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Observer-Based Fuzzy PID Control for Nonlinear
Systems With Degraded Measurements: Dealing

With Randomly Perturbed Sampling Periods
Yezheng Wang, Zidong Wang, Lei Zou, Quanbo Ge, and Hongli Dong

Abstract—This paper addresses the problem of observer-based
fuzzy proportional-integral-derivative (PID) control for a class
of nonlinear systems subject to degraded measurements and
randomly perturbed sampling periods (RPSPs). In the existing
results, the degraded measurements and RPSPs are handled
separately, where the sampling of different sensors is usually
assumed to be synchronous. In our work, a comprehensive model
is built to reflect the joint effects of degraded measurements and
RPSPs by using a series of stochastic variable sequences and a
set of Markov processes. In this model, the sampling periods of
each sensor are allowed to be diverse, time-varying and randomly
perturbed, thereby fully capturing the environmental effects and
device constraints. Different from the existing literature that
uses proportional type controllers, an observer-based fuzzy PID
controller with a modified structure is proposed which fully
utilizes the system information. To overcome the difficulties of the
incomplete measurement information, some auxiliary variables
related to the sampling periods are introduced under which the
measurement output is transformed into a form delayed with
stochastic delays. Subsequently, by using the special variable
separation and inequality technique, sufficient conditions are
derived to ensure the exponentially ultimate boundedness of the
closed-loop system in the mean-square sense. The desired gains
for the observer and PID controller are obtained through the
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solution of an optimization problem. Lastly, the effectiveness
of the developed approach is demonstrated through simulation
examples.

Index Terms—Takagi-Sugeno fuzzy system, observer-based
control, randomly perturbed sampling periods, proportional-
integral-derivative control.

I. INTRODUCTION

The Takagi-Sugeno (T-S) fuzzy systems, recognized for
their effective handling of complex nonlinear functions, have
been a focus of extensive research. These systems utilize fuzzy
sets and fuzzy membership functions to “blend” multiple linear
submodels, thus representing a smooth nonlinear function in
the form of a T-S fuzzy model. Such an approach seamlessly
integrates local linearity with global nonlinearity, resulting in a
model that is not only structurally concise but also easy to un-
derstand, and this clarity benefits the analysis and synthesis of
various nonlinear systems. With the evolution of fuzzy control
theory, the problem of T-S fuzzy-model-based control has been
tackled for an array of nonlinear systems such as networked
control systems, stochastic systems, cyber-physical systems,
impulsive systems, among others. The substantial volume of
literature on these topics [1]–[7] stands as a testament to the
ongoing interest in this field.

In recent decades, a variety of fuzzy control strategies
have been developed for T-S fuzzy models to handle tasks
such as stabilization, bounded control, H∞ control, and l2-
l∞ control. These strategies typically involve state-feedback
controllers, output-feedback controllers, observer-based con-
trollers, sliding mode controllers, and reset controllers, which
are all of the proportional-type (P-type), where the control
laws are highly dependent on current system information.
In contrast, proportional-integral-derivative (PID) controllers
utilize a blend of current information, historical data, and
signal change trends. PID controllers are well known for
their clear physical interpretation, high fault tolerance, and
robustness [8]–[11]. For example, a novel PID control method
has been proposed in [12] to deal with input saturations. Due
to their effectiveness and reliability, fuzzy PID controllers have
garnered special attention as they combine the advantages of
both fuzzy control and PID control.

In the past few years, initial developments in T-S fuzzy PID
control have emerged. For example, a switching PID controller
has been proposed in [13] for networked nonlinear systems by
specifically considering the scheduling of the FlexRay com-
munication protocol. In [14], the fuzzy PID control method
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has been applied to a two-degree-of-freedom helicopter system
with event-triggered mechanisms in order to achieve effective
flight control. Other notable works in this area can be found
in [15]–[18]. Within the existing literature, controllers have
been developed based on either system outputs or system states
(assuming they are available). While state feedback controllers
offer greater design flexibility, their reliance on measuring
all system states can be impractical. In contrast, observer-
based controllers, which are more desired as they leverage
system information more effectively, have gained particular
attention. For example, in [19], the observer-based control
problem has been first addressed for a flexible spacecraft by
proposing an effective approach. In [20], a novel observer
has been developed for boundary control targeted at robotic
manipulators which has aroused much attention. Nevertheless,
such schemes remain underexplored in fuzzy PID control
despite their theoretical promise.

With advancements in digital communication and signal
processing technology, digital controllers and estimators have
become prevalent in engineering practice [21]–[28]. Accord-
ingly, there has been an increased research interest in sampled-
data systems with a substantial body of literature available
[29]–[38]. In sampled-data systems, non-uniform sampling is
a common occurrence, which often results from sampler faults
or device capacity limitations. This non-uniformity introduces
multi-rate characteristics with varying time scales, thereby
posing significant challenges in system analysis and synthesis.
In the literature, there are mainly two methodologies for
tackling the non-uniformity, i.e., the deterministic approach
[31], [39] and the stochastic approach [40], [41], where the
former employs known bounds to define the range of sampling
periods, and the latter characterizes the sampling process
through probability distributions.

Compared to its deterministic counterpart, the stochastic
approach has been increasingly favored for modeling aperi-
odic sampling where the occurrences are probabilistic. This
approach’s effectiveness is highlighted in instances such as
[41], where a Markov chain has been used to characterize the
randomly perturbed sampling periods (RPSPs). It has been
shown that the model of RPSPs captures the time-varying,
stochastic and uncertain features of perturbed sampling, which
is effective for describing a wealth of aperiodic sampling
processes such as paper machine systems and brushless DC
servo systems. The existence of RPSPs makes the traditional
digital control method no longer applicable as it introduces
multi-time scales, especially for multi-sensor systems with
diverse sampling mechanisms.

Since the original work [41], RPSPs have generated exten-
sive research interest. For example, the results in [41] have
been extended to neural networks in [40] by incorporating
partly unknown transition probabilities. Further illustrating
this approach, the secure sliding control problem has been
addressed in [42] for linear systems. In [43], the fault detection
problem has been considered for multi-rate systems subject to
RPSPs, dynamic quantization, and missing measurements. In
[44], the T-S fuzzy model has been used to deal with the
RPSPs, where the measurements of all sensors have been
assumed to be sampled simultaneously. In a recent work

[45], the authors have discussed the non-uniformly sampled
neural networks with inaccessible sampling intervals where
the hidden information has been utilized to design estimators.
The exploration of the effects of RPSPs on digital controller
design, as evidenced by these studies, is not only of theoretical
interest but also of practical significance, underlining one of
the key motivations in this field.

The phenomenon of measurement degradation has recently
become a focal point in research owing to causes like sensor
aging, device failures, and channel fadings. This degradation
typically manifests as a random decrease in the amplitude of
sensed signals, which leads to a shortfall in system informa-
tion. In response to this challenge, a substantial amount of
research has been conducted on controller/estimator design
under conditions of degraded measurements. Examples of
this research include studies on fading-induced degradation
[46]–[48] and fault-induced degradation [49], [50]. In most
of literature, the sensors have been assumed to be sampled
simultaneously. For the case of sensors with different sampling
periods, it is rather complex to establish a unified model
describing both sampling uncertainties and amplitude degra-
dation. In this case, the RPSPs of sensors would introduce
different time scales and make the system to be stochastic,
thus bringing new challenges and difficulties in the system
analysis. Despite these advancements, there appears to be a
lack of investigation into the bounded PID control problem for
general nonlinear systems simultaneously experiencing RPSPs
and measurement degradation, and the main purpose of this
paper is to shorten such a gap.

