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A B S T R A C T

This study breaks new ground by using the Temporal Fusion Transformer (TFT) method for groundwater level 
prediction, addressing the complex dynamics of the Thames Basin aquifer in England. Our research combines 
extensive hydrological data collected from the Thames Basin with advanced machine learning, where a complex 
network of rivers and streams substantially affects groundwater dynamics. Unlike previous studies, this research 
focuses on long-term forecasting with deep learning, offering, for the first time, a 60-day prediction horizon 
based on daily data. To rigorously examine the model performance and robustness on new, unseen data, we 
applied the walk-forward validation method and other matrices such as RMSE and R2 coupled with the Holdout 
technique. The models used were Long Short-Term Memory (LSTM), Attention-based LSTM, LSTM with Bayesian 
optimisation, Attention-based LSTM with Bayesian optimisation and TFT. They were used on the basin’s Chalk, 
Jurassic Limestone, and Lower greensand aquifers. Whilst both LSTM models were optimised using the Bayesian 
technique, TFT was applied for its inherent capability in complex time series. Our methodology processed his-
torical groundwater and rainfall data from 2001 to 2023, accounting for the potential lag in aquifer response to 
the proximity of the river system. The dataset served as training, validation, and holdout for each model, focusing 
on capturing the dynamic temporal fluctuation. The results clearly showed the superiority of the TFT model in all 
aquifer types compared to other models across all horizons. The Limestone had the greatest result in the 7-day 
projections, with an RMSE of 0.02 and R2 of 0.98; Whilst the Chalk and Lower greensand, had RMSEs of 0.03 
with R2 values of 0.75 and 0.95, respectively. The Limestone aquifer performed best for the 30-day horizon again 
(RMSE = 0.06, R2 = 0.85), with the Chalk and Lower greensand aquifer yielding RMSE of 0.04 and 0.12 and R2 
values of 0.64 and 0.74, respectively. In the 60 days predictions, the best results were observed in the limestone 
aquifer with RMSE of 0.09 and R2 of 0.65 in holdout validation. However, in chalk and lower greensand aquifers, 
the TFT showed RMSEs of 0.05 and 0.15 and R2s of 0.45 and 0.58, respectively. Traditional LSTM models 
demonstrated limited predictive power compared to the main model TFT, while the attention mechanism slightly 
improved the accuracy. This study not only sets a new benchmark in hydrological modelling accuracy but also 
highlights the potential of advanced machine learning in managing complex aquifers and predicting the water 
table.

1. Introduction

In England, 27% of groundwater is used for drinking water supply, 
which requires blending and treatment to meet national standards 
(United Kingdom Water Industry Research, 2004). However, this vital 
source of groundwater faces challenges in achieving satisfactory quan-
titative status, as assessed by the Environment Agency (2022). There-
fore, a comprehensive understanding of the historical, present, and 

future conditions of groundwater empowers water sector practitioners 
to develop strategies for sustainable socio-economic development 
through improving water resources planning and management (Wada 
et al., 2010). These sectors aligned with the goals of Agenda (2030) 
introduced by the United Nations (United Nations, 2015), particularly 
goal 6, which addresses different Sustainable development goals slated 
for completion by 2030.
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1.1. Limitation of classical models

Groundwater Level (GWL) simulation presents a challenging task 
due to several climatic, hydrogeological and topographic factors 
(Sadeghi et al., 2017; Afzaal et al., 2019). Historically, groundwater 
modelling has relied on numerous simulation techniques, including 
physically rooted conceptual models (Kennedy et al., 2003; Saberian 
et al., 2017; Gupta et al., 2019; Liu et al., 2023), as well as numerical 
models, such as the mesh meshless method (Mohtashami et al., 2017), 
element free (Pathania et al., 2019), and boundary element method 
(El-Harrouni et al., 1996). Despite the robustness and reliability classical 
models have demonstrated, these traditional modelling methods have 
shown limitations in precision and accuracy. These methods are con-
strained by various factors, such as aquifer properties, porous media 
geology and basement topography (Buczko et al., 2010; Barnett et al., 
2013). Moreover, the physical-based model comes with large data re-
quirements, reliance on simplifying assumptions and complex mathe-
matical tools (Duan et al., 1992; Beven, 2011; Mehr et al., 2013); these 
challenges restrict the validation accuracy in the model (Condon et al., 
2021).

Recognising these complex challenges in predicting GWL, specif-
ically due to climatic, hydrogeological and topographic variabilities, 
Artificial Intelligence (AI) methods have overcome some limitations of 
traditional models and are increasingly used in groundwater quality and 
quantity (Pannu, 2015; Khaki et al., 2015; Sakizadeh, 2016; Bagheri 
et al., 2017; Muñoz et al., 2023; Ahmed et al., 2024). This advancement 
has paved the way for more sophisticated approaches, such as Long 
short-term memory (LSTM) introduced by Hochreiter and Schmidhuber 
(1997), which are particularly suited for analysing time series data. The 
integration of Bayesian optimisation (BO) further enhances the predic-
tive capabilities of these models by searching and choosing the best 
hyperparameters, allowing better performance and more precise 
groundwater predictions (Sameen et al., 2020).

1.2. LSTM and attention mechanism in hydrology

In the realm of hydrological and meteorological forecasting, LSTM is 
recognised as one of the most effective methods for predicting hydro-
logical variables (Sherstinsky, 2020); its strength lies in its ability to 
understand long-term dependencies in sequential data. To further 
enhance the predictive accuracy of the LSTM model, researchers have 
put an effort into identifying and emphasising the most instructive time 
points whilst downplaying less relevant ones (Jozefowicz et al., 2016; 
Ding et al., 2020). The attention mechanism, a relatively new and dy-
namic feature inspired by human attention, has been deeply introduced 
in several papers (Vaswani et al., 2017). Its application across various 
fields has demonstrated improved efficiency and precision (Ghaffarian 
et al., 2021; Lieskovská et al., 2021; Li et al., 2023). While its integration 
in hydrological forecasting is still emerging, early implementations have 
shown promising results (Ding et al., 2019; Chen et al., 2020, 2021; 
Ehteram, 2023). A comprehensive review of the different AI models for 
GW predictions is provided by Ahmed et al. (2024).

1.3. Temporal Fusion Transformer

Building upon the foundational strengths of LSTM models and the 
enhanced focus provided by attention mechanisms, this study also in-
corporates the innovative Temporal Fusion Transformer (TFT) to 
leverage groundwater level prediction. The TFT, a cutting-edge time 
series model, excels in handling and integrating several types of inputs, 
such as static variables, known future inputs and historical time-series 
data (Ali and Ahmed, 2024; Lim et al., 2021). This paves the way for 
a comprehensive understanding of temporal patterns and relationships, 
which is crucial in hydrological studies.

Unlike traditional recurrent models, TFT employs a novel architec-
ture that combines convolutional components for local processing with 

attention mechanisms for multi-horizon forecasting (Lim et al., 2021). 
This model offers a unique balance between flexibility and interpret-
ability in handling complex data, making it privileged in forecasting 
hydrological aspects (Fayer et al., 2023). In the context of groundwater 
forecasting, the ability of TFT to process and integrate diverse data 
sources, including hydrological, climatic and anthropogenic factors, 
surpasses other methods. A noteworthy aspect of the TFT is its inherent 
proficiency in handling such complex scenarios, even without applying 
hyperparameter tuning such as BO (Lim et al., 2021). The significance of 
this advantageous capacity lies in the model’s ability to effectively learn 
and adapt to the data’s temporal dynamics, making it suited for hy-
drological studies where the variability and interaction of several factors 
over time are complex and subtle.

