
(24892) 

German 
(34251) 

Italian 
(15506) 

Spanis
h 

(11547
) 

 

citations 
Citeseers(text) 

[250] 
2 6 3312 

Citations 
(4732) 

word vector 
(3703) 

    

webpage 
Web
KB 

[151] 

Cornell 2 5 195 
Citation 

(195) 
Content 
(1703) 

    

Texas 2 5 187 
Citation 

(187) 
Content 
(1398) 

    

Washing
ton 

2 5 230 
Citation 

(230) 
Content 
(2000) 

    

Wiscons
in 

2 5 265 
Citation 

(265) 
Content 
(1703) 

    

articles Wikipedia [44] 2 10 693       

diseases Derm [90] 2 6 366 
Clinical 

(11) 
Histopatholo

gical (22) 
    

Table 6 Statistics and multi-view features (# dimensions) of the image datasets 

 Dataset 
#view

s 
#class

es 
#instances F-Type (#View1) 

F-Type 
(#View2) 

F-Type 
(#View3) 

F-Type 
(#View4) 

F-Type 
(#View5

) 

F-Type 
(#View6

) 

face 

Yale [250] 3 15 165 Intensity (4096) LBP(33040 Gabor (6750)    
Yale-B [68] 3 10 650 Intensity(2500)  LBP(3304) Gabor(6750)    

Extended-Yale 
[79] 

2 28 1774 LBP(900) COV(45)     

VIS/NIR [68] 2 22 1056 VL(10000)  NIRI(10000)     
ORL_v1 [250] 3 40 400 Intensity(4096) LBP(3304) Gabor(6750)    
ORL_v2 [86] 4 40 400 GIST(512) LBP (59)  HOG(864) Centrist(254)   

Notting-Hill [68] 3 5 550 Intensity(2000)  LBP(3304) Gabor(6750)    
YouTube Faces 

[56] 
3 66 152,549 CH(768)  GIST(1024) HOG(1152)    

Handwr
itten 

digits 

UCI [64] 3 10 2000 FAC (216)  FOU (76) KAR(64)    
Digits [90] 3 10 2000 FAC(216) FOU(76) KAR (64)    

HW2sources [75] 2 10 2000 FOU (76) PIX (240)     
Handwritten [148] 6 10 2000 FOU(76)  FAC(216) KAR(64) PIX(240) ZER(47) MOR(6) 

MNIST-USPS 
[118] 

2 10 5000 MNIST(2828)  USPS(1616)     

MNIST-10000_v1 
[79] 

2 10 10000 
VGG16 

FC1(4096) 
Resnet50(2048)     

MNIST-10000_v2 
[148] 

3 10 10000 ISO(30)  LDA(9) NPE(30)    

Noisy MNIST- 2 10 70000 Noisy Rotated     
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Rotated MNIST 
[118] 

MNIST(2828) MNIST(2828) 

object  

NUSWIDEObj 
[56, 68] 

5  31 30,000 CH(65) CM(226) CORR(145) ED(74) 
WT(129

) 
 

NUSWIDE [148] 
 

6 7 2400 CH(64) CC(144) EDH(73) WAV(128) 
BCM(25

5) 
SIFT(50

0) 

MSRC [152] 5 7 210 CM(48) LBP(256) HOG(100) SIFT(200) 
GIST(51

2) 
 

MSRCv1 [250] 5 7 210 CM(24) HOG(576) GIST(512) LBP(256) 
GENT(2

54) 
 

COIL-20 [71] 3 20 1440 Intensity(1024) LBP (3304) Gabor (6750)    
Caltech101-

7/20/102 [56, 118, 
148] 

6 
7/20/1

02 
1474/2386/91

44 
Gabor(48) WM(40) Centrist (254) HOG(1984) 

GIST(51
2) 

LBP(92
8) 

Multim
edia 

MSRA-MM2.0 
[51] 

4 25 5000 HSV-CH(64) CORRH(144) EDH(75) WT(128)   