In summarizing the discussions thus far, our focus is on
the observer-based fuzzy PID control problem for nonlinear
systems subjected to RPSPs and degraded measurements.
Addressing this control design involves several challenges:
1) the construction of an appropriate model that encapsulates
the effects of both RPSPs and degraded measurements in a
unified framework; 2) the analysis of system performance
under the constraints of RPSPs, measurement degradation,
and unknown-but-bounded (UBB) external noises; and 3) the
development of a controller design method that ensures the
exponentially ultimate boundedness of the closed-loop system
in the mean-square sense.

In response to the identified challenges, the key contribu-
tions of our study are summarized as follows.

1) A unified framework is built for dealing with the new
control problem subject to RPSPs, sensor degradation, and
transmission noises. Compared with the existing works (such
as [39], [43], [44]) where sensors are assumed to have the
same sampling period, the sampling periods of sensors in this
paper are allowed to be different. Thus, the considered problem
is more general which can reflect more complex engineering
phenomena with general nonlinearities and sampling uncer-
tainties.

2) An observer-based fuzzy PID controller is proposed
which utilizes incomplete measurements and can deal with
immeasurable premise variables. The designed controller has
a flexible structure which is more general than the widely-used
observer-based output feedback controller [51], [52].

3) By resorting to the special inequality technique, the
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controller gains are solved in terms of certain strict linear
matrix inequalities (LMIs). The proposed method doesn’t need
extra rank assumptions on input matrices [53] and avoids the
multiple optimization process in the cone complementarity
linearization approach [51].

The remainder of this article is structured as follows.
Section II formulates the control problem, introducing the
discrete-time T-S fuzzy model with multiple sensors, the
characterization of degraded sensors with RPSPs, the observer-
based fuzzy PID controller, and the performance index of
boundedness. Section III presents two theorems dedicated to
analyzing system performance and designing controller gains,
where an algorithm is provided to explain the implementation
details of the proposed method. In Section IV, a simulation
example is provided, accompanied by a comparative analysis
to demonstrate the efficacy of the proposed control method.
Finally, conclusions are drawn in Section V.

Notations

Ro The o-dimensional Euclidean space
AT The transposition of a matrix A
A−1 The inverse of a matrix A
diag{· · · } A diagonal matrix
λmin(A) The minimum eigenvalue of a matrix A
A−B < 0 Matrix A−B is negative definite
|a| The absolute value of a scalar a
E{α} The mathematical expectation of a stochastic

variable α
Pr{U} The occurrence probability of an event U
δ(b) The delta function that equals 1 if b = 0 and

equals 0 otherwise

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Nonlinear Plant

Consider a type of nonlinear plant modeled by the following
discrete-time T-S fuzzy system:

x(Tk+1) =
n̄∑

n=1

ηn(ρ(Tk))
(
Anx(Tk) + Bnu(Tk)

+ Enω(Tk)
)

z(Tk) =
n̄∑

n=1

ηn(ρ(Tk))Mnx(Tk)

(1)

where 0 = T0 < T1 < · · · < Tk < · · · is the time instant
sequence of the system state updating; n ∈ {1, 2, · · · , n̄} and
n̄ is a known integer referring to the total number of fuzzy
rules; Tk+1 − Tk = ϵ is the updating interval with ϵ > 0
being a known scalar; x(Tk) ∈ Rox is the internal system
state; z(Tk) ∈ Roz is the variable controlled to satisfy certain
performance requirements; ω(Tk) ∈ Roω is the noise which
satisfies ωT (Tk)ω(Tk) ≤ ω̄ with ω̄ > 0 being a known scalar;
u(Tk) ∈ Rou is the control signal received by the actuator; the
matrices An, Bn, En and Mn are known system parameters
with proper dimensions; ρ(Tk) is the premise variable vector
and is assumed to be a function of the immeasurable system

states; and ηn(ρ(Tk)) is the membership function with the
following properties:

n̄∑
n=1

ηn(ρ(Tk)) = 1, ηn(ρ(Tk)) ≥ 0, n = 1, 2, · · · , n̄.

Define the sampling instant sequence of the i-th (i ∈
{1, 2, · · · , oy}) sensor as 0 = s

(0)
i < s

(1)
i < · · · < s

(τ)
i < · · ·

where the superscript τ means the τ -th sampling instant and
oy is the total number of sensors. By considering the sensor
degradation phenomenon, the output of the i-th sensor is
modeled by

yi

(
s
(τ)
i

)
= βi

(
s
(τ)
i

)
Cix

(
s
(τ)
i

)
+Diω

(
s
(τ)
i

)
(2)

where Ci and Di are known real matrices and βi(·) is an
independent stochastic variable sequence taking values in [0, 1]
with

E
{
βi

(
s
(τ)
i

)}
= β̄i,

E
{[

βi

(
s
(τ)
i

)
− β̄i

] [
βi

(
s
(τ)
i

)
− β̄i

]}
= β∗

i

where the known scalar β̄i > 0 is the mathematical expectation
and β∗

i ≥ 0 is the variance.
As discussed in the Introduction, the sensors are subject to

RPSPs. To be more specific, the sampling periods of sensors
are considered to be time-varying, random and integer multiple
of ϵ, that is, s(τ+1)

i − s
(τ)
i = p

(τ)
i ϵ. In this paper, we assume

that p(τ)i takes values in a finite set {1, 2, · · · , p̄i} where p̄i is a
known positive scalar and p̄iϵ reflects the maximum sampling
interval of the i-th sensor.

We define an auxiliary variable related to the sampling
interval:

αi(Tk) ,
Tk − s

(τ)
i

ϵ
, s

(τ)
i ≤ Tk < s

(τ+1)
i . (3)

Here, αi(Tk) reflects the time length from the current instant
Tk to the last sampling instant s(τ)i of the i-th sensor. It is easy
to see that αi(Tk) ∈ {0, 1, 2, · · · , p̄i−1}. Then, the following
assumption is given to capture the time-varying and random
features of sensor sampling periods.

Assumption 1: [42] {αi(Tk), Tk ≥ 0} is a Markov process
that takes values in the finite set Pi , {0, 1, 2, · · · , p̄i−1} and
is independent of βi(·) (i ∈ {1, 2, · · · , oy}). The correspond-
ing transition probability matrix is Θi , [θ

(i)
ai+1,bi+1]p̄i×p̄i

with the conditional transition probability given by

Pr {αi(Tk+1) = bi|αi(Tk) = ai} , θ
(i)
ai+1,bi+1,

∀ai, bi ∈ Pi.

For s
(τ)
i ≤ Tk < s

(τ+1)
i , one can easily obtain that s(τ)i <

Tk+1 ≤ s
(τ+1)
i . Then, the value of αi(Tk+1) is calculated in

the following two cases.
Case 1: The data is unsuccessfully sampled at Tk+1, i.e.,

s
(τ)
i < Tk+1 < s

(τ+1)
i . It follows from the definition of αi(Tk)

in (3) that

αi(Tk+1) =
Tk+1 − s

(τ)
i

ϵ
=

Tk + ϵ− s
(τ)
i

ϵ
= αi(Tk) + 1.

(4)
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Case 2: The data is successfully sampled at Tk+1, i.e.,
Tk+1 = s

(τ+1)
i . In this case, one has

αi(Tk+1) =
Tk+1 − s

(τ+1)
i

ϵ
= 0. (5)

By taking Case 1 and Case 2 into account, for αi(Tk) = ai
(ai ∈ Pi), one obtains

αi(Tk+1) =

{
ai + 1, s

(τ)
i < Tk+1 < s

(τ+1)
i

0, Tk+1 = s
(τ+1)
i .