1.4. Model performance metrics and validation techniques

In terms of evaluations, it is crucial to address the approaches used to 
assess their success in time-series forecasting. Rolling window analysis 
has traditionally been used as such evaluations, providing insight into a 
model’s stability over time (Kombo et al., 2020; Hussein et al., 2020). 
This method computes parameter estimates over a fixed-size window 
throughout the sample, which provides a gauge for parameter constant, 
which is crucial in dynamic situations. However, applying this technique 
in hydrological forecasting requires careful consideration, particularly 
for GWL. Because of their complex systems and temporal dynamics, 
groundwater systems may not comply with the assumption of constant 
parameters, a limitation addressed in financial time series (Zivot et al., 
2003). To complement rolling window analysis, our research also in-
tegrates walk-forward validation and holdout technique (Roelofs et al., 
2019; Cerqueira et al., 2020; Guo et al., 2021). Walk-forward validation 
enables ongoing adaption of the training dataset by testing the model 
against previously unseen data points, thus mimicking real-world fore-
casting scenarios under changeable conditions. The holdout technique 
boosts our strategy by retaining a subset of the dataset for a final single 
test, ensuring that the performance of the model is tested against 
entirely new data.

1.5. Challenges of Thames Basin

The river basin management plans by the Environment Agency 
(2022) published some pressing challenges affecting the current and 
potential future of the water environment. These challenges represent 
the key issues of managing and sustaining these environments. Many 
water bodies, including rivers, lakes, coastal areas, streams and aquifers, 
suffered harm due to factors like urban development and industrial ac-
tivities (Miller and Hutchins, 2017), agriculture (Taylor et al., 2016) and 
changes made to provide flood protection (Rubinato et al., 2019). The 
additional pressures of climate change and population growth add to 
these issues (Frederick and Major, 1997). In addition, excessive 
groundwater abstraction can directly impact the river ecosystem, lead-
ing to unsustainable water bodies (Zektser et al., 2005). According to the 
Environment Agency (2022), if no action is taken, the problem will in-
crease, and many areas of England will face water shortages by 2050. 
The complexity of the Thames Basin, characterised by its three principal 
aquifers––the Chalk, the Jurassic limestones, and the Lower greensand 
— can pose challenges even for the most advanced AI methods (Mathers 
et al., 2014).

1.6. Research gap and novelty

Our work contributes greatly to the knowledge and implementation 
of machine learning in hydrological forecasting by offering numerous 
unique techniques and methodologies. Key contributions include: 

• Most previous research, such as Cheng et al. (2020), focuses on 
predicting for up to 20 days. We extend the forecasting period to 30 
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and 60 days, filling the significant gap in long-term GWL projection 
that has received less attention in the literature.

• We present TFT model for capturing complex temporal correlation in 
hydrology data, establishing a new standard in the field. This study 
differs from prior research in that it employs classic and advanced 
ML approaches to improve forecast accuracy and give in-depth 
insight into water resources management in the Thames Basin.

• For assessing model performance and identifying overfitting, the 
majority of earlier research used fundamental measures including 
RMSE, MAE, and MSPE solely (May-Lagunes et al., 2023; Chen et al., 
2020). Even though these measures are important, it’s possible that 
they may not accurately represent model accuracy or regression 
performance quality, especially when used with fresh, untested data 
across longer predicting horizons (Chicco et al., 2021). In order to 
close this gap, our work uses walk-forward validation approaches 
and holdout methods in addition to these fundamental measures. 
These extra methods offer a more thorough evaluation, guaranteeing 
that the model is resilient across various data subsets and periods and 
that it is constantly checked for indications of overfitting.

• Our study focuses on the 7–30 – 60 days prediction period based on 
daily data, which is significant for water resources management in 
the Thames Basin and practical given the available data and envi-
ronmental conditions.

In addition to our comprehensive methodology, this study addresses 
a critical challenge of model overfitting in GWL prediction particularly 
for extended forecasting periods incorporating fractured and granular 
porous medium, in addition to our thorough approach. While traditional 
methods, such rolling window analysis, are helpful in assessing the 
stability of the model, they frequently fall short in capturing the seasonal 
fluctuations and long-term hydrological patterns that are crucial in these 
intricate systems. Our methodology incorporates walk-forward valida-
tion, the holdout technique, and delayed and rolling window features to 
reduce the danger of overfitting and provide a thorough evaluation 
across various aquifer types. This method improves our models’ pre-
dictability and accuracy and provides insightful information for hy-
drological modelling in the region’s varied aquifer systems.

2. Materials and methods

In this section, we embark on a comprehensive investigation of GWL 
prediction in the Thames Basin using advanced machine learning. Our 
methodology integrates a blend of deep learning models – the standard 

LSTM and attention-based LSTM, in addition to their variant, which is 
fine-tuned through Bayesian optimisation and TFT. First, the data 
collection and pre-processing will be explained; then, the ML models 
will be explored. Finally, the evaluation matrices will be explained.

2.1. Data collection and pre-processing

We compiled a large historical groundwater and rainfall database 
from the Environment Agency’s Hydrology Data Explorer (Hydrology 
Data Explorer - Explore). This resource provides extensive spatial and 
temporal hydrological data across the United Kingdom. Thames Basin 
district covers over 16 000 km2 (Fig. 1) located in London, the UK’s 
capital, and it is considered one of the most densely populated river 
basins serving over 15 million people (Bearcock and Smedley, 2010; 
Environment Agency, 2022). This district encompasses not only the 
entirety of Greater London but also extends from north Oxfordshire 
southwards to Surrey and Gloucester in the west to the Thames Estuary, 
including parts of Kent in the east. The Thames Basin area is among the 
driest in the country, getting, on average, around 690 mm of rainfall. 
This is less than the national average of 897 mm, in addition to the 
increasing population, which places significant stress on the available 
water supplies which are used to the fullest (Bearcock and Smedley, 
2010).

The Thames basin is a region critical due to its dense population and 
significant hydrological challenges due to its complex hydraulic prop-
erties (Neal et al., 2006; Royse et al., 2009). The site selection criteria 
were severe; we selected representative point in each aquifer – chalk, 
limestone, and lower greensand, focusing on data continuity from 2001 
to 2023 and the geographical pairing of GWL monitoring locations with 
nearby rainfall stations. This strategic choice was made to capture the 
interplay between atmospheric precipitation and subsurface water 
levels, which is critical to the aquifer dynamics of the Thames Basin.

The initial data was recorded hourly, presenting some temporal 
coverage inconsistencies. Therefore, the normalisation technique was 
conducted to uniform daily time series (Kang and Tian, 2018), where the 
mean value of available data was computed for each day. This was 
critical to offset the impact of missing data records and provide a daily 
temporal resolution that is more congruent with hydrological trends and 
water resources management practices. A linear interpolation approach 
was used, ensuring temporal continuity since it preserves the integrity of 
the time series (Huang, 2021). This is critical for modelling purposes as 
the interruption may lead to interpretations of the underlying water 
dynamics.

Fig. 1. Thames basin (Environment Agency, 2022).

A.J. Ali et al.                                                                                                                                                                                                                                    Journal of Cleaner Production 484 (2024) 144300 

3 



We revised this approach to rainfall data processing in light of the 
proximate river’s potential of minimising the direct effect of rainfall on 
the groundwater recharge. Recognising that the existence of the river 
may introduce a lag in the aquifer’s response to precipitation (Randall 
and Albany, 1978), we thoroughly standardised the rainfall data, 
treating it as an important rather than a direct, impactful factor in our 
hydrological modelling framework. This advanced understanding 
guided our data integration method, where we aligned the rainfall and 
groundwater datasets under a single temporal framework.

Recognising the deep link between rainfall and groundwater levels 
(Fetter, 2001), we methodically integrated the rainfall and groundwater 
levels based on their corresponding dates. Combining these two datasets 
allows for a thorough investigation of how groundwater levels fluctuate 
over time in response to rainfall. While also understanding that the 
river’s proximity may cause a lag rather than an immediate shift in 
groundwater level.

