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ABSTRACT

Carbon dioxide is the main greenhouse gas contributing to global warming risk. Forest biomass is crucial for the
sequestration of atmospheric carbon dioxide; however, the rate of decline in worldwide forest biomass is concerning
and can be attributed to anthropogenic activities. Reforestation is essential in this situation to decrease the amount
of CO2 in the atmosphere. Efforts at reforestation can be evaluated according to the financial investment required
for their execution. This work presents a nonlinear mathematical model that examines the impact of reforestation
and the implementation of reforestation initiatives on regulating atmospheric CO2 levels. The critical values of the
model and their stability are found analytically. The occurrence of transcritical bifurcation around the possible critical
points is performed using the Sotomayor theorem. Based on the numerical simulations, the model in the absence of
reforestation would put some aspects at risk of extinction. Further, the level of CO2 in the atmosphere would decrease
due to reforestation. Moreover, the numerical analysis indicates that the system experiences a loss of stability without
reforestation activities. The system maintains oscillation through Hopf-bifurcation while engaging in reforestation
activities.

Keywords: Bifurcation analysis, Carbon dioxide gas emission model, Numerical solutions, Reforestation, Stability analysis

Introduction

The world faces several environmental issues.
Global warming is among the most dangerous
concerns. The fundamental factor that contributes to
the danger of global warming is the increased concen-
tration of carbon dioxide CO2 in the atmosphere.1–3

The world faces several environmental issues. Over-
exploitation of our planet has led to global warming,
which is responsible for most of these issues. The
fundamental factor that contributes to the danger
of global warming is the increased concentration of

carbon dioxide CO2 in the atmosphere, leading to
natural calamities such as aridity, flooding, desertifi-
cation, etc.4 Human activities, including agriculture,
industrialization, urbanization, deforestation,
transportation, mining, and energy generation,
significantly increase greenhouse gas emissions, par-
ticularly carbon dioxide. Climate change is destroying
almost every country.5 Climate change concerns are
developing due to rising global temperatures. This
is due mainly to high greenhouse gas emissions and
accumulation. Human actions have caused global
warming, climate change, and negative repercussions
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on our quality of life.6,7 These occurrences result in
a significant number of fatalities due to physical
injuries, inadequate nutrition, and heightened
susceptibility to contagious illnesses within the com-
munity.8 Climate changes also impact the occurrence
of vector-borne diseases due to the rise in population
and the spread of vectors that transmit the disease.9

Climate changes are estimated to account for 3%
of in 2004, 3% of global deaths were attributed to
diarrhea, malaria accounted for 3%, and dengue fever
accounted for 3.8% of deaths. Heart and breathing
problems can get worse during heat waves. Increasing
the level of carbon dioxide, CO2 is primarily respon-
sible for climate change, so it is crucial to produce
measures to decrease and stabilize future CO2 con-
centrations. For this, it is required to have a deeper
comprehension of the main processes that contribute
to the rise of CO2 in atmospheric levels and how they
impact the behavior of atmospheric CO2.10–12

Both the numbers of forest biomass and human pop-
ulation have a significant impact on the atmospheric
CO2 level. The increase observed in atmospheric
CO2 concentration can be mainly affected by hu-
man activity, specifically the combustion of fossil
fuels and changes in land use such as deforesta-
tion. The burning of fossil fuels is thought to be
responsible for around two-thirds of the increase in
atmospheric CO2, with land use changes accounting
for the remaining fraction. Nevertheless, managing
the amount of CO2 in the atmosphere depends on
forest biomass. Through photosynthesis, forests ab-
sorb gigatons of CO2, which helps lower global CO2
levels in the atmosphere. Forest biomass is essential
to the dynamics of atmospheric CO2. Furthermore,
one of the main causes of the increased CO2 lev-
els in the atmosphere is the natural CO2 absorber’s
depletion as a result of human activity. Hence, re-
alizing the chemistry between human population,
forest biomass, and carbon dioxide yields enhanced
understanding for forecasting and managing future
levels of atmospheric CO2.13–15 Some mathematical
models have been presented to analyze the impact
of different causes on atmospheric CO2 concentra-
tion.16–18 For instance, Tennakone13 has discussed
the relationship between biomass and carbon diox-
ide by applying a mathematical model. This study
highlights that wide-ranging deforestation messes up
biomass and carbon dioxide equilibrium. A feedback
model14 has been employed to investigate the corre-
lation between global warming and human activities.
This study demonstrates that human activities con-
tribute to the generation of CO2, which in turn has a
destabilizing impact. Caetano et al.8 have established
a connection between the atmospheric concentration
of CO2 and variables such as forest area and gross
domestic product. The researchers have included re-

forestation and clean technology as control variables
in their study to manage atmospheric CO2 levels.
They have optimized the overall expenditure in re-
forestation and clean technology to achieve the target
level of CO2.19–21

Researchers usually utilize the Allee effect to de-
scribe a phenomenon where a population experiences
a decrease in its growth rate per individual when
the population density or size decreases.22–24 Based
on the available literature, there is currently no
mathematical model that investigates the intricate
relationship between atmospheric CO2, human pop-
ulation, and low-density forest biomass. Hence, it has
been developed a mathematical model in the current
study to investigate the influence of reforestation pol-
icy in low-density forests on the dynamics of excessive
carbon dioxide gas emission model by incorporating
the weak Allee effect in the forest’s biomass growth.

The current paper is structured in the following
manner: In the following section, it has been es-
tablished a mathematical model that governs the
dynamics of the problem. The model’s stability anal-
ysis is described in Section 3. In Section 4, the
criterion for the presence of bifurcation by selecting
an appropriate bifurcating parameter is established.
Numerical simulation is performed in Section 5 to val-
idate the analytical results, and the study is ultimately
concluded in Section 6.

Model formulation

This section presents a mathematical model that
aims to understand how the lack of forest biomass
and the following reforestation policy influence the
dynamics of carbon dioxide gas. The model considers
dynamical variables. The carbon dioxide concentra-
tion that is excessive in the atmosphere c(t ), the forest
biomass p1(t ), the reforestation of forest efforts p2(t ),
the human population density p3(t ).

The model was created based on the following
assumptions:

1. The present state of climate change is primarily
due to the excessive release and buildup of
the greenhouse gas carbon dioxide into the
atmosphere.14

2. Human activities, such as the burning of fossil
fuels at excessive rates, the fast expansion of
industry, the construction of cities, the clearing
of forests, and contemporary lifestyles, are
significant contributors to the ever-increasing
atmospheric concentration of carbon dioxide
and reduce green spaces.it is postulated that
the human population consistently exploits
forest biomass to sustain itself. As a result of
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population growth, forest areas are removed
for agricultural and infrastructure development,
which reduces the forest biomass’s carrying
capacity.14

3. The growth of the forest biomass density follows
a weak Allee effect growth pattern.24–26

4. It is postulated that the increased mortality rate
of the human population is a consequence of
the detrimental impacts of carbon dioxide.21

5. Raising awareness of the risks of high carbon
dioxide levels, preventing deforestation, and
promoting conservation legislation can reduce
emissions into the atmosphere.4

6. As forests absorb carbon dioxide from the atmo-
sphere through the process of photosynthesis, it
can be hypothesized that a reduction in CO2 con-
centration occurs as a result of forest biomass.8

7. Reforestation initiatives are applied to raise
forest biomass. Also, it has been assumed that
some of the reforestation efforts shrink due to
their inefficacy or some financial obstacles.19

Under the above assumptions, the following set of
ordinary differential equations is obtained:

dc
dt
= r1 + e1 p1 + e2 p3 − e3cp1 − µ0c− µ1c

= f1 (c, p1, p3)

dp1

dt
= r2 p1

(
1−

p1

m1

)(
p1

e4 + p1

)
+ e5 p1 p2 − e6 p1 p3

− µ2 p1 = f2 (p1, p2, p3)

dp2

dt
= r3 (m1 − p1)− µ3 p2 = f3 (p1, p2)

dp3

dt
= r4 p3

(
1−

p3

m2

)
− e7cp3 + e8 p1 p3

= f4 (c, p1, p3) (1)

with the initial conditions c0
≥ 0, p0

1 ≥ 0, p0
2 ≥ 0 and

p0
3 ≥ 0. Due to the biological nature of the system,

all parameters and variables in the model are non-
negative and are clearly described in Table 1.