(6)

Based on the above analysis, the specific form of the
transition probability for αi(Tk) ∈ {0, 1, · · · , p̄i − 2} is given
as follows:

Pr{αi(Tk+1) = 0|αi(Tk) = ai} , θ
(i)
ai+1,1,

Pr{αi(Tk+1) = ai + 1|αi(Tk) = ai} , θ
(i)
ai+1,ai+2.

It is easy to see

θ
(i)
ai+1,ai+2 = 1− θ

(i)
ai+1,1. (7)

For αi(Tk) = p̄i − 1, it is calculated that αi(Tk+1) = 0
under the constraint of the maximum sampling interval, which
implies

Pr{αi(Tk+1) = 0|αi(Tk) = p̄i − 1} , θ
(i)
p̄i,1

= 1. (8)

Thus, the transition probability matrix of αi(Tk) is written as
follows:

Θi ,


θ
(i)
1,1 1− θ

(i)
1,1 0 · · · 0

θ
(i)
2,1 0 1− θ

(i)
2,1 · · · 0

...
...

...
. . .

...
θ
(i)
p̄i−1,1 0 0 · · · 1− θ

(i)
p̄i−1,1

1 0 0 · · · 0

 .

Due to the potential variation in the sampling periods across
different sensors, a total of oy (oy > 1) Markovian chains
are utilized to characterize the sensor sampling. To aid in the
subsequent system description and analysis, a new variable
α(Tk) is introduced. Along with this introduction, a lemma
is provided to establish a one-to-one mapping between α(Tk)
and αi(Tk) (i = 1, 2, · · · , oy).

Lemma 1: [42] The multiple Markovian chains αi(Tk) can
be mapped into a new Markovian chain α(Tk) (α(Tk) ∈ P ,
{0, 1, 2, · · · , p̄} where p̄ ,

∏oy
i=1 p̄i − 1) according to the

mapping rule f(·):

α(Tk) = f
(
α1(Tk), α2(Tk), · · · , αoy (Tk)

)
=α1(Tk) +

oy∑
i=2

(
αi(Tk)

i−1∏
t=1

p̄t

)
.

Furthermore, if the value of α(Tk) is known, then αi(Tk) can
be calculated based on the mapping rule ϕi(·) that

αoy (Tk) =

⌊
α(Tk)∏oy−1
i=1 p̄i

⌋
, ϕoy (α(Tk))

...

αi(Tk) =

α(Tk)−
∑oy

l=i+1

(
αl(Tk)

∏l−1
t=1 p̄t

)
∏i−1

t=1 p̄t


,ϕi(α(Tk)), 1 < i < oy

α1(Tk) =α(Tk)−
oy∑
i=2

(
αi(Tk)

i−1∏
t=1

p̄t

)
, ϕ1(α(Tk)).

In terms of the definition of ϕi(α(Tk)) (i = 1, 2, · · · , oy), the
transition probability of stochastic variable α(Tk) is given as
follows:

θa+1,b+1 ,Pr {α(Tk+1) = b|α(Tk) = a}

=

oy∏
i=1

Pr {αi(Tk+1) = ϕi(b)|αi(Tk) = ϕi(a)}

=

oy∏
i=1

θ
(i)
ϕi(a)+1,ϕi(b)+1.

B. Signal Transmissions

After introducing the considered system model, this subsec-
tion describes the complex transmission process. As shown in
Fig. 1, the degraded measurements of sensors are transmitted
to the controller via a noise-affected channel. Since the sam-
pling interval of sensors is randomly perturbed, the transmis-
sions from sensors to the controller would be intermittent. To
facilitate the generation of the desired control laws, the zero-
order holder (ZOH) is applied such that the last measurements
can be held until the new data comes.

Define ȳi(Tk) ∈ R as the output of the ZOH related to the
i-th sensor, one has

ȳi(Tk) = yi

(
s
(τ)
i

)
+ vi

(
s
(τ)
i

)
, s

(τ)
i ≤ Tk < s

(τ+1)
i (9)

where vi(·) ∈ R denotes the bounded transmission noise
which satisfies v2i (·) ≤ v̄i with v̄i > 0 being a known scalar.

By recalling the definition of αi(Tk), one derives that

ȳi(Tk) = yi

(
s
(τ)
i

)
+ vi

(
s
(τ)
i

)
= yi (Tk − αi(Tk)ϵ) + vi (Tk − αi(Tk)ϵ)

=βi (Tk − αi(Tk)ϵ) Cix (Tk − αi(Tk)ϵ)

+Diω (Tk − αi(Tk)ϵ) + vi (Tk − αi(Tk)ϵ) . (10)

Defining the overall output of the ZOH as ȳ(Tk) ,[
ȳ1(Tk) ȳ2(Tk) · · · ȳoy (Tk)

]T
, one further obtains

ȳ(Tk) =

oy∑
i=1

βi (Tk − αi(Tk)ϵ)Cix (Tk − αi(Tk)ϵ)

+Dω̌ (Tk − α(Tk)ϵ) + v̌ (Tk − α(Tk)ϵ) (11)
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Fig. 1: Observer-based fuzzy PID control system with incomplete measurement information

where

Ci ,
[
0 · · · 0 CT

i︸︷︷︸
the 1×i th block

0 · · · 0
]T

,

D , diag
{
D1,D2, · · · ,Doy

}
,

ω̌(Tk − α(Tk)ϵ) ,


ω (Tk − α1(Tk)ϵ)
ω (Tk − α2(Tk)ϵ)

...
ω
(
Tk − αoy (Tk)ϵ

)
 ,

v̌(Tk − α(Tk)ϵ) ,


v1 (Tk − α1(Tk)ϵ)
v2 (Tk − α2(Tk)ϵ)

...
voy
(
Tk − αoy (Tk)ϵ

)
 .

Remark 1: An auxiliary variable αi(Tk) is defined in (3)
to reflect the sampling results of each sensor node. Note that
αi(Tk) is well defined which includes all considered sampling
cases, where the normal case (i.e., successive sampling) is
denoted by αi(Tk) = 0. We first calculate the transition
probability matrix of αi(Tk), and then rewrite the degraded
outputs with RPSPs as a form of distributed stochastic de-
lays. The introduction of αi(Tk) facilitates the description of
degraded outputs, and contributes to the application of the
mature Markov jump system technique and delay methods,
thereby overcoming the challenges caused by the incomplete
information.

C. Observer-Based Fuzzy PID Controller

By utilizing noise-affected degradation measurements, we
adopt the following observer-based fuzzy PID controller:

x̂(Tk+1) =
n̄∑

m=1

ηm(ρ̂(Tk))
(
Amx̂(Tk) + Bmũ(Tk)

+ Lm

(
ȳ(Tk)− ΛCx̂(Tk)

))
ũ(Tk) =

n̄∑
π=1

ηπ(ρ̂(Tk))

(
KP

π x̂(Tk) +KI
π

σ̄∑
σ=1

x̂(Tk−σ)

+KD
π

(
x̂(Tk)− x̂(Tk−1)

))
(12)

where Lm is the observer gain; KP
π , KI

π and KD
π are propor-

tional, integral and derivative gains, respectively; σ̄ > 0 is a
given integer representing the data length used in the integral-
loop; ρ̂(Tk) is the estimated premise variable vector that would
be different with ρ(Tk); x̂(Tk) is the estimate of x(Tk); ũ(Tk)
is the control law generated by the PID controller; and

C ,
[
CT
1 CT

2 · · · CT
oy

]T
,

Λ , diag
{
β̄1, β̄2, · · · , β̄oy

}
.

