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Abstract

Purpose: There is a growing demand for the use of Artificial Intelligence (AI)
and Machine Learning (ML) in healthcare, particularly as clinical Decision Sup-
port Systems (CDSS) to assist medical professionals. However, the complexity
of many of these models, often referred to as black box models, raises concerns
about their safe integration into clinical settings as it is difficult to understand
how they arrived at their predictions. Explainable Artificial Intelligence (XAI)
offers a potential solution by providing justifications for the decisions produced
by these models, thereby enhancing trust and understanding among clinicians.
To address the aspects of trust and safety, it is essential to consider AI medical
devices from various perspectives, including clinical, technical, and regulatory
perspectives.
Methods: This paper discusses insights and recommendations derived from an
expert working group convened by the UK Medicines and Healthcare products
Regulatory Agency (MHRA). The group consisted of healthcare professionals,
regulators, and data scientists, with a primary focus on evaluating outputs from
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different AI/XAI algorithms in clinical decision-making contexts. Additionally,
the group evaluated findings from a pilot study investigating clinicians’ behavior
and interaction with XAI methods during clinical diagnoses.
Results: While the data science team provides technical results, the regula-
tors and clinicians highlight their main concerns and recommendations for using
AI/XAI methods in CDSS. The study reveals an overall increase in clinicians’
trust and diagnostic accuracy when using local explanations, although over-
reliance on AI suggestions raises safety concerns from a legal perspective. The
study also underscores the importance of other explanation methods in clinical
settings from different perspectives, such as global and counterfactual explana-
tions.
Conclusion: Incorporating XAI methods is crucial for ensuring the safety and
trustworthiness of medical AI devices in clinical settings. Adequate training for
stakeholders is essential to address potential issues, and further insights and
recommendations for safely adopting AI systems as CDSS are provided.

Keywords: eXplainable AI, CDSS, medical devices, AI regulation

1 Introduction

1.1 Background

In clinical settings, AI/ML models can be used as decision support systems through

supporting healthcare providers and automating routine tasks[1]. These systems assist

clinicians in diagnosing diseases and making decisions about treatment. Unlike con-

ventional CDSS, which match patient characteristics to an existing knowledge base,

AI/ML based CDSS (AI-CDSS) apply models trained on data from patients with sim-

ilar conditions. Despite its potential, AI is not a universal solution and brings novel

questions and significant challenges. Some are related to the nature of AI models and

others are related to regulatory, medical, and patient perspectives[2]. Therefore, a

multidisciplinary assessment is essential for the safe introduction of AI-based medical

devices in clinical settings.

Clinicians trust in AI-CDSSs is crucial for a safe implementation of AI in clinical

settings. However, it can be challenging to build trust in these systems in a set-

ting where clinicians are required to make urgent decisions that could have serious
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consequences[1]. XAI has emerged as a potential method for the safe implementation

of AI. Accurate diagnosis alone may not suffice; an explanation for the AI’s decision-

making process is crucial [3]. This necessity for transparency was highlighted from

the very early days of AI diagnostic systems, where researchers found that the ability

to explain decisions was the most desired feature among clinicians[4]. Recent studies

corroborate this, showing that clinicians value understanding the reasoning behind

complex AI systems, often referred to as ”black boxes”, particularly when their recom-

mendation do not align with clinical expectations [2, 5]. Black box models that often

use millions of parameters to capture the non-linearity of input features is a major

challenge as it undermines trust and hinders interpretation of the models’ predictions.

Research indicates that XAI can enhance transparency and trust, potentially leading

to better healthcare outcomes even if the diagnostic accuracy is not perfect [3].

XAI in general refers to the characteristic of an AI-driven system that allows a

person to understand the reasoning for a model’s outputs. XAI aims to provide inter-

pretability, explainability, and transparency to support healthcare practitioners in

their decision-making. Interpretability involves comprehending the inner workings of

the model and understanding how it generates predictions. On the other hand, explain-

ability focuses on providing clear and understandable explanations for particular AI

decisions, actions, or recommendations. Transparency in the context of XAI, ensures

that all stakeholders have a clear understanding of the functioning of an AI system.

This could involve for example providing stakeholders with information about the

data used, how it is processed, and the underlying assumptions guiding the develop-

ment of the AI system. Nevertheless, the debate around XAI extends beyond technical

aspects, touching on regulatory and ethical concerns that could impede progress if

not adequately addressed. Without thorough consideration of XAI methods, AI tech-

nologies might neglect core ethical and professional principles, overlook regulatory
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concerns, and cause significant harm [6]. Therefore, XAI is expected to enhance deci-

sion confidence, generate hypotheses about causality, and increase trustworthiness and

acceptability of the system. It could also help uncover historical actions and biases

embedded in AI models trained with historical data [7]. More investigation is needed to

ensure healthcare professionals can understand and rely on XAI methods in CDSSs[8].

This work adopts a multidisciplinary view to explore how XAI can facilitate the safe

introduction of AI in clinical settings, emphasising the importance of this feature for

building clinicians trust and ensuring regulatory compliance. This paper reports the

findings of the group, focusing on:

• Identifying key concerns and recommendations of regulators regarding using differ-

ent AI/ML models that vary in their complexity in AI-CDSS.

• Investigating the information needs and main concerns of medical professionals when

employing XAI CDSSs in daily clinical situations.

• Evaluating state-of-the-art explanation methods for providing meaningful and

helpful explanations in clinical settings.

• Providing a set of recommendations and insights to guide the adoption of AI/XAI

in clinical settings.

1.2 Clinical and Regulatory Perspectives

AI systems used in healthcare are deemed medical devices by the MHRA in the UK

if they are designed for medical purposes like diagnosis, treatment, or monitoring. As

a result, deploying these devices requires navigating a complex regulatory and ethical

framework to ensure they comply with safety, quality, and performance standards. As

AI continues to evolve at a rapid rate, the risks associated with not fully utilising its

capabilities are becoming more concerning [9]. A primary challenge for AI/ML as a

medical device is there is ambiguity in applying clinical evidence requirements and

evaluating the performance and effectiveness of these models[10].
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A major area to consider when evaluating the effectiveness of the systems is

understanding that the link between a specific belief in automation and its actual

capabilities varies. These Trust-related biases are the main factor behind algorithm

trust (algorithm appreciation) ,overtrust and distrust (algorithm aversion) [11, 12].

