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Binary-Encoding-Based Quantized Kalman Filter:
An Approximate MMSE Approach
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Abstract—In this paper, the Kalman filter design problem
is investigated for linear discrete-time systems under binary
encoding schemes. Under such a scheme, the local information
is quantized into a bit string by the remote sensor based on
a probabilistic quantizer, and then the bit string is transmitted
via memoryless binary symmetric channels (BSCs). Due to the
communication link noises, the bit flipping occurs in a random
manner, and thus, the transmission of the bit string would suffer
from specific bit-error rates. With the received bits, a recursive
binary-encoding-based quantized Kalman filter is established in
the approximate minimum mean-square error (MMSE) sense,
which relies on the Gaussian approximation of the conditional
probability density function at each iteration. Furthermore, the
proposed estimator is shown to be in a Kalman-like type through
performance analysis, which exhibits computational complexity
comparable to the conventional Kalman filter. Subsequently, a
posterior Cramér-Rao lower bound is derived for the proposed
binary-encoding-based quantized Kalman filter. The effectiveness
of the proposed estimator is demonstrated through numerical
results.

Index terms— Networked systems, Kalman filter, proba-
bilistic quantizer, binary encoding scheme, iterative Bayesian
estimate, minimum mean-square error.

I. INTRODUCTION

Benefiting from the tremendous advances in digital commu-
nication, information sensing, and electronic technologies, the
rapid development of networked systems has been witnessed in
the past few decades [5], [10]–[12], [45]. Networked systems
have shown a surge of potential applications in various fields
such as industrial automation [9], smart grids [4], [7], and
transportation systems [18], owing to their significant advan-
tages in reliability, flexibility, and adaptability [49]. Among
these applications, one of the fundamental challenges is the
development of appropriate remote estimation schemes to re-
cover the system’s internal state based on a series of measure-
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ment signals transmitted through digital networks, e.g., [6],
[13], [35]. Consequently, considerable research attention has
been devoted to this topic under various network environments,
including packet losses, signal fading, communication delays,
and so on [15], [20]–[22], [39], [41], [43], [44], [48].

It is worth noting that the majority of modern automatic
systems are designed to store, process, and communicate
information in digital form. Due to constrained bandwidth
in communication channels, analog measurements collected
by sensors need to be quantized into a finite number of bits
before transmission to the remote estimation center. If not ap-
propriately handled, the quantization effects could significantly
degrade system performance and even lead to divergence. As a
result, there has been a great deal of research interest focused
on the problem of signal quantization. Generally, quantizers
can be classified into different types based on their structures,
with examples including linear [33], logarithmic [14], [23],
and Lloyd-Max quantizers [34]. Also, some other types of
quantizers have been developed by optimizing the quantized
error between the input and output [19], [32].

Most existing quantizers adopt a deterministic truncation
principle, which introduces unknown quantization errors and
leads to biased quantized signals that are often difficult to
handle. To address this challenge, probabilistic quantization
has been explored in more recent years, e.g., [2], [25], [26]. By
implementing truncation functions in a probabilistic manner,
probabilistic quantizers ensure that the quantization error has
a zero mean, thereby simplifying subsequent system analysis
to a great extent. In fact, remote estimation with quantized
measurements has emerged as a cutting-edge research topic
in both academia and industry. In the quantization process,
the truncation error resulting from the quantization process
introduces nonlinearities even if the target plant is linear,
and this makes quantization-based estimation an essentially
nonlinear estimation problem.

To address the quantization-induced nonlinearities, re-
searchers have treated the quantization error as norm-bounded
uncertainties in [16], where a robust estimator has been
designed to provide a suboptimal estimate using a min-max
approach. Various nonlinear filtering techniques have been
employed for estimation with quantized measurements to
achieve a more accurate minimum mean-square error (MMSE)
estimate. Examples of such techniques can be found in [17],
[29], [31], [36] and references therein. In [36], the distributed
estimation has been investigated with single-bit quantization,
and a Gaussian approximation approach has been employed
to derive an approximate MMSE estimate. The results have
been further extended in [29] to the distributed quantized
Kalman filter with multiple quantization bits, where the trade-
offs between bandwidth requirements (represented by the
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number of quantization bits) and system performance have
been thoroughly discussed.

In the existing literature concerning quantization-based state
estimation, an implicit assumption is that the encoded bit string
of the quantization output can be transmitted accurately. How-
ever, due to channel noises, distortions, signal interference,
and errors in transmitter-receiver clock synchronization, bit
flipping frequently occurs during transmission, resulting in
inevitable communication errors. To accurately capture both
quantization and network characteristics, a more practical
communication model known as binary encoding schemes
(BESs) has been widely used in the field of communication
[24], [27], [47]. Under such a scheme, the sensor information
is quantized and encoded into a bit string, which is then trans-
mitted via memoryless binary symmetric channels (BSCs), and
recovered at the estimation center for further processing. BSCs
have a wide range of applications, including eavesdropped
communication, radar signal encoding, telemetry, and voice
communication [1], [3], [28]. To date, various studies have
focused on the estimation problem involving BESs. For in-
stance, in [24], the distributed parameter estimation has been
investigated for wireless sensor networks under BESs, and
a closed-form bound has been derived on the mean-square
error at the estimation center. A common feature of these
results is that the estimation performance has been evaluated
by establishing an upper bound on the error covariance matrix
(ECM), which may be conservative in certain situations.
Therefore, our primary motivation in this paper is to develop
a more accurate MMSE estimate that eliminates unnecessary
conservatism.

Based on the above discussion, the aim of this paper is to de-
velop the approximate MMSE estimate for linear discrete-time
systems under BESs. Because of the complicated transmission
errors resulting from stochastic quantization and random bit
flipping, the analytical expression of the MMSE estimate
cannot be directly obtained in practical applications. It is,
therefore, of particular significance to deal with this challenge
by developing an approximate MMSE estimator that considers
both accuracy and computational feasibility. This paper will
employ an iterative Bayesian estimate approach with Gaussian
approximation on the conditional probability density function
(PDF) at each iteration to derive a binary-encoding-based
quantized Kalman filter. Subsequently, in-depth analysis is
carried out on the system performance, including the influence
of the quantization effects, the computational complexity, and
the lower bound on the ECM of the proposed binary-encoding-
based quantized Kalman filter.

The main contributions of this paper are highlighted in
the following aspects: i) to the best of our knowledge, this
paper is one of the first few attempts to design approximate
MMSE estimators for dynamical systems under binary en-
coding schemes within an iterative Bayesian framework; ii)
the proposed binary-encoding-based quantized Kalman filter
exhibits a Kalman-like type, demonstrating computational
complexity comparable to the conventional Kalman filter; and
iii) the corresponding theoretical performance bounds, i.e., the
posterior Cramér-Rao lower bound (PCRLB), are derived in
order to evaluate the performance of the proposed estimator.

The organization of our paper is as follows. Section II
provides system descriptions including the dynamic model and

the BESs. Section III presents the derivation of the binary-
encoding-based quantized Kalman filter under BESs in the
approximate MMSE sense. In Section IV, the computational
complexity and the PCRLB of the proposed estimator are
discussed. Section V presents the numerical simulation results.
Finally, in Section VI, concluding remarks are provided for
this work.

Notations: The matrix inequality A ⪰ B (A ≻ B) repre-
sents that A−B is a positive semi-definite (definite) matrix.
AT, A−1 and tr{A} denote the transpose, the inverse and
the trace of the matrix A, respectively. diag{x1, x2, . . . , xN}
denotes a diagonal matrix with entries {x1, x2, . . . , xN} on
the diagonal. {xi}Ni=1 represents the set {x1, x2, . . . , xN}.
The Gaussian probability density function (PDF) with mean
E{x} = µ and covariance matrix Cov{x} = Σ is represented
as p(x) = N (x;µ,Σ) and φ(t) =

∫ t

−∞ N (x; 0, 1)dx denotes
the standard Gaussian cumulative distribution function (CDF).
1A means a indicator function, which is equal to 1 when the
event A occurs and 0 otherwise.

II. SYSTEM DESCRIPTION

Consider a linear discrete time-varying system described by
the following state-space model

xn+1 = Anxn +wn, (1)

where xn ∈ RN is the system state and wn ∈ RN is the
sequence of process noises which is assumed to be Gaussian
with zero mean and covariance Σw ⪰ 0. An ∈ RN×N is a
known system matrix. The sensor measurement is described
by

yn = Cnxn + vn, (2)

where yn ∈ RM stands for the measurement output and vn ∈
RM is the sequence of measurement noises which is assumed
to be Gaussian with zero mean and covariance Σv ⪰ 0. Cn ∈
RM×N is a known measurement matrix.

Fig. 1. Remote state estimation under binary encoding schemes.