Further, Fig. 1 illustrates the schematic sketch of
the system (1) under examination.

Theorem 1: All system’s (1) solutions c(t ), p1(t ),
p2(t ) and p3(t ) that start with positive initial conditions
c0, p0

1, p0
2, p0

3 are also positive.

Proof: By integrating the right-hand functions of the
model (1) for c(t ), p1(t ), p2(t ) and p3(t ), the follow-

Table 1. Explanation of system’s (1) parameters.

Parameter Explanation

r1 CO2 emission rate from natural sources.
r2 Intrinsic growth rate of the forest biomass.
r3 Coefficient of implementation rate for reforestation

initiatives.
r4 Intrinsic growth rate of the human population.
e1 Coefficient of CO2 emission from forest sources.
e2 Coefficient of CO2 emission from anthropogenic

sources.
e3 Coefficient of CO2 uptake by forest biomass as a

result of photosynthesis.
e4 Allee threshold.
e5 Reforestation-induced Forest biomass growth

coefficient.
e6 Rate of deforestation.
e7 The human population decline rate coefficient

attributable to CO2.
e8 Human population expansion resulting from forest

biomass.
m1 Carrying capacity for the forest biomass.
m2 Carrying capacity for the human population.
µ0 Natural CO2 depletion due to good conservation

strategies.
µ1 Coefficient of natural depletion of atmospheric CO2.
µ2 Coefficient of natural depletion of forest biomass.
µ3 Coefficient of decline in reforestation initiatives.

ing is obtained

c (t ) ≥ c0 exp


t∫

0

−
e3

p0
1 exp


t∫

0

[
r2

(
1−

p1 (τ )
m1

)

×

(
p1

e4 + p1

)
+ e5 p2 (τ )− e6 p3 (τ )− µ2

]
dτ
)

+µ1 + µ0

 dτ

 .
p1 (t ) = p0

1 exp


t∫

0

[
r2

(
1−

p1 (τ )
m1

)(
p1 (τ )

e4 + p1 (τ )

)

+ e5 p2 (τ )− e6 p3 (τ )− µ2

 dτ

 .
p2 (t ) ≥ p0

2 exp [−µ2t] .

p3 (t ) = p0
3 exp


t∫

0

[
r4

(
1−

p3 (τ )
m2

)
− e7c (τ )

+ e8 p1 (τ )

 dτ

 .
Then c(t ) ≥ 0, p1(t ) ≥ 0, p2(t ) ≥ 0 and p3(t ) ≥ 0

for all t > 0. Therefore, the interior of R4
+

is an in-
variant set.
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Fig. 1. The schematic sketch of system (1).

To find the attractive region of the system (1), it
may use the following lemma in this setting:

Lemma 1: (Comparison lemma) Assume that u,
v > 0 with w(0) > 0. Then for dw

dt ≤ (u− vw(t )),
Limsupt→∞w(t ) ≤ u

v and also for dw
dt ≥ (u− vw(t )),

lim, inft→∞w(t ) ≥ u
v .

Theorem 2: The set ω = {(c, p1, p2, p3) ∈ R4
+

: 0 ≤
c ≤ cm;0 ≤ p1 ≤ m1;0 ≤ p2 ≤ p2m;0 ≤ p3 ≤ p3m} at-
tracts all the solutions c(t ), p1(t ), p2(t ) and p3(t )
initiating in R4

+
.

Proof: From the second equation of system (1), the
following is obtained

dp1

dt
= r2 p1

(
1−

p1

m1

)(
p1

e4 + p1

)
+ e5 p1 p2 − e6 p1 p3

− µ2 p1 ≤ r2 p1

(
1−

p1

m1

)
.

Thus, for t →∞ then p1(t ) ≤ m1. From the third
equ,

dp2

dt
= r3 (m1 − p1)− µ3 p2 ≤ r3m1 − µ3 p2.

Then, applying the Comparison Lemma yield:

Lim
supt→∞

p2 (t ) ≤
r3m1

µ3
= p2m.

Using the same technique, it yields

Lim
supt→∞

p3 (t ) ≤
(r4 + e8m1) m2

r4
= p3m.

Lim
supt→∞

c (t ) ≤
r1r3 + e1m1r3 + (r3 + e8m1) e2m2

r3 (µ0 + µ1)
= cm.

Thus, all system (1) solutions that are initiated in
R4
+

are attracted to the region

ω =
{
(c, p1, p2, p3) ∈ R4

+
: 0 ≤ c ≤ cm;

0 ≤ p1 ≤ m1;0 ≤ p2 ≤ p2m;0 ≤ p3 ≤ p3m} .

Existence of equilibria

System (1) has six non-negative equilibrium points,
namely:

1. The carbon dioxide gas equilibrium point E1 =

(c̃,0,0,0). The given equilibrium represents a
scenario in which the system is devoid of both
human population and forestry biomass, and the
atmospheric concentration of carbon dioxide gas
is c̃ = r1

µ0+µ1
.

2. The carbon dioxide gas-human equilibrium
point E2 = (ĉ,0,0, p̂3), where the human
population is p̂3 =

m2(r3(µ0+µ1)−e7r1)
r4(µ0+µ1)−m2e2e7

and carbon
dioxide gas is ĉ = r1 +

e2 p̂3
µ0+µ1

. E2 is feasible,
provided that one of the following conditions
holds(

r4(µ0+µ1)
e7

)
> max {r1, m2e2} ,(

r4(µ0+µ1)
e7

)
< min {r1, m2e2} .

 (2)

3. The carbon dioxide gas-forest equilibrium point
E3 = (ĉ, p̂1,0,0), where the carbon dioxide gas
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is ĉ = (r1+e1 p1)
e3 p1+µ0+µ1

and the forestry biomass p̂1 is
the positive root of the following equation

g (p1) = r2 p1
2
− (r2m2 − µ2m1)p1 + µ2m1e4.

Clearly, g(m1) = m1[(r2 + µ2)m1 + e4µ2 −

r2m2)], g(0) = µ2m1e4 > 0 and g′(p1) = 2r2 p1 +

µ2m1 − r2m2. Therefore, g(p1) = 0 has a unique
positive root, say p̂1 in the interval (0,m1) if
g(m1) < 0 and g′(p1) < 0, that means if

r2m2 > max {(r2 + µ2)m1 + e4µ2, 2r2 p1 + µ2m1}

(3)

4. The forest-free equilibrium point E4 =

(c̄,0, p̄2, p̄3), where, c̄ = (r1+e1 p̄3)
µ0+µ1

, p̄2 =
r3m1
µ3

and
p̄3 =

(r3m2[µ0+µ1]−r1m2e7)
r3[µ0+µ1]+m2e7e2

. For p̄3 to be positive,
the following would be the case:

r3 [µ0 + µ1] > e7r1 (4)

5. The reforestation-free equilibrium point
E5(c̈, p̈1,0, p̈3), where, c̈ = r1+e1 p̈1+e2 p̈3

e3 p̈1+µ0+µ1
, p̈3 =

r4m2(e3 p̈1+µ0+µ1−e7)+ p̈1m2(−e7e1+e8( p̈1e3+µ0+µ1)
r4(e3 p̈1+µ0+µ1)−e2e7m2

, and p̈1

is the root of the following equation

A0 p̈3
1 + A1 p̈2

1 + A2 p̈1 + A3 = 0, (5)

Where, A0 = e3(m1m2e6e8 − r4r2).

