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Performance and Stability Analysis of Interacting
Multiple Model Estimator Under Unobservable

Packet Loss
Hong Lin, James Lam, Zidong Wang, Zhan Shu

Abstract—For a system with packet loss, if the estimator cannot
observe the packet-loss status (PLS), the system is called an
unobservable-packet-loss (UPL) system. Otherwise, it is called
an observable-packet-loss (OPL) system. This paper studies the
interacting multiple model (IMM) estimator for UPL systems,
and the main contributions are twofold. (i) Estimation accuracy of
the unobservable PLS. For an unstable UPL system, we prove that
the UPL system will become an OPL one with time, since the PLS
can be exactly estimated with time. For a stable UPL system, there
exists an accuracy threshold such that the estimation accuracy
of the PLS cannot be better than this threshold. (ii) Stability of
the IMM estimator. For an unstable UPL system, we establish a
necessary and sufficient condition: there exists a threshold such
that the IMM estimator is stable almost everywhere if and only
if the packet-arrival rate is greater than this threshold. For a
stable UPL system, we show that the IMM estimator is stable,
no matter what value the packet-arrival rate is.

Index Terms—Interacting multiple model estimator; Stability;
Unobservable packet loss;

I. INTRODUCTION

A. Research background

In the past two decades, the rapid development of network
techniques allows the components of a system to be con-
nected via networks. The introduction of networks facilitates
information sharing, but it also causes packet loss [1, 2] and
communication delay [3]. A large number of state estimation
and control techniques have been developed for networked sys-
tems to deal with packet loss such as distributed filtering [4–
6], neural-network-based filtering [7], event-based estimation
[8, 9], feedback control [10], particle filtering [11], optimal
H2/H∞ filtering [12], and least squares estimation [13].

According to the observability of packet-loss status (PLS),
systems can be divided into two classes: systems with unob-
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servable packet loss (UPL) and systems with observable packet
loss (OPL).

Typical applications of the UPL system model can be found
in the literature on radar-based target tracking. Subject to the
environmental shelter or intermittent appearance of targets (see
Figure 1), radar waves cannot always reach the targets, and the
reflected radar waves may consist of noises alone [17, 18].
However, the radar system cannot identify whether the target
is detected or missed from the reflected wave, and the loss of
the waves reflected from targets is unobservable.

Fig. 1. Detect a periscope in a region of the ocean’s surface [18]. The
periscope will be exposed every 10 seconds. The high-intensity clutter of
ocean waves may produce a clutter in the reflected radar waves that looks like
the waves reflected from the target. Hence, subject to intermittent appearance
of the periscope and ocean waves, the reflected radar waves may come from
the periscope and ocean waves (y10) or from ocean waves alone (y5).

For UPL systems, approximate optimal estimators (AOEs),
instead of the optimal estimator (OE), are commonly used in
practice. It was reported in [15] that the OE for UPL systems
cannot be implemented in practice, since the computational
complexity of the OE grows exponentially with time. Since
then, various computationally efficient AOEs have been devel-
oped, including linear estimators [19–22] and nonlinear ones
[16, 23]. The Interacting Multiple Model (IMM) algorithm
was first developed in [24]. Thanks to its excellent estimation
performance and low computational complexity, it has been
widely used in state estimation and target tracking [25–27].
These successful and widespread applications have proven
that the IMM algorithm is a valid and credible technique to
compute the optimal state estimate, and thus this paper adopts
the IMM estimator for UPL systems.

B. Underlying issues and limitations of existing research
The estimator stability for unstable systems with packet

loss is a hot research topic. Since the pioneering work [28]
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established a condition on estimator stability for unstable OPL
systems in 2004, fruitful results on estimator stability have
been obtained for unstable OPL systems [29–32] in the past
two decades. However, there are few advances for unstable
UPL systems. The works on estimator stability for UPL
systems are introduced as follows. Linear estimators: It was
early known in [19, 20] that the condition “the system is stable
(that is, the spectrum radius ρ(A) < 1)” is a sufficient one for
the optimal linear estimator (OLE) is to be stable. Our recent
works showed that ρ(A) < 1 is also a necessary condition for
the stability of the OLE with multi-sensors [21, 33] or with
Markovian packet loss [22]. Nonlinear estimators: Bayesian-
filtering-based AOEs [16] and a Kullback-Leibler-Divergence
(KLD)-based AOE [23] were developed for UPL systems. It
was proved that the KLD-based AOE is stable for a stable
system. It can be seen from above that (Problem 1) “for an
unstable UPL system, under what condition, can an estimator
remain stable” is unsolved.

The observability of PLS (that is, the value of γk in (2))
greatly affects estimator design and performance. It is known
that (i) that the loss of observability of γk makes the estimators
for a UPL system significantly differ from the estimators for an
OPL system, and (ii) that for an OPL system, knowing the PLS
facilitates the theoretical analysis of estimator stability and
improves estimation performance. However, (Problem 2) how
accurate γk can be estimated for a UPL system is unknown?

From Problems 1 and 2 above, the limitations of the existing
bodies of research on UPL systems are twofold: (1) Estimator
stability for unstable UPL systems remains unknown. Existing
works did not study the estimation accuracy of PLS. The re-
search challenges are twofold. Although some notations below
are defined in the following sections, they would not affect
the explanations. (i) For Problem 2, the averaged estimation
accuracy of γk requires computing an integral like

∫
η in (23),

where η , ϕkψk

ϕk+ψk
, and ϕk and ψk are Gaussian probability

density functions. There is no analytical expression of the
integral, and thus it is difficult to determine its limit as in
(24) and its lower and upper boundedness as in (25) and (48).
(ii) For Problem 1, the boundedness of

∫
η(mk − mk)

2
I is

hard to be determined, which makes it difficult to analyze the
stability of E[Pk] in (9).

C. Main results and contributions

To the best of our knowledge, few results have been reported
on Problems 1 and 2, which motivated our research of this
paper. The main results and contributions are summarized as
follows:

(i) Stability of IMM estimator.
• When ρ(A) ≥ 1, a necessary and sufficient con-

dition is established for the stability of the IMM
estimator: there exists a threshold λγ such that the
IMM estimator is stable almost everywhere if and
only if the packet-arrival rate is greater than λγ .

• When ρ(A) < 1, the IMM estimator is stable, no
matter what value the packet-arrival rate is.

(ii) Estimation accuracy of γk.

• When ρ(A) ≥ 1, the estimation errors of γk are
proved to converge to 0. It means that γk can be
exactly estimated with time. This result suggests that
an unstable UPL system will become an OPL one
with time.

• When ρ(A) < 1, there exists an accuracy threshold
Γγ such that the estimation accuracy of γk cannot
exceed (be better than) this threshold. This result
suggests that an unstable UPL system has a better
estimation accuracy of γk than a stable UPL system.

D. Novelties and comparison with existing works

• The main result (i) above is novel, since it establishes a
necessary and sufficient condition for the proposed IMM
estimator. Existing works on UPL systems do not study
estimator stability for unstable UPL systems. Specifically,
linear estimators have been proved to be unstable for
unstable UPL systems [21, 22]. Whether the non-linear
estimation methods [16, 22, 23] are stable for unstable
systems is uncertain.

• The main result (ii) on packet-loss-status estimation is
new, as it reveals the relationship between the estimation
accuracy of the PLS and the stability of the system, which
has not yet been reported in existing published pieces of
research.