Remark 2: The advantages and features of the designed
controller are summarized as follows. 1) The RPSPs would
lead to discontinuous signal transmissions, and it is rather
difficult to obtain the accurate value of αi(Tk) timely by the
noise-affected measurements. Thus, the controller is designed
to be independent of the sampling modes αi(Tk); 2) Different
from the traditional PID controller, the integral term of the
designed controller is based on past information with finite
length. Such a modified structure could reduce computational
burden and weaken the side effects of accumulated errors; 3)
By utilizing the observed states, the controller has more design
degrees of freedom compared with the output-based controller,
and is thus more flexible; and 4) Since our attention is paid to
the bounded control problem, the reference signal of the PID
controller is set to be zero [13].

After the control signal is generated, it will be transmitted
to the actuator which would be disturbed by the channel noise
as illustrated in Fig. 1. The available signal for the actuator is
modeled by

u(Tk) = ũ(Tk) + o(Tk) (13)

where o(Tk) ∈ Rou denotes the bounded channel noise
satisfying oT (Tk)o(Tk) ≤ ō with the known upper bound
ō > 0.

Define the state estimation error and the augmentation state
vector, respectively, as follows

e(Tk) , x(Tk)− x̂(Tk), ζ(Tk) ,
[
x(Tk)
e(Tk)

]
.

By considering (1), (11), (12) and (13) simultaneously and
defining k , Tk, α , α(Tk) and αi , αi(Tk) for notation
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convenience, we derive the following closed-loop fuzzy sys-
tem:

ζ(k + 1) =
n̄∑

n=1

n̄∑
m=1

n̄∑
π=1

ηn(ρ(k))ηm(ρ̂(k))ηπ(ρ̂(k))

×
(
An,m,πζ(k) +Bn,m,πζ(k − 1) + B̄n,m,π

×
σ̄∑

σ=2

ζ(k − σ) +

oy∑
i=1

(
L̄i,m + β̃i(k − αi)

× L̃i,m

)
ζ(k − αi) + D̄mω̌ (k − α) + Ēnω(k)

+ Ĩmv̌ (k − α) + B⃗no(k)
)

(14)

and

z(k) =
n̄∑

n=1

ηn(ρ(k))Mnζ(k) (15)

where

An,m,π ,
[
A

(1,1)
n,π A

(1,2)
n,π

A
(2,1)
n,m,π A

(2,2)
n,m,π

]
,

Bn,m,π ,
[
B

(1,1)
n,π B

(1,2)
n,π

B
(2,1)
n,m,π B

(2,2)
n,m,π

]
,

A(1,1)
n,π ,An + BnK

P
π + BnK

D
π ,

A(1,2)
n,π , − BnK

P
π − BnK

D
π ,

A(2,1)
n,m,π ,An + BnK

P
π + BnK

D
π −Am − BmKP

π

− BmKD
π + LmΛC,

A(2,2)
n,m,π ,Am + BmKP

π + BmKD
π − LmΛC

− BnK
P
π − BnK

D
π ,

B(1,1)
n,π ,BnK

I
π − BnK

D
π , B(1,2)

n,π , BnK
D
π − BnK

I
π,

B(2,1)
n,m,π ,BnK

I
π − BnK

D
π − BmKI

π + BmKD
π ,

B(2,2)
n,m,π ,BmKI

π − BmKD
π − BnK

I
π + BnK

D
π ,

B̄n,m,π ,
[

BnK
I
π −BnK

I
π

BnK
I
π − BmKI

π BmKI
π − BnK

I
π

]
,

L̄i,m ,
[

0 0
−β̄iLmCi 0

]
, L̃i,m ,

[
0 0

−LmCi 0

]
,

D̄m ,
[

0
−LmD

]
, Ĩm ,

[
0

−Lm

]
, Mn ,

[
Mn 0

]
,

Ēn ,
[
En

En

]
, B⃗n ,

[
Bn

Bn

]
, β̃i(k) , βi(k)− β̄i.

Definition 1: [54] The augmentation system (14) is said to
be exponentially ultimately bounded in the mean-square sense
if, there are scalars 0 ≤ µ1 < 1, µ2 > 0 and µ3 > 0 such that
the following inequality holds:

E
{
ζT (k)ζ(k)

}
≤ µk

1µ2 + µ3 (16)

where µ3 is called the asymptotic upper bound of
E{ζT (k)ζ(k)}.

The aim of this work is to obtain conditions that guar-
antee mean-square boundedness of system (14) in terms of
Definition 1, and then design the observer-based T-S fuzzy
PID controller to minimize the asymptotic upper bound of the

controlled output E{zT (k)z(k)}. The main theoretical results
will be given in the next section.

III. MAIN RESULTS

In this section, the conditions that guarantee mean-square
boundedness of the closed-loop system are presented based on
the stochastic analysis technique.

In the following theorem, we discuss the effects of degraded
measurements and the perturbed sampling on system perfor-
mance.

Theorem 1: Consider the closed-loop system (14) with the
observer-based PID controller (12). Assume that parameters
KP

π , KI
π , KD

π , Lm (π,m ∈ {1, 2, · · · , n̄}) and a scalar
κ ∈ (0, 1) are given. Then, the closed-loop system (14) is
exponentially ultimately bounded in the mean-square if, for
n,m, π ∈ {1, 2, · · · , n̄}, l ∈ {1, 2, · · · , σ̄}, a ∈ P and
c ∈ {1, 2 · · · , p̄}, there exist matrices Pa > 0, Qc,a > 0,
Xl > 0 and a scalar h > 0 such that

(
Γn,m
π,a

)T P̄aΓ
n,m
π,a +Πa < 0 (17)

where

Q̄c,a ,
p̄∑

j=0

θa+1,j+1Qc,j ,

X̄ , diag
{
κX1, κ

2X2, · · · , κσ̄Xσ̄

}
,

Q̃a , diag
{
Q̄2,a − κQ1,a, · · · ,−κQp̄,a

}
,

Γn,m
π,a ,

 Ān,m
π,a B̃n,m,π Ĺm,a E⃗n,m

0 0 L̀m,a 0
L∗
0,m,a 0 0 0

 ,

Πa , diag

{
−κPa + Q̄1,a +

σ̄∑
l=1

Xl,−X̄, Q̃a,−hI

}
,

Ān,m
π,a ,An,m,π + Ľ0,m,a, Ĺm,a ,

[
Ľ1,m,a · · · Ľp̄,m,a

]
,

B̃n,m,π ,
[
Bn,m,π B̄n,m,π · · · B̄n,m,π︸ ︷︷ ︸

σ̄−1

]
,

Ľι,m,a ,
[

0 0
LmΩι,aC 0

]
, L∗

ι,m,a ,
[

0 0
LmΩ̄ι,a 0

]
,

Ωι,a , diag{−β̄1δ(ι− ϕ1(a)), · · · ,−β̄oyδ(ι− ϕoy (a))},
L̀m,a , diag

{
L∗
1,m,a, L

∗
2,m,a, · · · , L∗

p̄,m,a

}
,

Ω̄ι,a , diag
{
−
√
β∗
1δ(ι− ϕ1(a)), · · · ,

−
√
β∗
oyδ(ι− ϕoy (a))

}
C,

E⃗n,m ,
[
D̄m Ĩm Ēn B⃗n

]
,

Pa , diag{P̄a, · · · , P̄a︸ ︷︷ ︸
p̄

}, P̄a ,
p̄∑

j=0

θa+1,j+1Pj ,

P̄a , diag{P̄a, · · · , P̄a︸ ︷︷ ︸
p̄+2

}, C ,
[
CT
1 CT

2 · · · CT
oy

]T
.