We consider the remote state estimation problem as shown
in Fig. 1, where the BESs are utilized to transmit the sensor
information. To be specific, a probabilistic quantizer is first
employed to convert the transmitted signals into a finite
codebook as follows

Q(·) ≜
[
Q1(·) Q2(·) · · · QM (·)

]T
,

where Qk(·) is a quantizer for scalar input. The static quan-
tization strategy is utilized with one quantizer per component
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for vector signals, that is, for arbitrary vector bn ∈ RM , the
map of the quantizer is given by

Q(bn) =
[
Q1(bn,1) Q2(bn,2) · · · QM (bn,M )

]T
,

where bn,k is the kth component of bn.
For brevity of analysis, we consider that bn,k is within

[−W,W ], where W is a positive scalar. Let L denote the num-
ber of bits for the encoder output. The quantization range is
uniformly divided into 2L− 1 segments and, correspondingly,
we have 2L points denoted as follows

U ≜ {τ1, τ2, . . . , τ2L}.

The interval length is ∆ = τi+1 − τi, for i = 1, 2, . . . , 2L − 1,
and thus it is apparent that ∆ = 2W

2L−1
.

When τi ≤ bn,k ≤ τi+1, bn,k is quantized according to the
following probabilistic manner{P{Qk(bn,k) = τi} = 1− rn,k

P{Qk(bn,k) = τi+1} = rn,k
(3)

with rn,k ≜ (bn,k − τi)/∆ and 0 ≤ rn,k ≤ 1. On the basis
of binary bits h(l)n,k, the quantization output Qk(bn,k) can be
further represented by

Qk(bn,k) = −W +
L∑

l=1

h
(l)
n,k2

l−1∆

and, therefore, Qk(bn,k) can be encoded into the following
binary bit string

Dn,k ≜ {h(1)n,k, h
(2)
n,k, . . . , h

(L)
n,k}, h

(l)
n,k ∈ {0, 1}

Remark 1. The rational rn,k represents the probability that
the signal bn,k is quantized to the right bound τi+1 of
ith interval. As bn,k approaches the right boundary τi+1,
the distance between bn,k and τi increases, resulting in a
larger value of rn,k. Consequently, the probability that bn,k
is quantized to τi+1 becomes higher, and vice versa. (See Fig.
2)
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Fig. 2. The stochastic quantization scheme.

Next, Dn,k will be transmitted by a memoryless BSC with
crossover probability p, where the received binary bit string
can be presented as follows:

D′
n,k ≜ {ℏ(1)n,k, ℏ

(2)
n,k, . . . , ℏ

(L)
n,k}, ℏ(l)n,k ∈ {0, 1}.

Here, ℏ(l)n,k = θ
(l)
n,k(1− h

(l)
n,k) + (1− θ

(l)
n,k)h

(l)
n,k with

θ
(l)
n,k =

{
1, if the lth bit is flipped
0, if the lth bit is not flipped

(4)

and P{θ(l)n,k = 1} = p. With the bit string D′
n,k, the signals

are decoded as follows

mn,k = −W +

L∑
l=1

ℏ(l)n,k2
l−1∆.

Moreover, the signals received at the estimator during the
interval [0, n] are denoted as follow

Mn ≜ {m1,m2, . . . ,mn}

where mk =
[
mk,1,mk,2, · · · ,mk,M

]T
.

Throughout the paper, the normalized innovation sequence

ỹn ≜ S
− 1

2

n|n−1(yn − ŷn|n−1) (5)

is taken as the quantizer input, which will be further transmit-
ted to the remote estimator using BESs. Here, ŷn|n−1 is the
one-step prediction of the measurement yn, i.e., ŷn|n−1 ≜
E{yn|Mn−1} and Sn|n−1 ≜ Cov{yn|Mn−1} is the corre-
sponding measurement prediction ECM.

Before proceeding, the following assumptions are made.

Assumption 1. The initial state x0 obeys Gaussian distribu-
tion with mean µ0 ∈ RN and covariance matrix Σ0 ∈ RN×N ,
i.e. x0 ∼ N (x0;µ0,Σ0).

Assumption 2. The process noise wn and measurement noise
vn are mutually independent, i.e.

E
{[

wn

vn

] [
wT

n ,v
T
n

]}
=

[
Σw 0
0 Σv

]
Assumption 3. The indicators θ(l)n,k defined in (4) are white
and mutually independent.

III. BINARY-ENCODING-BASED QUANTIZED KALMAN
FILTER

In this section, a binary-encoding-based quantized Kalman
filter in the approximate MMSE sense will be developed based
on an iterative Bayesian approach.

Firstly, we consider a posterior MMSE estimate of xn with
the channel outputs Mn through BSCs at instant n as follows:

x̂n ≜ E {xn | Mn} =

∫
RN

xnp(xn | Mn) dxn, (6)

and the corresponding ECM is defined as

Pn ≜ E{(xn − x̂n)(xn − x̂n)
T|Mn}. (7)

The posterior distribution p(xn|Mn) in (6) can be calculated
by using the prediction-correction steps [P1]-[C1] outlined as
follows.

[P1] Prediction step: Given the prior PDF p(xn−1|Mn−1)
at instant n, we calculate the distribution p(xn|Mn−1) by the
law of total probability

p(xn | Mn−1) =

∫
RN

p(xn |xn−1,Mn−1)

× p(xn−1 | Mn−1) dxn−1.

As xn depends completely on xn−1 and wn−1, the condition
Mn−1 is redundant. Consequently, we have

p(xn|xn−1,Mn−1) = N (xn;An−1xn−1,Σw).

[C1] Correction step: When the channel outputs Mn are
available at instant n, the posterior PDF p(xn | Mn) can be
derived based on the following Bayesian rule

p(xn | Mn) =
P {mn | Mn−1,xn}
P {mn | Mn−1}

p(xn | Mn−1)
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where the probability P{mn|Mn−1,xn} and P{mn|Mn−1}
can be obtained with the knowledge of the quantization rule
Qk(·) and the statistics of the random bit flipping θ(l)n,k. In fact,

P{mn|Mn−1,xn}
P{mn|Mn−1}

can be viewed as a correction coefficient that extracts the
newly arrival information to update the prediction.

Noticing that P{mn|Mn−1,xn} = P{mn|xn}, we have

P{mn | Mn−1,xn} =

∫
RM

P {ỹn,mn | xn} dỹn

=

∫
RM

P {mn | ỹn,xn} p(ỹn | xn) dỹn

where P{mn|ỹn,xn} = P{mn|ỹn} and p(ỹn|xn) obeys
the Gaussian distribution. Moreover, the probability
P{mn|Mn−1} can be derived as follows:

P {mn | Mn−1} =

∫
RM

P {mn | ỹn} p(ỹn | Mn−1) dỹn

where

p(ỹn | Mn−1) =

∫
RN

p(ỹn | xn)p(xn | Mn−1) dxn

The computation of the MMSE estimate using [P1]-[C1]
involves integrating several nonlinear functions at each it-
eration, making it impossible to obtain a closed-form solu-
tion. Utilizing numerical integrations is a feasible approach,
but the significant computational burden limits its practical
applicability. An alternative workaround is to approximate
the conditional PDF at the previous step using a Gaussian
distribution, i.e.,

p(xn−1|Mn−1) ∼ N (xn; x̂n−1,Pn−1). (8)

This method simplifies coping with the analytically intractable
PDF p(xn|Mn) by tracking its expectation and covariance
matrix.

Remark 2. In this paper, the distribution of xn conditioned
on the quantized measurements Mn under binary encoding
schemes is approximated by a Gaussian distribution. The
rationality of the Gaussian approximation lies in the Bayesian
Gaussian mixture model (GMM) theory. Theoretically, the
weighted Gaussian sum can fit arbitrary distribution according
to Wiener’s tauberian theorem [38]. In this paper, the posterior
distribution p(xn|Mn) can be approximated by GMM as
follows:

p(xn|Mn) ≈
K∑
i=1

hiN (x̂i
n,P

i
n), (9)

where K is the number of Gaussian clusters. For the sake of
derivation convenience and computational resource saving, we
take a special case of Gaussian mixture model where K = 1.
In this case, the values of x̂1

n−1 and P1
n−1 are taken as the

expectation and the covariance of the conditional distribution,
x̂n−1 and Pn−1, respectively.

Obviously, according to assumption (8), ŷn|n−1 and Sn|n−1

can be calculated based on their definitions as follows:
ŷn|n−1 = E {Cnxn + vn | Mn−1} = CnAn−1x̂n−1,

Sn|n−1 = Cov {Cnxn + vn | Mn−1}
= Cn(An−1Pn−1A

T
n−1 +Σw)CT

n +Σv.

(10)

Noting ỹn ≜ S
− 1

2

n|n−1(yn − ŷn|n−1), we know from the
Gaussian approximation that ỹn ≜ [ỹn,1, ỹn,2, · · · , ỹn,M ]T is
an M -component standard Gaussian distribution.