Following that, we concentrated on splitting the combined ground-
water and rainfall data, and the dataset was divided into training, 
validation, and holdout purposes. This division was crucial as it is not 
only for the effective functioning of the ML models (Ransom et al., 
2017), but also for assuring their relevance and application in hydro-
logical forecasting within Thames Basin. The quality of these datasets 
determines the dependability of walk-forward validation findings. The 
ability of a model to perform effectively in walk-forward validation re-
flects not only on its design but also on the capacity of the historical data 
to include the complete range of environmental conditions affecting the 
aquifer (Kaastra and Boyd, 1996). The training set received 70% of our 
dataset. The requirement is to offer the model with a full understanding 
of the hydrological patterns and relationships between GWL and rain-
fall. Given the complex and dynamic nature of the hydrological pro-
cesses, such a significant volume of training data was required for the 
models to learn and duplicate these intricate patterns effectively. The 
remaining 30% sample was divided into validation and holdout sets of 
15% each. The validation set plays a critical role in the model devel-
opment phase, primarily used for fine-tuning the models so that they can 
adapt to and accurately predict hydrological trends without overfitting 
to training data. The 15% holdout set was held aside for a final single 
evaluation to assess the robustness of the model in handling unseen data. 
The holdout sets are the best practice in ML that ensures the final model 
evaluation is rigorous and trustworthy (Dwork et al., 2015).

The data was further processed to suit the needs of the models; this 
included bending the data into specified forms that reflected the time- 
step and feature considerations required for these advanced modelling 
approaches. The dimensions of the reshaped data set for each geological 
formatting-Chalk, Limestone, and Lower greensand-were as follows: 

• Chalk Formation: Training set (5494), Validation set (1107), Holdout 
set (1108)

• Limestone Formation: Training set (5718), Validation set (1155), 
Holdout set (1156).

• Lower greensand Formation: Training set (5562), Validation set 
(1122), Holdout set (1122).

2.2. Machine learning models

2.2.1. Bayesian optimisation
Bayesian optimisation (BO) is a powerful method for hyper-

parameter tuning in machine learning models, and it is particularly 
useful in time series forecasting. By using the surrogate function, the BO 
predict the conditional likelihood of validation set performance given 
hyperparameters (Alizadeh et al., 2021). Unlike random or grid search, 
BO keeps records of previous historical evaluations to prevent wasting 
computation on poor hyperparameters. When compared to standard 
approaches, the algorithm uses an acquisition function to find potential 
hyperparameters for further evaluation, optimising the search with 
fewer evaluations (Du et al., 2022). In our research, we combined BO 

with LSTM models for fine-tuning the hyperparameters, where: 

• Model configuration: LSTM models were built with varied numbers 
of units and learning rates. The architecture was designed to handle 
the temporal dynamics of groundwater and rainfall data effectively.

• Parameter space: The learning rate, number of LSTM units, and 
dropout rates were all placed within certain ranges to ensure robust 
parameter space exploration.

• Optimisation process: The optimisation procedure was executed 
over several iterations, with each iteration narrowing the search 
depending on the model’s performance on the validation set. The 
goal was to reduce the mean square error (MSE), which was a sig-
nificant parameter for model accuracy in our study.

Through BO, we effectively determined the ideal set of hyper-
parameters for our LSTM models, improving their capacity to capture 
the complicated relationship between GWL and rainfall data.

2.2.2. Long Short-Term Memory
Long short-term memory (LSTM) networks use memory blocks that 

consist of gates and cells, where the cell works as a conveyor belt which 
carries information and runs through the entire chain, whilst the gates 
choose what information to add and remove. Each gate is expressed by 
its own sets of weights and biases. The forget gate, which decides which 
information to erase from the memory, can be expressed as follows 
(Khozani et al., 2022): 

ft = σ
(
ωf .[ht− 1, xt ], bf

)

where ft is the forget gate output, σ is the sigmoid function, ht− 1 is the 
concatenation of the previous hidden state at t − 1 time, xt is the current 
input, ωf is the weight matrix related to the forget gate, bf is the bias 
associated with the forget process. So, the sigmoid function is utilised to 
the total of the weighted input and bias to compute the output of the 
forgot gate (Kong et al., 2021). Moving on, deciding what information to 
be stored in the memory cell is controlled by the input gate. The input 
gate controls the flow of new information into the memory cell by using 
the tanh function, which creates a new cell to save new information 
(Gundu and Simon, 2021). The architectures are defined as follows: 

1. Model definition: a sequential model with multiple LSTM model is 
used, where the first layer is configured to return sequences, fol-
lowed by another layer of LSTM. The LSTM units in each layer and 
the learning rate are optimised through BO.

2. Dropout and Regularisation: Dropout layers were employed after 
each LSTM layer to randomly drop out neurons during the training 
process (Wei et al., 2020).

3. Output layer: The final layer in the model is a dense layer with a 
(linear) activation function responsible for predicting GWL (Liu 
et al., 2020).

4. Model compilation and optimisation: The model is then complied 
with an MSE loss function and optimised with the (Adam) optimi-
sation. Based on the optimised hyperparameters, the learning rate is 
determined.

5. Bayesian Optimisation: We use BO to systematically explore the 
hyperparameter space for hyperparameter tuning, achieving the 
most efficient model training.

6. Training and validation: Following, custom Keras Regressor 
Wrapper with Early_Stopping and call-backs (Gulli and Pal, 2017) 
were used in the training process to ensure that our model is neither 
underfit nor overstrained.

7. Final model training: After hyperparameter optimisation, we build 
the final LSTM model with our chosen parameters. The model is 
trained on the full dataset with a validation split to monitor 
performance.
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Alongside the BO LSTM models, we used a normal LSTM model with 
a fixed hyperparameter that was extracted from the median values of the 
BO search space to guarantee fairness and comparability. Reflecting the 
median values from the BO search space, this model was constructed 
using a fixed configuration of 50 LSTM units in two layers, with a 0.3 
dropout rate and 0.001 learning rate. This simplified technique aims to 
strike a balance between efficiency and performance, using dropout 
layers to reduce overfitting and a dense linear activation for GWL 
forecasting. It is important to note that this architecture was also used 
for attention-based LSTM.

2.2.3. Attention-based LSTM cell
A way to enhance LSTM to capture high non-linearity is to incor-

porate a self-attention mechanism into its architecture, which applies 
attention scores to each observed value. This method has shown effec-
tive results in various fields in handling complex dependencies in 
sequential data (Pei et al., 2017). It allows the model to weigh the 
importance of different inputs at various time steps. This approach is 
particularly useful in hydrology, where the interdependency of GWL 
sequences is often complex and non-linear. In the used model, the 
self-attention mechanism is formulated using the scaled dot-product 
attention approach (Alizadeh et al., 2021). This approach enables the 
model to prioritise inputs at different time steps, improving its focus on 
significant elements in the data. The attention layer is strategically 
placed after the first LSTM layer, allowing the network to focus on the 
most relevant element before passing them through another LSTM layer. 
This can dynamically allow the attention mechanism to adjust the focus 
of the network, enhancing its ability to recognise significant temporal 
patterns. Following that is a dropout layer to reduce overfitting and a 
dense output layer to predict the GWL. Adding this attention mechanism 
to our model will leverage it by a sophisticated capacity to recognise and 
focus on relevant temporal patterns, which is critical for accurate 
long-term GWL forecasting. It represents a significant advancement in 
dealing with the complex dynamic and nonlinear nature of hydrological 
data (Vaswani et al., 2017).