A1 = r2r4 (e3 − µ0 − µ1)+m1m2e6e8

× (µ0 + e3 − e3e4)

+ m1e6 (r4m2e5 +m2e7 +m1µ1e8)

+m2r2e2e7 +m1µ2r4e3.

A2 = m1 [r2r4 (µ0 + µ1)−m2e6 (e1e4e7 − r4e4e5

+ µ0e4e8 + µ0r4 + µ1r4 − r2e7)

− µ2 (r3e3e4 − µ0r4 − µ1r4 +m2e2e7)

+m1µ1e4e6e8 − r2m2e2e7] .

A3 = m1e4[m2e7 (r1e6 + µ2e2)

− r4m2e6 (µ0 + µ1)− µ2r4 (µ0 + µ1) .

Using Descartes’s rule of sign,27–29 Eq. (5) has
a unique positive root, say p1 = p̂1, if one of the

following sets conditions hold:

A0 > 0 and Ai < 0, i = 2,3,

Ai > 0, i = 0,1 and A3 < 0,

A5 < 0 and Ai > 0, i = 2,3,

Ai < 0, i = 0,1 and A3 > 0.

Clearly, p̂3 > 0 if one of the following
conditions holds:(

e3 p̈1 + µ0 + µ1

e7

)
> max

{
r4 + p̈1e1

r4 + p̈1e8
,

e2m2

r4

}

(
e3 p̈1 + µ0 + µ1

e7

)
< min

{
r4 + p̈1e1

r4 + p̈1e8
,

e2m2

r4

}
6. The reforestation equilibrium point E6 =

(c∗, p∗1, p∗2, p∗3), where, c∗ = r1+e1 p∗1+e2 p∗3
e3 p∗1+µ1+µ0

,

p∗2 =
r3(m1−p∗1)

µ3
, p∗3 =

m2(r3−e7c∗+e8 p∗1)
r3

and p∗1 is
the positive root of the following equation

B0 p∗1
3
+ B1 p∗1

2
+ B2 p∗1 + B3 = 0 (6)

Where, B0 = −µ3e3(r2r4 +m1m2e6e8)−m1r3r4
e3e5. < 0,

B1 = µ3 [m1 (r2r4e3 −m2e1e6e7 − µ2e3e4 −m2r3e3e6

− µ2e3 − µ0m2e6e8 −m2
2e2e6e7e8 −m2e3e4e6e8

)
− r2 (µ0r4 − µ1r4)− µ1m2e6e8]+ r3e5m1 (r4m1e3

− r4e3e4 − µ0 − e2e7) .

B2 = m1[µ3 (r2 (µ0r4 + µ1r4 + µ2e2e7)− e7 (m2e1e4e6

− m1e2e5r3 −m2r1e6−m2e1e4e6e7r1−m2
2e2e3e6e8

− µ2m2e2)− µ2 (µ0 + µ1)−m2r3e6 (µ0 + µ1

+ m2e2)− µ0m2e4e6e8)+ r3e5 (m1r4e3e4

+ r4e4m1µ0 +m1e2e7 − e4e2e7 −m1µ0r4

− m2e2e4e7)] .
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B3 = m2
1r3r4e4e5 (µ0 + µ1)+m1e4[(m1m2r3e2e5e7

+ µ3m2r1e6e7 −m2µ3r4e6 (µ0 + µ1)

− µ2µ3 (r4 (µ0 + µ1)+ e2e7)] .

Using Descartes’s rule of sign, Eq. (6) has a unique
positive root, say p1 = p∗1 if one of the following sets
of conditions holds:

Bi, i = 2,3 > 0,

B1 < 0and B3 > 0.

Further, p∗3 > 0 if one of the following conditions
holds:

r3 + e8 p∗1 > e7c∗

Stability analysis

This section explores the local stability behavior
of the system’s (1) equilibrium points. The Jacobin
matrix at any point, say (c, p1, p2, p3), can be written
as:

J (c, p1, p2, p3) =
−e3 p1 − µ0 − µ1 e1 − e3c 0 e2

0 a22 e5 p1 −e6 p1
0 −r3 −µ3 0
−e7 p3 e8 p3 0 r4 −

2r4 p3
m2
− e7c+ e8 p1

 ,

where a22 =
r2 p1[2m1(e4+p1)−p1(2p1+3e4)]

m1(e4+p1)2 + e5 p2 − e6 p3 −

µ2. Consequently, the following is obtained.

1. The Jacobian matrix at E1 = (c̃,0,0,0) is given
as:

J (E1) =
− (µ0 + µ1) e1 −

(
e3r1
µ0+µ1

)
0 e2

0 −µ2 0 0
0 −r3 −µ3 0
0 0 0 r4 −

(
e7r1
µ0+µ1

)
 ,

Then, J(E1) has the eigenvalues λ11 =

−(µ0 + µ1) < 0, λ12 = −µ2 < 0, λ13 = −µ3 <

0, λ14 = r4 − ( e7r1
µ0+µ1

). Then E1 is a locally
asymptotic stable if

r1 >
r4 (µ0 + µ1)

e7
. (7)

This condition states that in the absence of
human population and forest biomass, the

carbon dioxide gas point will be stable only if
its natural growth rate (nonanthropogenic) is
greater than the intrinsic growth rate of the
human population. Moreover, E1 has a locally
unstable manifold in the P3-direction provided
r1 <

r4(µ0+µ1)
e7

.
2. The Jacobian matrix at E2 = (ĉ,0,0, p̂3) can be

written as:

J (E2) =


−(µ0 + µ1) −e1 − e3ĉ 0 e2

0 −e6 p̂3 − µ2 0 0
0 −r3 −µ3 0
−r7 p̂3 e8 p̂3 0 −r4 p̂3

m2


Then, J(E2) has the following eigenvalues λ22 =

−(e6 p̂3 + µ2) < 0, λ23 = −µ3 < 0,

λ21 + λ24 = −

(
µ0 + µ1 +

r4 p̂3

m2

)
< 0,

λ21.λ24 =
r4 p̂3

m2
(µ1 + µ2)+ e2e7 p̂3 > 0.

That means E2 is a locally asymptotical stable
point.

3. The Jacobian matrix at E3 = (ĉ, p̂1,0,0) can be
written as:

J (E3) =


e3 p̂1 − µ0 − µ1 e1 − e3ĉ 0 e2

0 r2 p̂1[2m1(e4+ p̂1)− p̂1(2 p̂1+3e4)]
m1(e4+ p̂1)2 − µ2 e5 p̂1 −e6 p̂1

0 −r3 −µ3 0
0 0 0 r4 − e7ĉ+ e8 p̂1

 .

Then, J(E3) has the eigenvalues

λ31 = e3 p̂1 − µ0 − µ1,

λ34 = r4 + e8 p̂1 − e7ĉ,

λ32 + λ33

=
r2 p̂1

[
2m1 (e4 + p̂1)− p̂1 (2 p̂1 + 3e4)

]
m1(e4 + p̂1)2

−µ2 − µ3

λ32.λ33

=
−µ3 p̂1r2

[
2m1 (e4 + p̂1)− p̂1 (2 p̂1 + 3e4)

]
m1(e4 + p̂1)2

+ µ2µ3 + r3e5 p̂1,
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That means E3 is a locally asymptotical stable
point provided that:

p̂1 < min.
{
µ0+µ1

e3
, e7 ĉ−r3

e8

}
2m1 (e4 + p̂1) < p̂1 (2 p̂1 + 3e4)

}
(8)

4. The Jacobian matrix at E4 = (c̄,0, p̄2, p̄3) can
be written as:

J (E4) =


−µ0 − µ1 e1 − e3c̄ 0 e2

0 e5 p̄2 − e6 p̄3 − µ2 0 0
0 −r3 −µ3 0
−e7 p̄3 e8 p̄3 0 −r4 p̄3

m2

 .
Then, J(E4) has the following eigenvalues

λ42 = e5 p̄2 − (e6 p̄3 + µ2), λ43 = −µ3 < 0,

λ41 + λ44 = −

(
µ0 + µ1 +

r4 p̄3

m2

)
< 0

λ41.λ44 =
r4 p̄3

m2
(µ0 + µ1)+ e2e7 p̄3 > 0

That means E4 is a locally asymptotical stable
point provided that:

e5 p̄2 < e8 p̄3 + µ2 (9)

This condition states that in the absence of forest
biomass, the forest-free point will be stable only
if the reforestation-induced forest biomass
growth coefficient is less than the human
population expansion resulting from forest
biomass.