For sake of brevity, we utilize a set of binary variables
{θ(l)j→i}Ll=0 with θ(l)j→i ∈ {0, 1} to specify the random flipping
{θ(l)n,k}Ll=0 for the case where the channel input τj is decoded
into τi after transmission. For example, suppose that the
channel input is τj represented by

τj = −W +
L∑

l=1

h
(l)
n,k2

l−1∆

and the received message is τi given by

τi = −W +
L∑

l=1

ℏ(l)n,k2
l−1∆.

Apparently, the relationship

ℏ(l)n,k = θ
(l)
j→i(1− h

(l)
n,k) + (1− θ

(l)
j→i)h

(l)
n,k

holds, and we can see that θji =
∑L

l=1 θ
(l)
j→i counts the number

of the flipped bits. Furthermore, we denote

h(τ) = 1√
2π

exp(− τ2

2 ) + τφ(τ),

f(τ) = −φ(τ), g(τ) = 1√
2π

exp(− τ2

2 ).
(11)

With the Gaussian approximation, a binary-encoding-based
quantized Kalman filter (BQKF) can now be developed to
provide the approximate MMSE estimate as follows.

Theorem 1. If p(xn−1|Mn−1) ∼ N (xn; x̂n−1,Pn−1), then
the BQKF can be derived through the following prediction-
correction steps
[P2] Prediction step:

x̂n|n−1 = An−1x̂n−1,

Pn|n−1 = An−1Pn−1A
T
n−1 +Σw,

(12)

[C2] Correction step:

Kn = Pn|n−1C
T
nS

− 1
2

n|n−1,

x̂n = x̂n|n−1 +Kngn,

Pn = Pn|n−1 −KnGnK
T
n ,

(13)

where
gn ≜ [αmn,1 , αmn,1 , · · · , αmn,M

]T

and
Gn ≜ diag{βmn,1 , βmn,2 , . . . , βmn,M

}

are coefficient vector and matrix which correct the prediction
and ECM, respectively. Moreover, αi and βi are given as

αi =
2L∑
j=1

pθji(1− p)L−θji
F (τj)

H(τj)
,

βi = α2
i −

2L∑
j=1

pθji(1− p)L−θji
G(τj)

H(τj)
,

where
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H(τ) = 1{τ ̸=W} [h(τ +∆)− h(τ) + f(τ)∆]

+ 1{τ ̸=−W} [h(τ −∆)− h(τ)− f(τ)∆] ,
F (τ) = 1{τ ̸=W} [f(τ +∆)− f(τ) + g(τ)∆]

+ 1{τ ̸=−W} [f(τ −∆)− f(τ)− g(τ)∆] ,
G(τ) = 1{τ ̸=W} [g(τ +∆)− (1−∆τ)g(τ)]

+ 1{τ ̸=−W} [g(τ −∆)− (1 + ∆τ)g(τ)] .

Proof: See Appendix A.
The proposed BQKF in the above ftheorem, composed of

the prediction step [P2] and the correction step [C2] like
Kalman filter (KF), is an approximate MMSE estimate for
linear discrete-time systems under BESs. To evaluate the dif-
ference between BQKF and standard KF, we define the mean
ECM corrections for these two filters. For standard KF, it is
well acknowledged that Pn = Pn|n−1−KnK

T
n , and therefore

the mean ECM correction (given the ideal information M′
n−1)

is defined as follows:

∆PKF
n = E

{
Pn|n−1 −Pn | M′

n−1

}
= KnK

T
n (14)

As for BQKF, according to (13), the expectation of the mean
ECM correction (given Mn−1) can be obtained as follows:

∆PBQKF
n = E

{
Pn|n−1 −Pn | Mn−1

}
= KnE {Gn | Mn−1}KT

n

(15)

Comparing (14) with (15), we find that the difference
between the mean ECM corrections of BQKF and KF simply
lies in the divergence between the identity matrix I with the
term Ḡn ≜ E{Gn|Mn−1}, where the latter one indicates
the influence of randomness brought by BESs and stochastic
quantizers on the ECM correction. Then, we have the follow-
ing result.

Corollary 1. For BQKF with prediction-correction steps [P2]-
[C2], the following inequalities hold:

0 ⪯ Ḡn ⪯ I,

where Ḡn = E{Gn|Mn−1} is the expectation of Gn condi-
tioned on Mn−1.

Proof: Noting that Ḡn is a diagonal matrix, we denote
the kth element of Ḡn as β̄n,k. We have shown in Appendix A
that βi = 1−Var{ỹn,k|Mn}. Since Var{ỹn,k|Mn} ≥ 0, it is
trivial to see βi ≤ 1. Thus, we have β̄n,k = E{βi|Mn−1} ≤ 1.
On the other hand, according to [37], the following property
holds:

Cov{X} = E{Cov{X|Y }}+Cov{E{X|Y }}

and, accordingly, one has

Var{ỹn,k|Mn−1} ≥ Emn
{Var{ỹn,k|Mn}}.

From the definition of ỹn, we know Var{ỹn,k|Mn−1} = 1.
Therefore, β̄n,k = 1 − Emn

{Var{ỹn,k|Mn}} ≥ 0. To this
end, we can draw the conclusion that 0 ≤ β̄n,k ≤ 1 hold for
k = 1, 2, . . . ,M . Since Ḡn is diagonal, it is not difficult to
observe that 0 ⪯ Ḡn ⪯ I, which ends the proof.

From the above corollary, it can be observed that the ECM
correction of the proposed BQKF is lower than that of the
KF since Ḡn ⪯ I. This difference arises primarily from

the penalty induced by quantization and transmission errors.
Moreover, as Ḡn ⪰ 0, we can anticipate a decrease in the
(approximate) ECM after the correction step, which suggests
that the received normalized innovation mn still provides
valuable information even after quantization and bit flipping.

In the following analysis, we will consider a special case
where the flipping probability p = 0, meaning that no
bit flipping occurs during transmission. In this scenario, the
BQKF can be simplified into a more concise form as follows.

Proposition 1. If p(xn−1|Mn−1) ∼ N (xn; x̂n−1,Pn−1),
and the flipping probability p = 0, then the BQKF in [P2]-
[C2] reduces to the following prediction-correction steps

[P3] Prediction step:

x̂n|n−1 = An−1x̂n−1|n−1

Pn|n−1 = An−1Pn−1|n−1A
T
n−1 +Σw

[C3] Correction step:

x̂n = x̂n|n−1 +Kngn

Pn = Pn|n−1 −KnGnK
T
n

where Kn, gn and Gn are defined in Theorem 1. Moreover,
αi and βi can be calculated as follow

αi =
F (τi)

H(τi)
, βi = α2

i −
G(τi)

H(τi)

Proof: The above proposition can be easily proven by
setting p = 0. Therefore, the proof is omitted here for the
sake of brevity.

The following corollary can be deduced from Proposition
1.

Corollary 2. For BQKF with prediction-correction steps [P3]-
[C3], we have Gn → I when ∆ → 0.

Proof: Consider the kth entry on the diagonal of Gn.
Since βi = α2

i − G(τi)/H(τi), we consider the term
lim∆→0 αi at first. For i = 2, . . . , 2L−1, F (τi) = f(τi−∆)+
f(τi+∆)−2f(τi), G(τi) = g(τi−∆)+g(τi+∆)−2g(τi) and
H(τi) = h(τi−∆)+h(τi+∆)−2h(τi). When ∆ tends to 0,
both the numerator and the denominator of αi = F (τi)/H(τi)
tend to 0. Moreover, the partial derivatives of F (τi) and H(τi)
with respect to ∆ can be calculated as follows:

∂F

∂∆
= 1√

2π
exp(− (τi−∆)2

2 )− 1√
2π

exp(− (τi+∆)2

2 )

∂H

∂∆
= φ(τi +∆)− φ(τi −∆)

(16)

and

∂2F

∂∆2
= τi−∆√

2π
exp(− (τi−∆)2

2 ) + τi+∆√
2π

exp(− (τi+∆)2

2 )

∂2H

∂∆2
= 1√

2π
exp(− (τi−∆)2

2 ) + 1√
2π

exp(− (τi+∆)2

2 )

(17)

Applying L’Hospital’s rule yields

lim
∆→0

αi =

√
2π√
2π

2τi exp(− τ2
i

2 )

2 exp(− τ2
i

2 )
= τi. (18)
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Moreover, applying L’Hospital’s rule on G(τi)/H(τi), we
have

lim
∆→0

G

H
=

√
2π√
2π

2τ2i exp(− τ2
i

2 )− 2 exp(− τ2
i

2 )

2 exp(− τ2
i

2 )
= τ2i −1 (19)

Therefore, lim∆→0 βi = lim∆→0 α
2
i − G(τi)/H(τi) = τ2i −

(τ2i −1) = 1. The same conclusion can be proven in a similar
manner for the cases of i = 1 or i = 2L. Therefore, the proof
is omitted for brevity. Finally, we have lim∆→0 Gn = I.