Scene 

Scene [86] 4 8 2688 GIST(512) CM(432) HOG(256) LBP(48)   
scene-15 [65] 3 15 4485 GIST(1800) PHOG(1180) LBP(1240)    

Out-Scene [79] 4 8 2688 GIST(512) LBP(48)  HOG(256) CM(432)   
Indoor [152] 6 5 621 SURF(200) SIFT(200) GIST(512) HOG(680) WT(32)  

plant 
specie

s 
100leaves[61] 3 100 1600 TH(64) FSM(64) SD(64)    

Anima
l 

Animal with 
attributes[115, 

148] 
6 50 4000/30475 CH(2688) LSS(2000) PHOG(252) SIFT(2000) 

RGSIFT 
(2000) 

(2000) 

multi-
tempor

al 
remote 
sensin

g 

Forest [90] 2 4 524 RS(9) GWSV(18)     

Fashio
n 

Fashion-10K [118] 2 10 70000 Test set(2828) 
sampled set 

(2828) 
    

sports 
event 

Event  [152] 6 8 1579 SURF(500) SIFT(500) GIST(512) HOG(680) WT(32) 
LBP(25

6) 

image 

ALOI [74] 4 100  110250 RGB-CH(77) HSV-CH(13) CS(64) Haralick (64)   
ImageNet [40] 3 50 12000 HSV-CH(64)  GIST(512) SIFT(1000)    

Corel [152] 3 50 5000 CH (9) EDH(18) WT (9)    
Cifar-10 [56] 3 10 60,000 CH(768) GIST (1024) HOG(1152)    
SUN1k [152] 3 10 1000 SIFT(6300) HOG(6300) TH(10752)    
Sun397 [56] 3 397 108,754 CH(768) GIST (1024) HOG(1152)    

Note: BCM: block-wise color moment, CC: color correlogram, CH: color histogram, CORR: color correlation, CORRH: color 

correlogram, COV: covariance descriptor, CS: color similarity, CM: color moment, ED: edge distribution, EDH: edge direction histogram, 

FAC: profile correlations, FOU: Fourier coefficients of the character shapes, FSM: fine-scale margin,  GENT: Centrist feature, GIST: abstract 

representation of the scene, GWSV: geographically weighted similarity variables, HOG: histogram of oriented gradients, HSV-CH: HSV color 

histograms, ISO: isometric projection, KAR/KLC: Karhunen-Love coefficients, LBP: local binary pattern, LDA: linear discriminant analysis, 

LSS: local self-similarity, MOR: morphological features, NPE: neighborhood preserving embedding, PHOG: pyramid HOG, PIX: pixel 

averages in 2 ×3 windows, Resnet50: Residual neural network, RGB-CH: RGB color histograms, RGSIFT: color SIFT, SIFT: Scale-invariant 

feature transform, SURF: speeded up robust features, TH: texture histogram, VGG16 FC1: Visual Geometry Group from Oxford, VL: visible 

light, NIRI: near-IR illumination, RS: reflected spectral, SD: shape descriptor, WAV: wavelet texture, WM: wavelet moments, WT: wavelet 

texture, ZER: Zernike moment.  
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Table 7 Statistics and multi-view features (# dimensions) of the text-gene datasets 

 
Datase

t 
#view

s 
#classe

s 
#instance

s 
F-Type 

(#View1) 
F-Type  

(#View2) 

F-Type 
(#View3

) 

F-Type 
(#View4

) 

F-Type 
(#View5

) 

F-Type 
(#View6

) 

Prokaryoti
c Species 

Prok 
[90] 

3 4 551 

Textual 
TF-IDF  

re-
weighted 

word 
frequencie

s 

Genomic- 
the 

proteome 
compositio

n 

Genomic
- the 
gene 

repertoir
e 

   

Note: TF-IDF: term frequency–inverse document frequency. 