Trust calibration in AI refers to the process of appropriately adjusting the level of

trust that human users have in AI systems based on their actual reliability[13]. It

is important for human-AI collaboration to have trust that is properly calibrated to

ensure safety and efficiency[14]. Poorly calibrated trust in CDSS can lead to serious

issues with safety [15]. Trust calibration involves understanding the limitations and

likely failures of AI systems and adjusting trust in their outputs accordingly[16].

Explanation of AI predictions is thought to be a solution for this problem and is

considered a prerequisite for medical AI [17]. However, some argue that trust cali-

bration errors can also occur when users interact with explanations provided by AI

systems, leading to irrational or ill considered agreement or disagreement with AI

recommendations[18]. As a result, practitioners should retain the authority to make

final decisions to ensure that AI systems are effective at diagnosing and treating

patients[19].

XAI allows practitioners to make more nuanced and informed decisions. However,

to ensure effectiveness it is important to evaluate the human–AI interaction. Observing

how end-users understand explanations and evaluating the explanations influence on

user behaviour requires engaging end-users such as healthcare providers, and assessing

their usage in decision-making contexts[20].

“Assurance” in AI-CDSS refers to the confidence that a system will behave as

intended in its intended environment, with a focus on patient safety. Assurance involves

both verification and validation: verification ensures that the system is built correctly

according to the defined requirements, while validation ensures that the right system

is built, meeting the intended purpose and goals. In situations where requirements are
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implicit, XAI methods are used to provide explanations that allow for direct validation

of the ML model. These explanations show that the predictions are based on reliable

clinical variables and are consistent with clinical knowledge[21].

When evaluating the CDSS performance, robustness is considered an important

factor, which refers to the model’s ability to maintain its performance even when

input features vary slightly. Since safety in an AI/ML application is dependent on

explainability and performance, and there is no binary choice between them, safety

requirements should be partially, even if not entirely, transformed into explainability

requirements[20]. Therefore, if an interpretable model can achieve performance levels

comparable to a black box model, the interpretable model should be preferred [21, 22].

1.3 Technical Perspective for XAI

There is a debate about the trade-off between a model’s performance and its inter-

pretability. AI/ML models with higher performance tend to be based on more complex

algorithms, which can make them less interpretable which in turn makes it difficult

to understand how they arrive at their predictions[23, 24] .Conversely, models with

greater interpretability, commonly known as white-box models, may compromise some

performance to deliver transparent and understandable outputs[25].

The challenge lies in finding a balance between the two, where the model is more

accurate and understandable. XAI methods have been proposed to address this issue

by producing human-interpretable representations of ML/AI models. These methods

can contribute to safety assurance in healthcare by providing evidence to support

the safety of complex AI/ML-based systems[26]. However, this trade-off is not always

gradual and can vary depending on the specific application[27, 28].

XAI can be achieved using intrinsically interpretable models which are models that

are transparent and explainable by design or through post-hoc XAI methods that
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provide explanations without opening the complex black box model [29, 30]. Model-

agnostic XAI methods refer to techniques that provide explanations for the output of

AI systems without relying on the internal workings of the specific AI/ML models used

[22]. These explanations can be provided at both local and global levels, highlighting

the contribution of different features to the model’s output [31]. Local explanations

explain an individual decision based on one case, supporting trust in that individual

decision, while global explanations, explain a model more generally across the entire

training set, thus ensuring that the model behaves reasonably when deployed[32]. In

clinical settings, both local and global explanations are highly relevant, as they align

with the methods clinicians use to justify their diagnoses and treatments. Clinicians

often explain how a disease or diagnostic process works in general (global explanation)

and justify specific diagnoses based on individual patient data, such as symptoms,

test results, and medical history (local explanation)[33]. This parallel enhances the

potential for XAI to support clinical decision-making effectively.

XAI methods offers explanations in various forms such as natural text, parame-

ter influence and data visualisations[34]. The use of visualizations by XAI systems

enhances the transparency and comprehensibility of decisions, although clinicians’

preferences for explanation methods and types vary significantly and often differ from

those of developers [35]. The Local Interpretable Model-agnostic Explanations (LIME)

is a well-known method for providing local explanations based on which individual fea-

tures impact a decision [32, 36]. LIME uses a model-agnostic and application-agnostic

approach to extract explanations from AI models regardless of domain. However, this

comes with a drawback that model-agnostic approaches cannot always meet the spe-

cific user requirements and the domain-appropriate explanations[37, 38].

Counterfactual explanations are a particular type of explanation which relates what

may have occurred if a model’s input had been altered in a particular way. Users

receive practical feedback that they can employ to modify their features and move
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towards the desirable side of the decision boundary. Unlike other XAI techniques, they

offer recommendations on how to get the desired result rather than directly addressing

why the model made a particular prediction[39]. This approach is particularly valu-

able in clinical settings, as it can help clinicians and patients understand how to alter

risk factors to potentially reverse adverse health probabilities. Additionally, counter-

factual explanations can enhance trust, as they allow users to familiarise themselves

with unknown processes by understanding the hypothetical input conditions under

which the output changes [40].

2 Stage 1: AI/XAI methods evaluation in the

workshops

The study involved a series of four structured workshops, organised around three dis-

tinct themes: regulatory, clinical, and data analytic considerations. The regulatory

and clinical themed discussions focused on the necessary level of transparency from

both regulatory and clinical perspectives, while considering which information and

metrics were particularly valuable for regulators and clinicians. The data analytic

considerations were informed by data science experiments generating decisions with

explanations using various modeling approaches in response to regulatory require-

ments. In the initial phase of the experiment, the objective was to present performance

metrics for a variety of representative white-box and black-box models, such as logistic

regression, random forest, and artificial neural networks (ANN), to the expert group.

Interpretations were provided for the white-box models, while global and local expla-

nations were provided for a black-box model. Specifically, odds ratios, mean decrease

GINI, and permutation importance as were presented as global explainers, LIME as

a local explainer, and Explainable Matrix (ExMatrix) for identifying counterfactual

cases. The findings of these techniques were provided to the expert group to to obtain

their views on using these strategies in CDSSs.
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2.1 Data

The chosen task was to predict whether individuals were at a high or low risk of having

a heart attack. A high-fidelity synthetic dataset based on anonymized CPRD primary

care data was used for this purpose [41].This synthetic dataset focused on cardiovascu-

lar disease risk factors and included 22 variables, such as smoking behavior, age, and

chronic conditions associated with cardiovascular disease, for 10,000 synthetic individ-

uals randomly sampled from the dataset. The target variable was binary, confirming

or denying the occurrence of a heart attack.

