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Abstract—In this paper, we introduce the healthcare system
where Semantic Communication (SC) technology is applied to
improve the quality of service for healthcare and medical appli-
cations. We first show the concepts and possible architecture of
SC. Then, we show different types of SC in the healthcare system.
Next, some examples of SC-enhanced healthcare applications
are discussed. Finally, we give research challenges and future
research directions.

Index Terms—Semantic communication, healthcare applica-
tions, medical applications, wireless communications.

I. INTRODUCTION

The rapid development of wireless communication tech-
nologies has significantly enhanced the healthcare and med-
ical sectors. For example, cellular networks (e.g., 4G/5G)
have empowered many innovations, and there has been huge
progress in how healthcare services are provided and in the
administration of healthcare establishments. These communi-
cation technologies offer high connectivity for various medical
devices through base stations or the Internet for applications
involving telemedicine with the help of high-definition video
conferencing and real-time patient monitoring systems.

One example is the development and application of Ultra-
Reliable and Low-Latency Communications (URLLC) in
healthcare sectors [1]. It enables the communication of critical
short-packet information, e.g., control signals, to be delivered
with high reliability. Also, it might help some healthcare-
related tasks to be offloaded for processing in remote edge
servers with low latency. Another example is tactile Internet
[2], which can help build real-time interactive systems. This
technology is useful for remote surgery in medical sectors,
enabling doctors to operate robotic instruments performing
physical examinations or operations with haptic feedback, thus
simulating a tactile experience. Additionally, the Internet of
Medical Things (IoMT) [3] has also been adopted recently in
the healthcare sectors, which can help build an interconnected
network of medical devices and sensors to help better monitor
and manage patients.

As a result of the above-mentioned wireless communication
technologies, many medical applications have been discussed.
One example is remote surgery, where the URLLC and tactile
Internet may be employed to help real-time, robot-assisted
remote operation by allowing surgeons to perform complex
procedures remotely with minimal latency. Another example
is monitoring systems, where the IoMT may be applied to

facilitate real-time patient monitoring through wearable de-
vices, providing continuous data transmission of vital signs
e.g., heart rate and oxygen levels for remote healthcare man-
agement. Also, considering real-time telemedicine, cellular
networks may be used for remote consultations, diagnostics,
and videoconferencing, enhancing patient access to healthcare
professionals and diagnosis in remote areas.

Furthermore, we have several enabling technologies with the
help of wireless communications in healthcare services. For
example, Digital Twin has been popular in assisting in the cre-
ation of a digital replica of a physical entity, e.g., the patient,
that can be used for real-time monitoring and simulation. This
digital copy helps doctors make complex medical decisions
with real-time access to information and data concerning the
patients. Similarly, with Augmented Reality (AR) and Virtual
Reality (VR) technologies, doctors can simulate, visualise, or
even explore the various treatment possibilities in real-time.
For example, doctors can use the Apple Vision Pro to view
2D/3D images or videos to understand better accurate real-
time models, e.g., the heart Image 3D model and its shape
when it is beating, thereby enhancing patient treatment.

However, integrating these communication technologies and
facilitating systems into the healthcare setting are coupled with
many challenges. Bandwidth constraints are among the first
challenges. With the available limited wireless bandwidth, only
a few devices can successfully communicate simultaneously
without experiencing interference or noise. The IoMT and
similar technologies might experience some problems when
many sensors try to communicate at the same time. Addi-
tionally, each medical device may only transmit a limited
amount of data due to the small available wireless bandwidth
mentioned above. This may pose challenges to 3D video/image
transmission as they generally include a large amount of data
volumes. This may impact the Quality of Service (QoS) of
AR, VR or digital twin applications in medical fields like
remote surgery or real-time diagnostics, where data accuracy
is important for precise representation.

To address the above issues, in this paper, we propose to
apply SC techniques to healthcare applications to help the
above-mentioned applications.