Table 8 Statistics and multi-view features (# dimensions) of the image-text datasets 

 Dataset 
#view

s 
#class

es 
#instanc

es 
F-Type 

(#View1) 
F-Type 

(#View2) 

F-Type 
(#View

3) 

F-Type 
(#View

4) 

F-Type 
(#View

5) 

F-Type 
(#View

6) 

articles 
Wikipedia 

[44, 90] 
2 10 

693/286
6 

image article     

drosophila 
embryos 

BDGP [118] 5  2500 
Visual(175

0) 
Textual(79

) 
    

NBA-
NASCAR 

Sport 
NNSpt [152] 2 2 840 

image(102
4) 

TF-
IDF(296) 

    

indoor 
scenes 

SentencesN
YU v2 

(RGB-D) 
[124] 

2 13 1449 
image 
(2048) 

text (300)     

Pascal  VOC [124] 2 20 5,649 
Image: 

Gist (512) 
Text (399)     

object 
NUS-WIDE-

C5(NWC) 
[124] 

2 5 4000 

visual 
codeword 
vector(500

) 

annotation 
vector(100

0) 
    

photograph
ic images 

MIR Flickr 
1M [73] 

4 10 2000 HOG(300) LBP(50) 
HSV 

CORR
H (114) 

TF-
IDF(60) 

  

Table 9 Statistics and multi-view features (# dimensions) of the video datasets 

 Dataset 
#view

s 
#classes 

#instanc
es 

F-Type 
(#View1) 

F-Type 
(#View2) 

F-Type 
(#View

3) 

F-Type 
(#View

4) 

F-Type 
(#View

5) 

F-Type 
(#View

6) 

actions 
of 

passenge
rs 

DTHC [90] 
3 

camer
as 

Dispersi
ng from 

the 
center 

quickly 

3 video 
sequenc

es 

151 
frames/vid

eo 

resolution 
135 × 
240 

    

pedestria
n video 

shot 
Lab [90] 

4 
camer

as 
4 people 

16 video 
sequenc

es 

3915 
frames/vid

eo 

resolution 
144 ×180 

    

Motion 
of Body 

CMU Mobo 
[73] 

4 
videos 

24 
objects 

96 video 
sequenc

es  

about 300 
frames/vid

eo 

resolution 

4040 
    

face 
video 

Honda/UCSD 
[73] 

at 
least 2 

20 
objects 

59 video 
sequenc

12 to 645 
frames/vid

resolution 

2020 
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sequence
s 

videos
/ 

person 

es eo 

YouTubeFace
_sel [115] 

5 31 101499 64 512 64 647 838  

Columbi
a 

Consum
er video 

CCV[124] 3 20 
6773 

YouTub
e videos 

SIFT(5000
)  

STIP(500
0) 

MFCC 
(4000) 

   

Note: MFCC: Mel-scale frequency cepstral coefficients, STIP: spatial-temporal interest points. 

Table 10 The formulas of evaluation indicators 

Category Formulas Symbols 

Internal 
indices 
[237] 

Compactness (CP) 

1

1 1
|| ||

| |
k k

K

k k

k xk

CP x c
K  

 
   

K  : number of clusters 

k
 : set of samples in the k-th cluster 

k
c : centroid of the k-th cluster 

i
S : average distance from samples within the i-th 

cluster to cluster centroid 
i

c  

Davies-Bouldin Index 
(DBI) 

1
2

1
max

K
i j

j i
i i j

S S
DBI

K c c


 
 
  

  

Dunn Validity Index 
(DVI) 

 

 
0

0 ,

min min

maxmax

i m

j n

i j m

i j

m n K x
x

i j

m K x x

x x

DVI
x x

    
 

   

 
  
 
 



 

Separation (SP) 
2 2

1 1

2 K K

i j

i j i

SP c c
K K   

 
   

External 
indexes 
[51, 238] 

clustering accuracy (ACC) 