Proof: We choose the following Lyapunov functional
candidate:

V (k, α(k)) , V1(k, α(k)) + V2(k, α(k)) + V3(k) (18)
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where

V1(k, α(k)) , ζT (k)Pα(k)ζ(k),

V2(k, α(k)) ,
p̄∑

c=1

ζT (k − c)Qc,α(k)ζ(k − c),

V3(k) ,
σ̄∑

l=1

k−1∑
q=k−l

κk−q−1ζT (q)Xlζ(q).

By defining the following augmentation vector:

ξ(k) ,
[
ζT (0) ζT (1) · · · ζT (k)

]T
,

the conditional mathematical expectation is calculated by

E {V1(k + 1, α(k + 1))− κV1(k, α(k))|ξ(k), α(k)}
=E {V1(k + 1, α(k + 1))|ξ(k), α(k)} − κV1(k, α(k))

=E
{
ζT (k + 1)Pα(k+1)ζ(k + 1)|ξ(k), α(k)

}
− κζT (k)Pα(k)ζ(k). (19)

Letting α(k) = a, α(k+1) = b (a, b ∈ P) and using Lemma
1, one has that

E {V1(k + 1, α(k + 1))|ξ(k), α(k)} − κV1(k, α(k))

=

p̄∑
b=0

θa+1,b+1E
{
ζT (k + 1)Pbζ(k + 1)|ξ(k), a

}
− κζT (k)Paζ(k)

≤
n̄∑

n=1

n̄∑
m=1

n̄∑
π=1

ηn(ρ(k))ηm(ρ̂(k))ηπ(ρ̂(k))

× E

{(
An,m,πζ(k) + B̃n,m,π ζ̄(k) + E⃗n,mω⃗(k)

+

oy∑
i=1

(
L̄i,m + β̃i(k − αi)L̃i,m

)
ζ(k − αi)

)T

P̄a

×

(
oy∑
i=1

(
L̄i,m + β̃i(k − αi)L̃i,m

)
ζ(k − αi)

+An,m,πζ(k) + B̃n,m,π ζ̄(k) + E⃗n,mω⃗(k)

)
|ξ(k), a

}
− κζT (k)Paζ(k)

=

n̄∑
n=1

n̄∑
m=1

n̄∑
π=1

ηn(ρ(k))ηm(ρ̂(k))ηπ(ρ̂(k))

× E

{
ζT (k)AT

n,m,πP̄aAn,m,πζ(k) + ω⃗T (k)E⃗T
n,mP̄a

× E⃗n,mω⃗(k) + ζ̄T (k)B̃T
n,m,πP̄aB̃n,m,π ζ̄(k)

+

oy∑
i=1

ζT (k − αi)L⃗
T
i,m,a(k)P̄a

oy∑
i=1

L⃗i,m,a(k)ζ(k − αi)

+ 2
(
An,m,πζ(k)

)T
P̄aB̃n,m,π ζ̄(k) + 2ζT (k)AT

n,m,π

× P̄aE⃗n,mω⃗(k) + 2ζT (k)AT
n,m,πP̄a

oy∑
i=1

L⃗i,m,a(k)

× ζ(k − αi) + 2

oy∑
i=1

ζT (k − αi)L⃗
T
i,m,a(k)P̄a

(
B̃n,m,π ζ̄(k)

+ E⃗n,mω⃗(k)
)
+ 2ζ̄T (k)B̃T

n,m,πP̄aE⃗n,mω⃗(k)|ξ(k), a

}
− κζT (k)Paζ(k) (20)

where

L⃗i,m,a(k) , L̄i,m + β̃i(k − ϕi(a))L̃i,m,

ω⃗(k) ,
[
ω̌T (k − α) v̌T (k − α) ωT (k) oT (k)

]T
,

ζ̄(k) ,
[
ζT (k − 1) ζT (k − 2) · · · ζT (k − σ̄)

]T
,

and ϕi(a) is defined in Lemma 1.
From the assumption of βi(k) (i = 1, 2, · · · , oy), one

derives that

E
{
β̃i(k)

}
= 0, E

{
β̃i(k)β̃i(k)

}
= β∗

i ,

E
{
β̃i(k)β̃ī(k)

}
= 0, ∀i ̸= ī.

Therefore, one has from (20) that

E {V1(k + 1, α(k + 1))|ξ(k), α(k)} − κV1(k, α(k))

≤
n̄∑

n=1

n̄∑
m=1

n̄∑
π=1

ηn(ρ(k))ηm(ρ̂(k))ηπ(ρ̂(k))(
An,m,πζ(k) +

oy∑
i=1

L̄i,mζ(k − ϕi(a)) + B̃n,m,π ζ̄(k)

+ E⃗n,mω⃗(k)

)T

P̄a

(
An,m,πζ(k) + B̃n,m,π ζ̄(k)

+ E⃗n,mω⃗(k) +

oy∑
i=1

L̄i,mζ(k − ϕi(a))

)

+

oy∑
i=1

(√
β∗
i ζ

T (k − ϕi(a))L̃
T
i,mP̄a

×
√
β∗
i L̃i,mζ(k − ϕi(a))

)
− κζT (k)Paζ(k). (21)

By utilizing the following relations:
oy∑
i=1

L̄i,mζ(k − ϕi(a))

=

p̄∑
c=0

Ľc,m,aζ(k − c) = Ľ0,m,aζ(k) + Ĺm,aζ́(k),

oy∑
i=1

(√
β∗
i ζ

T (k − ϕi(a))L̃
T
i,mP̄a

√
β∗
i L̃i,mζ(k − ϕi(a))

)
=

p̄∑
c=0

(
L∗
c,m,aζ(k − c)

)T
P̄aL

∗
c,m,aζ(k − c)

=
(
L∗
0,m,aζ(k)

)T
P̄aL

∗
0,m,aζ(k) + ζ́T (k)L̀T

m,aPaL̀m,aζ́(k)

where

ζ́(k) ,
[
ζT (k − 1) ζT (k − 2) · · · ζT (k − p̄)

]T
,

one further obtains

E {V1(k + 1, α(k + 1))|ξ(k), α(k)} − κV1(k, α(k))

≤
n̄∑

n=1

n̄∑
m=1

n̄∑
π=1

ηn(ρ(k))ηm(ρ̂(k))ηπ(ρ̂(k))
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× ΞT (k)
((

Γn,m
π,a

)T P̄aΓ
n,m
π,a + Π̄a

)
Ξ(k) (22)

where

Π̄a , diag {−κPa, 0, 0, 0} ,

Ξ(k) ,
[
ζT (k) ζ̄T (k) ζ́T (k) ω⃗T (k)

]T
.