According to Corollary 2, it is evident that selecting a
smaller interval length for the quantizer will decrease the
quantization errors and thereby provide more effective infor-
mation for the estimator. Furthermore, as ∆ tends to zero, the
quantization errors vanish, resulting in Gn → I and the BQKF
degenerates to the traditional KF.

Remark 3. In practical applications, the selection of an
appropriate quantization interval, denoted as W , is crucial.
Since ỹn,k follows a standard Gaussian distribution, a feasible
choice is W = 3 as it corresponds to a probability of
P{−W ≤ ỹn,k ≤ W} = 99.73%, encompassing the majority
of the distribution. Next, the length of the bit stream, denoted
as L, needs to be determined based on the network capacity.
Subsequently, the thresholds U = {τ1, τ2, . . . , τ2L} are set.
From (11), it can be observed that f(τi), g(τi) and h(τi) are
solely dependent on {τi}2

L

i=1. Consequently, the values of αi

and βi can be computed and stored in a coefficient table prior
to implementation. This precomputation simplifies the online
calculations, improving computational efficiency.

IV. PERFORMANCE ANALYSIS

In this section, we will address the computational complex-
ity of the proposed BQKF and provide the posterior Cram’er-
Rao lower bound for performance evaluation.

A. Computational Complexity

To analyze the computational complexity of the proposed
estimator, it is important to consider the computational com-
plexities of various operations involved.

The computational complexity of multiplying an m×n and
an n×p matrix is O(nmp) (for m ̸= n ̸= p), adding two m×
n matrices is O(mn), and the transpose operation is O(n2),
respectively [30]. Additionally, the computational complexity
of Cholesky decomposition of an n× n matrix is O(n3).

Regarding the computation of x̂n, it involves the following
three steps.

1) Calculation of the prediction and the corresponding ECM,
with a computational complexity of O(N3).

2) Calculation of the gain Kn defined in
(13) with a computational complexity of
max{O(N2M), O(NM2), O(N3)}.

3) Calculation of the estimate and the corresponding
ECM, with a computational complexity of
max{O(N2M), O(NM2)}.

Therefore, the total computational complexity of the proposed
BQKF at each instant is O(max{N2M,NM2, N3}) = O(N ·
max{N,M}2). This complexity is consistent with that of the
traditional KF.

B. Posterior Cramér-Rao Lower Bound

The posterior Cramér-Rao lower bound (PCRLB) provides
a lower bound on the estimation ECM of the proposed BQKF.
Specifically, the actual estimation ECM of the BQKF is
bounded below by the inverse of the Fisher information matrix
(FIM) Jn, i.e.

E{(x̂n − xn)(x̂n − xn)
T} ⪰ J−1

n (20)

Without loss of generality, we will calculate the FIM for the
dynamical systems with the assumption of Σv = σ2

vI. In fact,
even in cases where Σv is not a diagonal matrix, we can
perform a diagonalization by transforming the measurement
equation.

For convenience of presentation, let C(k,:)
n be the kth row

of the matrix Cn, and denote

ψ(τ) ≜ 1√
2π

exp(− τ2

2 ) + τφ(τ),

ψ̇(τ) ≜ φ(τ), ψ̈(τ) ≜ 1√
2π

exp(− τ2

2 ).
(21)

Now, we have the following proposition.

Proposition 2. With the initial value J0 = Σ−1
0 , the FIM of

the proposed BQKF can be recursively calculated as follows:

Jn = (Σw +An−1J
−1
n−1A

T
n−1)

−1 +CT
n Ξ̄

−1
n Cn (22)

where Ξ̄n = diag{ρn,1, ρn,2, . . . , ρn,M} is a diagonal matrix
with the diagonal entry as

ρn,k = σ2
v E

{(
Υ̇n,k

Υn,k

)2
− Ϋn,k

Υn,k

}−1

, (23)

for k = 1, 2, . . . ,M , which can be approximately computed
by Monte Carlo sampling:

ρn,k ≈ σ2
v

TMC

TMC∑
t=1

[(
Υ̇

(t)
n,k

Υ
(t)
n,k

)2

− Ϋ
(t)
n,k

Υ
(t)
n,k

]−1

. (24)

The superscript “(t)” implies that the value is obtained from
the t-th sampling, and TMC denotes the total number of
sampling. Moreover,

µ
(t)
n,k =

C(k,:)
n (x(t)

n −x̂
(t)

n|n−1
)√

C
(k,:)
n P

(t)

n|n−1
(C

(k,:)
n )T+σ2

v

σ
(t)
n,k = σv√

C
(k,:)
n P

(t)

n|n−1
(C

(k,:)
n )T+σ2

v

ψ
(t)
n,k(τ) = ψ(

τ−µ
(t)
n,k

σ
(t)
n,k

)

ψ̇
(t)
n,k(τ) = ψ̇(

τ−µ
(t)
n,k

σ
(t)
n,k

)

ψ̈
(t)
n,k(τ) = ψ̈(

τ−µ
(t)
n,k

σ
(t)
n,k

)
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Ψ
(t)
n,k(τ) = 1{τ ̸=W}

[
ψ
(t)
n,k(τ +∆)− ψ

(t)
n,k(τ)−

∆

σ
(t)
n,k

ψ̇
(t)
n,k(τ)

]
+ 1{τ ̸=−W}

[
ψ
(t)
n,k(τ −∆)− ψ

(t)
n,k(τ) +

∆

σ
(t)
n,k

ψ̇
(t)
n,k(τ)

]
Ψ̇

(t)
n,k(τ) = 1{τ ̸=W}

[
ψ̇
(t)
n,k(τ +∆)− ψ̇

(t)
n,k(τ)−

∆

σ
(t)
n,k

ψ̈
(t)
n,k(τ)

]
+ 1{τ ̸=−W}

[
ψ̇
(t)
n,k(τ −∆)− ψ̇

(t)
n,k(τ) +

∆

σ
(t)
n,k

ψ̈
(t)
n,k(τ)

]
Ψ̈

(t)
n,k(τ) = 1{τ ̸=W}

[
ψ̈
(t)
n,k(τ +∆)−

(
1−∆

τ−µ
(t)
n,k

(σ
(t)
n,k)

2

)
ψ̈
(t)
n,k(τ)

]
+ 1{τ ̸=−W}

[
ψ̈
(t)
n,k(τ −∆)−

(
1 + ∆

τ−µ
(t)
n,k

(σ
(t)
n,k)

2

)
ψ̈
(t)
n,k(τ)

]

Υ
(t)
n,k =

2L∑
j=1

pθ
(t)
ji (1− p)L−θ

(t)
ji Ψ

(t)
n,k(τj)

Υ̇
(t)
n,k =

2L∑
j=1

pθ
(t)
ji (1− p)L−θ

(t)
ji Ψ̇

(t)
n,k(τj)

Ϋ
(t)
n,k =

2L∑
j=1

pθ
(t)
ji (1− p)L−θ

(t)
ji Ψ̈

(t)
n,k(τj)

Proof: See Appendix B.
If the normalized innovation can be transmitted accurately,

i.e., mn = ỹn, the BQKF simplifies to a clairvoyant KF. In
this case, the second term of Jn in (22) becomes CT

nΣ
−1
v Cn

[42]. A closer examination of CT
nΣ

−1
v Cn and CT

n Ξ̄
−1
n Cn

reveals that the main difference arises from the effects of
stochastic quantization and random bit flipping during trans-
mission.

C. Stability Analysis

The above subsection gives a theoretical lower bound of
the ECM. Next, we will further elucidate the relationship
between the quantization error ∆ and filter performance, and
investigate the stability of the proposed filter. For convenience,
we consider a time-invariant system with fixed parameters
An = A and Cn = C.

It is easy to verify that the prediction ECM in (12) and (13)
can be rewritten as follows:

Pn+1|n = AnPn|n−1A
⊤
n +Σw

−AnPn|n−1C
⊤
n (CnPn|n−1C

⊤
n +Σv)

− 1
2

×Gn(CnPn|n−1C
⊤
n +Σv)

− 1
2CnPn|n−1A

⊤
n .

We define the modified algebraic Riccati equation for the
BQKF as follows:

r(X) = AnXA⊤
n +Σw −AnXC⊤

n (CnXC⊤
n +Σv)

− 1
2

×Gn(CnXC⊤
n +Σv)

− 1
2CnXA⊤

n .

Since the values of βi are finite, it is not difficult to obtain the
minimum value βm ≜ min{βi : i = 1, 2, . . . , 2L} satisfying

Gn ⪰ βmI.