2.2 Methods

2.2.1 AI/ML Models

The expert group selected three ML/AI models to predict patients’ risk of having a

heart attack: logistic regression, random forest, and neural networks. This study is

primarily concerned with assessing the performance of these models and investigating

several XAI methods that can be applied to them. The selection of models aimed to

cover varying degrees of interpretability and complexity—low, moderate, and high- as

outlined in [27] and shown in Figure 1. We explored a number of parameterisations and

train-test regimes to assess model performance. The results documented come from a

10-fold cross validation to reduce the risk of overfitting and improve robustness. The

expert working group was provided with a mini-tutorial in the form of a presentation,

designed to help them interpret the machine learning results. This tutorial introduced

the machine learning models discussed in the workshop and aimed to demonstrate

their complexity to the panel. It was presented to the group collectively, rather than

individually. Although the experts came from varied backgrounds, they had sufficient

familiarity with machine learning in healthcare to grasp the material. The tutorial also

covered both local and global explanation methods, explaining how they are ranked

and what key metrics, such as mean decrease Gini and odds ratios, represent.
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Fig. 1: Tradeoff between Performance and Complexity of the model Vs Perceived
Interpretabilty in Machine Learning

Logistic regression

Logistic regression is used for binary classification by modeling the probability of a

given outcome based on one or more predictor variables. It estimates the relationship

between the predictors and the log-odds of the outcome, enabling the prediction of

categorical outcomes ans it considered the simplest model in the study [42].

Random forest

A random forest is an ensemble machine learning algorithm that enhances the robust-

ness of decision trees. At its core, the random forest operates by constructing a

multitude of decision trees during the training phase. These trees are grown using ran-

dom subsets of both data and features, injecting an element of randomness into each

tree’s construction. During prediction, the random forest aggregates the outputs of all

constituent trees, typically by taking a majority vote in classification tasks or averag-

ing predictions in regression tasks. As a result, the ensemble approach improves the

model’s overall accuracy and robustness, while maintaining the interpretable nature

of decision trees [42].
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Neural Networks

ANN in its most general form consists of layered structures. These layers of intercon-

nected nodes form a network that processes data in stages. The input layer receives

the original data and then passes it through hidden layers before arriving at the final

prediction in the output layer. Researchers have used ANN models as classifiers for

risk prediction in the domain of medical diagnostics such as in [43, 44].

Simple ANNs have been shown to outperform recent specialised neural network

architectures and even strong traditional ML methods. However, ANNs require careful

pre- and post-processing to achieve good performance which can be challenging [45].

ANN classifiers are also known for their accurate results on imbalanced datasets where

one class is more prevalent in the training data than the another [43].

ANNs with considerably more hidden layers (often known as Deep Neural Net-

works) are typically considered state of the art for many decision based problems in

terms of performance, confront various challenges when applied to tabular data com-

pared to white-box models. This includes a lack of localisation and lower performance

due to the inner structure that cannot handle all feature types (numerical, ordinal,

and categorical)[46]. ANNs often do not perform as well as some white-box models for

tabular data[47]. An ANN is considered as a black box model, with little transparency

or interpretability into how input data is used in the model’s predictions. Thus, for

our study, This model is considered the complexiest and we treat it as a black box

model that required extra tools for explanation.

The performance metrics for these models, including sensitivity, specificity, pre-

cision, and AUC, the area under the receiver operating characteristic curve, were

presented to the workshop attendees as in shown in Table 1. Sensitivity, which repre-

sents a test’s ability to correctly identify individuals with a condition, and specificity,

which indicates the ability to correctly identify those without the condition, are crucial

metrics for evaluating diagnostic test performance. Precision, or positive predictive
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value, reflects the proportion of true positive results among all positive results, indi-

cating the reliability of a positive test outcome. AUC, is a comprehensive measure of

a test’s discriminative ability across all possible thresholds, providing a single value

to assess overall test performance. These metrics are important for determining the

effectiveness of diagnostic predictions in clinical settings [48].

Table 1: Performance Metrics for Machine
Learning Models Developed to Predict Heart
Attack Risk

Model Sensitivity Specificity Precision AUC

LR 0.78 0.85 0.46 0.90
RF 0.83 0.97 0.83 0.96
ANN 0.75 0.85 0.43 0.80

LR: Logistic Regression

RF: Random Forest

2.2.2 XAI Methods

• Global Explanation

For each selected ML/AI model we chose a proper method for the global explanation

to understand the general structural characteristic. It can be either model-specific

method that can only be applied on that specific model or it can be model agnostic

method that can be build above any ML/AI model to provide information on its

inner working. In global explanations it is common and desired by clinicians to use

feature importance/ feature contribution approaches for assigning scores to input

features in a predictive model that indicates the relative importance of each feature

when making a prediction [49]. The relative scores can highlight which features may

be most relevant to the diagnoses. This may be interpreted by a domain expert and

can be used as the basis for gathering further data.
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In the logistic regression model, feature importance was assessed using odd ratios, a

fundamental measure of logistic regression interpretability. The odd ratio quantifies

the change in odds of the outcome for a one-unit increase in a continuous predic-

tor or for one category relative to a reference category in a categorical predictor,

assuming other variables remain constant. This attribute makes the model’s coeffi-

cients interpretable, as they directly indicate the influence of each predictor on the

likelihood of the outcome[42].

The working group was presented with the odd ratios corresponding to the highest-

ranked features in the logistic regression model utilised for predicting the risk of

heart attack, as shown in Table 2. The global interpretation reveals that a his-

tory of angina heart attack emerges as a highly significant predictor in the model.

Notably, the odd ratio indicates that patients with a history of angina heart attack

exhibit around a 53-fold average increase in the odds of experiencing a heart attack

compared to those without such a history. Additionally, features such as a history

of atrial fibrillation, rheumatoid arthritis, and chronic kidney disease yielded odd

ratios of 4, 2.2 and 2 respectively, highlighting their respective contributions to the

predictive model. The confidence for these ranking are also appear in the table,

showing for angina heart attack for example the true odd ratio lies between 39 and

75, indicating a statistically significant effect since the interval does not include 1.

The relatively wide interval suggests some uncertainty around the estimate, but it

confirms a strong positive relationship between the predictor and the outcome. and

the same interpretation valid for all features.