1

max( | )

| |

K
i i

i

Y
ACC






  
 : set of clusters 

i
L : class labels for all samples in the i-th cluster 

max( | )
i i

Y : number of samples with the majority 

label in the i-th cluster 

( )H  : entropy of cluster set   

( , ')MI   : mutual information between   and '  

i
Y : set of classes 

11n : number of pairs of samples that are in the same 

cluster in both 

00n : number of pairs of samples that are indifferent 

cluster 

10n : number of pairs of samples that are in the same 

cluster in A, but in different clusters in B 

01n : number of pairs of samples that are indifferent 

clusters in A, but in the same cluster in B 
TP/TN: number of samples predicted as 1/0 and 
correctly predicted 

FP/FN: number of samples predicted as 1/0 and 
incorrectly predicted 

normalized mutual 
information (NMI) 

( , ')

max( ( ), ( ')

MI
NMI

H H

 


 
 

Purity 1
max k j

jk

Purity Y
n

  
 

Adjusted Rand Index 
(ARI) 

11 00

00 01 10 11

n n
ARI

n n n n




  
 

Precision  TP
Precision

TP FP



 

Recall TP
Recall

TP FN



 

F-score (F1) 1
Precision Recall

F
Precision Recall





 

Table 11 ACC and NMI with different MVC approaches 
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Approach 

Dataset 

BBCSport Reuters Reuters-21578 NUSWIDE Caltech101-7 RGB-D NUSWIDE30K 

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI 

SCBest  0.953 0.875 0.332 0.175 0.549 0.335 0.143 0.173 0.658 0.427 0.462 0.391 0.131 0.146 

SCCat 0.966 0.906 0.280 0.145 0.518 0.320 0.166 0.189 0.449 0.329 0.455 0.39 0.152 0.147 

MultiNMF [16] 0.860 0.742 0.424 0.216 NAN NAN 0.124 0.076 0.502 0.428 0.405 0.373 OV OV 