2.2.4. Temporal Fusion Transformer model architecture
The novel attention-based architecture in TFT model offers a 

breakthrough in interpretability for deep learning methods, particularly 
fitted for complex hydrological forecasting in the Thames Basin 
(Junankar et al., 2023). The model employs a number of specialist 
components that pick key features and a series of gating layers to filter 
out unnecessary elements, allowing it to provide impressive perfor-
mance across a range of real-world datasets (Wu et al., 2022). It is 
uniquely designed for multi-horizon forecasting and is capable of pro-
cessing a complex mix of inputs, including static, known future and 
exogenous time-series data, all of which are critical in hydrological 
forecasting (Marcellino et al., 2006; Li et al., 2019). The TFT architec-
ture consists of many components, each of which contributes to the 
ability of the model to collect the complex temporal dynamics in hy-
drological data (Lim et al., 2021): 

1. Gating mechanisms blocks are used for selective non-linear pro-
cessing data to adjust to changing hydrological variables, such as 
rainfall intensity and duration thereby enhancing model accuracy 
and efficiency. The formula for Gated Residual Network (GRN) has a 
primary input a, an optional context vector c, and uses exponential 
linear unit (ELU) activation (Clevert et al., 2015) and Gated Linear 
Units (GLUs):

GRNω(a, c)= LayerNorm(a+GLUω(η1))

η1 =W1ωη2 + b1ω 

η2 =ELU(W2ωa+W3ωc+ b2ω)

2. Variable selection networks to focus on the most important vari-
ables at each time step, limiting the influence of noisy data, which is 
critical in hydrology where factors like river stream and rainfall in-
tensity can affect GWL (Appels et al., 2015; Dauphin et al., 2017). 
Creating variable selecting weights involves transforming input 
variables into a dmodel dimensional vector, then applying the GRN and 
Softmax layer (Lim et al., 2021):

υXt = Softmax(GRNυX(Ξt, cs))

3. Static covariate encoders and temporal processing with a 
sequence layer for short-term and a unique interpretable multi-head 
attention block for long-term dependencies, which is vital for un-
derstanding the interaction between geological features and rainfall 
patterns in the Thames Basin.

4. Interpretable multi-head attention is employed by TFT, which 
modifies the multi-head attention mechanism (Vaswani et al., 2017), 
allowing it to learn and highlight long-term relationships across 
different time steps, improving the detection of key occurrences such 
as continuous rainfall events or dry seasons.

5. Temporal fusion decoder to identify and incorporate significant 
hydrological events. Enhancing short-term interpretation and pre-
diction accuracy.

TFT contains extra layers to handle temporal data and interpretive 
multi-head attention. To process input, the sequence-to-sequence layer 
is often comprised of LSTM units for short-term dependencies, com-
plementing the long-term focus of the multi-head attention mechanism. 
Context vectors are employed to process contextual information, which 
is crucial for adjusting predictions on static characteristics such as soil 
type or land use. The model uses suitable loss functions, mean square 
error (MSE) or mean absolute error (MAE), and an Adam optimiser for 
training. the model is structured in sequence with an embedding layer 
for the input transformations, a multi-head self-attention layer for 
capturing long-term dependencies, an LSTM layer to capture compli-
cated temporal patterns, and a dense output layer for predicting GWL. 
An early-stopping call-back is added to the training process to promote 
quick learning and prevent overfitting.

2.3. Evaluation methods

2.3.1. Rolling window analysis
Each model was evaluated using a similar assessment process. We 

used a rolling window approach for post-data pre-processing, which was 
crucial in assessing model performance. This method generates lagged 
and rolling window features and simulates the model’s operation in real- 
world scenarios to forecast future GWLs. The rolling window approach 
estimates the model at time instance i using a sample of i − 1 to i − N 
prior observations, providing h-step forward projections (Amor et al., 
2016). The procedure is repeated, with the window moving forward one 
period at a time, updating the model constantly and providing fresh 
projection.

2.3.2. Holdout method
The holdout method is for estimating the performance of time series 

forecasting models. it is performed by splitting the data into two parts: a 
training and testing set. Where the model is trained on the first portion of 
the data and tested on the second, ensuring that the testing occurs on 
unseen data. It is particularly suitable for non-stationary time series 
since it produces more validation compared to other methods like cross- 
validation (Cerqueira et al., 2020). It is significant since it aids in 
assessing the ability of the model to generate new, unseen data, which is 
crucial for reliable prediction in real-world applications.
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2.3.3. Walk-forward technique
The walk-forward validations approach is crucial for assessing time 

series models since it allows the model a chance to make predictions at 
each time step (Guo et al., 2021). This method involves training the 
model on historical data and then testing it on a smaller, more recent 
sample. The data window is pushed back, and the training and testing 
procedure is repeated (Wan et al., 2019). This strategy allows the model 
to continuously adjust to recent data, improving the prediction accu-
racy. It is especially useful for models that need to adjust to conditions 
that are changing over time, ensuring that they stay relevant and 
accurate.

2.3.4. Performance metrics (RMSE, R2, and MAE)
We evaluated the performance using three essential metrics: Root 

Mean Square Error (RMSE), R-squared (R2), and Mean Absolute Error 
(MAE). These metrics are chosen to provide a thorough understanding of 
the model predictive accuracy and reliability (Chicco et al., 2021). 

• RMSE measures the predictive errors by calculating the squared root 
of the average of squared differences between the actual and pre-
dicted values, indicating the model’s accuracy. RMSE can be calcu-
lated as follows:

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(Xi − Yi)

2

√

; (best value=0,worst value= +∞)

• MAE calculates the average magnitude of errors in a set of forecasts 
without considering their direction. It is a simple measure of pre-
diction accuracy, where lower values indicate better performance. It 
can be calculated as follows:

MAE=
1
m

∑m

i=1
|Xi − Yi|; (best value= 0,worst value= +∞)

• R2 measures the proportion of variation in the dependent variable 
that can be redacted by the independent variables. It indicates the 
goodness of the fit, providing us an insight into how well our model 
captures the variability in GWL influences by factors like rainfall. It 
can be calculated as follows:

R2 =1 −

∑m

i=1
(Xi − Yi)

2

∑m

i=1
(Y − Yi)

2
; (best value= +1,worst value= − ∞)

Calculations were made for different datasets (training, validation 
and holdout); these predictions, along with the actual values, are 
inverted using a scalar. These matrices assess and evaluate the model to 
capture complicated interactions between GWL and rainfall, offering a 
thorough understanding of how capable the model predictive abilities 
are in a hydrological context.

2.3.5. Look-back window selection
The look-back window defines a range of previous time steps that the 

model cab observes to recognise the patterns and relationships within 
the sequence data. A fully connected neural network with weight 
sharing separates the temporal and trend aspects (Zhao et al., 2023). For 
the 7-day prediction horizon, a 7-day lookback window is ideal because 
it allows the model to capture short-term temporal trends that are 
relevant to the following week without overfitting. This brief timeframe 
gives an accurate view of the most recent conditions, which is critical for 
making short-term predictions.

To cover a 30-day prediction, a lookback window of 30 days is 
chosen to catch any major trends in GWL and rainfall. This time frame is 
especially useful for spotting monthly weather fluctuations and seasonal 
changes that may impact GWL in the near term. A longer look-back 

period provides a more diversified dataset for the model to learn from, 
which is especially important for long-term forecasts. It helps the model 
grasp more complex dependencies that may not be visible in a shorter 
time. When the forecast horizon is extended to 60 days, a 30-day look-
back time compromises between capturing longer-term patterns and 
being attentive to recent alterations that may affect near-future GWL. 
Therefore, the lookback window is set to 30 days to mitigate the risk of 
the model overemphasising earlier data, which may not be as indicative 
of upcoming situations, whilst avoiding overfitting as well.