In random forest models, the Gini measure is employed to assess feature impor-

tance. Gini impurity quantifies the likelihood of incorrect classification within a

dataset, where high impurity denotes a mix of classes and low impurity indicates

homogeneity. During the construction of a random forest, data is iteratively split
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Table 2: Feature Importance Ranking Using Odds Ratio in
Logistic Regression Model for Heart Attack Risk Predictiont

Variables Odds Ratio minimum maximum

Angina heart attack 53.4 39.01 75.09
Atrial fibrillation 3.95 3.19 4.92
Rheumatoid Arthritis 2.24 1.44 3.52
Kidney Disease 2.03 1.70 2.43
Region (North East) 1.98 1.51 2.68
Stroke 1.92 1.59 2.51
Hypertension treatment 1.9 0.95 3.58
Smoking status (Heavy Smoker) 1.8 1.19 2.65
Diabete (Type 2) 1.78 1.51 2.15
region (West Midlands) 1.59 1.21 1.95

into smaller subsets (via nodes) based on different features, aiming to reduce impu-

rity with each split. The decrease in Gini impurity resulting from each split reflects

the influence of the feature used. By averaging the reduction in impurity across all

trees in the forest, an overall importance score for each feature is obtained. Features

are then ranked according to their average reduction in impurity, with higher scores

indicating greater importance [42]. The expert group was presented with Figure

2, illustrating the mean decrease GINI plot for the random forest risk prediction

model. Within this model, age emerges as the most influential predictor, boasting a

mean decrease in Gini of 780. This indicates that age is significantly contributing to

impurity reduction. Similarly, angina heart attack demonstrates considerable impor-

tance in predicting the target variable, with a mean decrease Gini of 730. Weight,

systolic blood pressure, and systolic blood pressure STD exhibit mean decreases in

Gini around 300. While these values remain relatively high, they suggest that these

features exert less impact on impurity reduction compared to age and angina heart

attack.

In this study, for the global explanation of the ANN model, a model-agnostic method

known as permutation importance was presented in the workshops as a well known

method for global explanation in healthcare [50]. Permutation feature importance

assesses the impact of each feature on the model’s performance by measuring the
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Fig. 2: Feature Importance Ranking Using Mean Decrease GINI Metric in Random
Forest for Predicting Heart Attack Risk

increase in prediction error when the feature values are permuted while keeping

other variables constant [51]. Specifically, a feature is considered significant for the

model if permuting its values noticeably increases the prediction error, indicating

its importance in the model’s predictive performance. Conversely, if the prediction

error remains relatively unchanged after permutation, the feature is deemed less

useful. Figure 3 presents the permutation importance plot for the ANN model, illus-

trating the decrease in recall (a metric related to sensitivity) following permutation

of all features with a confidence bounds. Angina heart attack, with a permutation

importance of 0.15, is the most influential feature, suggesting that shuffling its val-

ues resulted in the largest increase in prediction error. Age, with a permutation

importance of 0.105, follows closely behind in importance. While not as influential

as variable angina heart attack, it still significantly impacts the model’s predic-

tive performance. Atrial fibrillation, chronic kidney disease and smoking status with
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permutation importance values of 0.035, 0.025, and 0.015 respectively, have lower

importance scores.

Fig. 3: Permutation Importance Ranking of Features for the Neural Network Model
in Heart Attack Risk Prediction, Assessing Reduction in Recall Error

• Local Explanations

LIME was chosen to obtain local explanations for the ANN model in this study.

LIME can be considered as a model-agnostic post-hoc XAI method that provides

explanations without opening the complex black box model. To explain a predic-

tion for a specific instance, LIME generates a new dataset consisting of perturbed

versions of the instance by slightly altering its feature values. The black-box model

is then used to predict outcomes for these perturbed instances, creating a dataset of

perturbations and their corresponding predictions. LIME assigns weights to these

perturbations based on their proximity to the original instance, with closer perturba-

tions receiving higher weights to emphasise local behavior. An interpretable model,

such as linear regression, is then fitted to this weighted dataset, approximating the

black-box model’s behavior in the local region around the instance of interest. The

coefficients of this interpretable model provide the local feature importance, indi-

cating how each feature contributes to the prediction. The resulting explanation

highlights the most influential features for the specific prediction [32]. However,
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LIME is considered unstable due to the randomness in generating perturbed ver-

sions of the original instance which can result in different sets of perturbed data

for different runs, leading to variability in the explanations. The choice of surro-

gate model and the specific data points used for fitting can also affect the resulting

explanation, making it sensitive to the local sample. Additionally, LIME’s weight-

ing scheme, which assigns weights to perturbed instances based on their proximity

to the original instance, can introduce instability.

In the workshops, two cases from the test set were used as case studies: a low-risk

heart attack case misclassified by the model and a high-risk heart attack case cor-

rectly classified. To address stability and ensure consistent explanations, LIME was

run 20 times for each example. Figures 4a and 4b show LIME local explanations for

the two cases, respectively. Each figure provides the prediction confidence (predic-

tion probability). In addition, it lists features on one axis, with bars indicating their

importance; the direction of each bar shows whether the feature contributes posi-

tively or negatively to the prediction, while the length indicates the strength of this

contribution. Feature values for each instance contextualise their importance. LIME

provides local explanations specific to the examined instance, and feature impor-

tances can vary across predictions. Comparing the explanations for the two cases

reveals the model’s consistency in using the same features, with angina heart attack

as the most important feature, followed by age, atrial fibrillation, and rheumatoid

arthritis. In the misclassified case, the patient was older than 75 and had a history

of atrial fibrillation, leading to a high-risk classification despite not being high-risk.

In the correctly classified case, having an angina heart attack and being older than

75 led to correctly identify the patient as high-risk.

• Counterfactuals
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(a) False positive case (b) True positive case

Fig. 4: LIME local explanations for two selected cases predicted by the neural network model: (a) local
explanation for a false positive output, (b) local explanation for a true positive output.

For counterfactual generation, we used the Explainable Matrix ”ExMatrix” tech-

nique to extract counterfactual explanations from random forest. ExMatrix identifies

decision paths within the random forest that lead to different predictions and

searches for the nearest path resulting in an alternate decision, such as moving

from ”low risk” to ”high risk.” The method focuses on identifying the minimal fea-

ture changes required to switch decision paths, providing clear guidance on which

features need to be modified and by how much [52].

Both the original version of ExMatrix, as introduced by [52], and a simplified version

was presented to the expert group to assess their ability to interpret the complexity

of the visualizations. This dual presentation allowed us to evaluate how the com-

plexity of data presentation impacted interpretation. Simplification was achieved by

aggregating the feature-wise changes required across all decision trees in the ran-

dom forest, deriving a single value for each feature that represents the extent to

which modifying that feature would alter the prediction.