II. BRIEF INTRODUCTION TO SEMANTIC COMMUNICATION

Wireless technologies have evolved significantly during the
past few decades, with nearly every ten years, a new generation
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of communication technology from 1G to now 5G. For typical
communications, it usually has source encoding and decoding
as well as channel encoding and decoding components, as
shown in Fig. 1. In this system, we usually need to convert the
data, e.g., the image, into bits, e.g., ′0101010111...′ and then
transmit them in the wireless physical channel. The commu-
nication target is to ensure the accuracy of the transmitted bits
or symbols by overcoming the noise or interference that may
lead to errors or loss of information. For example, in Fig. 1,
we expect to receive the same X-ray image as transmitted. The
other goal is to maximise the number of transmitted data bits
in the wireless channel. In other words, we expect to transmit
as much information as possible in the wireless channel with
limited bandwidth.

On the other hand, Semantic Communication (SC), which
was first proposed by Shannon and Weaver, described in
their three levels of communication theory [4], focuses on
conveying the meaning behind the data that ensures the sender
and receiver understand each other and interpret the message
in the same way. In other words, semantic communication
aims to deliver the desired meaning with minimal data by
only transmitting the key information or bits that express the
contents or the parts they find most important or relevant while
omitting redundant information which is irrelevant to both the
sender and receiver [5], [6]. In this case, the exact bits are
not required to be transmitted. There are two main advantages
of using SC: 1) it saves bandwidth, and 2) it increases the
transmission efficiency and saves energy consumption, as
SC generally transmits fewer data bits instead of the whole
information [7].

SC normally has five parts, as shown in Fig. 2: semantic
encoder, channel encoder, channel decoder, semantic decoder
and knowledge base [5], [6], [8]. The function of them is as
follows:

• Semantic encoder is applied to extract key information

from the source and encodes these features from the
original data, with the target of increasing the possibility
of effective and reliable transmission of key features over
the wireless channel.

• Channel encoder is used to ensure that the selected se-
mantic feature is suitable for transmission on the wireless
physical channel. The aim is to mitigate the effects of
noise and interference on the physical channel during the
wireless transmission process.

• Channel decoder, as the reverse pair of channel encoder,
is for demodulating and decoding the received signal
and obtaining the transmitted semantic features to the
maximum extent.

• Semantic decoder, as the reverse pair of the semantic
encoder, is applied to recover the original message from
the transmitted semantic features.

• Knowledge Base (KB) is considered the most important
part of SC. The KB can help the semantic encoder and
decoder understand and infer semantic information in a
similar way. In healthcare and medical applications, we
can use the specific KB to include the related medical
models, recodes, knowledge and information. It can help
improve the QoS of medical applications, support clinical
decisions, and ensure that treatment plans are consistent
with the clinical guidelines.

It can be seen from Fig. 2 that the received X-ray image may
not be exactly the same as the transmitted image, however,
their key information or concept should be the same, in order
to meet the objective of the semantic communication.

III. TYPES OF SC IN HEALTHCARE SYSTEM

Recently, SC has drawn much attention from both academia
and industry communities with the impetus of the devel-
opment of Artificial Intelligence (AI) and Machine Learn-
ing (ML) techniques. For instance, researchers in [9] have



proposed a Joint Source Channel Coding (JSCC) scheme,
where deep learning techniques are applied to the semantic
encoder/decoder and the channel encoder/decoder to maximize
the transmission efficiency through various network scenarios.

Generally, SC may be categorized into several types based
on the nature of the data being sent and received [10], [11],
e.g., text, audio, video, or any combination of these modalities,
as illustrated in Fig.3.

A. Text

Traditional mobile health applications typically transmit
detailed text-based medical information. With the development
of Natural Language Processing (NLP) and SC, only essential
semantic information needs to be transmitted, thus simplifying
real-time data exchange and saving bandwidth usage, which
further increases the operational efficiency of mobile medical
devices.