Noting that both Gn and βmI are diagonal matrices, the
following inequality holds:

Pn+1|n ⪯ AnPn|n−1A
⊤
n +Σw − βmAnPn|n−1C

⊤
n

× (CnPn|n−1C
⊤
n +Σv)

−1CnPn|n−1A
⊤
n .

We define a new algebraic Riccati equation

rβ(X) = AnXA⊤
n +Σw

− βAnXC⊤
n (CnXC⊤

n +Σv)
−1CnXA⊤

n

where 0 ≤ β ≤ 1, and a new covariance sequence P′
n+1|n =

rβm(P′
n|n−1). In fact, we have

E{r(Pn|n−1)} ⪯ E{rβm
(P′

n|n−1)}

If the sequence E{P′
n+1|n} is bounded, the considered se-

quence E{Pn+1|n} is also bounded as Gn ⪰ βmI. According
to Theorems 2-4 in [40], we have the following theorem.

Theorem 2. If (A,Σ
1
2
w) is controllable, (A,C) is observable,

and A is unstable, then there exists a β∗ ∈ [0, 1) such that for
each β satisfying β∗ < β ≤ 1, the following inequality holds:

lim
n→∞

E{Pn|n−1} ⪯ M̄,

where M̄ is the solution of the algebraic equation M̄ =
rβ(M̄), and β∗ satisfies

β ≤ β∗ ≤ β̄.

The upper and lower bounds are

β = 1− 1

δ2
,

β̄ = arg inf
β

[∃(K,X) | X ⪰ ϕ(K,X)] ,

respectively, where δ = maxi |σi| and σi are the eigenvalues
of A. The operator ϕ(K,X) = (1 − β)(AXA⊤ + Σw) +
β(FXF⊤+V), where F = A+KC and V = KΣvK

⊤+Σw.

According to this theorem, we have the following corollary.

Corollary 3. If (A,Σ
1
2
w) is controllable, (A,C) is observable,

A is unstable, and the minimum value βm = min{βi : i =
1, 2, . . . , 2L} satisfies

βm > β̄,

then limn→∞ E{Pn|n−1} ⪯ M̄1 where M̄1 is the solution of
the algebraic equation M̄1 = rβm

(M̄1).

In light of the above corollary, we can see that as long as
the minimum value of the coefficients {βi}2

L

i=1 exceeds the
threshold β̄, the limit of the approximate ECM’s expectation
can be bounded within a certain value, thereby ensuring the
feasibility of the proposed filter. Since the values of {βi}2

L

i=1

depend on the selection of the interval length W and bit length
L, this theorem reveals the influence of the quantization error
(∆ = 2W

2L−1
) on the filter performance.
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V. AN ILLUSTRATIVE EXAMPLE

In this section, we provide a numerical example to demon-
strate the performance of the proposed BQKF.

We consider the problem of tracking a moving target in
a planar space. The state vector of the target is denoted as
xn = [sxn, s

y
n, v

x
n, v

y
n]

T, where sxn and syn represent the position
of the target along the x and y axes, and vxn and vyn represent
the velocities along the x and y axes, respectively. We assume
a constant velocity scenario and define the state-space equation
as follows:

xn+1 =

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

xn +


1
2dt

2 0
0 1

2dt
2

dt 0
0 dt

wn

where dt = 1 denotes the sampling period. The sensor is
capable of measuring the target’s position along the x and y
axes. Therefore, the measurement matrix can be expressed as:

Cn =

[
1 0 0 0
0 1 0 0

]
The process and measurement noises, i.e., wn and vn, are

zero-mean Gaussian white noise sequences with covariances

Σw =

[
0.04 0
0 0.04

]
, Σv =

[
0.04 0
0 0.04

]
The initial value x0 of the state obeys Gaussian distribution

with mean µ0 = [100, 2, 200, 20]T and covariance Σ0 = I. We
choose the range W = 2 and the bit number L = 2/3/4, and
therefore the length of the interval is ∆ = 1.33/0.57/0.26.
The flipping probability p is assumed to be 0.01.

The simulation results are illustrated in Figs. 3-7. Fig. 3
shows the trajectories of the target plant as well as the
corresponding estimates obtained using the BQKF (L = 3).
To evaluate the performance of the proposed estimator, we
conduct TMC = 1000 independent simulations. Define the
empirical mean-square error (MSE) as follows:

EMSEn =
1

TMC

TMC∑
t=1

∥x̂(t)
n − x(t)

n ∥2 (25)

where the superscript “(t)” implies that the value is obtained
in the t-th run. Moreover, the analytical MSE is obtained from
the trace of the ECM defined as

AMSEn =
1

TMC

TMC∑
t=1

tr
{
P(t)

n

}
(26)

When the quantization bit length is set to L = 3, A
comparison of the empirical MSE, the analytical MSE and
the trace of the PCRLB is shown in Fig. 4. It can be observed
that they exhibit the same trend over time, and eventually, the
empirical MSE becomes nearly equal to the analytical MSE.
The PCRLB consistently serves as a lower bound of both the
empirical and analytical MSEs. Furthermore, we compare the
empirical and analytical MSEs of the conventional KF and the
proposed BQKF with different bit stream lengths (L = 2, 3, 4)
in Figs. 5-6. It is evident that as the length of the bit stream
increases, both the empirical and analytical MSEs decrease
and approach the MSE of the KF. Moreover, Fig. 7 illustrates
the variation of the PCRLB for the proposed estimator as the

quantization bit length changes from 2 to 4. The PCRLB
decreases sequentially and remains lower bounded by the
analytical MSE of the KF. Furthermore, when the quantization
bit length is set to L = 4, the performance of the BQKF is
comparable to that of the KF.

0 5 10 15 20 25 30 35 40 45 50

100

200

300

0 5 10 15 20 25 30 35 40 45 50

2

3

4

0 5 10 15 20 25 30 35 40 45 50

0

500

1000

0 5 10 15 20 25 30 35 40 45 50

18

19

20

Fig. 3. The trajectories of the target plant and the corresponding estimates
using KF and BQKF (L = 3).

0 5 10 15 20 25 30 35 40 45 50

Time Step n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSE by BQKF - Analytical

MSE by BQKF - Empirical

Trace of PCRLB by BQKF

Fig. 4. The empirical MSE, analytical MSE, and the trace of the PCRLB for
the proposed BQKF (L = 3).

VI. CONCLUSIONS

In this paper, we have investigated the problem of remote
estimation for a class of linear discrete-time systems under
binary encoding schemes (BESs). BESs involve quantizing
the information from the remote sensor into a bit string
in a probabilistic manner and transmitting it through noisy
channels with random bit flipping. Due to the nonlinearities
arising from quantization and transmission, calculating the
exact MMSE estimate is computationally burdensome. To
address this issue, we have developed the BQKF using the
Gaussian approximation approach, which serves as an approx-
imate MMSE estimator. We have also discussed the computa-
tional complexity of the proposed BQKF, which is comparable
to that of the conventional Kalman filter. Furthermore, we
have established the posterior Cram’er-Rao lower bound to
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Fig. 5. The empirical MSE of KF and the empirical MSE of the proposed
BQKF with different bits L = 2, 3, 4.
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Fig. 6. The analytical MSE of KF and the analytical MSE of the proposed
BQKF with different bits L = 2, 3, 4.
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Fig. 7. The analytical MSE of KF and the trace of the PCRLB of the proposed
BQKF with different bits L = 2, 3, 4.

assess the performance of the BQKF. Finally, numerical results
have been presented to demonstrate the effectiveness of the
proposed BQKF. A potential future work is to consider the
state-estimation under BESs for more complicated systems,
such as nonlinear systems, distributed sensor networks, or
mixed analog-to-digital converter (ADC) systems with both
analog and quantized data.

APPENDIX A
PROOF OF THEOREM 1

Before the proof, two useful lemmas are presented.