Figure 5 shows the original and the simplified version of the ExMatrix counterfactual

visualisation for a selected true positive case. In the modified version, the yellow
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bars indicate negative alterations and the green bars positive ones needed to change

a high-risk case to low-risk. For example, transitioning a high-risk patient with

angina, type 2 diabetes, and erectile dysfunction to low-risk involves removing these

conditions, particularly focusing on treating angina, type 2 diabetes and erectile

dysfunction and theoretically reducing the patient’s age.

(a) Original ExMatrix counterfactual (b) Simplified ExMatrix

Fig. 5: Exmatrix counterfactual cases for a true positive case. Figure (a), Original matrix visualisation .
Figure (b), simplified 1D plot of ExMatrix.

2.3 Results & Expert Working Group Insights

In this study, we presented the AI/ML models employed to predict heart attack risk to

the expert group. Performance metrics for these algorithms were subsequently shared

with them, as detailed in Table 1. All models demonstrated acceptable performance,

but random forest outperformed the others. Sensitivity, essential for accurately identi-

fying high-risk cases, was particularly stronger for random forest. However, regulators

expressed concerns about the selection of predictive models for CDSS. While com-

plex models like neural networks may initially seem attractive, regulators emphasise

the importance of interpretability and ease of understanding to ensure patient safety.

Simpler models, such as logistic regression or simple random forest, might be more
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suitable if they offer comparable performance, as they are easier to understand and

interpret. Comprehensive research is needed to evaluate the trade-offs between model

complexity and interpretability in the intended clinical settings.

Clinicians on the other hand expressed their interest in the overall model perfor-

mance and ensuring regulatory approval rather than delving into the technical aspect

of the AI/ML models.

All the global explanation methods presented in the workshops utilised feature

ranking to determine the most influential features on ML/AI models’ predictions.

Table 3 compared the top five features across the three chosen models. Commonly

ranked features included angina, age, and atrial fibrillation, but there were clear dif-

ferences between models. For regulators, this variation in influential features across

different models highlighted the necessity of assessing multiple ML/AI models before

selecting one for AI-CDSS. The assessment needs to consider not only performance

metrics but also the features affecting model predictions. Regulators also highlighted

the importance of evaluating how these features related to the specific use case

and aligned with clinical knowledge. Which require comprehensive testing and active

involvement of clinicians to identify the most suitable model. This also aligned with

clinicians’ preference for being informed about the underlying considerations and fea-

tures that AI-CDSS relied on for their predictions, expressing that this transparency

is essential for them to build trust in the CDSS system’s outputs.

Table 3: The top five important features ranked from the global explanation methods

Rank Logistic Regression Random Forest Neural Network

1 angina heart attack age angina heart attack
2 atrial fibrillation angina heart attack age
3 rheumatoid arthritis weight atrial fibrillation
4 chronic kidney disease Systolic blood pressure chronic kidney disease
5 region (North East) Systolic blood pressure STD smoking status
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In the LIME local explanations presented in Figure 4, attributes were ranked by

their influence on heart attack risk, along with the model’s confidence score (prediction

probability) for each class. The ANN model misclassified the first example (Figure

4a a false positive case) but correctly predicted the second (Figure 4b a true positive

case). In both cases, the model was 97% confident in its predictions.

For the correctly classified case, this high confidence was seen by both clinicians

and regulators as a way to enhance clinicians’ confidence in their predictions. However,

the discrepancy between model confidence and prediction error in the false positive

case was highlighted as a significant issue. The explanation revealed that the false

positive classification was due to the patient being older than 75, having a history of

atrial fibrillation, kidney disease, and stroke, and a weight above 91.80 kg which are

clinically valid explanations but still flagged an issue. While this specific false positive

case may not pose an immediate issue, a high-confidence misclassification of a high-risk

case as low risk would raise significant safety concerns for both clinicians and patients.

Another point raised by the clinicians was that the LIME visualizations were not

easy for them to interpret, even though the data science team found them simple.

Clinicians argued that while LIME outputs show how each feature contributes to the

final prediction, in clinical settings, these visualizations would require significant time

to interpret and evaluate how combinations of features diagnose a patient as high

or low risk. This complexity could hinder their practical use in fast-paced clinical

environments, where quick and accurate decision-making is crucial.

The original visualization for ExMAtrix counterfactual explanation, represented

in Figure 5a, was initially considered informative as it presents the decision paths for

all trees in the random forest. However, the expert group found it to be complex and

overwhelming for use in clinical settings, especially with a significant number of trees

in the model. In its simplified form (Figure 5b), the counterfactual cases were deemed

easier for clinicians to interpret. Despite this improvement, the clinicians noted that,
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similar to LIME, it would still require considerable time to utilize the output effectively

in a clinical environment. There was a consensus among the experts that certain

counterfactual features, such as age, gender, and some features of medical history, are

difficult or impossible to change. Interpreting these features in a clinical setting would

be overwhelming and would not necessarily guarantee a change in the model’s output

if those features were excluded from the required changes to alter the risk prediction.

3 Stage 2: Pilot Study

In this stage, we conducted a pilot study to evaluate the impact of AI/XAI methods

and visualizations on clinicians’ diagnostic processes. Clinicians, who were not part of

the expert group, were presented with the same XAI outputs as outlined in section 2.2.

This investigation sought to evaluate the influence of these outputs on their diagnostic

processes and to investigate the key considerations and challenges entailed in clinicians’

engagement with explanations in CDSS. The results of this pilot study were then

discussed by the expert group. The aim was to investigate both the actual results of

the pilot study and the expert group’s reflections on these findings.

In accordance with the Health Research Authority (HRA) guidelines for clinical

research within the UK’s National Health Service (NHS), ethical approval was not

required for this study. We used the HRA’s decision tool to confirm this, and the tool’s

decision is provided in Appendix A.

3.1 Methods

This study involved several stages. Initially, the data science team selected fifty syn-

thetic patient records from the same test dataset used in earlier phases of the research,

ensuring they were representative of the AI/ML model’s performance and covered a

range of patient demographics. The clinical team then refined this selection to ten
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patient records, focusing on cases that would provide diverse and clinically interest-

ing scenarios. The cases chosen consisted of four true positives (correctly classified as

high-risk), four true negatives (correctly classified as low-risk), one false negative (mis-

classified as low-risk), and one false positive (misclassified as high-risk). This selection

allowed the expert group to examine a diverse range of decision scenarios.