SC normally, in the mobile healthcare scope, semantic
textual information refers to text understanding and logical
relations between different texts. This type of information
exists in structured and unstructured forms: medical records,
patient documents, or ontologies that define concepts and their
interrelations. KB in SC can be used here to help patients
understand medical terminology, identify the relations between
medical entities and diagnoses, and get personalized treatment
recommendations.

Additionally, KBs can store Electronic Health Records
(EHRs), clinical notes, and relevant literature, and by doing
so, retrieve and infer meaningful information from previously
unstructured texts. Moreover, SC enables doctors and nurses
to cross-check prescribed drugs against the patient’s history,
allergies, and other critical data which helps to decrease the
chances of error and enhance patient safety. Given a well-
designed KB, SC can be integrated with source and channel
encoding/decoding strategies to adapt to changing network
conditions in healthcare applications.

B. Image/Video

In modern medicine, images and videos are staples in the
field of diagnosis, treatment, or research. They constitute a
visual record that could be analyzed, shared, or archived for
multiple purposes. Nowadays, many medical applications may
depend on image and video processing for diagnostics and
decision-making processes, especially in telerehabilitation or
remote surgery applications.

Images and videos are conventionally processed and trans-
mitted at the pixel or bit level, regardless of their importance.
When considering the images or videos of future medical
applications, e.g., 3D X-ray images, organ scans, or even
skeletal models, the amount of data becomes huge, making
transmission over wireless networks prone to interference or
noise. Also, the large volume of data may cause a drop in QoS
and introduce errors.

On the other hand, with the help of SC, image and video
data transmission may be reorganized depending on the status
of the network. It only transmits the key target or crucial

content within the images or videos and their relationship
[11]. In SC-based surgical applications, for instance, not all
elements within the video stream are of equal importance. SC
can recognise and send crucial information which enhances
the experience and the precision for both doctors and patients,
under different wireless channel conditions.

C. Audio

The analysis of voice and speech tone in a medical setting
may be of high importance, especially in diagnostic scenarios
where patients describe symptoms or emotional states. Com-
pared with other data forms, e.g., text or images, semantic
representation for voice and speech is more complicated [11]
because of the characteristics of voice tone, background noise,
and signal delay.

Future medical applications may use SC to process voice
data into low-dimensional semantic representations, which
are synchronized with the audio signals depending on the
condition of a network. In telemedicine, SC can filter out non-
essential acoustic features, focusing on capturing the patient’s
voice and contextual meaning. Further, spoken language may
be transformed into semantically rich text, transmitting only
the task-relevant features. These characteristics are subse-
quently explained in the context of medical applications,
e.g., mental health monitoring or diagnostic interviews, which
are nurtured by a tailored KB. An SC-enriched system not
merely brings robustness but also reduces network traffic while
maintaining performance.

D. Other forms

There are other models in medical applications where SC
can help, e.g., smell, a highly complex sensory experience.
Unlike sound and images, which can be broken down into
simpler components (e.g., pixels for images or frequencies
for sound), which we can now semantically convey through
a network without focusing on the number of units, smells
are made up of complex combinations of molecules. Human
olfaction (i.e., our sense of smell) involves hundreds of dif-
ferent receptors that detect thousands of possible odours, and
these combinations vary widely between different odours [12].
Given their chemical complexity, reproducing smells requires
a device that can store and combine many different chemical
compounds in precise proportions.

Therefore integrating SC in medical applications with the
help of end-to-end networks [13] may help technically convey
smells into forms which can be easily transmitted via wire-
less networks. The experience of perceiving smell is highly
subjective and varies from person to person. Therefore, it is
difficult to create a universally consistent experience [12].
By understanding the meaning of complex molecules and
semantically classifying them to extract their basic structural
components, wireless networks may be able to convey these
molecules according to their structure as a concept rather
than converting them into the exact bits, pixels or units. For
example, in the COVID-19 case, we can help the patient
diagnose using a digital sensing test remotely with the help
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of SC technologies. This technique can also be integrated into
VR experiences which may require different types of sensory
feelings.