Lemma 1. If m events I1, I2, . . . , In are mutually exclusive
with each other, the following holds:

P {I | ∪n
i=1Ii} =

n∑
i=1

P {Ii}∑n
j=1 P {Ij}

P {I | Ii}

Proof: It is easy to see that

P {I | ∪n
i=1Ii} =

P {∪n
i=1Ii | I}P {I}
P {∪n

i=1Ii}
According to the mutual exclusivity between events {I1,

I2, . . . , In}, we have P{∪n
i=1Ii} =

∑n
i=1 P{Ii} and

P{∪n
i=1Ii|I} =

∑n
i=1 P{Ii|I}. Therefore,

P {I | ∪n
i=1Ii} =

n∑
i=1

P {Ii | I}P {I}∑n
j=1 P {Ij}

=

n∑
i=1

P {Ii}∑n
j=1 P {Ij}

P {Ii | I}P {I}
P {Ii}

=

n∑
i=1

P {Ii}∑n
j=1 P {Ij}

P {I | Ii}

Lemma 2 ([8]). If ζ1, ζ2 are σ-algebras with ζ1 ⊂ ζ2 and
E{|χ|} <∞, then

E {I | ζ1} = E {E {I | ζ2} | ζ1} = E {E {I | ζ1} | ζ2}

Now, we are in position to derive the approximate MMSE
estimate x̂n = E{xn|Mn}. According to Lemma 2, it is not
difficult to see that

x̂n = E {xn | Mn} = E {xn | Mn−1,mn}
= E {E {xn | Mn−1, ỹn} | Mn−1,mn}

(27)

To begin with, we will evaluate the conditional expec-
tation E{xn|Mn−1, ỹn} in (27). Given p(xn−1|Mn−1) ∼
N (xn; x̂n−1,Pn−1), the joint distribution of random variables
xn and ỹn conditioned on Mn−1 is as follows:

p(xn, ỹn | Mn−1) ∼ N
(
xn, ỹn;

[
E{xn | Mn−1}
E{ỹn | Mn−1}

]
,[

Cov{xn | Mn−1} Cov{xn, ỹn | Mn−1}
Cov{ỹn,xn | Mn−1} Cov{ỹn | Mn−1}

])
The expectation and the covariance of p(xn|Mn−1) can be

calculated by

x̂n|n−1 ≜ E {xn | Mn−1}
= E {An−1xn−1 +wn−1 | Mn−1}
= An−1x̂n−1
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and

Pn|n−1 ≜ Cov {xn | Mn−1}
= Cov {An−1xn−1 +wn−1 | Mn−1}
= An−1Pn−1A

T
n−1 +Σw

For the PDF p(ỹn|Mn−1), its expectation can be calculated
by

E {ỹn | Mn−1} = 0

Moreover, since Cov{yn|Mn−1} = CnPn|n−1C
T
n +Σv, one

can derive that

Cov {ỹn | Mn−1} = I

In addition, one has

Cov {xn, ỹn | Mn−1}

= E
{
(xn − x̂n|n−1)[S

− 1
2

n|n−1(yn − ŷn|n−1)]
T | Mn−1

}
= E

{
(xn − x̂n|n−1)(xn − x̂n|n−1)

T | Mn−1

}
CT

nS
− 1

2

n|n−1

+ E
{
(xn − x̂n|n−1)v

T
n | Mn−1

}
S
− 1

2

n|n−1

= Pn|n−1C
T
nS

− 1
2

n|n−1

Noticing that the covariance matrices are symmetric, one
has Cov{ỹn,xn|Mn−1} = S

− 1
2

n|n−1CnPn|n−1. Therefore,
p(xn, ỹn|Mn−1) obeys the following distribution

N
(
xn, ỹn;

[
x̂n|n−1

0

]
,

[
Pn|n−1 Kn

KT
n I

])
(28)

where KT
n = S

− 1
2

n|n−1CnPn|n−1. As a consequence, we have

x̂o
n ≜ E {xn | Mn−1, ỹn}
= E {xn | Mn−1}+Cov {xn, ỹn | Mn−1}
× Cov {ỹn | Mn−1}−1

(ỹn − E {ỹn | Mn−1})
= x̂n|n−1 +Knỹn

(29)

From (27), we know that x̂n can be derived by evaluating
the expectation E{x̂o

n|Mn−1,mn} as follows:

x̂n = E {x̂o
n | Mn−1,mn}

= x̂n|n−1 +KnE {ỹn | Mn−1,mn}
(30)

Next, we proceed to compute E{ỹn,k|Mn−1,mn,k}. Let
F i

j denote the event where the channel input Qk(ỹn,k) = τj
(abbreviated as Qn,k = τj in the following content) is changed
to mn,k = τi after transmission due to the bit flipping. To be
specific, the received signal mn,k = τi can be generated from
2L different cases as follows:{

F i
1,F i

2, . . . ,F i
2L

}
(31)

According to Lemma 1, we have

E {ỹn,k | Mn−1,mn,k = τi}

=

2L∑
j=1

P{F i
j | Mn−1}∑2L

s=1 P{F i
s | Mn−1}

E {ỹn,k | Mn−1,Qn,k = τj}

(32)

Since Mn−1 is redundant to F i
j , it is clear to see that

P{F i
j |Mn−1} = P{F i

j}.

Furthermore, we call one bit crossover as a Bernoulli trial.
Since F i

j can be expressed into a bit string with length L and
among each bit the crossover is independent, we can regard
F i

j as L-Bernoulli trials. Suppose that

τi = −W +
L∑

l=1

ℏ(l)n,k2
l−1∆

and

τj = −W +
L∑

l=1

h
(l)
n,k2

l−1∆.

with ℏ(l)n,k = θ
(l)
j→i(1−h

(l)
n,k)+(1−θ(l)j→i)h

(l)
n,k, where θ(l)j→i = 1

if the lth bit of τi is flipped and 0 otherwise. As a result, the
probability of the event F i

j is as follows:

P
{
F i

j

}
= pθij (1− p)L−θij , (33)

with θij =
∑L

l=1 θ
(l)
j→i. Apparently, the sum of all the probabil-

ities in L-Bernoulli trials is equal to one, i.e.,
∑2L

l=1 P{F i
l } =

1. Substituting (33) into (32) yields

E {ỹn,k | Mn−1,mn,k = τi}

=
2L∑
j=1

pθij (1− p)L−θijE {ỹn,k | Mn−1,Qn,k = τj}
(34)

Moreover, the information set {Mn−1,Qn,k = τi} is equal
to the union of the sets {Mn−1, ỹn,k ∈ Ui−1,Ri

n} and
{Mn−1, ỹn,k ∈ Ui,Li

n}, for i = 2, . . . , 2L − 1, where Ui

denotes the interval [τi, τi+1] and Li
n denotes the case that

ỹn,k ∈ Ui is quantized to τi (the left boundary of Ui), and
correspondingly Ri

n denotes the case that ỹn,k ∈ Ui−1 is
quantized to τi (the right boundary of Ui−1). According to
Lemma 1, we have

E {ỹn,k | Mn−1,Qn,k = i}

=
pRi

n

pLi
n
+ pRi

n

E
{
ỹn,k | Mn−1, ỹn,k ∈ Ui−1,Ri

n

}
+

pLi
n

pLi
n
+ pRi

n

E
{
ỹn,k | Mn−1, ỹn,k ∈ Ui,Li

n

} (35)

where pRi
n

is the shorthand of P{Mn−1, ỹn,k ∈ Ui−1,Ri
n},

and pLi
n

is the shorthand of P{Mn−1, ỹn,k ∈ Ui,Li
n}.

In the following calculations, we will determine the proba-
bilities pLi

n
and pRi

n
. Based on Bayes’ theorem, pLi

n
can be

decomposed into the following three components:

pLi
n
= P

{
Li
n | ỹn,k ∈ Ui,Mn−1

}
× P {ỹn,k ∈ Ui | Mn−1}P {Mn−1}

Noting that p(ỹn,k|Mn−1) ∼ N (ỹn,k; 0, 1), it is easy to see

P {ỹn,k ∈ Ui | Mn−1} = φ(τi+1)− φ(τi).

The conditional probability of Li
n is

P
{
Li
n | ỹn,k ∈ Ui,Mn−1

}
=

∫
R
p(ỹn,k | ỹn,k ∈ Ui,Mn−1)

×P
{
Li
n | ỹn,k, ỹn,k ∈ Ui,Mn−1

}
dỹn,k

Given the fact that ỹn,k ∈ Ui, Mn−1 is redundant, we have

P{Li
n | ỹn,k, ỹn,k ∈ Ui,Mn−1} = (τi+1 − ỹn,k)/∆
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Moreover, one has

p(ỹn,k | ỹn,k ∈ Ui,Mn−1)

=

{
N (ỹn,k;0,1)

φ(τi+1)−φ(τi)
, if ỹn,k ∈ Ui

0, otherwise

As a consequence, it can be derived that

P{Li
n|ỹn,k ∈ Ui,Mn−1}

=

∫
Ui

N (ỹn,k; 0, 1)

φ(τi+1)− φ(τi)

τi+1 − ỹn,k
∆

dỹn,k

For brevity of presentation, denote

p̄Li
n
≜ P {ỹn,k ∈ Ui | Mn−1}P

{
Li
n | ỹn,k ∈ Ui,Mn−1

}
=

∫
Ui

τi+1 − ỹn,k
∆

N (ỹn,k; 0, 1) dỹn,k

=
exp(− τ2

i+1

2 )− exp(− τ2
i

2 )
√
2π∆

+
τi+1[φ(τi+1)− φ(τi)]

∆

Therefore, the probability pLi
n

can be calculated as

pLi
n
= p̄Li

n
P{Mn−1}

Similarly, we have

p̄Ri
n
≜

exp(− τ2
i−1

2 )− exp(− τ2
i

2 )
√
2π∆

+
τi−1[φ(τi−1)− φ(τi)]