5. The Jacobian matrix at E5 = (c̈, p̈1,0, p̈3) can
be written as:

J (E5) =


−e3 p̈1 − µ0 − µ1 e1 − e3c̈ 0 e2

0 r2 p̈1[2m1(e4+ p̈1)− p̈1(2 p̈1+3e4)]
m1(e4+ p̈1)2 − e6 p̈3 − µ2 e5 p̈1 −e6 p̈1

0 −r3 −µ3 0
−e7 p̈3 e8 p̈3 0 −r4 p̈3

m2

 .

Let a[5]
22 =

r2 p̈1[2m1(e4+ p̈1)− p̈1(2 p̈1+3e4)]
m1(e4+ p̈1)2 − e6 p̈3 −

µ2, so the characteristic equation of J(E5) can
be written as:

λ4
+ H1

[5]λ3
+ H2

[5]λ2
+ H3

[5]λ+ H4
[5]
= 0,

here

H1
[5]
= e3 p̈1 + µ0 + µ1 + µ3 + a[5]

22 +
r4 p̈3

m2
,

H2
[5]
= −µ3

(
a[5]

22 − e3 p̈1 − µ0 − µ1 −
r4 p̈3

m2

)

− a[5]
22

(
e3 p̈1 + µ0 + µ1 +

r4 p̈3

m2

)

+
r4 p̈3 (e3 p̈1 + µ0 + µ1)

m2

+ p̈3 (e2e7 + e6e8 p̈1)+ r3e5 p̈1,

H3
[5]
= µ3

(
a[5]

22

(
−e3 p̈1 − µ0 − µ1 −

r4 p̈3

m2

)

+
r4 p̈3 (e3 p̈1 + µ0 + µ1)

m2
+ p̈3 (e2e7 + e6e8 p̈1)

)

+ e3e6e7c̈ p̈1 p̈3 + (e3 p̈1 + µ0 + µ1)

×

(
r3e5 p̈1 −

r4 p̈3a[5]
22

m2
+ e6e8 p̈1 p̈3

)
,

H4
[5]
= −µ3

(
a[5]

22

(
e2e7 p̈3 +

r4 p̈3 (e3 p̈1 + µ0 + µ1)
m2

)

− e6 p̈1 p̈3 (e3 p̈1 + µ0 + µ1 + e3e7c̈)
)
+ r3e5 p̈1 p̈3

×

(
e2e7 +

r4 (e3 p̈1 + µ0 + µ1)
m2

)
− a[5]

22 e2e7 p̈3.

Now, from the Routh-Hurwitz criteria,30 E5 is a
LAS point, under the condition that

Hi
[5] > 0, i = 1,2,3,4 and

H3
[5] (H1

[5]H2
[5]
− H3

[5])
− H1

2[5]H4
[5] > 0.

6. The Jacobian matrix at E6 = (c∗, p∗1, p∗2, p∗3) can
be written as:

J (E6) =


−e3 p∗1 − µ0 − µ1 e1 − e3c∗ 0 e2

0 a22
[6] e5 p∗1 −e6 p∗1

0 −r3 −µ3 0
−e7 p∗3 e8 p∗3 0 −r4 p∗3

m2


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Let a[6]
22 =

r2 p∗1[2m1(e4+p∗1)−p∗1(2p∗1+3e4)]
m1(e4+p∗1)2 + e5 p∗2 − e6 p∗3 −

µ2, so the characteristic equation of J(E6) can be
written as:

λ4
+ H1

[6]λ3
+ H2

[6]λ2
+ H3

[6]λ+ H4
[6]
= 0,

here

H1
[6]
= e3 p∗1 + µ0 + µ1 + µ3 + a[6]

22 +
r4 p∗3
m2

,

H2
[6]
= −µ3

(
a[6]

22 − e3 p∗1 − µ0 − µ1 −
r3 p∗3
m2

)
− a[6]

22

(
e3 p∗1 + µ0 + µ1 +

r4 p∗3
m2

)

+
r4 p∗3

(
e3 p∗1 + µ0 + µ1

)
m2

+ p∗3
(
e2e7 + e6e8 p∗1

)
+ r3e5 p∗1,

H3
[6]
= µ3

(
p∗3
(
e2e7 + e6e8 p∗1

)
−
(
e3 p∗1 + µ0 + µ1

)
a[6]

22

−
r4 p∗3
m2

(
a[6]

22 − e3 p∗1 − µ0 − µ1

))
+ e3e6e7c∗p∗1 p∗3+

(
e3 p∗1 + µ0 + µ1

) (
r3e5 p∗1 − a[6]

22
r4 p∗3a[6]

22
m2

+ e6e8 p∗1 p∗3

)
,

H4
[6]
= −µ3

(
r4 p∗3

(
e3 p∗1 + µ0 + µ1

)
a[6]

22
m2

+ a[6]
22 e2e7 p∗3

− e6 p∗1 p∗3
(
e3 p∗1 + µ0 + µ1 − e3e7c∗

))
+ r3e5 p∗1 p∗3

×

(
e2e7 +

r4
(
e3 p∗1 + µ0 + µ1

)
m2

)
− a[6]

22 e2e7 p∗3,

Now, from the Routh-Hurwitz criteria, E6 is a LAS
point under the condition that

Hi
[6] > 0, i = 1,2,3,4 and H3

[6] (H1
[6]H2

[6]
− H3

[6])
− H1

2[6]H4
[6] > 0.

Using the Lyapunov method,30–32 the following the-
ories look into what needs to happen for the system’s
(1) global stability (GS) property to be present at the
points where there is no reforestation and where there
is reforestation.

Theorem 3: The reforestation-free equilibrium E5 =

(c̈, p̈1,0, p̈3) is GAS provided the following conditions

are satisfied:

6 (e4 + p1) (e4 + p̈1) (e1 − e3c− e4)2

≤ (e3 p̈1 + µ1 + µ0) r2
(
p2

1 −m2e4

+ (e4 + p1) (p1 + p̈1))

4m2(e7 − e2)2
≤ r4(e3 p̈1 + µ0 + µ1)

6m2 (e4 + p1) (e4 + p̈1) (e8 + e6)2

≤ r4r2
(
p2

1 −m2e4 + (e4 + p1) (p1 + p̈1)
)

3e2
5 ≤ µ3r2

(
p2

1 −m2e4 + (e4 + p1) (p1 + p̈1)
)

(10)

Proof: Let us contemplate the positive definite func-
tion given below:

W5 =
(c− c̈)

2

2
+

(
p1 − p̈1 − p̈1 ln

p1

p̈1

)
+ p2

+

(
p3 − p̈3 − p̈3 ln

p3

p̈3

)
.

Thus,

dW5

dt
= (e1 − e3c) (c− c̈) (p1 − p̈1)+ (e2 − e7) (p3

− p̈3) (c− c̈)−(µ0 + µ1 − e3 p̈1) (c− c̈)2
+ (p1 − p̈1)2

×

(
r2
(
m2e4 − p2

1 − (e4 + p1) (p1 + p̈1)
)

(e4 + p1) (e4 + p̈1)

)

+ e5 p2 (p1 − p̈1)−e6 (p3 − p̈3) (p1 − p̈1)+r3m1 − r3 p1

− µ3 p2 −
r4

m2
(p3 − p̈3)2

+ e8 (p1 − p̈1) (p3 − p̈3) .