3. Results and discussion

We processed a rich dataset encapsulating the complex relationship 
between groundwater levels and rainfall over three unique aquifer sys-
tems, chalk, limestone, and lower greensand, using a suite of advanced 
ML. The results (see Table 1) are systematically analysed across different 
temporal forecasting horizons of 7–30–60 days, emphasising hydrolog-
ical consistency and predictive accuracy as measured by robust metrics 
(i.e. RMSE, MAE and R2).

The study used advanced ML techniques to address overfitting, a 
challenge often noted in many studies (Tao et al., 2022; Pandya et al., 
2024). Using walk-forward validations, holdout sets, and rolling win-
dows ensured the reliability and generalisability of the models used, 
particularly the TFT. Furthermore, few studies have put effort into 
predicting extended horizons, like Cheng et al. (2020), which focused on 
the 20-day lead periods using the LSTM model. Our research extended 
the forecasting to 30 and 60 days using both LSTM and TFT models. Our 
findings (Table 1) reflect the effectiveness of these models in the Thames 
Basin’s complex hydrological context.

By reducing overfitting, the technique used improves forecast accu-
racy and generalisability in the Thames basin complex system. While the 
walk-forward validation approach has shown positive results in Tables 1
and it is essential to recognise the foundational role played by the prior 
training, testing, and holdout procedures. The robustness of the pre-
dictive variables derived from the walk-forward validation depends on 
the depth and breadth of the data used in these initial phases (Kaastra 
and Boyd, 1996). The TFT model’s outstanding performance is based on 
the high quality of these datasets, which capture the complexities of the 
Thames Basin’s hydrological profile.

Leveraging the information on aquifer properties such as the dual 
porosity of chalk (Brouyère, 2006), limestone’s strong yet low perme-
ability (Selvadurai, 2019), and the unique flow process of lower 
greensand-demanded the models to capture these complex dynamics. 
BO was used to fine-tune LSTM models, with the goal of leveraging the 
unique aquifer properties to increase forecasting accuracy and enhance 
the model performance by searching wide parameter space. However, 
contrary to expectations, the small difference in RMSE and R2 between 
conventional LSTM and LSTM with BO, in addition to the 
attention-based LSTM, demonstrated that extensive parameter search 
does not always lead to considerably enhanced predicting accuracy, as 
Alizadeh et al. (2021) have conducted in their study.

This minor difference emphasises an important issue of model se-
lection and optimisation in hydrology forecasting. It suggests that the 
choice between a standard LSTM and a BO variant should consider not 
only accuracy metrics but also aspects like computational efficiency and 
the target aquifer properties. It also emphasises the need for careful 
initial parameter selection in LSTM models, which in certain cases may 
be as effective or even superior to a more computationally demanding 
optimisation approach.

However, the TFT model, which was not subjected to Bayesian 
optimisation, produced good results by including the different hydro-
logical features of the Thames basin. The model excelled across all 
aquifer types, achieving the lowest RMSE and the best R2, notably in the 
limestone aquifer (Table 1). This result demonstrates the capacity of the 
TFT model to capture the rapid reaction of limestone precipitation and 
the other groundwater behaviour of chalk and lower greensand, 
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demonstrating its advanced analytical ability in hydrological 
forecasting.

Although the TFT excelled across all aquifers and horizons, its per-
formance varied slightly in certain cases. In predicting 60 days, the TFT 
yielded the highest R2 for the limestone aquifer but did not get the 
lowest RSME. These results emphasise the inherent complexity and 
unpredictability of groundwater systems rather than highlighting the 
model’s limitations. In hydrological forecasting, the trade-off between 
R2 and RMSE is a well-documented phenomenon that reflects the diffi-
culties faced by various error measures in capturing all facets of model 
performance.

The best models were chosen based on the lowest RMSE values and 
the best R2 obtained throughout the training, validation and holdout set 
(Chicco et al., 2021). The TFT model performed exceptionally well, 
demonstrating consistency across all horizons in the chalk aquifer 
(Table 1) and demonstrating its resilience in capturing the hydrological 
response of the aquifer to environmental variables. This superior per-
formance demonstrates the TFT capacity to integrate complicated data 
relationships while accurately reflecting the actual groundwater fluc-
tuations. Further insight into the model performance, including the 
attention-based LSTM and the standard LSTM, reveals that the TFT 
advanced temporal understanding gives a significant advantage in pre-
dicting accuracy.

The TFT model provided low RMSE and high R2 values throughout 
all horizons and aquifer types. In chalk aquifer, for example, the TFT 
model produced a 7-day forecast with an RMSE of 0.03 and R2 of 0.98, 
whereas the other models produced greater RSME values and Worse R2 

scores. The limestone and lower greensand showed similar patterns, 
with TFT retaining lower RMSE values and demonstrating greater ac-
curacy and resilience. This shows that TFT is quite effective at modelling 
short-term groundwater changes in aquifers that respond quickly to 
rainfall. However, in more geologically complicated systems, such as the 
limestone aquifer, RMSE values were greater across all models, indi-
cating the difficulty of forecasting groundwater levels in aquifers with 
lower permeability and more irregular water flow. However, the high 
RMSE values in the limestone aquifer, even for the TFT model, can be 
related to karst formations and fault networks, which cause fast, unex-
pected water level variations (Abesser et al., 2005).

A measure of the average size of error (MAE), provides information 
about the model’s overall accuracy without considering the direction of 
the mistakes. Interestingly, while TFT consistently exceeds the other 
models in terms of RMSE, its MAE was lower, in lower greensand 
aquifer, for example, over the 60-day horizon, where it attained an MAE 
of 0.11. This suggests that, while the model made significant mistakes 
(as seen by the greater RMSE), the overall trend of its predictions was 
closer to the observed values (Chai and Draxler, 2014).

When comparing TFT and attention-LSTM models in terms of MAE, 
we notice that TFT had superior R2 values in the chalk and lower 
greensand aquifers, showing it accurately recorded groundwater 
changes. However, in limestone aquifer, Attention-LSTM had greater 
MAE values than TFT, although having stronger R2 in some cases (e.g., 
Attention LSTM R2 = 0.88 vs TFT R2 = 0.85) in Table 1(B). Attention- 
LSTM had better R2 but was less accurate at predicting individual data 
points. This contrast shows that, whilst TFT had fewer overall prediction 
errors, Attention LSTM was better at capturing the overall form of the 
time series over longer durations.

The small R2 values for TFT in the limestone aquifer may be related 
to the model’s sensitivity to quick, high-frequency fluctuations in GWL, 
which are more typical of karstic systems like limestone. This empha-
sises the necessity of matching model capabilities to specific aquifer 
features since models that succeed in one type may fail in another due to 
differences in geological processes.