These records were presented to eight practicing clinicians, ensuring that they were

provided with exactly the same data that has been used by the AI/ML models and

consists of patients medical history. These clinicians were shown each patient’s full

medical history individually, one patient at a time. For each patient case, clinicians

were first asked to make their own diagnoses based solely on the patient’s medical

data and identify the top features that influenced their decision-making process.

Once they had completed their diagnosis for a given patient, they were shown the

corresponding AI diagnosis, along with explanations from the XAI models and the

confidence level of the CDSS predictions. This allowed the clinicians to assess whether

and how the AI/XAI outputs might influence their diagnostic decisions and confidence

levels. The process was repeated for all ten patients in sequence — clinicians reviewed

the data, made their diagnosis, reviewed AI/XAI outputs, and then moved to the next

patient.

Finally, the outcomes of this study, including both the clinicians’ diagnoses and

their responses to the AI/XAI outputs, were presented to an expert group for further

discussion and analysis.

3.2 Pilot Study Results & Regulatory Reflection on the

Results

To evaluate the pilot study results, we began by comparing the clin-

icians’ diagnoses with the output from the ML models. Specifically, we

assessed clinician confidence in their diagnoses prior to seeing the ML
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outputs and compared it to the confidence of the ANN model. Clinical

confidence was measured by the percentage of clinicians diagnosing each

case as high-risk. Confidence in high-risk diagnoses is complementary to

that in low-risk diagnoses, meaning a lower confidence in high-risk implies

a higher confidence in low-risk and vice versa. Confidence levels below

50% are considered low-risk diagnoses, while levels of 50% or higher are

considered high-risk diagnoses.

Figure 6 represents this comparison, with the ten cases color-coded

according to their actual risk status. Ideally, high-risk patients would

cluster at the top right of the plot, and low-risk patients at the bottom

left, reflecting high confidence in accurate diagnoses. The ANN model’s

confidence was either very high or very low, correlating with the actual

risk status of the patients, while clinician confidence tended to cluster

in the middle, showing a tendency for false positives as clinicians often

rated more cases as high-risk.

Clinicians and the AI model agreed on 4 out of 5 high-risk cases,

accurately diagnosing them as high-risk. Therefore, clinicians succeed in

diagnosing all five high-risk cases being as high-risk. For the low-risk

cases, the AI model correctly identified four, but only one was correctly

diagnosed as low-risk by the majority of clinicians. This particular low-

risk case was also the only negative case that the AI misdiagnosed.

For regulators, the disagreement between the actual risk status, the

output of AI/ML models, and clinicians’ diagnoses highlighted a poten-

tial area for consideration, suggesting that the disagreement may not
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Fig. 6: Clinical Confidence Vs ANN model Confidence in Diagnosis Patients as High
Risk to Have a Heart Attack

necessarily be problematic. Specifically, for actual low-risk patients who

were diagnosed as high-risk by clinicians and/or models (false positive

cases), this discrepancy could be attributed to incomplete data coverage

of the patients’ full medical histories. It is possible that these patients

might have experienced a heart attack after the data collection period,

indicating that the model’s and clinicians’ high-risk diagnoses could be

justified despite the initial low-risk status.

In assessing influential features, there was generally strong agreement

between clinicians and AI/ML models on high-ranking features such as

age, previous angina, type 2 diabetes, smoking, and cholesterol. How-

ever, a notable divergence emerged for other features, with AI models

incorporating a wider range of variables that did not consistently align

with clinicians’ considerations. Regulators suggested that this divergence
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could make AI models a complementary tool, providing a new perspective

during the decision-making process.

In assessing influential features, there was generally strong alignment

between clinicians and the AI/ML models on key features such as age,

history of angina, and type 2 diabetes. This assessment compared the

top 3 features identified by clinicians with those highlighted by LIME

explanations after running LIME 10 times. Features appearing at least

once in the top 3 in LIME were included for comparison.

For the high-risk cases that were accurately diagnosed by

both the ML model and the clinicians:

Patient 1: The ML model ranked diabetes, angina, and weight as the

top features. Among clinicians, 5 out of 8 included diabetes in their top

3, 6 ranked angina, and 2 ranked weight.

Patient 2: The ML model identified angina, atrial fibrillation (AF),

and weight as the most important factors. Here, 7 of 8 clinicians included

angina in their top 3, 2 included AF, and 4 ranked weight.

Patient 3: The ML model ranked diabetes, angina, and AF as the

key features. In this case, 4 of 8 clinicians included diabetes and angina

in their top 3, 3 included AF, and 4 ranked weight.

Patient 4: The ML model highlighted angina, age, and weight, and 4

clinicians included these features as the most influential features in their

diagnosis.

Other variables mentioned by fewer clinicians in these high-risk cases

included smoking status and Chronic Kidney Disease (CKD), which the
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ML model typically ranked lower, in the 4th and 5th positions. Addition-

ally, the ML model sometimes included features like stroke or systolic

blood pressure that clinicians did not prioritise.

For the patients whom clinicians diagnosed as high risk, but

the ML model correctly classified as low risk:

Patient 6: Five clinicians ranked weight as a top 3 feature, consis-

tent with the ML model. 5 clinicians cited diabetes, and 4 considered

the patient’s status as an ex-smoker to be key. However, the ML model

aligned with only 2 clinicians, focusing on age and systolic blood pressure

as the main factors for classifying this patient as low risk.

Patients 7 and 9: In both cases, 3 and 6 clinicians, respectively,

agreed with the ML model that diabetes was a top feature. However, 6

clinicians considered slightly elevated cholesterol and erectile dysfunction

to be significant risk factors, leading them to classify the patients as

high risk. whereas the ML model did not prioritize these factors, instead

focusing on the absence of a history of angina as key to assessing low risk.

Patient 8: The ML model correctly predicted the patient as low risk

due to the lack of a history of heart disease (AF, angina) or diabetes,

despite the patient’s advanced age (84). However, 5 of 8 clinicians saw

the history of stroke as a significant risk factor, and 4 considered slightly

elevated hypertension important in their diagnosis.

Cases Misclassified by the ML Model:

For the patient incorrectly predicted as high risk by the ML model

but correctly identified by clinicians, the model ranked age (over 75) and
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CKD as important features. Three clinicians who also misdiagnosed the

patient as high risk cited these same factors. The remaining clinicians

correctly diagnosed the patient, citing a clear medical history and stable

metrics (hypertension, blood pressure, and cholesterol) as indicators of

low risk.