Therefore,

dW5

dt
≤ −

[√
µ0 + µ1 − e3 p̈1

2
(c− c̈)

+

√(
r2(p2

1 −m2e4 + (e4 + p1)(p1 + p∗1))
3(e4 + p1)(e4 + p∗1)

)
(p1 − p̈1)

]2

−

[√
µ0 + µ1 − e3 p̈1

2
(c− c̈)+

√
r4

2m2
(p3 − p̈3)

]2

−

[√
r4

2m2
(p3 − p̈3)
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+

√(
r2(p2

1 −m2e4 + (e4 + p1)(p1 + p∗1))
3(e4 + p1)(e4 + p∗1)

)
(p1 − p̈1)

]2

−

√µ3 p2 +

√√√√( r2
(
p2

1 −m2e4 + (e4 + p1)
(
p1 + p∗1

))
3 (e4 + p1)

(
e4 + p∗1

) )

× (p1 − p̈1)

]2

+ r3 (m1 − p1) .

Then, dW5
dt < 0 can be transformed into a negative

definite form under conditions (10). Hence, W5 is a
Lyapunov function and E5 is a GAS.

Theorem 4: The reforestation equilibrium E6 =

(c∗, p∗1, p∗2, p∗3) is GAS if the following conditions are
satisfied:

6(e1 − e3c)2 (e4 + p1)
(
e4 + p∗1

)
≤ (µ1 + µ0

− e3 p∗1
)

(r2
(
m2e4 − p2

1 − (e4 + p1)
(
p1 + p∗1

))
.

4m2(e2 − e7)2
≤ r4

(
µ1 + µ0 − e3 p∗1

)
.

3(e5 − r3)2 (e4 + p1)
(
e4 + p∗1

)
≤ µ3(r2

(
m2e4 − p2

1

− (e4 + p1)
(
p1 + p∗1

))
.

6m2(e6 − e8)2

≤ r4(r2
(
m2e4 − p2

1 − (e4 + p1)
(
p1 + p∗1

))
. (11)

Proof: Define W6 =
(c−c∗)

2
2
+ (p1 − p∗1 − p∗1 ln p1

p∗1
)+

( p2−p∗2
2 )+ (p3 − p∗3 − p∗3 ln p3

p∗3
),where W6(c, p1, p2, p3)

is a positive definite function about E6. Thus,

dW6

dt
= e1

(
c− c∗

) (
p1 − p∗1

)
+ e2

(
p3 − p∗3

) (
c− c∗

)
− e3c

(
c− c∗

) (
p1 − p∗1

)
+ e3 p∗1

(
c− c∗

)2
− (µ0 + µ1)

(
c− c∗

)2
+

r2
(
m2e4 − p2

1 − (e4 + p1)
(
p1 + p∗1

))
(e4 + p1)

(
e4 + p∗1

) (
p1 − p∗1

)2
+ e5

(
p1 − p∗1

) (
p2 − p∗2

)
− e6

(
p1 − p∗1

) (
p3 − p∗3

)
− r3

(
p1 − p∗1

) (
p2 − p∗2

)
− µ3

(
p2 − p∗2

)2

−
r4

m2

(
p3 − p∗3

)2
− e7

(
p3 − p∗3

) (
c− c∗

)
+ e8

(
p1 − p∗1

) (
p3 − p∗3

)
.

Therefore,

dW6

dt
≤ −

(√
µ0 + µ1 − e3 p∗1

2
(
c− c∗

)

+

√
r2
(
p2

1 −m2e4 + (e4 + p1)
(
p1 + p∗1

))
3 (e4 + p1)

(
e4 + p∗1

) (
p1 − p∗1

))2

−

(√
µ1 + µ0 − e3 p∗1

2
(
c− c∗

)
+

√
r4

2m2

(
p3 − p∗3

))2

−

(
√
µ3
(
p2 − p∗2

)

+

√
r2
(
p2

1 −m2e4 + (e4 + p1)
(
p1 + p∗1

))
3 (e4 + p1)

(
e4 + p∗1

) (
p1 − p∗1

))2

−

(√
r4

2m2

(
p3 − p∗3

)

+

√
r2
(
p2

1 −m2e4 + (e4 + p1)
(
p1 + p∗1

))
3 (e4 + p1)

(
e4 + p∗1

) (
p1 − p∗1

))2

.

Then, dW6
dt < 0 under condition (11). Hence, W6 is a

Lyapunov function and E6 is a GAS.

Local bifurcation

A transcritical split occurs when two equilibrium
points collide and exchange their stability. The fol-
lowing theorems will investigate the possibility of
a transcritical split occurring. Many scholars use
Sotomayor’s theorem to determine the existence of
transcritical bifurcation TB; for instance, see.33–35 For
this determination, the system (1) can be rephrased in
the following vector forms:

dE
dt
=F (E) with E=


c
p1
p2
p3

, and F=


f1 (c, p1, p3)
f2 (p1, p2, p3)

f3 (p1, p2)
f4 (c, p1, p3)


The subsequent outcomes concerning the local bi-

furcation around each equilibrium point.

Theorem 5: For e7
∗
=

r3(µ0+µ1)
r1

, system (1) at E1 has
a transcritical bifurcation (TB).
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Proof: At e7
∗
=

r4(µ1+µ0)
r1

, J(E1) has a zero eigenvalue
λ14 = 0. Therefore, J(E1) at e7

∗ becomes

J∗ (E1) =


−µ0 − µ1 e1 −

e3r1
µ0+µ1

0 e2

0 −µ2 0 0
0 −r3 −µ3 0
0 0 0 0

 .
Now, let V [1]

= (v1
[1], v2

[1], v3
[1], v4

[1])T and
(T [1])T

= (t1[1], t2[1], t3[1], t4[1])T represent the eigen-
vectors corresponding to the zero eigenvalue of J∗(E1)
and J∗T (E1) respectively. Direct computation gives
V [1]
= ( e2

µ0+µ1
,0,0,1) and T [1]

= (0,0,0,1). Then

T [1]T Fe7

(
E1, e∗7

)
= (0,0,0,1) (0,0,0,0)T

= 0.

(
T [1])T DFe7

(
E1, e∗7

)
V [1]
= (0,0,0,1)


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −c̃


×

(
e2

µ0 + µ1
,0,0,1

)T

= −c̃ 6= 0.

(T [1])T [D2F
(
E1, e7

∗
) (

V [1],V [1])]
= (0,0,0,1)

×

(
0,0,0,−2e7v[1]

1 −
2r2

m1

)T

= −2e7v[1]
1 −

2r2

m1
6= 0.

This means the required conditions to have TB are
satisfied.

Theorem 6: For r∗2 =
m1(e4+ p̂1)2(µ2+µ3)

p̂1[2m1(e4+ p̂1)− p̂1(2 p̂1+3e4)] , sys-
tem (1) at E3 has a TB if the following are satisfied

p̂1 = m1
2m1 (e4 + p1) 6= p1 (2p1 + 3e4)

(T [3])T [D2E (E3, r2
∗)
(
V [3],V [3]

)]
6= 0

 (12)

Proof: at r∗2 =
m1(e4+ p̂1)2(µ2+µ3)

p̂1[2m1(e4+ p̂1)− p̂1(2 p̂1+3e4)] , where r∗2 > 0,
J(E3) has zero eigenvalues λ34 = 0. The Jacobian ma-
trix at r∗2 becomes:

J∗ (E3) =


e3 p̂1 − µ0 − µ1 e1 − e3ĉ 0 e2

0 c22
[3] e5 p̂1 −e6 p̂1

0 −r3 −µ3 0
0 0 0 r4 − e7ĉ+ e8 p̂1

 ,
Where, c22

[3]
=

r∗2 p̂1[2m1(e4+ p̂1)− p̂1(2 p̂1+3e4)]
m1(e4+ p̂1)2 − µ2.