E. Multimodal SC system

Multimodal SC systems are helpful for complex medical ap-
plications, e.g., real-time digital medical twin systems, which
may require the combination of multidimensional medical data
like text, image audio, and 3D video. It may be challenging to
ensure low-latency and high-reliability communication if the
raw data is transmitted due to large data volumes, especially
in an emergency scenario like an earthquake, where some
base stations may be destroyed, and wireless networks are
affected. Robotic surgery can be an example, where 3D data
may be transmitted from multiple sources, including medical
imaging devices (CT/MRI), information from cameras, or
haptic feedback. To reduce bandwidth usage and increase
efficiency, different forms of modal data could be converted
to one unified model, e.g., text modal, and then transmitted
adaptively with the help of SC based on different wireless
channel states and conditions. For example, in Fig. 4, we
show that instead of transmitting the raw images, we may
extract their key information in text and then transmit it over
the wireless channel to save bandwidth. On the receiver side,
we can get the key information using recovered semantics.
Although the received and transmitted information may not be
the same, we may still be able to recover the image via some
techniques like [14] or AI-Generated Content (AIGC) [15],
as its transmitted and received semantic information should
be the same in general. Note that here unlike some medical
image captioning techniques [16], which generate descriptive
textual captions for medical images (e.g., X-rays, MRIs, and
CT scans) using natural language, SC encodes information

from medical images into a textual or symbolic format for
efficient wireless transmission and accurate reconstruction or
understanding on the receiver’s end.

IV. SC ENHANCED HEALTHCARE SYSTEM

In this section, we give some examples of different SC-
enhanced healthcare systems.

A. SC-supported Telemedicine Healthcare Systems

Telemedicine systems allow patients to receive care from
healthcare providers remotely, especially in areas with limited
access to medical facilities. It may also be helpful for patients
in remote areas or areas with poor network conditions. For
example, healthcare professionals can remotely monitor pa-
tients using sensors, wearable devices or AR/VR equipment.
In these scenarios, the key information instead of the whole
data might be sent to the doctors/hospitals based on SC. In
other words, depending on the network conditions, different
semantic information with different data sizes will be sent in
real-time. Additionally, in some emergency scenarios, if the
base station is partially working, SC can be applied when the
patient’s voice is unclear, and the voice may be converted to
an explanatory text summary and then displayed on the screen
of smartphones in real time for clarity.

B. SC-supported Digital Medical Twin System

Medical digital twin systems can help doctors visualize and
operate virtual/digital models or the simulation of patients’
physical bodies or organs. Conventional medical digital twin
systems may need real-time data from various sources, which
may require high-speed wireless data communications. Also,
it may be difficult to ensure accurate synchronization between
the physical and virtual worlds, due to the limited amount
of wireless bandwidth. With the support of SC, only the
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Fig. 4. The example of SC-enhanced text-based medical image application.

most relevant data or information with high priority will
be transmitted and shared, e.g., key physiological metrics or
essential alerts. For example, in a remote operation scenario,
the doctor can do the surgery by using a remote console
and controller, via a 3D VR digital system. For this system,
the selection of some essential parts, or critical physiological
metrics and the changing components might be synchronized
through the wireless channel under different conditions.

C. SC-supported Rehabilitation System

Following the COVID-19 pandemic, many at-risk patients
have shown a preference for telemedicine consultations with
doctors whenever face-to-face consultations are not necessary.
This saves time and decreases the chances of contracting other
diseases. For example, some telerehabilitation applications,
have been proposed for patients, including those with muscu-
loskeletal disorders, to hold discussions about their health with
doctors from the comfort of their homes thus avoiding the need
for frequent visits to the hospital. Through these applications,
doctors can communicate with patients via video conferencing
and guide them through a series of physical activities.