E. Paper Organization

The rest of the paper is organized as follows: The system
setup is introduced in Section II. The IMM estimator for
UPL systems is derived in Sections III. Estimation accuracy
of γk and stability of the IMM estimator are studied in
Sections IV and V, respectively. In Section VI, numerical
examples are given to illustrate the main results of this paper.
The conclusions are presented in Section VII.

Notation
x ∼ Nx(µ, P ) Random variable x follows a Gaussian

probability density function (pdf) with
mean µ and covariance P .

p(·), p(·|·) pdf and conditional pdf, respectively.
E[·], Ex[·] E[·] stands for mathematical expectation.

Ex[·] is used to emphasize that E[·] is
taken with respect to random variable x.

P(·) Probability measure
Cov [·] Covariance
(·)′, (·)∗ Transpose and conjugate transpose of a

matrix or a vector, respectively
(·)2I (·)(·)′
ρ(M) Spectral radius of matrix M
σ(M), σ(M) Maximum and minimum singular values

of matrix M , respectively.
M > (≥)0 M is a positive definite (semi-definite)

matrix.
Z+ Set of non-negative integers
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II. SYSTEM SETUP AND RESEARCH OBJECTIVES

Consider the following discrete-time linear system:
• Plant:

xk = Axk−1 + ωk, (1)

where A ∈ Rn×n, xk ∈ Rn is the system state, x0 ∼
Nx0(x̂0, P0), and ωk ∼ Nωk

(0, Q) is the system process
noise, where P0 > 0 and Q > 0.

• Observations:

yk = γkCxk + υk, (2)

Cxk is the output of the sensor, where C ∈ Rm×n. It is
assumed throughout this paper that C has full row rank.
It is a mild assumption, since when rank(C) < m, there
are linear dependent rows in C, which are redundant as
they can be represented by the linear independent rows.
Thus, they can be removed such that rank(C) = m. υk ∼
Nυk(0, R) is the noise at the estimator side, where R > 0.
{γk} is a sequence of i.i.d. Bernoulli random variables
with P(γk = 1) = γ and P(γk = 0) = γ = 1 − γ.
γk models the packet loss: γk = 1 stands for that the
sensor output is successfully received by the estimator.
Otherwise, γk = 0. γ is called the packet-arrival rate.
Denote all the observations received at the estimator side
by Yk , {y1, . . . , yk}, where yj ∈ Rm.

• IMM estimator: As previously mentioned, the optimal
estimate for a UPL system cannot be computed in
practice. Hence, in this paper, the optimal estimate is
computed by the standard IMM algorithm [34, 35].

This paper studies the IMM estimator for UPL systems. The
research objectives are listed as follows:

(i) Determine the stability conditions of the IMM estimator
for UPL systems.

(ii) Determine the estimation accuracy of the unobservable
packet-loss status γk.

It is assumed in this paper that (A,Q1/2) is controllable
and (A,C) is observable. ωk, υk, γk, and x0 are mutually
independent.

III. IMM ESTIMATOR FOR UPL SYSTEMS

In this section, we first give the definition of optimal
estimation and estimation accuracy. Then, we compute optimal
estimates x̂k and γ̂k by the IMM algorithm (that is, the IMM
estimator) for UPL systems. Finally, we design auxiliary IMM
estimators, which will be used to study the estimation accuracy
of γ̂k and the stability of the IMM estimator in Sections IV
and V, respectively.

A. Definitions and preliminaries

Definition 1 (Optimal estimation)
The optimal estimation of γk and xk are defined as

γ̂k , arg min
γ♯∈[0,1]

E[(γk − γ♯)2|Yk]

x̂k , arg min
x♯∈Rn

E[(xk − x♯)2I |Yk].

The estimation accuracy of γk is defined as

Γk , Cov(γk|Yk) = E[(γk − γ̂k)
2|Yk].

The estimation error covariance of xk is defined as

Pk , Cov(xk|Yk) = E[(xk − x̂k)
2
I |Yk].

Denote an m-dimensional cube with edge length l
1

4m by

Cl ,
{
y = [y(1), . . . , y(m)]′ ∈ Rm

∣∣∣ |y(i)| ≤ l
1

4m

2
, 1 ≤ i ≤ m

}
.

The volume of Cl is (l
1

4m )m = l
1
4 .

Define sk , {yk ∈ Ck}. Then, sck = {yk /∈ Ck}. Define a
random variable Sk as follows:

Sk =

{
sk, if yk ∈ Ck

sck, otherwise.

Sk takes the value sk and sck and is a function of yk.

B. IMM estimator for UPL systems

First, we derive the IMM estimator for UPL systems.

Theorem 1 (IMM estimator for UPL systems) The opti-
mal estimates γ̂k and x̂k computed by using the IMM
algorithm are given as follows:

mk = Ax̂k−1 (3)

Mk = APk−1A
′ +Q (4)

Kk =MkC
′(CMkC

′ +R)−1

mk = mk +Kk(yk − Cmk)

Mk =Mk −MkC
′(CMkC

′ +R)−1C ′Mk (5)

and

ϕk = Nyk(0, R), ψk = Nyk(Cmk, CMkC
′ +R)

γ̂k =
γψk

γϕk + γψk
(6)

Γk =
γγϕkψk

(γϕk + γψk)2
(7)

x̂k = (1− γ̂k)mk + γ̂kmk (8)

Pk = (1− γ̂k)
(
Mk + (x̂k −mk)

2
I

)
+ γ̂k

(
Mk + (x̂k −mk)

2
I

)
.

(9)

Proof: It is known that the optimal estimate x̂k is
computed by x̂k = E[xk|Yk] =

∫
Rn xkp(xk|Yk)dxk. By the

total probability law,

p(xk|Yk) =
∑1
j=0 p(xk|γk = j, Yk)P(γk = j|Yk). (10)

In the standard IMM algorithm [34, 35], p(xk|γk =
j, Yk) is computed by letting p(xk−1|γk = j, Yk−1) =
Nxk−1

(x̂k−1, Pk−1), where and its mean and covariance are
E[xk−1|γk = j, Yk−1] and Cov [xk−1|γk = j, Yk−1], re-
spectively. γk is independent of xk−1 and Yk−1, and thus
p(xk−1|γk = j, Yk−1) = p(xk−1|Yk−1), E[xk−1|γk =
j, Yk−1] = E[xk−1|Yk−1] = x̂k−1, and Cov [xk−1|γk =
j, Yk−1] = Cov [xk−1|Yk−1] = Pk−1. Consequently,
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p(xk−1|Yk−1) = Nxk−1
(x̂k−1, Pk−1). From xk = Axk−1+ωk

in (1), it follows that

p(xk|Yk−1) = Nxk
(mk,Mk), (11)

where mk = Ax̂k−1 and Mk = APk−1A
′ +Q.

Computation of p(xk|γk = j, Yk) in (10): When γk = 0,
yk = υk is independent of xk and Yk−1. p(xk|yk, Yk−1, γk =
0) = p(xk|Yk−1, γk = 0) = p(xk|Yk−1). By (11),
p(xk|Yk, γk = 0) = Nxk

(mk,Mk), which means

Mk = E[(xk −mk)
2
I |γk = 0, Yk]. (12)

When γk = 0 , yk = υk. p(yk|Yk−1, γk = 0) = Nyk(0, R) =
ϕk.