Now, let V [3]
= (v1

[3], v2
[3], v3

[3], v4
[3]) and (T [3])T

=

(t1[3], t2[3], t3[3], t4[3])T represent the eigenvectors
corresponding to the zero eigenvalue of J∗(E3) and
J∗T (E3) respectively. Direct computation gives V [3]

=

(1,1, −r3
µ3
,0) and T [3]

= (0,1, e5 p̂1
µ3
,

e6 p̂1
r4−e7 ĉ+e8 p̂1

). Then

(
T [3])T Fr2

(
E3, r∗2

)
=

(
0,1,

e5 p̂1

µ3
,

e6 p̂1

r4 − e7ĉ+ e8 p̂1

)

×

(
0,
(

1−
p̂1

m1

)(
p̂2

1
e4 + p̂1

)
,0,0

)T

=

(
1−

p̂1

m1

)(
p̂2

1
e4 + p̂1

)
.

(
T [3])T [DFr2

(
E3, r∗2

)
V [3]]

=
p1
[
2m1 (e4 + p1)− p1 (2p1 + 3e4)

]
m1(e4 + p1)2 .

(T [3])T [D2F
(
E3, r2

∗
) (

V [3],V [3])]
=

2r∗2
(
e4 p1

(
e4m1 − 4p2

1 − 3e2
4 − 6e4 p1

)
− p4

1 + e3
4m1

)
m1(e4 + p1)4

+2e5v3.

This means the required conditions for TB are sat-
isfied if the conditions stated in Eq. (12) are met.

Theorem 7: For µ∗2 = e4c̄+ e5 p̄2 − e6 p̄3, system (1)
at E4 has a TB if

(T [4])T [D2E
(
E4, µ2

∗
) (

V [4],V [4])]
6= 0. (13)

Proof: at µ∗2 = e4c̄+ e5 p̄2 − e6 p̄3, J(E4) has zero
eigenvalues λ42 = 0. The Jacobian matrix at µ∗2
becomes:

J∗ (E4) =


−µ0 − µ1 e1 − e3c̄ 0 e2

0 0 0 0
0 −r3 −µ3 0
−e7 p̄3 e8 p̄3 0 −r4 p̄3

m2


Now, V [4]

= (1,1, −r3
µ3
,

(µ0+µ1)−(e1−e3 c̄)
e2

) and T [4]
=

(1,1,0, −(µ1+µ0)
e7 p̄3

) represent the eigenvectors corre-
sponding to the zero eigenvalue of J∗(E4) and J∗T (E4)
respectively. Then, direct computation gives

(
T [4])T Fµ1

(
E4, µ

∗

2
)
=

(
1,1,0,

− (µ1 + µ0)
e7 p̄3

)

(0,0,0,0)T
= 0



BAGHDAD SCIENCE JOURNAL 2025;22(4):1335–1353 1345

(
T [4])T [DFµ2

(
E4, µ

∗

2
)
V [4]]

=

(
1,1,0,

− (µ1 + µ0)
e7 p̄3

)T

× (0,−1,0,0) = −1 6= 0

(
T [4])T [D2F

(
E4, µ2

∗
) (

V [4],V [4])]
= −2e3 + x[4]

21

+
2 (µ0 + µ1)

m2e7

(
m2v[4]

4 (e7 − e8)+ r3

)
.

This means the required conditions for TB are sat-
isfied if the conditions stated in (13) are met.

Theorem 8: For e5 = e∗5, at the equilibrium point E5
has a TB if

(T [5])T [D2E
(
E5, e∗5

) (
V [5],V [5])]

6= 0 (14)

Proof: System (1) at e5 =
H3

[5](H1
[5]H2

[5]
−H3

[5])
b[5]

2 r3 p̈1 p̈3H2
1

[5] − b[5]
1 ,

where e5 > 0 and

b[5]
1 = µ3

(
a[5]

22

(
e2e7 p̈3 +

r4 p̈3(e3 p̈1 + µ0 + µ1)
m2

)
− e6 p̈1 p̈3(e3 p̈1 + µ0 + µ1 + e3e7c̈)

)
+ a[5]

22 e2e7 p̈3.

b[5]
2 = e2e7 +

r4(e3 p̈1+µ0+µ1)
m2

, has a zero-eigenvalue if

12 = H3
[5] (H1

[5]H2
[5]
− H3

[5])
− H1

2[5]H4
[5]
= 0,

where a[5]
22 and Hi are given in the local stability analy-

sis of E5. Now, the Jacobian matrix J(E5) = J(E5, e∗5),
becomes

J∗ (E5) =


−e3 p̈1 − µ0 − µ1 e1 − e3c̈ 0 e2

0 c22
[5] e∗5 p̈1 −e6 p̈1

0 −r3 −µ3 0
−e7 p̈3 e8 p̈3 0 −r4 p̈3

m2

 ,
Now, V [5]

= (1,1, −r3
µ3
,

(e3 p̈1+µ0+µ1)−(e1−e3 c̈)
e2

) and
T [5]
= (1,1, e∗5 p̈1

µ3
,
−(e3 p̈1+µ0+µ1)

−e7 p̈3
) represent the

eigenvectors corresponding to the zero eigenvalue
of J∗(E5) and J∗T (E5) respectively. Then, direct
computation gives

(
T [5])T Fe5

(
E5, e∗5

)
=

(
1,1,

e∗5 p̈1

µ3
,
−(e3 p̈1 + µ0 + µ1)

−e7 p̈3

)
× (0,0,0,0)T

= 0

(
T [5])T [DFe5

(
E5, e∗5

)
V [5]]

=

(
1,1,0,

− (µ1 + µ0)
e7 p̄3

)T

×

(
0, p̈1v[5]

3 ,0,0
)
= p̈1v[5]

3 6= 0

(
T [5])T [D2Fe5

(
E5, e∗5

) (
V [5],V [5])]

= −2e3 + x[4]
21

+
2 (µ0 + µ1)

m2e7

(
m2v[4]

4 (e7 − e8)+ r3

)
.

This means the required conditions for TB are sat-
isfied if the conditions stated in (14) are met.

Now, the following theorems examine the criteria
that determine the appearance of a Hopf bifurcation
around E5 and E6 using Haque and Venturino
methods.36–38

Theorem 9: Suppose that the following conditions are
satisfied

H[5]
i > 0, i = 1,3 (15)

1[5]
1 = H1

[5]H2
[5]
− H3

[5] > 0 (16)

e∗7 > 0, (17)

θ
(
e∗7
)
ψ
(
e∗7
)
+ 0

(
e∗7
)
φ
(
e∗7
)
6= 0 (18)

Where the formula of e∗7, θ (e∗7), ψ (e∗7), 0(e∗7) and 8(e∗7)
are given in the following proof. Then, the system has a
Hope bifurcation at e7 = e∗7 around E5.

Proof: To verify the necessary and sufficient
conditions for Hope bifurcation to occur at
E5, it needs to find a parameter such that
H3

[5](H1
[5]H2

[5]
− H3

[5])− H1
2[5]H4

[5]
= 0. It is obse-

rved that H3
[5](H1

[5]H2
[5]
− H3

[5])− H1
2[5]H4

[5]
= 0

gives e∗7 =
H2

3
[6]
+H2

1
[6]H[6]

4
e2 p∗3H[6]

1 H[6]
3
− e2 p∗3b[5], where,

b[5]
= −µ3

(
a[5]

22 − e3 p̈1 − µ0 − µ1 −
r4 p̈3

m2

)
− a[5]

22

(
e3 p̈1 + µ0 + µ1 +

r4 p̈3

m2

)
+

r4 p̈3(e3 p̈1 + µ0 + µ1)
m2

+ e6e8 p̈1 p̈3 + r3e5 p̈1.