The detailed results below will show each model’s quantitative 
performance measure across the different aquifers and prediction hori-
zons. The RMSE of the holdout sets is used as a measurement, as it is one 
of the most reliable indicators that clearly explains how well the model 

Table 1 
Results of each model in all the three aquifers.

a) The prediction 7 days ahead

Aquifer 
Type

Model Holdout Walk-forward

RMSE MAE R2 RMSE MAE R2

Chalk LSTM 0.08 0.06 0.52 0.08 0.06 0.51
ATTETNION- 
LSTM

0.06 0.05 0.69 0.08 0.06 0.41

LSTM + BO 0.06 0.05 0.68 0.08 0.06 0.49
ATTETNION- 
LSTM + BO

0.05 0.04 0.73 0.09 0.07 0.37

TFT 0.03 0.02 0.75 0.03 0.02 0.40
Limestone LSTM 0.42 0.36 0.96 0.29 0.22 0.98

ATTETNION- 
LSTM

0.28 0.20 0.98 0.32 0.25 0.98

LSTM + BO 0.31 0.24 0.98 0.24 0.17 0.99
ATTETNION- 
LSTM + BO

0.28 0.20 0.98 0.24 0.17 0.98

TFT 0.02 0.01 0.98 0.02 0.01 0.97
Lower 

Green- 
sand

LSTM 0.41 0.23 0.93 0.51 0.32 0.89
ATTETNION- 
LSTM

0.40 0.22 0.93 0.65 0.41 0.83

LSTM + BO 0.39 0.21 0.94 0.61 0.37 0.85
ATTETNION- 
LSTM + BO

0.41 0.21 0.93 0.64 0.43 0.83

TFT 0.06 0.03 0.95 0.05 0.03 0.91

b) The prediction 30 days ahead

Chalk LSTM 0.08 0.07 0.44 0.08 0.06 0.53
ATTETNION- 
LSTM

0.08 0.06 0.45 0.07 0.06 0.53

LSTM + BO 0.07 0.05 0.51 0.07 0.06 0.50
ATTETNION- 
LSTM + BO

0.10 0.08 0.15 0.07 0.06 0.56

TFT 0.04 0.03 0.64 00.4 0.03 0.85
Limestone LSTM 0.78 0.55 0.87 0.30 0.23 0.98

ATTETNION- 
LSTM

0.73 0.52 0.88 0.29 0.23 0.98

LSTM + BO 0.71 0.48 0.89 0.27 0.21 0.98
ATTETNION- 
LSTM + BO

0.73 0.49 0.88 0.24 0.18 0.98

TFT 0.06 0.04 0.85 0.04 0.03 0.87
Lower 

Green- 
sand

LSTM 0.86 0.58 0.70 0.64 0.38 0.83
ATTETNION- 
LSTM

0.83 0.57 0.72 0.78 0.47 0.75

LSTM + BO 0.81 0.54 0.73 0.55 0.33 0.88
ATTETNION- 
LSTM + BO

0.83 0.56 0.72 0.73 0.45 0.78

TFT 0.12 0.08 0.74 0.10 0.06 0.68

c) The prediction 60 days ahead

Chalk LSTM 0.11 0.09 0.03 0.07 0.06 0.57
ATTETNION- 
LSTM

0.09 0.07 0.24 0.08 0.06 0.53

LSTM + BO 0.09 0.07 0.33 0.08 0.06 0.52
ATTETNION- 
LSTM + BO

0.10 0.08 0.24 0.07 0.06 0.56

TFT 0.05 0.04 0.45 0.03 0.02 0.99
Limestone LSTM 1.24 0.81 0.67 0.28 0.22 0.98

ATTETNION- 
LSTM

1.55 0.90 0.49 0.32 0.24 0.98

LSTM + BO 1.37 0.82 0.60 0.29 0.22 0.98
ATTETNION- 
LSTM + BO

1.33 0.86 0.62 0.26 0.19 0.99

TFT 0.09 0.07 0.65 0.06 0.05 0.61
Lower 

Green- 
sand

LSTM 1.10 0.75 0.49 0.58 0.37 0.86
ATTETNION- 
LSTM

1.04 0.74 0.54 0.71 0.43 0.79

LSTM + BO 1.01 0.74 0.57 0.59 0.38 0.85
ATTETNION- 
LSTM + BO

1.07 0.77 0.52 0.68 0.44 0.80

TFT 0.15 0.11 0.58 0.12 0.08 0.49
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is performing in real-world scenarios (Cerqueira et al., 2020). This is 
because the holdout sets are completely unseen datasets during the 
training and validation processes.

3.1. The chalk aquifer

This group is the primary aquifer in the Thames basin, and it is 
crucial for a public water supply and river flow. It features dual porosity 
storage within its matrix and fractures, significantly affecting pollutant 
behaviour such as nitrates. These features allow it to quickly respond to 
rainfall, as evidenced by the sharp rises in GWL following precipitation 
events, as shown in Fig. 3, to transmit groundwater. Most fractures 
within this aquifer run parallel to the bedding plane within the upper 
part, exhibiting a subsequent reduction in permeability with increasing 
depth. Furthermore, transmissivity is influenced by topographical var-
iations, with valleys displaying higher transmissivity values decreases 
towards the interfluves (Smedley et al., 2003; Shand et al., 2003a; Neal 
et al., 2006).

The TFT model showed remarkable performance in this aquifer. 
Although this aquifer responds rapidly to changes due to precipitation, 
TFT consistently had the lowest RMSE scores over the 7, 30, and 60-day 
prediction horizons, as shown in Fig. 2, indicating its better capabilities 
in capturing the aquifer response to varying hydrological circumstances.

The TFT model outperformed the other models with an RMSE of 0.03 
for the 7-day horizon. This demonstrates the usefulness of TFT for short- 
term forecasts where quick response to precipitation is essential. Even 
after being adjusted by BO, the attention-based LSTM and LSTM models 
still performed admirably, but the TFT surpassed both in terms of ac-
curacy. This shows the advanced design of TFT, which efficiently com-
bines temporal static and factors, was especially advantageous in 
modelling the hydrodynamic properties of the chalk aquifer (Lim et al., 
2021).

Notably, LSTM and attention-based LSTM models also showed ca-
pabilities in capturing the hydrological dynamics. The R2 values shown 
in Table 1 in the holdout set over all horizons were moderate, which 
indicates that the model did somehow well in capturing the trends and 
was not overfit to the training set, which allowed them to generalise 
effectively to new data (Chicco et al., 2021). On the other hand, the TFT 
model provided high R2 values, showing a strong fit and good data 
generalisation. It is important to note that, while the LSTM with BO 
model did not have the lowest RMSE and best R2 values, overall, it was 

the second in terms of performance, especially for the intermediate 30 
and 60-day horizons. This might indicate that the models make excellent 
use of previous data to capture temporal relationships. It is worth 
mentioning that the attention mechanism in the standard LSTM also 
aided in capturing the important trends of GWL by using temporal de-
pendencies and prioritising relevant information over time.

3.2. The limestone aquifer

The limestone aquifer had consistently higher RMSE in the holdout 
set compared to chalk and lower greensand aquifer. Due to various 
geological factors, including valleys and faults, water flow is affected, 
which results in significant water level fluctuations throughout the year. 
The limestone intricate and tough structure is distinguished by litho-
logical heterogeneity and severe karst system that involves rapid un-
derground flow through massive conduits (Abesser et al., 2005). 
Furthermore, this aquifer presents a unique hydrology since it has 
limited storage due to low porosity and is prone to rain runoff due to its 
unconfined nature, resulting in rapid change in GWL, as seen in Fig. 5. 
As a result, the upper parts of many rivers dry out annually, which leads 
to frequent drought conditions in this region. It provides a stable base-
flow and consists of contributing river flow and springs and consists of 
two aquifers separated by Fuller Earth clay (Oubagaranadin et al., 
2007), with the possibility of vertical water movement between them 
through fault systems (Neumann et al., 2003; Maurice et al., 2008).This 
results in continuously low GWL and lower river flows over the summer 
and autumn months, which are common and expected in this area 
(Neumann et al., 2003).

The chemical composition of groundwater in the aquifer varies 
greatly due to the natural geotechnical processes and occasional hy-
drothermal mineralisation, which contributes to its unpredictable 
behaviour, affecting the model’s ability to effectively capture the slow 
hydrological response of this aquifer (Maurice et al., 2008). Despite the 
advanced capabilities of TFT illustrated in Fig. 4 in capturing such 
complexities, the underlaying geological and chemical variety of the 
limestone aquifer poses significant modelling challenges, resulting in 
higher error matrices.