When γk = 1, yk = Cxk + υk. For p(xk|Yk−1) in (11), it
is well known that

p(yk|Yk−1, γk = 1) = Nyk(Cmk, CMkC
′ +R) = ψk (13)

p(xk|Yk, γk = 1) = Nxk
(mk,Mk),

where mk and Mk are computed as above, and

Mk = E[(xk −mk)
2
I |γk = 1, Yk]. (14)

By the total probability law and the independence of γk and
Yk−1,

p(yk|Yk−1) =

1∑
j=0

p(yk|Yk−1, γk = j)P(γk = j|Yk−1)

= ψkγ + ϕkγ. (15)

Computation of P(γk = j|Yk), γ̂k in (6), and Γk in (7): It is
known that the optimal estimation γ̂k = E[γk|Yk]. Then,
E[γk|Yk] = 0 · P(γk = 0) + 1 · P(γk = 1) = P(γk = 1),
which is computed as follows. By Bayesian formula, (13),
and (15),

P(γk = 1|Yk) =
p(yk|Yk−1, γk = 1)p(γk = 1|Yk−1)

p(yk|Yk−1)

=
ψkγ

ψkγ + ϕkγ
= γ̂k

P(γk = 0|Yk) = 1− P(γk = 1|Yk) = 1− γ̂k.

Clearly, for a Bernoulli random variable γk, Γk = γ̂k(1− γ̂k),
and thus (7) holds.

Computation of x̂k in (8) and Pk in (9): Based on the re-
sults above and (10), we have p(xk|Yk) = (1 −
γ̂k)Nxk

(mk,Mk) + γ̂kNxk
(mk,Mk). For such a Gaussian

mixture p(xk|Yk), it has been obtained in [36, p. 213] that
x̂k = E[xk|Yk] and Pk = E[(xk − x̂k)

2
I |Yk], and they equals

(8) and (9), respectively. The proof is completed.
The computational complexity (CC) of the proposed IMM

estimator in Theorem 1 is analyzed as follows. Denote the
CC of Kalman filtering (KF) equations from (3) to (5) by ck.
Denote the CC of a pdf Nx(·) by cp, and denote the CC of
a1×w, a1×(W+(v1+v2)

2
I), and a1×a2/(a3×a4+a5×a6) by

c1, c2, and c3, respectively, where ai ∈ R, w and vi (i = 1, 2)
are vectors, and W is a matrix.

Corollary 1 For time instant k, the CC of the IMM estimator
is ck + 2(cp + c1 + c2 + c3).

Proof: First, the CC of the KF equations from (3) to
(5) is ck. Then, two Gaussian pdfs ϕk and ψk are computed
with the CC 2cp. Since 1− γ̂k = γϕk

γϕk+γψk
, γ̂k and 1− γ̂k are

calculated with the same CC c3. Finally, the CC of x̂k and Pk
in (8) and (9) is 2(c1+c2). It needs to mention that Γk is used
when analyzing the estimation accuracy of γ̂k, and there is no
need to calculate it in practice. Therefore, the overall CC of
the IMM estimator is ck + 2(cp + c1 + c2 + c3). The proof is
completed.

C. Auxiliary IMM estimators

Based on mk and mk in Theorem 1, we construct two
auxiliary IMM estimators x̃k and x̃♯k as follows:

γ̃k =

{
0, if Sk = sk

1, if Sk = sck.
(16)

x̃k , (1− γ̃k)mk + γ̃kmk (17)

x̃♯k , (1− γk)mk + γkmk. (18)

Their properties presented in the following Lemma 1 will
be used in the next section to study the stability of the IMM
estimator.

Lemma 1 The following properties hold.

E[Cov(γk|Yk)] ≤ E[(γk − γ̃k)
2|Sk] (19)

P̃k , E[(xk − x̃k)
2
I |Yk] ≥ Pk. (20)

P ♯k , E[(xk − x̃♯k)
2
I |γk, Yk] = (1− γk)Mk + γkMk.

(21)

Proof of (19): It is shown in [37, Proposition 3.1] that for
two random quantities X and Y , Cov(X) = E[Cov(X|Y )]+
Cov(E[X|Y ]). Due to Cov(E[X|Y ]) ≥ 0,

Cov(X) ≥ E[Cov(X|Y )]. (22)

By this result, Cov(γk|Sk) ≥ E[Cov(γk|Sk, yk, Yk−1)]. Note
that Sk is a function of yk, and therefore knowing yk is equiv-
alent to knowing {Sk, yk}. Thus, E[Cov(γk|Sk, yk, Yk−1)] =
E[Cov(γk|yk, Yk−1)]. Then, we have Cov(γk|Sk) ≥
E[Cov(γk|Yk)].

Let γ̃♯k , E[γk|Sk]. By the definition of covariance,
Cov(γk|Sk) = E[(γk − γ̃♯k)

2|Sk]. It is known that γ̃♯k =

E[γk|Sk] is the one that minimizes E[(γk − γ̃♯k)
2|Sk].

Hence, E[(γk − γ̃♯k)
2|Sk] ≤ E[(γk − γ̃k)

2|Sk]. Therefore,
Cov(γk|Sk) ≤ E[(γk − γ̃k)

2|Sk]. Thus, (19) holds due to
Cov(γk|Sk) ≥ E[Cov(γk|Yk)] obtained above.

Proof of (20): It is well known that x̂k = E[xk|Yk]
minimizes E[(xk − x♯)2I |Yk] for x♯ ∈ Rn, which means
Pk = E[(xk − x̂k)

2
I |Yk] ≤ E[(xk − x̃k)

2
I |Yk] = P̃k, which

proves (20).
Proof of (21): When γk = 0, x̃♯k = mk in (8). Then, by

(12), E[(xk − x̃♯k)
2
I |γk = 0, Yk] = E[(xk −mk)

2
I |γk = 0, Yk]

= Mk. Similarly, γk = 1, x̃♯k = mk in (8). Then, by (14),
E[(xk − x̃♯k)

2
I |γk = 1, Yk] = Mk. Consequently, P ♯k = (1 −

γk)Mk + γkMk.
The proof is completed.
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IV. ESTIMATION ACCURACY OF γk FOR UPL SYSTEMS

This section aims at solving Problem 2. The results on the
estimation accuracy of γk for stable and unstable UPL systems
are given in Theorem 2.
Cov(γk|Yk) contains random quantity Yk, and thus the

estimation accuracy is accessed in the mean sense, that is,

E[Cov(γk|Yk)] =
∫
Rm

γγψkϕk
γϕk + γψk

dyk, (23)

where due to the independence of γk and Yk−1, the integral
is computed with respect to yk rather than Yk.

Theorem 2 (Estimation accuracy of γk)
For a UPL system,

(i) when ρ(A) ≥ 1,

lim
k→∞

E[Cov(γk|Yk)] = 0. (24)

(ii) When ρ(A) < 1, there is an accuracy threshold Γγ
such that

E[Cov(γk|Yk)] ≥ Γγ > 0. (25)

Theorem 2(i) and (ii) are proved in the following two
subsections, respectively.

Remark 1 An unstable UPL system will become an OPL
one, since the estimation of γk becomes accurate with time
when ρ(A) > 1, as shown in Theorem 2. In other words,
γk can be exactly estimated without errors, and the packet-
loss status become unknown (observable), that is, an OPL
system. However, for a stable UPL system, there is an accuracy
threshold such that the estimation accuracy cannot be better
than this threshold. The reason for such a phenomenon is
explained in Remark 2 at the end of this section.