The difference of V2(k, α(k)) is calculated as follows:

E {V2(k + 1, α(k + 1))|ξ(k), α(k)} − κV2(k, α(k))

=

p̄∑
c=1

(
ζT (k + 1− c)Q̄c,aζ(k + 1− c)

− κζT (k − c)Qc,aζ(k − c)
)

= ζT (k)Q̄1,aζ(k) + ζT (k − 1)
(
Q̄2,a − κQ1,a

)
ζ(k − 1)

+ ζT (k − 2)
(
Q̄3,a − κQ2,a

)
ζ(k − 2)

+ · · ·
+ ζT (k − p̄+ 1)

(
Q̄p̄,a − κQp̄−1,a

)
ζ(k − p̄+ 1)

− ζT (k − p̄)κQp̄,aζ(k − p̄). (23)

Similarly, it is easy to obtain that

E {V3(k + 1)|ξ(k), α(k)} − κV3(k)

=
σ̄∑

l=1

(
k∑

q=k+1−l

κk−qζT (q)Xlζ(q)

−
k−1∑

q=k−l

κk−qζT (q)Xlζ(q)

)

=

σ̄∑
l=1

(
ζT (k)Xlζ(k)− κlζT (k − l)Xlζ(k − l)

)
= ζT (k)

σ̄∑
l=1

Xlζ(k)−
σ̄∑

l=1

κlζT (k − l)Xlζ(k − l). (24)

From the definition of ω⃗(k), one knows that the following
inequality holds:

h
(
γ − ω⃗T (k)ω⃗(k)

)
≥ 0 (25)

where

γ , (1 + oy)ω̄ +

oy∑
i=1

v̄i + ō.

Taking (22)-(25) into account, one gets

E {V (k + 1, α(k + 1))− κV (k, α(k))|ξ(k), α(k)}

≤
n̄∑

n=1

n̄∑
m=1

n̄∑
π=1

ηn(ρ(k))ηm(ρ̂(k))ηπ(ρ̂(k))

× ΞT (k)
((

Γn,m
π,a

)T P̄aΓ
n,m
π,a +Πa

)
Ξ(k) + hγ. (26)

The condition (17) leads to

E {V (k + 1, α(k + 1))|ξ(k), α(k)}
≤E {κV (k, α(k))|ξ(k), α(k)}+ hγ.

Taking the mathematical expectation on both sides of the
above inequality, one obtains

E {V (k + 1, α(k + 1))} ≤ κE {V (k, α(k))}+ hγ. (27)

Then, one infers that

E {V (k, α(k))} ≤κE {V (k − 1, α(k − 1))}+ hγ

≤κ2E {V (k − 2, α(k − 2))}+ κhγ + hγ

≤ · · ·

≤κkE {V (0, α(0))}+ 1− κk

1− κ
hγ. (28)

By defining ϑ , min{λ(Pa)} (a ∈ P), one has that

E
{
ζT (k)ζ(k)

}
≤E

{
V1(k, α(k))

ϑ

}
≤E

{
V (k, α(k))

ϑ

}
≤κkE

{
V (0, α(0))

ϑ

}
+

1− κk

(1− κ)ϑ
hγ. (29)

Due to κ ∈ (0, 1), it is concluded that the closed-loop system
(14) is exponentially ultimately bounded in the mean-square
sense. The proof is complete.

Remark 3: In Theorem 1, the conservatism mainly comes
from the selected common Lyapunov functional and the ap-
plied delay-independent approach. To further reduce the con-
servatism, we can choose more complex Lyapunov functionals
(such as piecewise and fuzzy ones) by utilizing more system
information at the cost of increasing the computational burden.
Furthermore, our results are established based on systems
with accurate models. If there are unmodeled dynamics or
uncertainties in both systems and transmission processes, how
to deal with the RPSPs needs further research.

Remark 4: The dimension of the matrix inequality (17)
is closely related to the system information and complexi-
ties such as state variables, sensor numbers, external noises,
control inputs and the maximum sampling interval. Recall
x(Tk) ∈ Rox , u(Tk) ∈ Rou , ω⃗(Tk) ∈ R(1+oy)oω+oy+ou ,
the integral window length σ̄ and the total mode number
p̄. The dimensions of the term P̄a, Γn,m

π,a and Πa in in-
equality (17) can be calculated as 2(p̄ + 2)ox × 2(p̄ + 2)ox,
2(p̄+ 2)ox ×

(
(2 + 2σ̄ + 2p̄)ox + (1 + oy)oω + oy + ou

)
and(

(2+2σ̄+2p̄)ox+(1+oy)oω+oy+ou
)
×
(
(2+2σ̄+2p̄)ox+

(1 + oy)oω + oy + ou
)
, respectively.

In light of the conditions obtained in Theorem 1, we will
present the calculation procedure of the desired observer
and controller gains. The details are given in the following
theorem.

Theorem 2: Consider the closed-loop system (14) with
the observer-based PID controller (12). Assume that a scalar
κ ∈ (0, 1) is given. Then, the closed-loop system (14) is
exponentially ultimately bounded in the mean-square if, for
n,m, π ∈ {1, 2, · · · , n̄}, l ∈ {1, 2, · · · , σ̄}, a ∈ P and
c ∈ {1, 2 · · · , p̄}, there exist matrices KP

π , KI
π , KD

π , Lm,
Pa > 0, Qc,a > 0, Xl > 0 and a scalar h > 0 such that[

Πa ∗
Γ̂n,m
π,a P̄a − 2I

]
< 0 (30)

MT
n Mn < Pa (31)
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where

Γ̂n,m
π,a ,

Ân,m
π,a B̂n,m,π L̂

(1)
m,a E⃗n,m

0 0 L̂
(2)
m,a 0

L̂
(3)
m,a 0 0 0

 , Ī1 ,
[
I
0

]
,

Ân,m
π,a , Â(1)

n,m + Ī1
(
BnK

P
π + BnK

D
π

)
ĪT1 − Ī1

(
BnK

P
π

+ BnK
D
π

)
ĪT2 + Ī2

(
BnK

P
π + BnK

D
π − BmKP

π

− BmKD
π + LmΛC

)
ĪT1 + Ī2

(
BmKP

π

+ BmKD
π − LmΛC − BnK

P
π − BnK

D
π

)
ĪT2

+ Ī2LmΩ0,aCĪT1 ,

Â(1)
n,m ,

[
An 0

An −Am Am

]
, L̂(3)

m,a , Ī2LmΩ̄0,aĪ
T
1 ,

B̂n,m,π , Ī1BnK
I
π Ĩ1 + Ī1BnK

D
π Ĩ2 + Ī2BnK

I
π Ĩ1

+ Ī2BnK
D
π Ĩ2 − Ī2BmKI

π Ĩ1 − Ī2BmKD
π Ĩ2,

Ĩ1 ,
[
I − I I − I · · · I − I︸ ︷︷ ︸

2σ̄

]
,

Ĩ2 ,
[
− I I 0 0 · · · 0 0︸ ︷︷ ︸

2(σ̄−1)

]
, Ī2 ,

[
0
I

]
,

L̂(1)
m,a , Ī2LmΩ̂(1)

a , L̂(2)
m,a ,

p̄∑
c=1

ÎcLmΩ̂(2)
c,a,

Ω̂(1)
a ,

[
Ω1,aC 0 · · · Ωp̄,aC 0

]
,

Ω̂(2)
c,a ,

[
0 · · · 0 Ω̄c,a︸︷︷︸

the 1×(2c−1)th block

0 · · · 0
]
,

Îc ,
[
0 · · · 0 I︸︷︷︸

the 1×2c block

0 · · · 0
]T

.

The minimum of the asymptotic upper bound of
E{zT (k)z(k)} can be obtained by solving the following
optimization problem:

minh (32)

subject to constraints (30) and (31). Furthermore, if the opti-
mization problem (32) is solvable, then the obtained matrices
KP

π , KI
π and KD

π are the desired controller gains and matrices
Lm are observer gains.