Clearly e∗7 > 0 provided condition 17 holds. Now at
e7 = e∗7, the characteristic equation given in the local
stability analysis of E5 can be written as:(
λ2
+

H[5]
3

H[5]
1

)(
λ2
+ H[5]

1 λ+
1[5]

1

H[5]
1

)
= 0, (19)
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which has four roots

λ1,2 = ±i

√√√√H[5]
3

H[5]
1
, λ3,4 =

1
2

(
−H[5]

1 ±

√
H2

1
[5]
− 4

1[5]
1

H[5]
1

)

Clearly, at e7 = e∗7 there are two purely imaginary
eigenvalues λ1 and λ2 and two eigenvalues λ3
and λ4 which have negative real parts provided
conditions 15–16 hold. Now, for all values of e7 in
the neighborhood of e∗7, the roots, in general, have
the following forms:

λ1,2 = α1 ± iα2, λ3,4 =
1
2

(
−H[5]

1 ±

√
H2

1
[5]
− 4

1[5]
1

H[5]
1

)
.

Clearly at e7 = e∗7, Re(λ1,2)|e7=e∗7 = α1(e∗7) = 0,
which means fulfilling the first condition for Hopf
bifurcation implies that the necessary condition is
followed. To validate the transversality condition,
α1 ± iα2 is substituted into Eq. (19) and then calculate
its derivative concerning e7, and compute the form
θ (e∗7)ψ (e∗7)+ 0(e∗7)φ(e∗7) where the form of θ,9, 0
and 8 are

θ (e7) = (α1 (e7))3H ′

1
[5] (e7)+ α1 (e7) H ′

3
[5] (e7)

+ (α1 (e7))2H ′

2(e7)[5]
+ H ′

4
[5] (e7)

− 3α1 (e7) (α2 (e7))2H ′

1
[5] (e7)

− (α2 (e7))2H ′

2(e7)[5].

0 (e7) = 3(α1 (e7))2α2 (e7) H ′

1
[5] (e7)+ α2 (e7) H ′

3
[5] (e7)

+ 2α1 (e7)α2 (e7) H ′

2
[5] (e7)− α2 (e7) H ′

1
[5] (e7) .

ψ (e7) = 4(α1 (e7))3
+ 3(α1 (e7))2H[5]

1 (e7)+ H[5]
3 (e7)

+ 2α2 (e7) H[5]
2 (e7)− 12α1 (e7) (α2 (e7))2

− 3(α2 (e7))2H ′

1
[5] (e7) .

φ (e7) = 12(α1 (e7))2α2 (e7)+ 6α1 (e7)α2 (e7) H[5]
1 (e7)

+ 2α2 (e7) H[5]
2 (e7)− 4(α2 (e7))3.

Then, for e7 = e∗7 ⇒ α1 = 0, α2 =

√
H[5]

3
H[5]

1
and

θ
(
e∗7
)
= H ′

4
[5] (e∗7)− H ′

2
[5] (e∗7)H[5]

3
(
e∗7
)

H[5]
1
(
e∗7
) ,

0
(
e∗7
)
= α2

(
e∗7
) [

H[5]
3
(
e∗7
)
−

H ′

1
[5] (e∗7)H[5]

3
(
e∗7
)

H[5]
1
(
e∗7
) ]

,

ψ
(
e∗7
)
= −2H[5]

3
(
e∗7
)
,

φ
(
e∗7
)
=

2α2
(
e∗7
)

H[5]
1
(
e∗7
) [H[5]

2
(
e∗7
)
H[5]

1
(
e∗7
)
− 2H[5]

3
(
e∗7
)]
.

Hence, according to condition 18, the following is
obtained.

θ
(
e∗7
)
ψ
(
e∗7
)
+ 0

(
e∗7
)
φ
(
e∗7
)
= 2H[5]

3 (e∗7)

[
p̈3

(
µ3e2a[5]

22

− e3e6c̈ p̈1 − r3e2e5 p̈1 + e2a[5]
22 +

e2H[5]
3

H[5]
1

)

+
α2

2 (e∗7)
H[5]

1 (e∗7)
[H[5]

2 (e∗7)H[5]
1 (e∗7)− 2H[5]

3 (e∗7)]

]
6= 0.

This means the required conditions for HB are
satisfied.

Theorem 10: Suppose that the following conditions
are satisfied

H[6]
i > 0, i = 1,3

1[6]
1 = H1

[6]H2
[6]
− H3

[6] > 0
e∗8 > 0

θ
(
e∗8
)
ψ
(
e∗8
)
+ 0

(
e∗8
)
φ
(
e∗8
)
6= 0

 , (20)

Then, system (1) has a Hopf bifurcation at e8 = e∗8
around E6.

Proof: The proof is similar to Theorem 9, hence
omitted.

Results and discussion

In this section, MATLAB is utilized to conduct nu-
merical simulations of a system (1) to demonstrate
the outcomes derived from our theoretical study. The
data set below displays a set of ecologically feasible
parameter values that have been considered.19

r1 = 1; e1 = 0.002; e2 = 0.15; e3 = 0.03;

e4 = 0.001; e5 = 0.0001; e6 = 0.0002; e7 = 0.001;

e8 = 0.002; r2 = 0.25; r3 = 0.01; r4 = 0.2;

m1 = 1000;m2 = 20000;µ0 = 0.0002;µ1 = 0.0001;

µ2 = 0.02;µ3 = 0.02. (21)

To understand the dynamic behavior of system (1)
and evaluate the impact of reforestation on CO2 emis-
sions, two scenarios are examined. The results of the
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Fig. 2. The existence and global stability for the parameters given
in (21) with r3 = µ3 = 0.

Fig. 3. The existence and global stability for the parameters given
in (21) with µ2 = 0.26.

two cases will then be juxtaposed to facilitate com-
parison. The two cases are:

• The system without reforestation

In this case, the interaction dynamics between the
carbon dioxide concentration c(t ), the forest biomass
p1(t ), and the human population density p3(t ) in
the absence of reforestation efforts, i.e., where r3 =

µ3 = 0 is examined. Fig. 2 depicts the system (1)
model with a reforestation-free equilibrium point
E5 = (2, 0, 2.38, 0). Moreover, despite the initial
values, the solution undergoes an initial phase of
expansion or contraction before reaching E5 in an
asymmetrical convergence direction. Every condition
necessary for the existence and global stability of
E5 = (352.94,170.2,0,943.98) is fulfilled.

Fig. 3 illustrates the increase in the coefficient of
natural depletion of forest biomass (µ2), which ulti-
mately leads to a reduction in both human and forest
populations and rising in the CO2 in the atmosphere.
The system, in this case, settles down to the CO2 equi-
librium point E1 = (824.96,0, 0, 0) for µ2 ≥ 0.26.

To assess the impact of the coefficient of CO2 uptake
by forest biomass as a result of photosynthesis (e3).

Fig. 4. The existence and global stability for the parameters given
in (21) with e3 = 0.00001.

System (1) was solved using the dataset presented in
(21) with varying values of e3. The result shows for
e3 ≤ 0.00001 the human population faces extinction,
and system (1), in this case, approaches asymptot-
ically to the carbon dioxide gas-forest equilibrium
point E3 = (ĉ, p̂1,0,0) = (22378.9, 920,0,0). Fur-
thermore, the decrease in the coefficient of CO2
uptake by forest biomass due to photosynthesis re-
sults in a significant rise in the amount of CO2 in the
environment. See Fig. 4.

The impact of the reduction in the intrinsic growth
rate of the forest biomass (r2) is shown in Fig. 5.
It shows a comprehensive bifurcation diagram with
r2 representing the bifurcation point. It is evident
from the diagram that the system undergoes two
transcritical bifurcations: when the CO2 equilibrium
point E1 and the carbon dioxide gas-forest equilib-
rium point E3 exchange their stability. It is clear
from Fig. 5 that for a small value of r2 ≤ 0.12,
for example if r2 = 0.02, system (1) settles down
asymptotically to E1 = (750.12,0, 0, 0). Moreover,
to raise the value of r2 (say r2 = 0.14), it is ob-
served that system (1) approaches asymptotically to
E3 = (ĉ, p̂1,0,0) = (104.19, 11.65,0,0). Therefore,
the conditions stated in Theorem 6 are satisfied, and
system (1) faces a transcritical bifurcation at r∗2 =
0.12. The result shows that a decrease in r2 harms
both the forest and human populations and causes an
increase in the amount of CO2 in the environment.