A. Proof of Theorem 2(i): The case ρ(A) ≥ 1

The proof of Theorem 2(i) involves the convergence of the
probabilities of some events (e.g. (29c)), and formula (26)
will be involved in analysing the convergence. The following
Lemmas 2–4 are given to provide the relevant properties for
proving Theorem 2(i).

Lemma 2 Let Wk ,
∑k−1
j=0 A

jQ(Aj)′. When ρ(A) ≥ 1,

lim
k→+∞

k
1
4√

det(CWkC ′)
= 0. (26)

Proof: There exists an invertible matrix H such that
A = HJH−1, where J is the Jordan canonical form of A.
For simplicity, we assume that J = [ J1 0

0 J2
] has two Jordan

blocks, where J1 and J2 correspond to the eigenvalues λ1 and
λ2, respectively. |λ1| = ρ(A) ≥ 1, λ1 ̸= λ2, and |λ1| ≥ |λ2|.
For j = 1 or 2, Jj may contain multiple Jordan sub-blocks
with λj on the diagonal. The case that the number of distinct
eigenvalues is greater than two can be dealt with in the same
way as follows.

Denote σq , σ(Q). Wk ≥ σq
∑k−1
j=0 A

j(Aj)′. Since
A ∈ Rn×n, Aj(Aj)′ = Aj(Aj)∗ = HJjH−1(HJjH−1)∗.

Let σH , σ(H−1(H−1)∗). Aj(Aj)′ ≥ σHHJ
j(J∗)jH∗.

Note that J0(J0)∗ = I , Jj =
[
Jj
1 0

0 Jj
2

]
, and Jj(J∗)j =[

Jj
1 (J

j
1 )

∗ 0

0 Jj
2 (J

j
2 )

∗

]
. Let

Jk ,
[
I1 +

∑k−1
j=1 J

j
1 (J

j
1 )

∗ 0

0 I2 +
∑k−1
j=1 J

j
2 (J

j
2 )

∗

]
,

where Ij is the identity matrix with the same dimension as
Jj , j = 1, 2.

k−1∑
j=0

Aj(Aj)′ ≥ σHH
(
I +

k−1∑
j=1

Jj(J∗)j
)
H∗

≥ σHHJkH∗. (27)

By the property [38, Corollary 8.4.15] that det(X + Y ) ≥
det(X) + det(Y ) for X ≥ 0, Y ≥ 0,

det(Jk) = det
(
I1 +

k−1∑
j=1

Jj1 (J
j
1 )

∗
)
det

(
I2 +

k−1∑
j=1

Jj2 (J
j
2 )

∗
)

≥
(
1 +

k−1∑
j=1

det(Jj1 (J
j
1 )

∗)
)(

1 +
k−1∑
j=1

det(Jj2 (J
j
2 )

∗)
)

≥ 1 +

k−1∑
j=1

det
(
Jj1 (J

j
1 )

∗
)
, (28)

where the last inequality is obtained by noting that∑k−1
j=1 det(J

j
2 (J

j
2 )

∗ ≥ 0.
By the property det(XY ) = det(X) det(Y ) [38, 18,

Proposition 2.7.3],
k−1∑
j=1

det
(
Jj1 (J

j
1 )

∗
)
=
k−1∑
j=1

(
det(J1)

)j(
det(J∗

1 )
)j
.

J1 is an upper triangular matrix with diagonal entries λ1. Sup-
pose that its dimension is r. Then,

∑k−1
j=1 det

(
Jj1 (J

j
1 )

∗
)

=∑k−1
j=1 (|λ1|r)2j . Since |λ1| = ρ(A) ≥ 1, (|λ1|2)rj ≥ 1 and∑k−1
j=1 (|λ1|r)2j ≥ k− 1. Thus,

∑k−1
j=1 det

(
Jj1 (J

j
1 )

∗) ≥ k− 1.
By (28), det(Jk) ≥ k.

By the property det(XY ) = det(X) det(Y ) and
(27), det(

∑k−1
j=0 A

j(Aj)′) ≥ det(σHHJkH∗) =
σnH det(HH∗) det(Jk). Similarly, by
Wk ≥ σq

∑k−1
j=0 A

j(Aj)′, det(CWkC
′) ≥

σnq det(C
∑k−1
j=0 A

j(Aj)′C ′) ≥ ξ det(Jk), where
ξ , det(CC ′)σnq σ

n
H det(HH∗), and det(CC ′) > 0

since C ∈ Rm×n is assumed to have full row rank.
Due to det(Jk) ≥ k, det(CWkC

′) ≥ ξk. Thus,
limk→+∞

k
1
4√

det(CWkC′)
≤ limk→+∞

k
1
4√
ξk

= 0. Thus,

Lemma 2 holds.

Lemma 3 The following facts hold.

lim
k→∞

P(Sk = sk|γk = 0) = 1 (29a)

lim
k→∞

P(Sk = sk|γk = 1) = 0 (29b)

lim
k→∞

P(Sk = sck|γk = 0) = 0 (29c)

lim
k→∞

P(Sk = sck|γk = 1) = 1. (29d)
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Proof: For the case Sk = sk,

P(Sk = sk|γk = 0) = P(yk ∈ Ck|γk = 0).

When γk = 0, yk = υk and p(yk|γk = 0) = Nyk(0, R).
P(yk ∈ Ck|γk = 0) =

∫
Ck

Nyk(0, R)dyk. As k → ∞, Ck →
Rm and

∫
Rm Nyk(0, R)dyk = 1. Therefore, limk→∞ P(Sk =

sk|γk = 0) = 1, which proves (29a).
xk in (1) can be recursively calculated as xk = Akx0+ω

♯
k,

where ω♯k =
∑k−1
j=0 A

jωk−1−j , ω
♯
k ∼ Nω♯

k
(0,Wk), and Wk is

defined in Lemma 2. Consequently,

p(xk) = Nxk

(
Akx0, A

kP0(A
k)′ +Wk

)
. (30)

When γk = 1, yk = Cxk + υk. Then, p(yk|γk =
1) = Nyk(yk, Zk), where yk , CAkx0 and Zk ,
CAkP0(A

k)′C ′ + CWkC +R.

P(Sk = sk|γk = 1) = P(yk ∈ Ck|γk = 1)

=

∫
Ck

Nyk(yk, Zk)dyk.

Since Nyk(yk, Zk) = 1√
(2π)m det(Zk)

exp(− 1
2 (·)

′Z−1
k (·))

where exp(− 1
2 (·)

′Z−1
k (·)) ≤ 1, P(Sk = sk|γk = 1) ≤

1√
(2π)m det(Zk)

∫
Ck

dyk. Note that Zk ≥ CWkC
′ and that∫

Ck
dyk = k

1
4 is the volume of Ck. 1√

det(Zk)

∫
Ck

dyk ≤
k

1
4√

det(CWkC′)
. By Lemma 2 that limk→∞

k
1
4√

det(CWkC′)
= 0,

limk→∞ P(Sk = sk|γk = 1) = 0. (29b) is proved.
For the case Sk = sck, since sk ∩ sck = ∅, P(Sk = sck|γk =

0) = 1 − P(Sk = sk|γk = 0) and P(Sk = sck|γk = 1) =
1−P(Sk = sk|γk = 1). From (29a) and (29b), it follows that
(29c) and (29d) hold.