Traditionally, the above-mentioned rehabilitation systems
relied on a marker-based system, whereby patients have to
wear sensors and perform specific movements in front of
some special equipment. Recently, markerless systems [17]
have been discussed, which may not rely on some specific
setup, therefore patients may use their phone cameras to con-
duct remote consultations. In this case, doctors may monitor
patients’ movement in real-time using video conferencing.
SC might be utilized here for improving the QoS, where
the patients can do some physical therapy exercises as pre-
scribed, and the key semantic information, including skeletal
details, can be extracted, encoded and transmitted based on
the different wireless network conditions, as shown in Fig.
5. Some techniques to extract the skeleton can be seen here
[18], [19]. From the doctor’s point of view, the patient’s full-
body movement may also be reconstructed in real-time if
necessary based on the skeletal information obtained with the
help of some AIGC technologies. This application ensures the
effective transmission of data while maintaining the required
quality and accuracy for effective remote rehabilitation.

V. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

A. Latency Requirement

Real-time applications, e.g., robotic surgery or AR/VR-
assisted rehabilitation systems, typically require a low-latency
response. Despite the promises of ultra-low latency from 5G,
real deployments are tough. Although SC can significantly
reduce the transmission bandwidth, it may require some
processing that involves additional computation to extract
semantic information from raw data. However, these medical
mobile devices or wearable sensors usually have limited power
capacity, due to their small size, which may not be able to
conduct complex semantic extraction and transmission. We
might explore local energy-efficient or lightweight AI/ML
models that run on low-power devices. Additionally, we may
consider offloading the computational overhead to the edge or
cloud to help with this process.

B. Strict QoS Requirement

In critical medical applications, errors or losses of life-
critical data are intolerable, especially in surgery, where real-
time video feeds or haptic feedback should be as accurate and
reliable as possible. SC involves compressing or discarding
less relevant data, which may lead to the risk of losing essential
medical information. Hence, ensuring robust error-checking
mechanisms and reliable QoS guarantees while implementing
semantic compression is paramount. One may develop some
reliable SC frameworks that use error detection and correction
algorithms specifically for healthcare applications.

C. Key Semantic Information Extraction

In medical applications, healthcare data may come from
different sources, e.g., MRI, CT, or motion sensors. Identifying
the key information suitable for wireless transmission is a big
challenge. In other words, we could prioritize the relevant parts
of the original information and ensure the delivery of critical
clinical information through the wireless networks. Moreover,
we may convert or unify different models (e.g., visual, textual,
or tactile) into low-complex models (e.g., text or bits) for
efficient transmission.

D. SC-related Healthcare Standard

Different healthcare applications may have different require-
ments, and it is very challenging to implement a unified frame-
work. They may vary depending on devices, data formats,
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and modality [20]. With the introduction of SC, healthcare
professionals may integrate SC models with existing health-
care systems and infrastructures. Interoperable protocols and
standards that handle data from diverse devices and systems
may be highly required.

E. Security and Privacy Concerns

Healthcare data is susceptible and subject to strict regulatory
frameworks. Some sensitive user data, such as personal infor-
mation, raises privacy concerns and requires robust security
measures. When we send critical information using SC, it may
be more vulnerable to privacy or security violations due to
key information being transmitted. For example, the patient’s
name, critical health condition, and other sensitive information
may be leaked. Privacy-preserving or security-enhanced SC
technologies, e.g., federated learning or homomorphic en-
cryption, which allow data to be processed without revealing
sensitive information, may be explored.

VI. CONCLUSION

In this paper, we have introduced SC for healthcare appli-
cation systems. First, we have given a brief introduction to
semantic communications. Then, we have discussed different
types of SC in healthcare applications, e.g., text, video, audio
and images. We have also introduced some possible use cases
for potential medical applications. Finally, we have discussed
some challenges and future research directions.
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