For the first prediction horizon (7 days), the TFT model achieved an 
RMSE of 0.02, significantly lower than other models, which were LSTM 
(0.42), attention LSTM and its variant with BO (0.28) and LSTM with BO 
(0.31). This implies that despite the complicated hydrogeological 

Fig. 2. The holdout RMSE across all horizons for the chalk.
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Fig. 3. Groundwater levels and rainfall interplay from year 2001–2023 of chalk aquifer.

Fig. 4. The holdout RMSE across all horizons for the limestone aquifer.

Fig. 5. Groundwater levels and rainfall interplay from year 2001–2023 of limestone aquifer.
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features of the limestone aquifer, TFT is quite successful in making short- 
term projections. Additionally, the results showed that the TFT model 
has a superior capability for predicting long-term hydrological responses 
(30 and 60 days horizons).

While the TFT model performed admirably in difficult settings, its 
RMSE scores for all horizons still highlight the inherent modelling 
problems associated with the limestone aquifer. Although LSTM and 
attention-LSTM models were fine-tuned using BO, they did not outper-
form TFT. Nevertheless, they present a noteworthy attempt to deal with 
the aquifer’s hard hydrological properties. However, it is important to 
note that the Attention-LSTM model has emerged as a strong contender, 
surpassing both the standard LSTM and its BO variant. These results 
highlight the ability of Attention-LSTM to leverage temporal de-
pendencies and prioritise relevant information over time, which is 
critical for modelling the limestone aquifer slow and complex response 
patterns.

3.3. The lower greensand aquifer

The lower greensand aquifer levels shown in Fig. 7, is known by its 
unique hydraulically independent Hythe and Folkestone formations, 
which function hydraulically independently. In the Hythe formation, 
water flows through both fractures and intergranular flow. The Folk-
stone formation is homogeneous, characterised by intergranular flow 
only, resulting in low transmissivity. Piezometer readings and ground-
water dates show that each aquifer has independent water flow behav-
iour (Shand et al., 2003b). and the presence of both fracture and 
intergranular flow. It should be noted the period from 2008 to 2010 
contained zero values from the original source. It is important to note 
that, unlike other cases of missing data that were addressed using 
methods such as rolling window averages, the zeros were kept as is due 
to the extended period of missing information as has been done in 
Somasundaram and Nedunchezhian (2011).

However, the model outputs accurately reflected the aquifer’s 
unique geological characteristics, such as its variable composition and 
the presence of the Sandgate formation (Shand et al., 2003b), which 
allows for vertical leakage and poses a challenging environment for 
predictive modelling. The Folkstone formation, with high storage, en-
sures a consistent baseflow to nearby rivers. As one moves further from 
the outcrop, the lower greensand becomes confined, reducing perme-
ability and storage. In this confined area, the Hythe and the Folkestone 

formations display more uniform water flow behaviour, restricting the 
water extraction capabilities compared to the unconfined region.

As illustrated in Fig. 6, the TFT model excelled in prediction accu-
racy. These findings reflect the geological complexities of the aquifer, 
effectively capturing the nuanced processes of fracture and intergran-
ular flow that distinguish the various formations within the aquifer. 
Overall, the findings demonstrate that the models were consistently 
accurate over the course of all forecast timeframes. It also shows that the 
use of attention mechanism allowed to effectively analyse and prioritise 
important hydrological patterns.

The variation in predicted accuracy amongst aquifers demonstrates 
the importance of both hydrological and geological dynamics on ma-
chine learning algorithms. In addition to performance indicators like 
RMSE and R2, the aquifers in the Thames Basin show the models’ ability 
to capture the nuances of water flow dynamics as well as their limits.

The lower greensand’s dual nature, with both confined and uncon-
fined zones, made it a fascinating topic for model performance analysis. 
Confined places tend to hinder vertical water flow, whereas unconfined 
parts have better permeability. The TFT demonstrated an improved 
ability to adjust to this variation by focusing on the important temporal 
features, making it more resilient to differences in water flow between 
these two zones.

The flexibility of TFT contrasts with the rigid static structure of LSTM 
models used. These models performed well in settings with more 
consistent hydrological responses, such as the Chalk aquifer, but strug-
gled in locations with more variable flow patterns. This finding implies 
that model flexibility is critical for effectively estimating GWL in aqui-
fers with complicated flow regimes. The TFT’s capacity to integrate 
long-term dependencies enabled it to better portray the lower greensand 
aquifers’ complex hydrological response, particularly in constrained 
locations with limited water extraction capability.

The substantial time lag between groundwater response and rainfall, 
notably in the Chalk and limestone aquifers, presented a difficulty for 
the models, especially for long-term projections of more than 30-day 
horizon. With the dual porosity in the Chalk aquifer, it responds 
quickly to rainfall, followed by a longer, more gradual recharging 
(Smedley et al., 2003). This dual-phase response posed challenges for 
LSTM-based models, which are designed to prioritise short-term tem-
poral dynamics (Khozani et al., 2022). TFT, on the other hand, was a 
more reliable option for forecasting long-term water level variations due 
to its capacity to mimic both immediate and delayed reactions to 

Fig. 6. The holdout RMSE across all horizons for the lower greensand aquifer.
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rainfall.
In the limestone aquifer, where river systems are more important in 

controlling GWL (Oubagaranadin et al., 2007), the time lag between 
GW, rainfall, and river level fluctuation recharge added to the 
complexity (Polomčić et al., 2013). Whilst LSTM models caught some of 
the short-term variations, TFT outperformed them because of its ability 
to detect both rapid precipitation responses and delayed, river-mediated 
recharging. This emphasises the necessity of taking into consideration 

both direct and indirect hydrological causes when designing models.
Given that the TFT model has been shown to be extremely successful 

over a variety of forecasting horizons and aquifer types, the present 
results are adequate for application in water resources management. The 
combination of rolling window, holdout set and walk-forward validation 
approach assures that the model is robust and can handle real-world 
data. The model’s ability to capture groundwater oscillations makes it 
a useful tool for long-term water management plans, particularly in 

Fig. 7. Groundwater levels and rainfall interplay from year 2001–2023 of lower greensand aquifer.

Fig. 8. Scatter plots that present the correlation between groundwater levels and rainfall infiltration.
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complicated systems such as the Thames Basin.
The linearity between groundwater and rainfall was measured using 

Pearson correlation (Jebli et al., 2021). The correlation between rainfall 
and GWL across the three aquifers is explored using scatter plots, as 
presented in Fig. 8. In the Chalk aquifer, the correlation value of 0.04 
indicates a very weak positive relationship, implying that variables 
other than rainfall might significantly influence GWL. Similarly, the 
lower greensand aquifer has a correlation coefficient of 0.08, reinforcing 
the claim that rainfall has only a minimal influence on GWL in this 
aquifer.

The limestone displays the most notable result of 0.00, contrary to 
expectations given its hydrological responsiveness (Bricker et al., 2014). 
Despite the sensitivity of limestone to climatic factors, it seems that 
neighbouring river systems may have an impact that could overshadow 
the effect of rainfall through processes such as greater riverbank infil-
tration or aquifer water drainage into the river system (Polomčić et al., 
2013). This concludes the particular intriguing since it shows that 
rainfall has no direct or major impact on GWL. Given the limestone’s 
tough structure and lower intergranular permeability, it might be 
hypothesised that the proximity of river systems could influence the 
aquifer’s response to rainfall. Rivers in close proximity to aquifers may 
promote quick runoff or absorption of rainfall, thereby limiting the 
potential recharge that would otherwise be reflected in the GWL rise.

To further understand the reasons contributing to the weak corre-
lation between GWL and rainfall in some aquifers, it is necessary to 
investigate the water infiltration. Fig. 9 illustrates the correlation be-
tween the river level and rainfall. Chalk and Lower greensand aquifers 
show a moderate correlation coefficient of 0.32 and 0.48, respectively, 
indicating that river levels respond considerably to rainfall events. This 
supports the hypothesis that river levels might serve as mediators in the 
hydrological cycle, affecting the GWL through interconnected surface 
and subsurface water processes.