Lemma 4 The mean squared estimation error of γ̃k converges
to zero, and the estimation accuracy P(γk = γ̃k|Sk) converges
to 1. Specifically,

lim
k→∞

E[(γk − γ̃k)
2|Sk] = 0 (31)

lim
k→∞

P(γk = γ̃k|Sk) = 1. (32)

Proof: By the law of total probability,

E[(γk − γ̃k)
2|Sk]

= (0− γ̃k)
2P(γk = 0|Sk) + (1− γ̃k)

2P(γk = 1|Sk)
= γ̃kP(γk = 0|Sk) + (1− γ̃k)P(γk = 1|Sk), (33)

where (33) is obtained by noting that γ̃k takes the value 0 or
1.

When Sk = sk, γ̃k = 0 in (16), and then (33) = P(γk =
1|Sk = sk). By using Bayesian formula,

P(γk = 1|Sk = sk)

=
γP(Sk = sk|γk = 1)

γP(Sk = sk|γk = 0) + γP(Sk = sk|γk = 1)
.

By (29a) and (29b), limk→∞ E[(γk − γ̃k)
2|Sk = sk] = 0.

Similarly, when Sk = sck, γ̃k = 1. Then,

(33) = P(γk = 0|Sk = sck)

=
γP(Sk = sck|γk = 0)

γP(Sk = sck|γk = 0) + γP(Sk = sck|γk = 1)
.

By (29c) and (29d), limk→∞ E[(γk − γ̃k)
2|Sk = sck] = 0.

As proved as above, no matter Sk = sk or Sk = sck,
limk→∞ E[(γk − γ̃k)

2|Sk] = 0, which proves that (31) holds.
Let dk = (γk − γ̃k)

2. When γk = γ̃k, dk = 0. When
γk ̸= γ̃k, dk = 1. E[(γk − γ̃k)

2|Sk] = 0 ·P(γk = γ̃k|Sk) + 1 ·
P(γk ̸= γ̃k|Sk). From (31), it follows that limk→∞ P(γk ̸=
γ̃k|Sk) = 0, which means limk→∞ P(γk = γ̃k|Sk) = 1. The
proof of (32) is completed.

Proof of Theorem 2(i): By E[(γk− γ̂k)2|Yk] ≤ E[(γk−
γ̃k)

2|Sk] in (19) and limk→∞ E[(γk− γ̃k)2|Sk] = 0 in (31), it
is clear that Theorem 2(i) holds.

B. Proof of Theorem 2(ii): The case ρ(A) < 1

Some preliminaries and lemmas are given as follows.
Steady pdf of xk: By (1), it is easy to obtain p(xk) =

Nxk
(Akx0, Pk) with Pk = APk−1A

′+Q. When ρ(A) < 1, it
is well known that Akx0 converges to zero and Pk converges
to Px, where Px is the unique solution of Px = APxA

′ +Q.
Since they converge exponentially fast, we assume that p(xk)
has reached the steady pdf, that is,

p(xk) = Nxk
(0, Px). (34)

Probability cumulative function Φ(·): For Nx(0, Px) and
Ny(0, R) with x ∈ Rn and y ∈ Rm, clearly, f(x, y) ,
Ny(0, R)Nx(0, Px) with (x, y) ∈ Rn×Rm still is a Gaussian
pdf. Define the probability cumulative function of f by

Φ(Ω) ,
∫
Ω⊆Rn×Rm

Ny(0, R)Nx(0, Px)dydx. (35)

Lemmas 5 and 6 in the following establish the relationship
between E[Cov(γk|Yk)] and Φ(Ω), which plays an important
role in proving the existence of Γγ in (25) in Theorem 2(ii).

Lemma 5 For a given l > 0, let κ , (σ(R))−1 and Ωl ,{
(x, y) ∈ Rn ×Rm

∣∣ ||y − Cx|| ≤ l
}

. Then,∫
Rn×Rm

γγNy(0, R)Ny(Cx,R)

γNy(0, R) + γNy(Cx,R)
Nx(0, Px)dydx (36)

≥ γγ

γ exp(0.5κl2) + γ
Φ(Ωl). (37)

Proof: In (36),

Ny(Cx,R)

γNy(0, R) + γNy(Cx,R)

=
1

γ exp(−y′R−1y
2 ) exp( (y−Cx)

′R−1(y−Cx)
2 ) + γ

. (38)

Note that exp( (y−Cx)
′R−1(y−Cx)

2 ) ≤ exp(0.5κl2) for
(x, y) ∈ Ωl and that exp(−y′R−1y

2 ) ≤ 1, we have
(38) ≥ 1

γ exp(0.5κl2)+γ for (x, y) ∈ Ωl. Thus, (36) ≥
γγ

γ exp(0.5κl2)+γ

∫
Ωl

Ny(0, R)Nx(0, Px)dydx. The proof is
completed.

Lemma 6 For an arbitrary given l > 0,

Exk
Eyk [Cov(γk|yk, xk)] ≥

γγ

γ exp(0.5κl2) + γ
Φ(Ωl) > 0.
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Proof: It is known that for a Bernoulli random variable,
say t, Cov(t) = P(t = 0)P(t = 1). Thus, Cov(γk|yk, xk) =
P(γk = 0|yk, xk)P(γk = 1|yk, xk), and the two probability
quantities on the right-hand side are calculated as follows.

Recall that yk = γkCxk + υk. It is easy to obtain that

p(yk|γk = 0, xk) = Nyk(0, R)

p(yk|γk = 1, xk) = Nyk(Cxk, R).

Then, using the law of total probability and noting that γk
is independent of xk, p(yk|xk) = p(yk|γk = 0, xk)P(γk =
0|xk) + p(yk|γk = 1, xk)P(γk = 1|xk) = γNyk(0, R) +
γNyk(Cxk, R).

By Bayesian formula,

P(γk = 0|yk, xk) =
p(yk|γk = 0, xk)P(γk = 0|xk)

p(yk|xk)

=
γNyk(0, R)

γNyk(0, R) + γNyk(Cxk, R)
,

P(γk = 1|yk, xk) = 1− P(γk = 0|yk, xk).

Then, by Cov(γk|yk, xk) = P(γk = 0|yk, xk)P(γk =
1|yk, xk), p(yk|xk) obtained above, p(xk) in (34), and using
Lemma 5,

Exk
Eyk [Cov(γk|yk, xk)]

=

∫
Rn

∫
Rm

Cov(γk|yk, xk)p(yk|xk)p(xk)dykdxk

=

∫
Rn×Rm

γγNyk(0, R)Nyk(Cxk, R)Nxk
(0, Px)

γNyk(0, R) + γNyk(Cxk, R)
dykdxk

≥ γγ

γ exp(0.5κl2) + γ
Φ(Ωl) > 0.

Proof of Theorem 2(ii): By using (22), Cov(γk|Yk) ≥
Exk

[Cov(γk|yk, Yk−1, xk)]. Since γk in (2) is independent of
Yk−1, Exk

[Cov(γk|yk, Yk−1, xk)] = Exk
[Cov(γk|yk, xk)].

For an arbitrary given l and by Lemma 6,

Eyk [Cov(γk|Yk)] ≥ Eyk
[
Exk

[Cov(γk|yk, xk)]
]

= Exk

[
Eyk [Cov(γk|yk, xk)]

]
≥ γγ

γ exp(0.5κl2) + γ
Φ(Ωl) > 0.

Due to EYk
[·] = EYk−1

[Eyk [·]], EYk
[Cov(γk|Yk)] ≥

γγ
γ exp(0.5κl2)+γΦ(Ωl) > 0, which means
inf EYk

[Cov(γk|Yk)] > 0. Let Γγ , inf EYk
[Cov(γk|Yk)].