Proof: By using the Schur Complement Lemma, the
inequality (17) in Theorem 1 holds if and only if the following
inequality holds: [

Πa ∗
Γn,m
π,a −P̄−1

a

]
< 0. (33)

The inequality of(
P̄a − I

)T P̄−1
a

(
P̄a − I

)
≥ 0 (34)

implies

P̄a − 2I ≥ −P̄−1
a . (35)

From the definition of Γn,m
π,a (in Theorem 1) and Γ̂n,m

π,a (in
Theorem 2), it is easy to see that Γ̂n,m

π,a = Γn,m
π,a . Then, it can

be concluded from the above discussions and (30) that[
Πa ∗
Γn,m
π,a −P̄−1

a

]
≤
[
Πa ∗
Γ̂n,m
π,a P̄a − 2I

]
< 0. (36)

Thus, we know that the closed-loop system (14) is exponen-
tially ultimately bounded in the mean-square.

By recalling the definition of V (k, α(k)) and considering
(31), one can infer that

E
{
zT (k)z(k)

}
=E

{
n̄∑

n=1

n̄∑
d=1

ηn(ρ(k))ηd(ρ(k))ζ
T (k)MT

n

×Mdζ(k)

}

≤E

{
n̄∑

n=1

ηn(ρ(k))ζ
T (k)MT

n Mnζ(k)

}
≤E

{
ζT (k)Pα(k)ζ(k)

}
≤E {V (k, α(k))}

≤κkE {V (0, α(0))}+ 1− κk

1− κ
hγ. (37)

It is clear that the asymptotic upper bound of E{zT (k)z(k)}
can be obtained by solving (32) which completes the proof.

Based on Theorem 2, Algorithm 1 is given to show the
implementation details of the proposed control method.

Algorithm 1: Observer-based fuzzy PID control
Step 1. Given a nonlinear plant, select the premise variables and construct

fuzzy rules to obtain a T-S fuzzy model in the form of (1).
Step 2. In terms of the sampling features of sensors, determine Θi and p̄i

for sensor i. Then, apply Lemma 1 to calculate θa+1,b+1

(a, b ∈ P) and p̄ based on Θi and p̄i.
Step 3. Construct the observer-based fuzzy PID controller (12) and select

the size of the integral window by determining σ̄.
Step 4. Give a scalar κ ∈ (0, 1). Solve the minimization problem (32) to

obtain control gains KP
π , KI

π , KD
π and observer gains Lm.

Step 5. Apply the generated control law (12) to the system (1).

Remark 5: The obtained main results are based on the LMI
technique that is essential a convex optimization algorithm
and has polynomial time complexity. To be more specific, the
computational complexity is proportional to the total row size
M of the LMIs, and the total number N of scalar decision
variables [55]. For system (1) with RPSPs and degradation
measurements, the variable information can be seen from
x(Tk) ∈ Rox , u(Tk) ∈ Rou , ω⃗(Tk) ∈ R(1+oy)oω+oy+ou , the
integral window length σ̄ and the total mode number p̄. Here,
M and N can be calculated as follows:

M =
(
n̄3(p̄+ 1)

)
×
(
(2 + 2σ̄ + 2p̄)ox + (1 + oy)oω + oy

+ ou
)
+
((

2(2 + p̄)n̄+ 2 + 2p̄
)
(p̄+ 1) + 2σ̄

)
ox + 1,

N =
(
(1 + p̄)2 + σ̄

)
ox(2ox + 1) + 3n̄ouox + n̄oxoy + 1.

Compared with the P-type control method [55], the proposed
fuzzy PID control has more design degrees of freedom for
improving performance, and thereby has higher computational
complexity. In addition, compared with the genetic algorithm
[56] and the two-step method [57], our proposed method can
be implemented directly which avoids multiple optimization
processes, and thus has a relatively low computational cost.

Remark 6: So far, we have dealt with the mean-square
bounded control problem for a class of discrete-time nonlinear
systems using an observer-based fuzzy PID control approach.
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A detailed mathematical model has been built to encapsulate
the nuances of incomplete measurements as characterized by
amplitude degradation and RPSPs. Such a model is effective
for capturing the time-varying and stochastic features of the
sampling process of sensors. Note that, the mathematical
derivation has been conducted in the discrete-time framework,
where the effects of RPSPs have been handled using the
stochastic delay method and the Markov jump system theory.
The conditions specified in Theorems 1-2 encompass a wide
range of complexities such as system parameters and delay
factors stemming from RPSPs.

Remark 7: This paper distinguishes itself from existing
literature on sampled-data systems in two primary aspects.

1) Introduction of a New Control Problem: This study
pioneers the exploration of the exponentially ultimately
bounded control problem for general nonlinear sys-
tems impacted by degraded sensors, RPSPs, and UBB
transmission noises. This particular problem has not
been addressed in existing research due primarily to the
complexity involved in its analysis.

2) Development of an Observer-Based Fuzzy PID Con-
troller: The proposed observer-based fuzzy PID con-
troller features a computation-efficient and straightfor-
ward structure. Such a controller design specifically
targets the mitigation of the adverse effects caused by
incomplete measurement information, which not only
enhances the control system’s effectiveness but also
simplifies its implementation.

The effectiveness and advantages of the proposed fuzzy control
method will be verified in the next section through simulation
examples.

IV. SIMULATION EXAMPLES

In this section, one numerical example and one application-
motivated example are presented to show the control per-
formance in the presence of measurement degradation and
RPSPs.

A. Example 1

Consider a discrete-time T-S fuzzy system in the form of
(1) with two rules and the following parameter matrices:

A1 =

0.1 0 0.1
0.3 0.2 0.2
0.3 0 0.99

 , A2 =

0.2 0.1 0
0.1 0 0.2
0 0.2 1

 ,

B1 =

0.10.2
0.7

 , B2 =

0.10.2
0.7

 , C1 =

0.50.6
0.7

T

,

C2 =

 0.3
−0.2
0.5

T

, E1 =

0.20.1
0.2

 , E2 =

0.30.1
0.1

 ,

D1 =0.3, D2 = 0.5, M1 =
[
0.3 0.4 0.5

]
,

M2 =
[
0.1 0.2 0.8

]
.

The fuzzy membership functions are assumed to be

η1(ρ(k)) = sin2(x1(k)), η2(ρ(k)) = 1− sin2(x1(k))

where x1(k) is the first element of the state variable.
The state updating interval is Tk+1 − Tk = ϵ = 1

second. Note that two sensors are considered in this example
whose sampling periods p1

(
s
(τ)
1

)
and p2

(
s
(τ)
2

)
take values

in {ϵ, 2ϵ, 3ϵ} randomly. The stochastic variables β1(k) and
β2(k) used to represent the measurement degradation have
the following statistical property:

E{β1(·)} =0.6, E{(β1(·)− 0.6)2} = 0.01,

E{β2(·)} =0.7, E{(β2(·)− 0.6)2} = 0.01.

We assume that the transition probability matrix of α(k) is
of the following form:

Θ =

0.8 0.2 0
0.9 0 0.1
1 0 0

 .

Let the system noise and transmission noises be ω(Tk) =
0.3 cos(k), v1(k) = 0.1 sin(k), v2(k) = 0.2 sin(k) and o(k) =
0.2 sin(k). In this example, the noises that the system suffers
from are all bounded and only the upper bound of noises is
required to be known by the designer.

Upon solving the optimization problem (32), the gains for
the observer and the PID controller are determined as follows:

KP
1 =

[
−0.437220 −0.242516 −0.724263

]
,

KP
2 =

[
−0.437112 −0.242485 −0.724145

]
,

KI
1 =

[
0.001139 0.001192 0.001156

]
,

KI
2 =

[
0.001102 0.001156 0.001120

]
,

KD
1 =

[
0.001597 0.001652 0.001616

]
,

KD
2 =

[
0.001545 0.001601 0.001564

]
,

L1 =

0.059474 0.020007
0.411134 −0.199015
0.916034 0.748723

 ,

L2 =

0.211396 −0.301644
0.169176 0.155749
1.019763 0.542132

 .