∆

and
pRi

n
= p̄Ri

n
P{Mn−1}

Apparently, p̄Li
n
+p̄Ri

n
can be simplified as H(τi)/∆, where

H(τ) = h(τ −∆) + h(τ +∆)− 2h(τ)

and
h(τ) =

1√
2π

exp(− τ2

2 ) + τφ(τ) (36)

Now, let us calculate the conditional expectations
E{ỹn,k|Mn−1, ỹn,k ∈ Ui−1,Ri

n} and E{ỹn,k|Mn−1, ỹn,k ∈
Ui,Li

n}. It can be derived that

p(ỹn,k | ỹn,k ∈ Ui,Li
n,Mn−1)

=

{
p(ỹn,k|Mn−1)P{Li

n|ỹn,k}
P{ỹn,k∈Ui,Li

n|Mn−1} , if ỹn,k ∈ Ui

0 , otherwise

=

{
1

p̄Li
n

τi+1−ỹn,k

∆ N (ỹn,k; 0, 1) , if ỹn,k ∈ Ui

0 , otherwise

which yields

E
{
ỹn,k | ỹn,k ∈ Ui,Li

n,Mn−1

}
=

1

p̄Li
n
∆

∫
Ui

ỹn,k(τi+1 − ỹn,k)N (ỹn,k; 0, 1) dỹn,k

=
1

p̄Li
n
∆

[
φ(τi)− φ(τi+1) +

∆√
2π

exp(− τ2
i

2 )

] (37)

Similarly, we have

E
{
ỹn,k | ỹn,k ∈ Ui−1,Ri

n,Mn−1

}
=

1

p̄Ri
n
∆

[
φ(τi)− φ(τi−1)−

∆√
2π

exp(− τ2
i

2 )

]
(38)

Substituting (37) and (38) into (35) yields that

E {ỹn,k | Mn−1,Qn,k = i} =
F (τi)

H(τi)
(39)

where F (τ) = f(τ − ∆) + f(τ + ∆) − 2f(τ) and
f(τ) = −φ(τ). In particular, E{ỹn,k|Mn−1,Qn,k = i} is
reduced to E{ỹn,k|Mn−1, ỹn,k ∈ Ui,Li

n} for i = 1 and
E{ỹn,k|Mn−1, ỹn,k ∈ Ui−1,Ri

n} for i = 2L. Consequently,
one has

F (τ) =

{
φ(τ)− φ(τ +∆) + ∆√

2π
exp(− τ2

2 ), τ = −W
φ(τ)− φ(τ −∆)− ∆√

2π
exp(− τ2

2 ), τ =W

and

H(τ) =


1√
2π

[exp(− (τ+∆)2

2 )− exp(− τ2

2 )]

+(τ +∆)[φ(τ +∆)− φ(τ)], τ = −W
1√
2π

[exp(− (τ−∆)2

2 )− exp(− τ2

2 )]

+(τ −∆)[φ(τ −∆)− φ(τ)], τ =W

Denote αi ≜ E{ỹn,k|Mn−1,mn,k = τi}. When the re-
ceived signal is τi at instant n, according to (34) and (39),
we have αi =

∑2L

j=1 p
θji(1−p)L−θjiF (τj)/H(τj), and hence

(30) can be rearranged as

x̂n = x̂n|n−1 +Kngn

Subsequently, we will derive Pn ≜ E{(xn − x̂n)(xn −
x̂n)

T|Mn}. Using (29) and (30), the dynamics of the esti-
mation error en = xn − x̂n can be written as follows:

en = xn − x̂o
n + x̂o

n − x̂n

= xn − x̂o
n +Kn(ỹn − E {ỹn | Mn})

(40)

In light of Lemma 2, we have

Pn = E
{
ene

T
n | Mn

}
= E

{
E
{
ene

T
n | Mn−1, ỹn

}
| Mn−1,mn

} (41)

Substituting (40) into the above equation yields

E
{
ene

T
n | Mn−1, ỹn

}
= E

{
(xn − x̂o

n)(xn − x̂o
n)

T | Mn−1, ỹn

}
+Kn(ỹn − E {ỹn | Mn})(ỹn − E {ỹn | Mn})TKT

n ,

(42)

which is due to the fact that both ỹn and E{ỹn|Mn}
are deterministic functions under the condition {Mn−1, ỹn},
and E{xn − x̂o

n|Mn−1, ỹn} = E{xn|Mn−1, ỹn} − x̂o
n =

x̂o
n − x̂o

n = 0. We observe that the first term of (42) is the
covariance of p(xn|Mn−1, ỹn), which can be calculated based
on p(xn, ỹn|Mn−1) in (28) as follows:

Po
n ≜ Cov {xn | Mn−1, ỹn} = Cov {xn | Mn−1}

− Cov {xn, ỹn | Mn−1}Cov {ỹn | Mn−1}−1

× Cov {ỹn,xn | Mn−1} = Pn|n−1 −KnK
T
n

(43)

Combining (41) and (43), we obtain

Pn = Po
n +KnE {(ỹn − E {ỹn | Mn})

×(ỹn − E {ỹn | Mn})T | Mn

}
KT

n

= Pn|n−1 −KnK
T
n +Kn Cov {ỹn | Mn}KT

n

= Pn|n−1 −Kn(I− Cov {ỹn | Mn})KT
n
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where

Cov {ỹn | Mn} = E
{
ỹnỹ

T
n | Mn

}
− E {ỹn | Mn}E {ỹn | Mn}T

Since ỹn,k are independent and identically distributed vari-
ables obeying p(ỹn,k) = N (ỹn,k; 0, 1), we know that the
off-diagonal component of Cov{ỹn|Mn} is equal to 0. As
for the diagonal component, we have Var{ỹn,k|Mn} =
E{ỹ2n,k|Mn}− (E{ỹn,k|Mn})2, where E{ỹn,k|Mn} is given
in (34), where E{ỹ2n,k|Mn} can be calculated in a similar
way like E{ỹn,k|Mn}. To be specific, E{ỹ2n,k|Mn} can be
rearranged as

E
{
ỹ2n,k | Mn−1,mn,k = τi

}
=

2L∑
j=1

pθji(1− p)L−θjiE
{
ỹ2n,k | Mn−1,Qn,k = τj

} (44)

and E{ỹ2n,k | Mn−1,Qn,k = τi} for i = 2, . . . , 2L− 1 can be
written as

E
{
ỹ2n,k | Mn−1,Qn,k = i

}
=

pRi
n

pLi
n
+ pRi

n

E
{
ỹ2n,k | Mn−1, ỹn,k ∈ Ui−1,Ri

n

}
+

pLi
n

pLi
n
+ pRi

n

E
{
ỹ2n,k | Mn−1, ỹn,k ∈ Ui,Li

n

}
Finally, it can be obtained that

E
{
ỹ2n,k | Mn−1,mn = τi

}
=

Λ(τi)

H(τi)

where Λ(τ) is λ(τ −∆) + λ(τ +∆)− 2λ(τ) and

λ(τ) =
2√
2π

exp(− τ2

2 ) + τφ(τ)

Letting βi ≜ 1−Var{ỹn,k | Mn}, we thus have

βi = 1−


2L∑
j=1

pθji(1− p)L−θji
Λ(τ)

H(τ)
− α2

i


= α2

i −
2L∑
j=1

pθji(1− p)L−θji
Λ(τ)−H(τ)

H(τ)

= α2
i −

2L∑
j=1

pθji(1− p)L−θji
G(τ)

H(τ)

where G(τ) = g(τ −∆) + g(τ +∆)− 2g(τ) and

g(τ) =
1√
2π

exp(− τ2

2 )

Moreover, for i = 1 and i = 2L, we have

G(τ) =

{
g(τ +∆)− (1−∆τ)g(τ), τ = −W
g(τ −∆)− (1 + ∆τ)g(τ), τ =W

Let Gn ≜ diag{βn,1, βn,2, . . . , βn,M}. Therefore, it is
straightforward to see that

Pn = Pn|n−1 −KnGnK
T
n (45)

which is the ECM in (13). The proof is now complete.