In the case of a patient falsely predicted as low risk by the ML model

but correctly diagnosed by most clinicians, 4 clinicians cited erectile dys-

function, diabetes, and slight overweight as risk factors. While the ML

model agreed on the importance of diabetes, it downplayed these factors,

instead focusing on the absence of angina, AF, or CKD, leading to the

low-risk classification.

From a regulatory perspective, the observed alignment between clini-

cians and the ML model explanations regarding major risk factors, such

as diabetes, angina, and weight, indicates that the model effectively

identifies critical clinical indicators associated with high-risk cases. This

consistency suggests that the model has the potential to meet safety

requirements for identifying high-risk patients, provided that these fac-

tors are rigorously validated against clinical standards and that the

model’s performance aligns with its intended purpose. Furthermore, the

model’s emphasis on the absence of certain conditions (e.g., angina or

atrial fibrillation) as protective factors has resulted in several accurate

low-risk predictions where human clinicians may have misjudged the risk.

While this could imply enhanced performance in specific scenarios, it
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underscores the necessity for careful evaluation of how the model bal-

ances the absence of conditions with existing risk factors. Clinicians also

often considered traditional markers, such as cholesterol levels and erec-

tile dysfunction, when assessing risk, even though these factors are not

consistently prioritized by the ML model. This disparity indicates that

clinicians may give greater weight to patient history, while the model

is primarily driven by data patterns. In borderline cases (e.g., Patients

6, 7, and 9), notable discrepancies between the model’s reasoning and

the clinicians’ decisions became apparent, highlighting potential gaps in

the model’s training. Nevertheless, these differences may also underscore

the value of models in providing clinicians with new perspectives, albeit

requiring rigorous testing to ensure their reliability and effectiveness.

After revealing AI diagnoses, explanations, and decision confidence,

all clinicians agreed that these explanations boosted their confidence in

their diagnoses, particularly when the explanations and AI predictions

aligned with their clinical knowledge. In cases where discrepancies existed

between AI and clinician diagnoses, the introduction of XAI outputs;

including influential features and AI confidence, prompted a notable shift

in clinicians’ diagnostic decisions. Specifically, in five out of six instances,

clinicians adjusted their diagnoses to align with AI prediction, resulting

in an overall improvement in diagnostic accuracy, especially concerning

low-risk cases. However, a notable exception occurred when the AI inac-

curately diagnosed a high-risk case, prompting clinicians to adopt a wrong
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diagnosis in alignment with the AI output. Regulators viewed this as an

indicator of automation bias or trust calibration issues.

4 Discussion

The goal of this study was to evaluate and understand multidisciplinary

perspectives on the use of AI/XAI technologies in clinical settings and

ensure their safe introduction. Initially, we presented ML/AI models with

different levels of complexity to regulators and clinicians to observe their

reactions. We also introduced global and local explanations for these

models to assess how utilising these methods could help clinicians and

identify potential challenges for both regulatory and clinical applica-

tions. While there are a few studies that examine clinicians’ perspectives

on using AI [4, 5, 49] and others that consider regulating AI systems

in healthcare[10, 19], our approach is unique in facilitating comprehen-

sive discussions among various stakeholders through workshops. This

approach allowed for a better understanding of the needs and concerns

of each group.

In the second part of the work, we conducted a pilot study to evaluate

human-clinician interaction with AI/XAI systems. Similar to other stud-

ies, we assessed the performance of clinicians before and after introducing

the XAI outputs. Consistent with previous findings, we observed an over-

all increase in diagnostic accuracy after incorporating XAI explanations

[17, 50]. However, incorporating AI in the decision-making process raised
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potential issues previously noted in similar experiments, such as trust cal-

ibration problems and over-reliance on AI system outputs [5, 11, 17, 49].

Unlike prior studies, our research included regulators to assess these issues

from a regulatory standpoint.

In this section, we discuss the lessons learned from this study and

propose regulatory recommendations to consider for safely utilising

AI/XAI in clinical settings. These recommendations aim to address the

identified challenges and ensure that AI technologies improve clinical

decision-making without compromising safety.

Lesson 1: Assessing scientific and analytical validity is essen-

tial for AI-CDSS adopting

Before adopting AI/ML based CDSS, it is essential from a regulatory

perspective to ensure thorough validation. This is particularly important

when using black-box AI systems that lack straightforward scientific and

analytical validation methods, especially in high-risk clinical scenarios.

Key performance metrics such as sensitivity, precision, and specificity

must be rigorously assessed. Additionally, it is important to guide ana-

lytics teams to build models that are as simple as possible while still

achieving the required tasks [21, 22]. Engaging clinicians for expert

review, conducting clinical trials, and implementing XAI methods are

crucial to ensure clinical relevance and transparency. Ensuring regula-

tory compliance, continuously updating model training, and establishing

ongoing monitoring and feedback mechanisms are essential steps to
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maintain safety in clinical settings.

Lesson 2: The divergent importance of global explanations

for regulators and clinicians

When approving or adopting AI models, global explanations hold dif-

fering significance for regulators and clinicians. For regulators, global

explanations of AI/ML models were crucial as they provided insights

into how the model functions and what considerations are being made.

This understanding is essential for ensuring the model’s safety and trans-

parency. Regulators also found value in using feature importance rankings

to identify key features that influence the models’ predictions. Notably,

the variation in feature rankings among different models can be insight-

ful, suggesting that models may learn differently and could be relevant

for different scenarios and tasks. This variation should be considered in

future research, despite some authors [12, 38] suggesting that inconsistent

explanations across models might be an issue and invalidate their use.

Clinicians on the other hand, were primarily interested in understand-

ing the clinical knowledge that has been incorporated into predicting

patient outcomes. However, they were less concerned with the in-depth

technical details of the model’s inner workings. Clinicians expressed that

they prefer a straightforward explanation of these considerations, ideally

provided in a concise briefing before they begin using the AI/ML-based

CDSS.
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Lesson 3: Local explanations are essential for clinicians but

demand careful consideration in both method selection and

usage:

Clinicians in the workshop and pilot study found local explanations ben-

eficial for enhancing their trust in AI model decisions, particularly when

the explanations and key features aligned with their clinical knowledge.