According to the property of infimum, there is no k ∈ N such
that EYk

[Cov(γk|Yk)] < Γγ . The proof of Theorem 2(ii) is
completed.

Remark 2 (Explanation on Theorem 2) For an unstable
UPL system, it follows from p(xk) in (30) that xk leaves
the original point further and further away as k → ∞, and
so does yk = γkCxk + υk when γk = 1. When γk = 0,
yk = υk stays nearby the original point. Then, γk = 0 or 1
can be estimated by observing the distance between yk and the
original point. yk goes further away from the original point
as k → ∞, and therefore the estimation becomes more and
more accurate.

For a stable UPL system, it follows from p(xk) in (34) that
xk stays nearby the original point. If R is significantly larger
than Px in (34), the noise υk has a dominant position in yk =
γkCxk + υk, which makes it difficult to identify from yk the
existence of γkCxk. That is why the estimation of γk is limited
and cannot be better than Γγ .

V. IMM ESTIMATOR STABILITY FOR UPL SYSTEMS

This section aims at solving Problem 1. Based on the
results established in Section III-B and C on the IMM and
auxiliary IMM estimators, this section studies the stability of
the IMM estimator for UPL systems. The results are given in
the following Theorem 3.

For a given probability measure space (Ω,F ,P), where Ω,
F , and P denote the sample space, σ-field of Ω, and the
probability measure, respectively. For a property E , denote N
as the set on which E holds. By convention, P(E) means the
probability that E holds, and thus P(E) = P(N).

Definition 2 (Almost everywhere) [39, p.185]
A property E is said to hold almost everywhere (a. e.), if there
exists a set N ∈ F such that E holds on N and P(N c) = 0,
that is, P(E) = P(N) = 1− P(N c) = 1.

According to the definition of estimator stability in [40, 41],
the stability of the IMM estimator is given as follows.

Definition 3 (Estimator stability) [41]
The IMM estimator is said to be stable, if

lim sup
k→∞

E[Pk] <∞,∀P0 > 0.

It is said to be stable a. e., if

P
(
lim sup
k→∞

E[Pk] <∞
)
= 1, ∀P0 > 0.

Theorem 3 (Stability of IMM estimator)
For a UPL system,

(i) (Necessary and sufficient condition)
when ρ(A) ≥ 1, there exists a packet-arrival-rate
threshold λγ such that the IMM estimator is stable
a. e., that is,

P
(
lim sup
k→∞

E[Pk] <∞
)
= 1, ∀P0 > 0,

if and only if γ > λγ .
(ii) When ρ(A) < 1, the IMM estimator is stable, that is,

lim sup
k→∞

E[Pk] < +∞,∀P0 > 0,

no matter what value γ is.

Theorem 3(i) and (ii) are proved in the following Section V-
A and V-B, respectively.

A. Proof of Theorem 3(i): The case ρ(A) ≥ 1

Define the following functions:

Ψ(X,K) , (I −KC)X(I −KC)′ +KRK ′.
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KX , XC ′(CXC ′ +R)−1.

L(X, γ) , (1− γ)AXA′ + γAΨ(X,KX)A′ +Q.

The above defined Ψ(·) and L(·) are commonly-used func-
tions for analysing the covariance Pk. Thus, their properties
derived in the following two lemmas will be used for studying
estimator stability.

Lemma 7 The following facts hold.

Ψ(X,KX) ≤ Ψ(X,K), ∀K. (39)
Ψ(X1,K) ≤ Ψ(X2,K), if X1 ≤ X2. (40)
Ψ(X,KX) = X −KXCX. (41)

Proof: (39) and (40) can be obtained by letting A = 1
and Q = 0 in Lemma 1(a)(b)(h) of [28]. (41) is an existing
result in [42, p. 73 Eq. (2.58)].

Lemma 8 For random matrix X > 0 and Y > 0, if E[X] ≥
E[Y ], then E[Ψ(X,KX)] ≥ E[Ψ(Y,KY )].

Proof: By (40), Υ , E[Ψ(X,KX) − Ψ(Y,KY )] ≥
E[Ψ(X,KX) − Ψ(Y,KX)] = E[(I − KXC)(X − Y )(I −
KXC)

′].
If σ(I−KXC) = 0, then Υ ≥ 0. If σ(I−KXC) ̸= 0, then

there exists a real number κ such that (σ(I−KXC))
2 > κ >

0. Hence, Υ ≥ κ(E[X]− E[Y ]) ≥ 0.
The following properties will be used in analysing

probability-related convergence (e.g. (44)) in Lemmas 10 and
11.

Lemma 9 For events A, B and Ck,

P(A) ≥ P(A|B)P(B) (42)
lim
k→∞

P(Ck) = 1, if lim
k→∞

P(Ck) ≥ 1. (43)

Proof: For events A and B, P(A) =
P(A|B)P(B) + P(A|Bc)P(Bc). Then, (42) is obtained
due to P(A|Bc)P(Bc) ≥ 0. (43) is the result of
1 ≥ limk→∞ P(Ck) ≥ 1.

Lemmas 10 and 11 in the following study the convergence
of the probability of some estimator-stability-related condi-
tions (such the following Mk). They are essential for proving
Theorem 3(i).

Lemma 10 Denote the following condition by Mk:

Mk ,
{
E[Mk] ≤ E[L(Mk−1, γk−1)]

}
,

where Mk−1 is computed in Theorem 1. Then,

lim
k→∞

P(Mk) = 1. (44)

Proof: By viewing the event {γk = γ̃k} as B in (42),

P(x̃k = x̃♯k|Sk) ≥ P(x̃k = x̃♯k|γk = γ̃k, Sk)P(γk = γ̃k|Sk).

Under the condition γk = γ̃k, x̃k in (17) equals x̃♯k in (18),
and thus P(x̃k = x̃♯k|γk = γ̃k, Sk) = 1. By (32) and (43), we
have limk→∞ P(x̃k = x̃♯k|Sk) = 1.

Note that Sk is determined by yk. That is to say, know-
ing Yk is equivalent to knowing {Sk, Yk}. Thus, in (21),
P ♯k = E[(xk− x̃k)2I |Sk, Yk, γk]. Since γ̃k is determined by Sk,

knowing Sk is equivalent to knowing {Sk, γ̃k}, which means
P̃k = E[(xk − x̃k)

2
I |Sk, Yk, γ̃k] in (20). By limk→∞ P(γk =

γ̃k|Sk) = 1 in (32) and limk→∞ P(x̃k = x̃♯k|Sk) = 1
obtained above, it is known that under condition Sk, x̃k and
γ̃k converges with probability 1 to x̃♯k and γk, respectively.
Consequently, under condition Sk, E[(xk − x̃k)

2
I |Sk, γ̃k] con-

verges with probability 1 to E[(xk− x̃♯k)2I |Sk, γk], It is known
that for random variables X and Y , EY [EX [X|Y ]] = EX [X].
By using this property, we have EYk

[Pk] = EYk
[E[(xk −

x̃k)
2
I |Sk, γ̃k, Yk]] = E[(xk − x̃k)

2
I |Sk, γ̃k] converges with

probability 1 to E[(xk − x̃♯k)
2
I |Sk, γk] = EYk

[E[(xk −
x̃♯k)

2
I |Sk, γk, Yk]] = EYk

[P ♯k ], that is, limk→∞ P(E[P̃k] =

E[P ♯k ]) = 1.
By (20),

lim
k→∞

P(E[Pk] ≤ E[P ♯k ]) = 1. (45)

By (4) and (21),

lim
k→∞

P
(
E[Mk+1] ≤ A

(
E[(1−γk)Mk+γkMk]

)
A′+Q

)
= 1,

that is, limk→∞ P(Mk+1) = 1, which proves (44).

