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Mitigating Catastrophic Forgetting in Cross-Domain
Fault Diagnosis: An Unsupervised Class
Incremental Learning Network Approach
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Abstract—While deep learning has found widespread appli-
cation in fault diagnosis, it continues to face three primary
challenges. Firstly, it assumes that training and test datasets
adhere to the same distribution, which is often not the case in
industries with varying conditions. Secondly, it relies heavily on
the availability of abundant labeled data for training, overlooking
the reality that newly collected data is frequently unlabeled.
Thirdly, neural networks frequently encounter catastrophic for-
getting, a critical concern in dynamic industrial settings with
emerging faults. Therefore, this paper proposes an unsupervised
class incremental learning network (UCILN), to mitigate catas-
trophic forgetting in cross-domain fault diagnosis, particularly
in situations where the target domain lacks labeled data. A
memory module and a semi-frozen and semi-updated incremental
strategy are designed to balance the retention of old knowledge
with the acquisition of new information. Test results obtained
from the CWRU and PU datasets demonstrate the exceptional
performance of UCILN.

Index Terms—Catastrophic forgetting, class incremental learn-
ing, fault diagnosis, unsupervised domain adaptation, unsuper-
vised transfer learning

I. INTRODUCTION

ROTATING machinery in industrial environments is ex-
posed to challenges such as high speeds, heavy loads,

and elevated temperatures, making it susceptible to failure.
The inaccurate or untimely detection and diagnosis of faults
may lead to severe equipment breakdowns or financial losses
[8], [18], [19], [24], [31]. Therefore, the accurate diagnosis of
faults in real industrial scenarios is of significant importance
[3], [7], [20], [28]. In recent years, various deep learning
methods have been introduced for fault diagnosis, facilitating
an automated end-to-end process from raw signals to diagnosis
[9], [33], [35], [37]. Despite the widespread application of
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deep learning in fault diagnosis, these methods encounter three
primary challenges.

Firstly, traditional deep learning-based methods assume that
the training and test datasets follow an identical distribution.
However, in industrial settings, working conditions such as
temperature and rotation speed may vary greatly between
tasks, which requires models trained on a dataset from one
working condition to successfully transfer to the test dataset
from another working condition. However, the variability in
working conditions makes it challenging for models trained
in the source domain to directly generalize or transfer to
the target domain, leading to domain shift [3], [5], [30]. To
mitigate this challenge, various transfer learning methods have
been applied in fault diagnosis. These techniques facilitate the
transfer of knowledge from one working condition (source
domain) to another working condition (target domain) [6],
[32], [36].

Secondly, traditional deep learning methods also presuppose
the existence of ample labeled data for training [3], [23].
Nonetheless, newly acquired data from diverse working con-
ditions often lacks labels, posing challenges in the labeling
process that may be unfeasible in certain scenarios. Hence, the
application of unsupervised deep transfer learning (UDTL),
or unsupervised domain adaptation, becomes pertinent. This
approach makes predictions for unlabeled data within the
target domain given labeled data from the source domain
by leveraging similar features across different application
scenarios or working conditions [36].

Thirdly, gradient-based neural networks often face the chal-
lenge of catastrophic forgetting [11]. Catastrophic forgetting
refers to the phenomenon where, as the model learns new
tasks, it adjusts its weights and parameters to accommodate
the new data, which may result in a decline in performance
on previously learned tasks or even complete forgetting of
previously acquired knowledge [13]. In dynamic industrial
settings, the emergence of new fault types is unpredictable,
necessitating model continuous updates to adapt to emerging
faults. However, the updating process may lead to a significant
decline in the model’s diagnostic capability for old fault types,
resulting in catastrophic forgetting. Consequently, this could
cause production interruptions, equipment damage, and human
safety issues. Thus, mitigating the impact of catastrophic
forgetting is imperative to ensure the robustness and reliability
of deep learning in fault diagnosis.

The emerging research direction of class incremental learn-
ing aims to equip models with the capability to continuously
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learn new classes while preserving discriminative abilities for
previously learned classes within the open and dynamic envi-
ronment, thereby mitigating catastrophic forgetting [26], [39].
Through the employment of methodologies such as knowledge
distillation and data replay, class incremental learning enables
models to maintain effectiveness in earlier tasks throughout
the continuous learning process [34], [41]. However, no fault
diagnosis method currently exists that can effectively mitigate
the impact of catastrophic forgetting while simultaneously
tackling domain shift and unlabeled data challenges.

Inspired by the above discussions, the purpose of this study
is to mitigate the impact of catastrophic forgetting in cross-
domain fault diagnosis, especially in scenarios where the data
from the target domain lacks labels. To address this, a novel
unsupervised class incremental learning network (UCILN) is
proposed in this paper for cross-domain fault diagnosis. Unlike
existing unsupervised class incremental learning methods in
other fields [14], [21], UCILN processes both the labeled
source domain data and the unlabeled target domain data in
a streaming setting during the incremental phase (i.e., the
samples are fed into UCILN one by one, allowing the model
to timely capture new data information) [13]. This learning
strategy mirrors the continuous acquisition and assimilation
of information by the brain from the environment. To mitigate
forgetting, UCILN integrates a feature replay mechanism to
continuously replay data features and maintain a balance
between old and new information. Besides, product quantiza-
tion (PQ) is utilized to obtain a compact representation with
minimal loss in reconstruction. Drawing from the hippocampal
indexing theory [29], this compression representation method
simulates the human process of compressing and encoding
newly acquired information for efficient storage and retrieval.
Moreover, semi-frozen and semi-updated incremental strategy
is employed in this paper, which maintains high recognition
accuracy for all fault types over long-term use.