Regulators, did not show a strong interest in understanding how a

decision for a specific case is made. Their primary concern was ensuring

that human clinicians can interact with these explanations in a safe and

effective manner. Consequently, a brief overview on how to interpret XAI

methods’ outputs was provided to clinicians before the experiment in the

pilot study. This preparation was reflected in their satisfaction and their

ability to understand the outputs. In our study we used LIME as local

explainer because its output is similar to how humans clinicians visualise

explanations [3]. However, in a clinical environment, this might not be

the best method. Clinicians in the workshops expressed that the visu-

alizations can be confusing and time-consuming in a fast-paced clinical

setting, especially when practitioners need to assess from the visualisa-

tion how a combination of features contributed to a specific diagnosis.

Lesson 4: Model confidence is a key for trust and safety but

can cause issues in some scenarios

While confidence is considered as a reliable indicator of the degree that

clinicians can trust the output of a machine learning model, it is vital
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to devote careful attention to the basis of this measure as well as any

inherent limitations (missingness and bias) in the training data. This

includes factors like the severity of specific medical conditions, extra

symptoms and conditions that the treated patient may be suffering and

that were not included in the training data. As a result, practitioners

must be aware of the data used for the development of AI systems to

be able to better understand the decisions being recommended to them

and accept or reject these based on this understanding. Special focus

should be placed on the correlation between AI model confidence in its

predictions and the accuracy of these predictions as was seen in the

false positive case in the lime explanation output. There might be trust

implications if the model confidence does not match the likelihood of the

decision being correct. In such circumstances, an investigation into the

potential causes of being incorrect but confident should be conducted.

Lesson 5: Transparency requirements are different for differ-

ent stakeholders:

Regulators in the workshops highlighted the importance of focusing not

just on assessing the overall performance of the model, but also, its

fairness and any potential biases. This evaluation involves identifying

situations where the model demonstrates sub-optimal performance and

determining which subgroups are disproportionately affected by these
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shortcomings. When applicable, documentation should explicitly high-

light the affected subgroups and outline situations where the model fails

to operate as intended.

Meanwhile, clinicians prioritised understanding the data and clinical

considerations during the AI/ML based CDSS development over the

actual working logic of the models deployed. This is to ensure that the

model assumptions and parameters align with clinical knowledge. How-

ever, all workshop attendees including clinicians assured the importance

of educating healthcare providers on when to utilise these models effec-

tively and when it may be prudent to avoid their use due to concerns

about fairness and safety.

Lesson 7: Counterfactual explanations are highly useful if

they were introduced correctly

Counterfactual analysis is regarded as one of the most important tools

in clinical healthcare by experts [39]. However, in a clinical setting, it

is critical to communicate these counterfactual scenarios in a manner

that is easily comprehensible for end users, highlighting the main fea-

tures to change and their related values clearly. Furthermore, considering

the nature of the clinical field, experts should be provided with a variety

of feasible options. Options, for example, should not recommend modi-

fications to fixed patient characteristics such as age, gender, or medical

history as it was introduced in the ExMatrix output.
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4.1 Recommendation for safely introducing AI/XAI tools to

clinical settings

Before adopting AI/ML based CDSS, multiple factors must be considered

to ensure their safety and efficacy in clinical workflows. It is generally

preferable to use simple yet efficient models as has been suggested by [51],

balancing complexity with interpretability, as simple models are often

easier to understand and trust, which is crucial in clinical settings. Dur-

ing model evaluation, it is important to recognize the limitations of the

test data, particularly the time span and scope of the patients’ medical

histories it covers. Assessing multiple models is essential in the selection

process, and global explanations should be examined to identify the most

influential features for each model. Clinical knowledge should be engaged

to evaluate the relevance of the top-ranking features for each model to

the specific use case, ensuring the chosen model aligns well with clinical

needs and expectations.

Clinicians’ preferences for explanation methods and types vary sig-

nificantly and often differ from developers’ preferences [35]. Therefore,

involving a diverse group of clinicians from different backgrounds and

experience levels in the development process is crucial. For example, while

developers might find LIME to be straightforward, some clinicians may

find these explanations confusing. Incorporating insights from psychol-

ogists and cognitive specialists can also enhance the design process by
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ensuring that explanations are tailored to the cognitive needs of end-

users [17]. Local and counterfactual XAI methods, are encouraged to be

used as valuable educational tools, particularly for junior doctors, helping

bridge the gap between theoretical knowledge and practical application,

especially if their performance has been validated against actual clinical

outcomes. Involving experienced clinicians in validating these tools can

further enhance their educational value.

AI and XAI tools should be regarded as support systems rather than

standalone solutions [19]. They are most effective when complement-

ing human practitioners, highlighting information that might otherwise

go unnoticed. To facilitate this complementary relationship, professional

training and education for all stakeholders are essential. This training

ensures that medical professionals are prepared for AI integration, under-

stand how to calibrate their trust in AI outputs, and know when to rely

on or discard CDSS recommendations.

In our workshop, the inclusion of perspectives from psychologists and

cognitive specialists could provide deeper insights into how clinicians pre-

fer to be provided with AI/XAI outputs. Additionally, employing other

well-known methods for local explanations, such as SHAP [36], and coun-

terfactual methods like DiCE, which allow restrictions on counterfactual

cases, could be beneficial. This is particularly relevant in clinical set-

tings where factors such as demographics and medical history cannot be

changed. Future work will include a pilot study with a broader scope

to assess how clinicians’ experience levels and background knowledge of
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AI affect their interaction with AI-CDSS. Observing practitioners’ inter-

actions with these systems over a longer period will also be beneficial

to address potential challenges and opportunities in AI/XAI medical

devices.

5 Conclusion

This study evaluated the perspectives of data scientists, clinicians, and

regulators regarding the safe integration of ML/AI-based CDSS into clin-

ical settings. Introducing XAI methods as a crucial tool for ensuring the

safe deployment of these technologies. We found that performance met-

rics, in conjunction with global explanations and clinical knowledge, serve

as valuable guides for selecting suitable AI models for specific tasks. Local

explanations are essential for improving clinician trust. However, Regu-

lators underscored the significance of viewing AI/XAI CDSS as support

systems only and emphasized the need for proper trust calibration to

mitigate potential risks such as over-reliance on AI outputs.

Abbreviations. AI: Artifcial Intelligence; ML: Machine Learning; ANN:

Artificial Neural Network; CDSS: Clinical Decision Support System; XAI:

eXplainable AI; MHRA: Medicines and Healthcare products Regulatory

Agency; AI-CDSS: AI based Clinical Decision Support System; LIME:

Local Interpretable Model-agnostic Explanations; ExMatrix: Explain-

able Matrix; SHAP: Shapley Additive explanations; DiCE: Diverse

Counterfactual Explanations
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