Lemma 11 Let Zk+1 = L(Zk, γk) with Z1 =M1. Then,

(i) limk→∞ P(E[Zk] ≥ E[Mk]) = 1.
(ii) limk→∞ P(E[Zk] ≤ E[Mk]) = 1.

(iii) limk→∞ P(E[Zk] = E[Mk]) = 1.

Proof of (i): To prove Part (i), we first prove the
following equality by the mathematical induction method:

P(E[Zk] ≥ E[Mk]|Mk) = 1. (46)

Clearly, E[Zk] ≥ E[Mk] holds when k = 1. Suppose that it
holds for 1, . . . , k−1. Then, for the case k, under the condition
Mk, E[Zk − Mk] ≥ E[(1 − γk−1)A[Zk−1 − Mk−1]A

′ +
γk−1A(Ψ(Zk−1,KZk−1

)−Ψ(Mk−1,KMk−1
))A′].

By the hypothesis E[Zk−1] ≥ E[Mk−1] and Lemma 8,
E[Ψ(Zk−1,KZk−1

)] ≥ E[Ψ(Mk−1,KMk−1
)]. Thus, E[Zk] ≥

E[Mk]. This result shows that the probability of the event
{E[Zk] ≥ E[Mk]} under the condition Mk is 1, that is,
P(E[Zk] ≥ E[Mk]|Mk) = 1. Thus, (46) holds.

By (42), P(E[Zk] ≥ E[Mk]) ≥ P(E[Zk] ≥
E[Mk]|Mk)P(Mk), where P(E[Zk] ≥ E[Mk]|Mk) = 1 is
proved in Lemma 11(ii). Thus, P(E[Zk] ≥ E[Mk]) ≥ P(Mk).
By (43) and Lemma 11, limk→∞ P(E[Zk] ≥ E[Mk]) = 1,
which proves Part (i).

Proof of (ii): We prove Part (ii) by the mathematical
induction method. It holds for k = 1, as Z1 = M1. Suppose
that it holds for 1, . . . , k, and consider the case k+1 as follows.

From (8) and (9), and due to (x̂k − mk)
2
I ≥ 0 and

(x̂k −mk)
2
I ≥ 0, Pk ≥ (1 − γ̂k)Mk + γ̂kΨ(Mk,KMk

). By
p(yk|Yk−1) = γϕk + γψk in (15),

Eyk [γ̂k] =
∫
Rm

γψk

γϕk+γψk
p(yk|Yk−1)dyk =

∫
Rm γψkdyk = γ.

Since Mk does not contain yk, Eyk [Pk] ≥ Eyk [(1− γ̂k)]Mk+

Eyk [γ̂k]Ψ(Mk,KMk
) = γMk + γΨ(Mk,KMk

). Let Z♯k ,
(1− γk)Zk + γkΨ(Zk,KZk

). Then, Zk+1 = AZ♯kA
′ +Q.
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Thus, based on this result, by taking mathematical expecta-
tion with respect to all the random quantities in Pk and Mk,
we have

E[Pk] ≥ γE[Mk] + γE
[
Ψ(Mk,KMk

)
]

≥ γE[Zk] + γE
[
Ψ(Zk,KZk

)
]

(47)

= E[Z♯k],

where (47) is obtained by the hypothesis E[Zk] ≤ E[Mk] and
using Lemma 8. Consequently, E[Mk+1] = E[APkA

′ +Q] ≥
E[AZ♯kA

′+Q] = E[Zk+1], which proves that E[Zk] ≤ E[Mk]
holds. This result implies that P(E[Zk] ≤ E[Mk]) = 1, and
clearly Part (ii) holds.

Proof of (iii): Part (iii) holds due to Parts (i) and (ii).
Proof of Theorem 3(i): By the definition of L(·) and Ψ(·),

Zk+1 = AZkA
′ − γkAZkC

′(CZkC
′ +R)−1CZkA

′ +Q. For
this modified Riccati equation, it has been reported in [28,
Theorems 2] that there exists a threshold value, denoted by
λd, such that lim supk→∞ E[Zk] is bounded if and only if
γ > λd. Let λγ = λd.

Proof of sufficiency: when γ > λγ , lim supk→∞ E[Zk] ≤
+∞. Then, due to limk→∞ P(E[Zk] = E[Mk]) = 1 in
Lemma 11(iii), P(lim supk→∞ E[Mk] ≤ +∞) = 1. By (5)
and (21), P ♯k ≤ Mk. From (45), it follows that P(E[Pk] ≤
E[P ♯k ] ≤ E[Mk]) = 1. Consequently, P(lim supk→∞ E[Pk] ≤
+∞) = 1 when γ > λγ .

Proof of necessity: When γ ≤ λγ , lim supk→∞ E[Zk] =
+∞. By Lemma 11(iii), P(lim supk→∞ E[Mk] = +∞) =
1. By (4), E[Mk] = AE[Pk−1]A

′ + Q. Thus, it must have
P(lim supk→∞ E[Pk] = +∞) = 1, when γ ≤ λγ .

B. Proof of Theorem 3(ii): The case ρ(A) < 1

Proof of Theorem 3(ii): In (9), Wk , (1− γ̂k)γ̂k(mk−
mk)

2
I =

γγψkϕk

(γψk+γϕk)2
(mk−mk)

2
I . Due to mk = mk+Kk(yk−

Cmk) in Theorem 1, (mk−mk)
2
I = Kk(yk−Cmk)

2
IK

′
k. By

p(yk) = γψk + γϕk in (15),

Eyk [Wk] = Kk

∫
Rm

γγψkϕk
γψk + γϕk

(yk − Cmk)
2
IdykK

′
k. (48)

Note γϕk

γψk+γϕk
≤ 1 and ψk = Nyk(Cmk, (CMkC

′ +

R)−1), Eyk [Wk] ≤ γKk

∫
Rm ψk(yk − Cmk)

2
IdykK

′
k =

γKk(CMkC
′ +R)−1K ′

k.
Since Kk = MkC

′(CMkC
′ + R)−1, Eyk [Wk] ≤

γMkC
′(CMkC

′ +R)−1CMk = γKMk
C ′Mk.

Eyk [Pk] = γMk + γΨ(Mk,KMk
) + Eyk [Wk] = Mk −

γKMk
C ′Mk + Eyk [Wk] ≤ Mk, and thus EYk

[Pk] ≤
EYk−1

[Mk].
By Mk+1 = APkA

′ + Q in Theorem 1, we have
EYk

[Mk+1] = AEYk
[Pk]A

′ +Q ≤ AEYk−1
[Mk]A

′ +Q. Due
to ρ(A) < 1, EYk

[Mk+1] is convergent and bounded, thus
EYk

[Pk] is bounded for arbitrary γ ∈ [0, 1]. The proof is
completed.

VI. NUMERICAL EXAMPLES

Some numerical examples are presented to illustrate the
main results of this paper.