MultiGNMF [239] 0.445 0.127 0.256 0.133 NAN NAN 0.124 0.076 0.685 0.653 0.496 0.410 OOM OOM 

MVCC[44] 0.822 0.733 0.435 0.256 0.463 0.264 0.171 0.143 0.468 0.505 0.411 0.289 OOM OOM 

MVCF [240] 0.664 0.460 NAN NAN 0.472 0.279 NA NA 0.413 0.524 0.436 0.351 OOM OOM 

MvCDMF[63] 0.683 0.510 NAN NAN 0.313 0.129 NA NA 0.567 0.506 0.173 0.063 OV OV 

MCDCF[58] 0.801 0.739 0.274 0.171 0.493 0.346 0.159 0.205 0.652 0.610 0.434 0.330 OOM OOM 

RMSC [242] 0.877 0.815 0.479 0.283 0.488 0.323 0.141 0.169 0.639 0.374 0.332 0.269 OOM OOM 

AMGL [32] 0.359 0.145 0.181 0.029 0.301 0.029 0.163 0.181 0.661 0.561 0.533 0.440 OOM OOM 

SwMC [30] 0.362 0.155 0.188 0.045 0.301 0.037 0.151 0.071 0.443 0.161 0.333 0.135 OOM OOM 

MCGC [241] 0.958 0.895 0.273 0.127 0.331 0.132 0.161 0.172 0.662 0.522 0.38 0.247 OOM OOM 

AWP  [243] 0.918 0.844 0.269 0.136 0.482 0.283 0.147 0.165 0.571 0.467 0.370 0.221 0.152 0.115 

DiMSC [244] 0.859 0.707 0.396 0.181 0.533 0.379 0.092 0.099 0.462 0.427 0.388 0.311 OOM OOM 

ECMSC [245] 0.320 0.026 0.230 0.143 0.298 0.035 0.155 0.184 0.521 0.519 0.382 0.349 OOM OOM 

CSMSC [246] 0.827 0.686 0.465 0.226 0.542 0.252 0.241 0.163 0.728 0.648 0.554 0.381 OOM OOM 

DMSCN [247] 0.888 0.813 0.574 0.324 0.518 0.337 0.154 0.179 0.669 0.586 0.548 0.385 OOM OOM 

FMR [107] 0.886 0.755 0.508 0.302 0.578 0.388 0.172 0.211 0.789 0.405 0.387 0.292 OV OV 

SM2VC [95] 0.881 0.761 0.498 0.277 0.382 0.148 0.151 0.181 0.451 0.541 0.283 0.175 OOM OOM 

DSS-MSC [97] NAN NAN 0.529 0.343 0.500 0.353 0.152 0.175 0.613 0.636 0.482 0.384 OOM OOM 

MvDSCN[109] 0.931 0.835 0.611 0.359 0.586 0.364 0.159 0.181 0.711 0.623 0.561 0.398 OOM OOM 

MvSC-MRAR [114] 0.958 0.874 0.625 0.394 0.629 0.395 0.201 0.219 0.892 0.743 0.618 0.471 OOM OOM 

SDMVC [248] 0.729 0.498 0.569 0.327 0.584 0.384 0.175 0.197 0.558 0.570 0.412 0.376 0.161 0.151 

CoMVC  [127] 0.615 0.385 0.447 0.223 0.482 0.329 0.173 0.205 0.521 0.447 0.468 0.329 0.152 0.117 

MVC-MAE [117] 0.931 0.806 0.475 0.263 0.501 0.289 0.177 0.217 0.446 0.619 0.374 0.321 0.172 0.169 

NMvC-GCN [129] 0.978 0.952 0.583 0.401 0.610 0.391 0.185 0.207 0.713 0.508 0.476 0.393 OOM OOM 

CoregSC [15] 0.433 0.225 0.274 0.149 0.523 0.324 0.147 0.189 0.588 0.495 0.461 0.316 OOM OOM 

TW-Co-k-means [249] 0.424 0.126 0.301 0.106 0.373 0.085 0.158 0.192 0.500 0.364 0.351 0.206 0.116 0.071 

DWMVC [37] 0.858 0.759 0.500 0.302 0.401 0.180 0.179 0.111 0.510 0.313 0.427 0.389 NAN NAN 

OOM: Out of memory. This term denotes that the methods in the current row cannot deal with big dataset. 

OV: OverTime. The algorithm of the current row does not output clustering results after running a day on the dataset of the corresponding 

column. 

NAN: An exception occurred when the algorithm of the current row was run on the dataset for the current column. 

 

Table 12 ACC and NMI with different IMVC approaches 

 Approach Dataset 



 
ACM Comput. Surv. 