Now, numerically verifies the effect of the coef-
ficient of CO2 emission from anthropogenic sources
(e2). Fig. 6 illustrates that for 0.001 < e2 ≤ 0.01,
the solution faces a periodic attractor. While it
settles down to the CO2 equilibrium point E1 =

(2041.03,0, 0, 0) for e2 ≤ 0.001. See Fig. 7.
For the data set (21) with a decrease in the human

population decline rate coefficient attributable to
CO2 (e7), the conditions (15–17) for the existence of
a pair of purely imaginary roots of the characteristic
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Fig. 5. Transcritical bifurcation with respect to r2.

Fig. 6. The existence of a periodic attractor for the dataset given in
(21) with e2 = 0.01.

Fig. 7. The existence and global stability for the parameters given
in (21) with e2 = 0.001.

Fig. 8. The existence of a periodic attractor for the dataset given in
(21) with e7 = 0.00028.

Fig. 9. The existence of a periodic attractor for the dataset given in
(21) with e8 = 0.03.

Eq. (19) are satisfied, and the transversally
condition is also satisfied under condition (18) when
e7 ≤ 0.00028. The Hopf-bifurcation has occurred at
e∗7 = 0.00028, as stated in Theorem 9. See Fig. 8.
Moreover, the same result could be obtained for
the redaction of the human population expansion
resulting from forest biomass (e8). In this case, system
(1) also faces a periodic attractor for e8 ≤ 0.03.
See Fig. 9.
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Fig. 10. The existence and global stability of the parameters (21).

Fig. 11. The solution of system (1) for the parameters given in (21)
with r3 = 0.00002.

Fig. 12. The face plane in cp2p3 space and cp1p2 space for the
dataset given in (21) with r3 = 0.28.

• The system with reforestation

In this case, it is examined the interaction
dynamics between all components in system (1).
Upon analyzing the data set in (21), it observes that
all prerequisites for the existence and global stability
of E6 = (519, 167.67, 896.53, 1419.01) are met.
See Fig. 10.

Fig. 13. The Hopf bifurcation in cp1p3 space and cp2p3 space for
the dataset given in (21) with e∗8 = 0.02.

Fig. 14. The periodic attractor in cp2p3 space and cp1p2 space for
the dataset given in (21) with with e2 = 0.01.

Fig. 15. The periodic attractor in cp2p3 space and cp1p3 space for
the dataset given in (21) with with e5 = 0.01.

The impact of the coefficient of implementation
rate for reforestation initiatives (r3) is shown in
Figs. 11 and 12. Fig. 11 shows for r3 ≤ 0.00002,
the system faces loss in the reforestation effort,
and the solution converges asymptotically to
the reforestation-free equilibrium point E5 =

(c̈, p̈1,0, p̈3) = (469.58, 135.45, 0, 1063.26).
While, for 0.00002 < r3 < 0.28, the system
approaches the reforestation equilibrium point
E6. See Fig. 10. While the system faces a periodic
attractor for the range r3 ≥ 0.28. See Fig. 12. So, the
decrease in r3 causes reforestation efforts have been
rendered futile.
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Fig. 16. The periodic attractor in cp2p3 space and cp1p3 space for
the dataset given in (21) with with e6 = 0.002.

Fig. 17. The periodic attractor in cp1p3 space and cp2p3 space for
the dataset given in (21) with with e7 = 0.0001.

In addition, the conditions for stipulating the
presence of two purely imaginary roots and satisfying
the transversality condition fulfilled for the data set
(21) with e8 ≤ 0.02. Therefore, the Hopf-bifurcation
has occurred at e∗8 = 0.02, as stated in Theorem 10.
See Fig. 13.

The periodic attractor could also be obtained for the
following cases e2 ≤ 0.01, e5 ≥ 0.01, e6 ≤ 0.002, and
e7 ≤ 0.0001. See Figs. 14 to 17.

Conclusion

This article suggests and analyses a nonlinear math-
ematical model to determine how low-density forest
biomass and reforesting affect the flow of carbon
dioxide into the atmosphere. To develop the model,
it has been hypothesized that the concentration of
carbon dioxide in the atmosphere rises due to both
anthropogenic and natural activities, falls naturally,
and absorbs carbon dioxide through forest biomass.
It is also postulated that the increased mortality
rate of the human population is a consequence of
the detrimental impacts of carbon dioxide. Addi-
tionally, it is postulated that the human population
consistently exploits forest biomass to sustain itself.
As a result of population growth, forest areas are

removed for agricultural and infrastructure devel-
opment, which merely reduces the forest biomass’s
carrying capacity. The model under consideration
comprises six non-negative equilibria. The conditions
for both the feasibility and stability of these equilib-
ria have been derived. The transcription and Hopf
bifurcation around equilibria have been discussed.
According to the model study, if reforestation is not
implemented, certain elements would face the risk
of extinction. Conversely, the concentration of CO2
in the atmosphere would fall when reforestation was
implemented. Furthermore, the analysis shows the
system with reforestation has a stabilizing influence
on the dynamics of the system. That means the sys-
tem with reforestation has a stabilizing effect on the
dynamics of the system. To guide our future work,
a time delay in carrying out reforestation will be
considered in the proposed system. Subsequently, the
outcome will be juxtaposed with the findings pre-
sented in this research article.
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ثاني أكسيد الكربون من خلال المفرط لنبعاث الانموذج الاستقرارية لتحليل 

 اتباع سياسة إعادة التشجير في الغابات منخفضة الكثافة

 

 3انور زاب، 2ماثياس ونتر، 1شيرين جواد، 1فرقان نزار

 قسم الرياضيات ياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق.1
 جامعة برونيل لندن، اوكسبردج، المملكة المتحدة.قسم الرياضيات، 2
 .جامعة كومساتس إسلام آباد، حرم أبوت آباد، باكستانقسم الرياضيات، 3

 

 .تحليل الاستقرارية ،اعادة التشجير ،تحليل عددي ،نموذج غاز ثاني اوكسيد الكاربون ،تحليل التشعب الكلمات المفتاحية:

 ةالخلاص

الاحتباس الحراري. تعتبر الكتلة الحيوية للغابات ضرورية لاحتجاز ثاني  لظاهرة رئيسي  مسببربون اكسيد الكوأ بعتبر غاز ثاني

في الغلاف الجوي؛ ومع ذلك، فإن معدل الانخفاض في الكتلة الحيوية للغابات في جميع أنحاء العالم مثير للقلق ربون اكسيد الكوأ

ربون في الغلاف اكسيد الكوويمكن أن يعزى إلى الأنشطة البشرية. تعد إعادة التشجير أمرًا ضرورياً في هذه الحالة لتقليل كمية ثاني أ

لتشجير وفقاً للاستثمار المالي المطلوب لتنفيذها. يقدم هذا العمل نموذجًا رياضياً غير خطي يدرس الجوي. يمكن تقييم جهود إعادة ا

ربون في الغلاف الجوي. تم العثور اكسيد الكوثاني أ غاز  تأثير إعادة التشجير وتنفيذ مبادرات إعادة التشجير على تنظيم مستويات

. تم إجراء تحليل التشعب حول القيم الحرجة المحتملة. واستنادا إلى تحليل النموذج،  على القيم الحرجة للنموذج وتم تحليل استقرارها

لخطر الانقراض. في حين ساهم برنامج اعادة التشجير في انخفاض   فإن غياب إعادة التشجير من شأنه أن يعرض بعض الجوانب

تحليل الرقمي إلى أن النظام يعاني من فقدان الاستقرار ربون في الغلاف الجوي. علاوة على ذلك، يشير الاكسيد الكومستوى ثاني أ

 .دون أنشطة إعادة التشجير.في حين  يحافظ النظام على التذبذب من خلال تشعب هوبف أثناء الانخراط في أنشطة إعادة التشجير
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