Consider system (1) and (2) with the following parameters:

A =

[
σ 0
0 0.3

]
, C =

[
1 0.15
0 1

]
, Q = R =

[
4 0
0 4

]
.

Estimation accuracy of γk. It is shown in Figure 2 that
for an unstable UPL system (that is, σ = 1.2910 in A),
Cov(γk|Yk) converges to zero, which means that the estima-
tion γk becomes accurate with time, and the error |γk − γ̂k|
converges to zero as shown in the third sub-figure. This result
also indicates that an unstable UPL system will become an
OPL system with time. However, as shown in Figure 3, for
a stable UPL system (that is, σ = 0.25 in A), the estimation
accuracy Cov(γk|Yk) cannot be better than a threshold. These
phenomena verify the results of Theorem 2.

10 20 30 40 50 60 70 80 90 100
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1

10 20 30 40 50 60 70 80 90 100
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1

10 20 30 40 50 60 70 80 90 100
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10 20 30 40 50 60 70 80 90 100
0

0.2
0.4

Fig. 2. Estimation of γk for the case ρ(A) ≥ 1 and γ = 0.7.
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0

0.2
0.4

Fig. 3. Estimation of γk for the case ρ(A) < 1 and γ = 0.7.

Stability of IMM estimator. For unstable UPL systems,
let σ = {1.0541, 1.1952, 1.4142, 1.8257}, and the thresholds
λγ = 1 − 1/σ2 are {0.1, 0.3, 0.5, 0.7}, respectively. Figure 4
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shows that E[Pk] is stable for γ > λγ . For a stable UPL system
(that is, σ = 0.25), Figure 5 shows that E[Pk] is bounded for
different γ = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}, which verifies the
results of Theorem 3.
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1100

Fig. 4. Relationship between E[P300] and γ for the case ρ(A) > 1.
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Fig. 5. E[Pk] for the case ρ(A) < 1.

Comparison with existing estimators. In this part, the
performance of four estimators is compared on a real gas
turbine system, called GE-F404 engine [43]. This gas turbine
system takes the form of (1) and (2) with the following
parameters and initial conditions:

A =
[
0.6474 0 0.0429
0.0339 0.8869 −0.0764
0.0538 0 0.5141

]
, C =

[
1 1 0
0 1 1

]
,

Q = 4I3, R = 0.4I2, γ = 0.8, x0 = [−1, 7,−5]′,
and P0 = 5I3. In the state of this gas turbine system
xk = [xk(1), xk(2), xk(3)]

′, (xk(1), xk(2)) is the horizontal
position and xk(3) is the altitude.

The four estimators are the optimal linear estimator (OLE)
[21], the Bayesian Kalman filter (BKF) [16], the particle filter
(PF) [11], and the proposed IMM estimator in Theorem 1. In
Figure 6(a), x̂Bk , x̂k, x̂

l
k, and x̂pk denote the estimates computed

by the BKF, the IMM estimator, the OLE, and PF, respectively.
The root mean squared errors (RMSE) between the estimates
and the real states are shown in Figure 6(b). Among these

0 10 20 30 40 50 60 70 80 90 100
-10

-5

0

5

0 10 20 30 40 50 60 70 80 90 100
-10

0

10

0 10 20 30 40 50 60 70 80 90 100

-5

0

5

(a) State state and its estimates computed by OLE, BKF, PF, and IMM estimator.

(b) RMSE of OLE, BKF, PF, and IMM estimator.

Fig. 6. State estimates and RMSE of OLE, BKF, PF, and IMM estimator.

four estimators, overall, the IMM estimator and PF have the
best performance, followed by the BKF, and the OLE has the
worst performance. The performance of IMM estimator and
PF is about the same, however, the advantage of the IMM
estimator is that its stability can be theoretically determined
as in Theorem 3.

Robustness analysis of IMM estimator. In this section,
the robustness of the IMM estimator against system parameter
uncertainties is studied. Specifically, we investigate how the
uncertainties of system parameters (A, γ and R) affect the
estimation performance, where the performance is measured
by the RMSE. Nominal system parameters are given as
follows:

A∗ =
[
0.5 0
0 0.3

]
, C∗ =

[
1 0.5
0 1

]
, Q∗ = R∗ =

[
10 0
0 10

]
,
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γ∗ = 0.8. Take the parameter A∗ with an uncertainty of 5%
of A∗ for example. Let A = A∗ + 5%A∗. Denote the IMM
estimator designed for the system with A (IMM with A for
short) by IMMA, and denote the IMM estimator designed for
the system with A∗ (IMM with A∗ for short) by IMMA∗ .
The RMSEs of IMMA and IMMA∗ are shown in the first one
of Figure 7, which are denoted by RMSEA and RMSEA∗ ,
respectively.

Note that IMMA∗ is designed for the system with the
parameter A∗. When an uncertainty of 5%A∗ occurs, IMMA∗

is used for the system with the parameter A. The performance
RMSEA∗ is inferior to RMSEA, since IMMA is specifical-
ly designed for A. The performance loss is denoted by
∆RMSE = RMSEA∗ − RMSEA, and the performance loss
rate is denoted by ∆RMSE

RMSEA∗ . The average performance loss
rate is 3.45%, which corresponds to the column 5% and
the row A∗ of Table I. The RMSEs of the IMM estimator
under the parameter uncertainties 10%A∗, 15%A∗ and 20%A∗

are shown in the sequential sub-figures of Figure 7. The
corresponding performance loss rates are listed in the second
row of Table I, which marked with blue background colour.
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2.4
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2.8

Fig. 7. Estimation performance for A∗ with different uncertainties.

TABLE I
ESTIMATION PERFORMANCE LOSS WITH RESPECT TO DIFFERENT

PARAMETER UNCERTAINTIES.

−20% −15% −10% −5% 5% 10% 15% 20%

A∗ 3.62% 3.57% 3.41% 3.36% 3.45% 3.61% 3.37% 3.84%
R∗ 4.04% 3.82% 3.70% 3.61% 3.43% 3.51% 3.63% 3.72%
γ∗ 3.66% 3.57% 3.43% 3.33% 3.49% 3.69% 3.78% 3.83%

The results on the estimator robustness against parameter
uncertainties are shown in Table I. The first row indicates the
degree of uncertainties, and the data in the remaining rows
means the performance loss rate (e.g. 3.45% in the second
row) caused by the parameter located on its leftmost side (that
is, A∗) under the uncertainty located at its topmost (that is,
5%A∗). For the performance loss rates caused by the different
parameter uncertainties of γ∗ and R∗ are presented in the third

and forth rows. From which, it can be seen that the IMM
estimator has a good robustness, since the performance loss
rates are about 3% − 5% under parameter uncertainties from
5% to 20%.

VII. CONCLUSIONS

For a UPL system, we have studied the estimation accuracy
of the packet loss and the stability of the IMM state estimator.
Compared with existing estimators for UPL systems, the
advantages of the proposed IMM estimator are twofold. It
is not only applicable to unstable UPL systems, but also the
necessary and sufficient condition stability can be theoretical-
ly determined. We also reveal the relationship between the
estimation accuracy of packet loss status and the system’s
stability. However, we also noticed some limitations of the
proposed method in this paper, e.g., the method was designed
for Bernoulli packet loss and the packet loss rate was assumed
to be known. In practice, packet loss may follow a Markovian
chain, and the packet loss rate is time-varying and unknown.
Our subsequent research will address these issues. Another
research direction is to design controllers for UPL systems
and study the stability of the closed-loop systems.
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