Missing-
Rate 

BBCSport Reuters Reuters-21578 NUSWIDE Caltech101-7 RGB-D NUSWIDE30K 

 ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI 

0.1 

COMPLETER[222] 0.389 0.083 0.268 0.108 0.294 0.049 0.167 0.165 0.805 0.719 0.345 0.250 0.114 0.070 

DIMVC[159] 0.479 0.165 0.469 0.257 0.404 0.212 0.136 0.161 0.673 0.588 0.532 0.433 0.113 0.073 

DSIMVC[221] 0.603 0.484 0.430 0.257 0.445 0.281 0.465 0.279 0.438 0.275 0.314 0.155 0.445 0.276 

LATER[203] 0.978 0.926 NAN NAN 0.524 0.343 0.164 0.137 0.603 0.689 0.590 0.530 0.176 0.164 

PIMVC[193] 0.897 0.822 0.385 0.260 0.503 0.295 0.169 0.208 0.522 0.457 0.443 0.348 0.158 0.157 

APADC[216] 0.513 0.336 0.345 0.142 0.396 0.128 0.164 0.167 0.798 0.526 0.563 0.321 OOM OOM 

0.3 

COMPLETER[222] 0.359 0.061 0.261 0.105 0.287 0.044 0.186 0.155 0.778 0.697 0.346 0.155 0.120 0.071 

DIMVC[159] 0.358 0.061 0.351 0.183 0.431 0.169 0.118 0.130 0.488 0.578 0.425 0.130 .0119 0.082 

DSIMVC[221] 0.598 0.457 0.441 0.269 0.455 0.289 0.452 0.282 0.452 0.280 0.321 0.282 0.438 0.275 

LATER[203] 0.937 0.864 NAN NAN 0.502 0.356 0.168 0.131 0.601 0.688 0.543 0.131 0.170 0.165 

PIMVC[193] 0.854 0.801 0.380 0.236 0.510 0.291 0.166 0.206 0.514 0.492 0.336 0.206 0.156 0.153 

APADC[216] 0.472 0.321 0.380 0.112 0.421 0.171 0.154 0.162 0.793 0.566 0.513 0.162 OOM OOM 

0.5 

COMPLETER[222] 0.343 0.054 0.213 0.092 0.265 0.011 0.179 0.152 0.593 0.604 0.360 0.176 0.123 0.067 

DIMVC[159] 0.344 0.054 0.309 0.132 0.393 0.145 0.122 0.146 0.640 0.616 0.339 0.299 0.120 0.104 

DSIMVC[221] 0.553 0.441 0.462 0.280 0.442 0.262 0.463 0.290 0.449 0.273 0.322 0.169 0.450 0.274 

LATER[203] 0.905 0.843 NAN NAN 0.526 0.351 0.157 0.134 0.606 0.690 0.521 0.445 0.161 0.161 

PIMVC[193] 0.775 0.795 0.371 0.214 0.506 0.292 .0173 0.205 0.499 0.449 0.349 0.247 0.147 0.151 

APADC[216] 0.463 0.279 0.371 0.110 0.439 0.167 0.123 0.147 0.840 0.603 0.472 0.279 OOM OOM 

0.7 

COMPLETER[222] 0.356 0.065 0.194 0.083 0.270 0.013 0.171 0.141 0.497 0.374 0.326 0.155 0.127 0.087 

DIMVC[159] 0.337 0.074 0.327 0.115 0.363 0.115 0.117 0.104 0.536 0.285 0.263 0.155 0.117 0.099 

DSIMVC[221] 0.572 0.435 0.444 0.275 0.453 0.280 0.437 0.269 0.455 0.278 0.338 0.161 0.461 0.287 

LATER[203] 0.886 0.801 NAN NAN 0.520 0.373 0.134 0.095 0.690 0.597 0.436 0.348 0.154 0.156 

PIMVC[193] 0.762 0.615 0.376 0.233 0.496 0.288 0.152 0.201 0.526 0.488 0.307 0.207 0.156 0.151 

APADC[216] 0.391 0.169 0.369 0.109 0.420 0.140 0.113 0.121 0.788 0.696 0.391 0.169 OOM OOM 

 
 
 

0.9 

COMPLETER[222] 0.337 0.045 0.189 0.056 0.324 0.072 0.134 0.120 0.533 0.288 0.247 0.107 0.120 0.069 

DIMVC[159] 0.325 0.049 0.221 0.034 0.345 0.102 0.093 0.074 0.453 0.201 0.278 0.127 0.119 0.095 

DSIMVC[221] 0.563 0.449 0.460 0.284 0.464 0.277 0.451 0.278 0.446 0.269 0.328 0.159 0.452 0.269 

LATER[203] 0.782 0.641 NAN NAN 0.502 0.287 0.132 0.091 0.606 0.696 0.361 0.296 0.151 0.152 

PIMVC[193] 0.667 0.547 0.383 0.226 0.502 0.289 0.155 0.193 0.582 0.481 0.250 0.168 0.149 0.148 

APADC[216] 0.321 0.091 0.371 0.094 0.383 0.110 0.089 0.084 0.721 0.483 0.321 0.091 OOM OOM 

Missing-rate: Missing rate of samples  
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