River proximity is especially important in the limestone aquifer, 
where the correlation between GWL and rainfall is insignificant. The 
river system nearby this aquifer likely leads to quick runoff or quick 
overland flow of rainfall, thereby restricting the recharge capacity 
(Fetter, 2001). This phenomenon aligns with the aquifer known 
geological characteristics as its strong structure and limited intergran-
ular permeability, which might lead to a slower reaction to rainfall.

The response of an aquifer to precipitation events is not always direct 
and is influenced by various intervening factors. In particular, the ex-
istence of rivers can substantially impact this hydrological interaction. 
During rainfall events, river levels may rise quickly, and the increased 
flow can help recharge surrounding aquifers (Fetter, 2001). However, 
such recharging may not be directly detectable in groundwater level 
measurements, particularly in the short term. This lag is due to the time 
it takes for the water to percolate through the stream bank and into the 
aquifer from the river system, which is well-documented but often 
overlooked in casual analysis (Randall and Albany, 1978). This temporal 
difference between precipitation and apparent changes in GWL em-
phasises the importance of a comprehensive approach to hydrological 
investigation that considers the dynamic and frequently delayed in-
teractions between surface bodies and groundwater aquifers. This 
method is critical for creating accurate groundwater models and effec-
tive water resources management strategies. The findings support the 
TFT model’s ability to adjust to the Thames basin complex hydrological 
conditions. Similarly, the findings support the efficacy of the Attention 
based-LSTM model, which overall produced better results than standard 
LSTM, particularly for longer-term predictions, demonstrating its po-
tential to capture the dynamic behaviour of this system.

The results show that the TFT has exceptional ability in predicting 
GWL in the Thames Basin, outperforming LSTM and attention-based 
LSTM models in forecasting an extended horizon period in GWL pre-
diction. The use of advanced validation techniques confirmed the ability 

Fig. 9. The correlation between river level and rainfall.
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of TFT to produce robust and reliable predictions, especially in the Chalk 
aquifer and highlighted potential overfitting that is often an issue in 
advanced machine learning like LSTM models, as evidenced by higher 
R2. This demonstrates the value of using several types of hydrological 
data to improve groundwater level forecasting. By leveraging the 
capability of advanced machine learning algorithms, this study marks a 
considerable advancement in GWL prediction, especially in extended 
horizons (30 and 60 days) based on daily data without depending on 
monthly or weekly moving average. This makes the TFT model poten-
tially a new era in time series forecasting.

In this study, we investigated the predictive capabilities of numerous 
models across multiple forecasting horizons to find the best balance of 
prediction duration and accuracy. The Temporal Fusion Transformer 
(TFT) model performed exceptionally well up to a 60-day projection. 
Extending the prediction horizon beyond this period resulted in a slow 
but substantial loss in forecast accuracy, as seen by higher RMSE and 
lower R2 values. Similarly, the Long Short-Term Memory (LSTM) model 
had severe performance constraints, which decreased for projections 
longer than 60 days. These findings indicate that the inherent uncer-
tainty and unpredictability associated with longer-term hydrological 
forecasts provide significant problems, which are exacerbated by the 
limitations of the current data utilised to train our models. As a result, 
we chose to limit our forecasts to 60 days, striking a balance between the 
requirement for actionable, credible predictions and the technological 
limits identified. This conclusion is consistent with the practical re-
quirements of water resource management, where a two-month pre-
diction horizon adds considerable operational value.

4. Summary and conclusion

The summary of the main contributions of this study are: 

• This study used advanced machine learning techniques to address 
overfitting and increase forecasting accuracy in Thames Basin. We 
employed rolling window, holdout sets and walk forward validation 
to improve the model generalisability and dependability.

• The small difference in RMSE and R2 between LSTM with Bayesian 
Optimisation and traditional LSTM suggests that improved accuracy 
is not always correlated with comprehensive parameter search. This 
emphasises the necessity of carefully selecting starting parameters, 
considering computing efficiency, and considering the unique pe-
culiarities of the aquifer system.

• The poor rainfall and GWL correlation in the Chalk and Lower 
greensand aquifer suggest that other factors mostly influence GWL. 
Additionally, the weak correlation in the limestone aquifer may 
point to the influence of adjacent river systems on the aquifer’s re-
action to precipitation.

• The study showed moderate connections between river levels and 
rainfall in the Chalk and Lower greensand aquifer. This is especially 
true in the limestone aquifer, where the presence of river systems 
influences the aquifer recharge dynamics.

In conclusion, this study is a pioneering effort that not only in-
troduces extended forecasting horizons of 30 and 60 days that does not 
depend on monthly or weekly moving average, but also delves deeply 
into the geological complexities of the Thames Basin. Few studies have 
gone to such lengths to untangle the complexity of the Thames Basin and 
understand the interplay between its river aquifers and the complicated 
environment in which they inhabit. Furthermore, this study thoroughly 
investigates three major aquifer types, providing light on how each 
aquifer’s complexity and geological features may have a substantial 
impact on the prediction capacities of advanced modelling tools.
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Zektser, S., Loáiciga, H.A., Wolf, J.T., 2005. Environmental impacts of groundwater 
overdraft: selected case studies in the southwestern United States. Environ. Geol. 47, 
396–404.

Zhao, W., Wang, D., Gao, K., Wu, J., Cheng, X., 2023. Large-Scale long-term prediction of 
ship AIS tracks via linear networks with a look-back window decomposition scheme 
of time features. J. Mar. Sci. Eng. 11 (11), 2132.

Zivot, E., Wang, J., Zivot, E., Wang, J., 2003. Rolling Analysis of Time Series. Modeling 
Financial Time Series with S-Plus®, pp. 299–346.

A.J. Ali et al.                                                                                                                                                                                                                                    Journal of Cleaner Production 484 (2024) 144300 

15 

http://refhub.elsevier.com/S0959-6526(24)03749-1/sref85
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref85
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref86
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref86
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref86
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref87
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref87
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref87
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref88
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref88
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref89
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref89
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref90
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref90
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref90
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref91
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref91
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref91
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref91
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref92
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref92
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref92
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref93
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref93
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref93
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref94
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref94
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref94
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref94
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref95
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref95
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref96
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref96
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref97
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref97
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref97
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref98
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref98
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref98
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref99
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref99
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref100
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref100
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref100
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref101
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref101
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref101
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref102
http://refhub.elsevier.com/S0959-6526(24)03749-1/sref102

	Groundwater level predictions in the Thames Basin, London over extended horizons using Transformers and advanced machine le ...
	1 Introduction
	1.1 Limitation of classical models
	1.2 LSTM and attention mechanism in hydrology
	1.3 Temporal Fusion Transformer
	1.4 Model performance metrics and validation techniques
	1.5 Challenges of Thames Basin
	1.6 Research gap and novelty

	2 Materials and methods
	2.1 Data collection and pre-processing
	2.2 Machine learning models
	2.2.1 Bayesian optimisation
	2.2.2 Long Short-Term Memory
	2.2.3 Attention-based LSTM cell
	2.2.4 Temporal Fusion Transformer model architecture

	2.3 Evaluation methods
	2.3.1 Rolling window analysis
	2.3.2 Holdout method
	2.3.3 Walk-forward technique
	2.3.4 Performance metrics (RMSE, R2, and MAE)
	2.3.5 Look-back window selection


	3 Results and discussion
	3.1 The chalk aquifer
	3.2 The limestone aquifer
	3.3 The lower greensand aquifer

	4 Summary and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	datalink5
	References