The simulation is conducted with a length of kmax = 100,
and the results are illustrated in Figs. 2–7. Fig. 2 demonstrates
the state evolution of the fuzzy system without any control
strategy, revealing that the original nonlinear system is un-
stable, with its state deviating rapidly from the equilibrium
point x =

[
0 0 0

]T
. When the designed observer-based

PID controller (12) is applied, the state evolution of the closed-
loop system is depicted in Fig. 3. It can be seen that the
controlled states remain bounded around the equilibrium point.
The estimate for three state components is depicted in Figs. 4–
6. The state estimation error is exhibited in Fig. 7 which is
shown to be bounded.

To display the effects of measurement degradation, we
define the accumulative controlled output as follows

z̃ ,
kmax∑
k=0

zT (k)z(k).

Then, some comparison results under different degradation
levels (β , 1 − β̄1 = 1 − β̄2) are given in Table I. Here, z̃
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reflects the degree that the system deviates from equilibrium
caused by external noises and incomplete information. Clearly,
a smaller z̃ means a better control performance. From Table I,
it can be seen that a higher degradation level leads to a worse
system performance. Such a result is rather reasonable as the
more serious the degradation, the less useful information can
be used for the controller.

TABLE I: Accumulative output under different degradation
levels

degradation level β 0.45 0.4 0.3 0.1
output z̃ 33.9565 31.7320 30.9408 29.8561
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Fig. 2: State evolution of the open-loop system without any control
law (unstable)
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Fig. 3: State evolution of the closed-loop system under the
proposed fuzzy PID control (bounded)
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Fig. 4: State x1 and its estimate using the observer in (12)

To demonstrate the superiority of the proposed control
method over the existing P-type control approach [19], [20],
we list some comparison results in Table II that shows the ob-
tained z̃ under different degradation levels. Since the devised
observer-based PID controller processes a flexible structure
and extra design parameters, the z̃ obtained using our method
is less than that using the existing method in all cases. All
simulation examples validate the effectiveness of the proposed
control approach in dealing with the incomplete information.
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Fig. 5: State x2 and its estimate using the observer in (12)
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Fig. 6: State x3 and its estimate using the observer in (12)

B. Example 2

In this subsection, we consider a truck-trailer control system
modeled as follows [58]:

x1(k + 1) =
(
1− γϵ

W

)
x1(k) +

γϵ

w
u(k) + 0.1ω(k)

x2(k + 1) =
γϵ

W
x1(k) + x2(k) + 0.1ω(k)

x3(k + 1) = γϵ sin
( γϵ

2W
x1(k) + x2(k)

)
+ x3(k)

(38)

where x1(k) is the angle difference between the truck and
the trailer; x2(k) is the angle of the trailer; x3 is the vertical
position of the rear end of the trailer; u(k) is the steering angle;
ω(k) is the external disturbance; w = 2.8m is the length of
the truck; W = 5.5m is the length of the trailer; ϵ = 1s is
the sampling time; and γ = −0.5m/s is the constant speed
of backing up.

From the structure of model (38), it can be seen that the
control task for (38) is more difficult than the model used
in Example 1. To apply the proposed fuzzy PID control
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Fig. 7: State estimation error e , x− x̂ under the RPSPs (bounded)

TABLE II: Control performance comparison under different
degradation levels

degradation level β 0.45 0.4 0.3 0.1
output z̃ (our method) 33.9565 31.7320 30.9408 29.8561
output z̃ (P-type method) 35.1035 31.8925 31.6254 29.9983
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method, we first establish a T-S fuzzy model according to
the nonlinear term sin

(
γϵ
2W x1(k) + x2(k)

)
. When establishing

a T-S fuzzy model for nonlinear systems, the selection of
fuzzy membership functions is not sole which depends on
the specific form of nonlinear terms of the system. Generally
speaking, the fuzzy membership functions should fully reflect
the essential features of nonlinearities such as their value
ranges and variation trend, such that the obtained fuzzy model
has ideal approximation capability for the nonlinear plant. In
terms of the key points 0 rad, ±π

6 rad, ±π rad and by using
the standard fuzzy modeling technique, we can obtain the
following discrete-time T-S fuzzy model:

x(k + 1) =

3∑
n=1

ηn(ρ(k))
(
Aix(k) + Bu(k) + Eω(k)

)
(39)

where

A1 ,

1− γϵ
W 0 0

γϵ
W 1 0

γ2ϵ2

2W γϵ 1

 ,A2 ,

1− γϵ
W 0 0

γϵ
W 1 0

3γ2ϵ2

2πN
3γϵ
π 1

 ,

A3 ,

1− γϵ
W 0 0

γϵ
W 1 0
γ2T

200W 2
γ

100W 1

 , x(k) ,

x1(k)
x2(k)
x3(k)

 ,

B ,

γϵ
w
0
0

 , ρ(k) , γϵ

2W
x1(k) + x2(k), E ,

0.10.1
0

 .

It is assumed that there are two sensors with parameters
C1 ,

[
5 −2 1

]
, C2 ,

[
3 −1 0.2

]
, M1 = M2 =

M3 =
[
0.1 0.1 0.1

]
. The fuzzy membership functions of

plant (38) are plotted in Fig. 8. The system noises are set
to be ω(k) = 0.1 sin(k), v1(k) = 0.1 sin(k), v2(k) = 0
and o(k) = 0.1 cos(k). The information about the sensor
degradation is given as follows:

E{β1(·)} =0.6, E{(β1(·)− 0.6)2} = 0.01,

E{β2(·)} =0.7, E{(β2(·)− 0.6)2} = 0.01.
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Fig. 8: Fuzzy membership functions of the plant

The aim of this example is to design control laws such
that the variables of truck-trailer system (38) are bounded.
Set the simulation length to be kmax = 400. By applying
the observer-based fuzzy PID controller (12) combined with
the utilized technique in [58], simulation results are presented
in Figs. 9–10. We can conclude from these figures that the
proposed controller performs well for the truck-trailer system,
as the controlled variables remain bounded in the presence of
the incomplete information.
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Fig. 9: State evolution of the open-loop truck-trailer system without
any control law (unstable)

0 50 100 150 200 250 300 350 400
Time

-1

-0.5

0

0.5

A
m
p
li
tu
d
e

x1

x2

x3

Fig. 10: State evolution of the closed-loop truck-trailer system
under the proposed fuzzy PID control (bounded)

V. CONCLUSION

This paper has addressed the observer-based fuzzy PID
control problem for T-S fuzzy systems experiencing degraded
measurements and RPSPs. The amplitude degradation of out-
puts has been characterized by using a series of independent
stochastic variables with known mean and variance. The
sampling periods of each sensor, which are time-varying and
random, are governed by a set of Markov chains. An observer-
based fuzzy PID controller with an appropriate structure has
been proposed by considering degraded measurements, RPSPs,
and transmission noises. Sufficient conditions have been de-
rived to ensure the mean-square boundedness of the controlled
output of T-S fuzzy systems. Based on these conditions,
controller parameters have been determined by solving an
optimization problem. To demonstrate the efficacy of the the-
oretical framework, simulation examples have been provided
to showcase the practical applicability of the proposed control
strategy in handling complex real-world scenarios.
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