APPENDIX B
PROOF OF PROPOSITION 2

According to [42], the recursion of the FIM Jn can be
obtained as follows:

Jn = D22
n−1 −D21

n−1(Jn−1 +D11
n−1)

−1D12
n−1 (46)

where

D11
n−1 = E

{
−∆xn−1

xn−1
log p(xn | xn−1)

}
D12

n−1 = E
{
−∆xn

xn−1
log p(xn | xn−1)

}
D21

n−1 = E
{
−∆xn−1

xn
log p(xn | xn−1)

}
=
(
D12

n−1

)T
D22

n−1 = E
{
−∆xn

xn
log p(xn | xn−1)

}
+ E

{
−∆xn

xn
logP {mn | xn}

}
= D22,a

n−1 +D22,b
n−1

and ∆x
y denotes the operator of the second derivative, namely

∆x
y = ∇x∇T

y with ∇ standing for the gradient operator.
Given the state-space model (1), it is not difficult to ob-

tain that D11
n−1 = AT

n−1Σ
−1
w An−1, D12

n−1 = −AT
n−1Σ

−1
w ,

D21
n−1 = −Σ−1

w An−1 and D22,a
n−1 = Σ−1

w . Applying the Matrix
Inversion Lemma1 to (46), we have

Jn = D22,b
n−1 +Σ−1

w − Σ−1
w An−1

× (Jn−1 +AT
n−1Σ

−1
w An−1)

−1AT
n−1Σ

−1
w

= D22,b
n−1 + (Σw +An−1J

−1
n−1A

T
n−1)

−1

(47)

To evaluate D22,b
n−1, we need to first compute P{mn|xn} as

follows:

P {mn | xn} = P
{
∪M
k=1{mn,k = τi} | xn

}
=

M∏
k=1

P {mn,k = τi | xn}

According to the relationship between {mn,k = τi} and
∪2L

j=1{Q(ỹn,k) = τj ,F i
j} mentioned in (31), we have

P {mn,k = τi | xn} =
{
∪2L

j=1{Q(ỹn,k) = τj ,F i
j} | xn

}
=

2L∑
j=1

P
{
F i

j

}
P {Q(ỹn,k) = τj | xn}

where P{F i
j} = pθji(1 − p)L−θji . Based on the Bayes’

theorem, the probability P{Q(ỹn) | xn} can be written as

P {Q(ỹn,k) | xn} =

∫
R
p(ỹn,k,Q(ỹn,k) | xn) dỹn,k

=

∫
R
P {Q(ỹn,k) | ỹn,k} p(ỹn,k | xn) dỹn,k

(48)

where

p(ỹn,k|xn) = N (ỹn,k;µn,k, σ
2
n,k).

1(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1
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Moreover, since {Q(ỹn,k) = τj} is equivalent to {ỹn,k ∈
Uj−1,Rj

n,k} ∪ {ỹn,k ∈ Uj ,Lj
n,k}, we can rearrange (48) as

follows:
P {Q(ỹn,k) = τj | xn}

=

∫
Uj−1

ỹn,k − τj−1

∆
N (ỹn,k;µn,k, σ

2
n,k) dỹn,k

+

∫
Uj

τj+1 − ỹn,k
∆

N (ỹn,k;µn,k, σ
2
n,k) dỹn,k

(49)

for j = 2, . . . , 2L − 1. Let ψn,k(τ ;xn) ≜ ψ(
τ−µn,k

σn,k
) where

ψ(τ) = 1√
2π

exp(− τ2

2 )+ τφ(τ) and Ψn,k(τ ;xn) ≜ ψn,k(τ −
∆;xn)+ψn,k(τ+∆;xn)−2ψn,k(τ ;xn). Then, by computing
(49), we obtain

P {Q(ỹn,k) = τj | xn} =
σ2
n,k

∆
Ψn,k(τj ;xn)

In particular, P{Q(ỹn,k) = τj |xn} is reduced to the first
integral term for j = 1 and the second term for j = 2L.
Consequently, one has

Ψn,k(τ ;xn) =



ψn,k(τ +∆;xn)− ψn,k(τ ;xn)

− ∆
σn,k

φ(
τ−µn,k

σn,k
), τ = −W

ψn,k(τ −∆;xn)− ψn,k(τ ;xn)

+ ∆
σn,k

φ(
τ−µn,k

σn,k
), τ =W

ψn,k(τ −∆;xn) + ψn,k(τ +∆;xn)
−2ψn,k(τ ;xn), otherwise

Let Υn,k ≜
∑2L

j=1 p
θji(1−p)L−θjiΨn,k(τj ;xn). With these

notations, we have

P{mn,k|xn} =
σ2
n,k

∆
Υn,k.

According to the chain rule, we know that

−∆xn
xn

logP {mn | xn}

=
M∑
k=1

−∆xn
xn

logP {mn,k | xn}

=
M∑
k=1

(
∇xn

P{mn,k|xn}
P{mn,k|xn}

)2

I

−
∆xn

xn
P{mn,k|xn}

P{mn,k|xn}

=
M∑
k=1

(
∇xn

Υn,k

Υn,k

)2

I

−
∆xn

xn
Υn,k

Υn,k

(50)

where (⋆)2I ≜ (⋆)(⋆)T for any column vector ⋆. Let
ψ̇n,k(τ ;xn) ≜ ψ̇(

τ−µn,k

σn,k
) where ψ̇(τ) = φ(τ) and

Ψ̇n,k(τ ;xn) ≜



ψ̇n,k(τ +∆;xn)− ψ̇n,k(τ ;xn)

− ∆
σn,k

1√
2π

exp(− (τ−µn,k)
2

2σ2
n,k

), τ = −W
ψ̇n,k(τ −∆;xn)− ψ̇n,k(τ ;xn)

+ ∆
σn,k

1√
2π

exp(− (τ−µn,k)
2

2σ2
n,k

), τ =W

ψ̇n,k(τ −∆;xn) + ψ̇n,k(τ +∆;xn)

−2ψ̇n,k(τ ;xn), otherwise

Denoting

Υ̇n,k ≜
2L∑
j=1

pθji(1− p)L−θjiΨ̇n,k(τj ;xn),

the first-order derivative of Υn,k can be written as

∇xnΥn,k =
2L∑
j=1

pθji(1− p)L−θji∇xnΨn,k(τj ;xn)

= −
2L∑
j=1

pθji(1− p)L−θji(C(k,:)
n )T

Ψ̇n,k(τj ;xn)

σv

= −(C(k,:)
n )TΥ̇n,kσ

−1
v

and (
∇xn

Υn,k

Υn,k

)2

I

= (C(k,:)
n )T

(
Υ̇n,k

Υn,k

)2

σ−2
v C(k,:)

n (51)

Let ψ̈n,k(τ ;xn) ≜ ψ̈(
τ−µn,k

σn,k
) where ψ̈(τ) =

1√
2π

exp(− τ2

2 ) and

Ψ̈n,k(τ ;xn) ≜



ψ̈n,k(τ +∆;xn)− ψ̈n,k(τ ;xn)

+ ∆
σn,k

τ−µn,k

σn,k
ψ̈n,k(τ ;x), τ = −W

ψ̈n,k(τ −∆;xn)− ψ̈n,k(τ ;xn)

− ∆
σn,k

τ−µn,k

σn,k
ψ̈n,k(τ ;x), τ =W

ψ̈n,k(τ −∆;xn) + ψ̈n,k(τ +∆;xn)

−2ψ̈n,k(τ ;xn), otherwise
Denoting

Ϋn,k ≜
2L∑
j=1

pθji(1− p)L−θjiΨ̈n,k(τj ;xn),

the second-order derivative of Υn,k can be written as

∆xn
xn

Υn,k = (C(k,:)
n )TΫn,kσ

−2
v C(k,:)

n

and
∆xn

xn
Υn,k

Υn,k
= (C(k,:)

n )T
Ϋn,k

Υn,k
σ−2
v C(k,:)

n (52)

Substituting (51) and (52) into (50) yields

−∆xn
xn

logP {mn | xn}

= (σ2
v)

−1
M∑
i=1

(C(k,:)
n )T

(
Υ̇2

n,k

Υ2
n,k

− Ϋn,k

Υn,k

)
C(k,:)

n

= CT
nΞ

−1
n Cn

(53)

where

Ξn =


σ2
v

(
Υ̇n,1
Υn,1

)2− Ϋn,1
Υn,1

. . .
σ2
v

(
Υ̇n,M
Υn,M

)2−
Ϋn,M
Υn,M


M×M

Therefore, we can see that

D22,b
n−1 = E{−∆xn

xn
logP{mn|xn}} = CT

n Ξ̄
−1
n Cn

where Ξ̄n ≜ E{Ξn} can be calculated by the Monte Carlo
method as in [46], [50]. {x̂(t)

n|n−1,P
(t)
n|n−1,x

(t)
n ,m

(t)
n }TMC

t=1 rep-
resents the realization of TMC trials of Monte Carlo. Then Ξ̄n

can be approximated by replacing {x̂n|n−1,Pn|n−1,xn,mn}
with these samplings and averaging. In addition, the initial
value can be obtained from J0 = E{−∆x0

x0
log p(x0)} =

E{−∆x0
x0

logN (x0;µ0,Σ0)} = E{∆x0
x0

1
2 (x0−µ0)

TΣ−1
0 (x0−

µ0)} = Σ−1
0 . Now, the proof is complete.
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