In the absence of class labels for target domain data,
UCILN leverages UDTL based on discrepancy to assess
domain disparities. It effectively aligns the fault features from
different domains by minimizing the discrepancy in feature
distributions between the source and target domains [36].
This enables UCILN to effectively transfer fault diagnosis
knowledge learned in the source domain to the target domain,
ensuring high diagnostic accuracy for new faults even in the
absence of labeled data in the target domain.

The following outlines the primary contributions of this
paper:

1) Mitigating the impact of catastrophic forgetting in cross-
domain fault diagnosis in the absence of labels for the
target domain data, by employing unsupervised deep
transfer learning and class incremental learning tech-
niques;

2) Proposing a novel unsupervised class incremental learn-
ing network (UCILN) for incrementally predicting un-
labeled faults within the target domain, which incor-
porates real feature replay to continuously review old
information, and implements a semi-frozen and semi-
updated incremental strategy to balance the retention of
old knowledge with the acquisition of new information.

3) Designing a memory module to encode and preserve
data distribution information within the deep feature
space, which mimics the memory mechanism of the
human brain and upholds data privacy standards in
comparison to directly storing old class data.

4) Evaluating the UCILN model’s effectiveness on the
CWRU and PU bearing datasets, with the results demon-
strating outstanding performance characterized by high
incremental accuracy and low incremental forgetting
rates.

The subsequent sections of the paper are structured as
follows. Section II provides a detailed exposition of the overall
architecture of UCILN and explains UCILN-based fault diag-
nosis process. Section III introduces the experimental setup
and presents an analysis of the results obtained in this study.
Finally, section IV offers concluding remarks on the study and
outlines potential avenues for future research.

II. METHODOLOGY

To mitigate the issue of catastrophic forgetting in class
incremental learning when target domain data is unlabeled
in cross-domain fault diagnosis, this study proposes UCILN,
depicted with the detailed structure in Figure 1(a) and the
semi-fixed and semi-updated incremental strategy as illustrated
in Figure 1(b). Notably, the model maintains the same structure
across each phase, with changes in data illustrated in the figure
using phase 2 as an illustration.

In terms of the input, during each phase, the model receives
new fault type data from both the source and target domains
and undergoes corresponding training and feature encoding.
In other words, each phase corresponds to a fault diagnosis
task, with newly introduced fault classes in each task being
entirely novel. Dp

s = {xs
i , y

s
i }

Ns
i=1 and Dp

t = {xt
i}

Nt
i=1

represent labeled source domain fault dataset and unlabeled
target domain fault dataset in phase p respectively, where
Ns and Nt denote the number of fault samples introduced
in the source and target domain in phase p respectively. It
is important to note that the fault data classes introduced in
each phase do not overlap with those from previous phases.
Consequently, the model consistently encounters new fault
classes that it has not encountered before. Simultaneously,
features from previous data are encoded and preserved for
future replay. The encoded source and target domain fault
features of phase p are denoted as Ap

s = {asi , ysi }
Ns
i=1 and

Ap
t = {ati}

Nt
i=1, where asi and ati represent the encoded feature

representation of xs
i and xt

i respectively. After the training in
each phase, all seen class data from the target domain will be
employed to assess the model, to validate the model’s fault
diagnosis capabilities across both old and new classes.

A. Structure of the Proposed UCILN

In the detailed structure of UCILN (Figure 1(a)), the model
maintains a consistent structure across each phase, primar-
ily consisting of a feature extractor, memory module, and
classifier. In the figure, the input and storage of data are
illustrated using phase 2 as an example. The feature extractor
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Fig. 1. Structure Diagram of UCILN Approach

is composed of the initial 15 convolutional layers from a one-
dimensional ResNet-18 (1D ResNet-18). Its primary role is
to extract fault features, which are subsequently stored and
utilized for later replay.

Subsequently, the memory module incorporates a PQ en-
coder, a replay buffer, and a PQ decoder in each domain,
tasked with indexing, storing, and reconstructing features,
respectively. Efficient processing and storage of these fea-
tures are achieved through PQ [15], a compression method
highly suitable for storing and replaying encoded features.
The detailed process will discussed in the next section. For
implementing domain adaptation, UCILN designs independent
PQ encoder, replay buffer and PQ decoder to separately store
and process fault feature information from the source and
target domains, addressing the differences in fault charac-
teristics across various operating conditions. This design not
only enhances the model’s cross-domain adaptability but also
allows it to independently learn and store fault features for
each environment when dealing with multiple industrial set-
tings. Regarding mitigating forgetting, by storing fault features
from various stages, the replay buffer ensures that the model
can retain and review known fault characteristics through a
replay mechanism while learning new fault types, effectively
preventing the model from forgetting previously learned fault
types.

Finally, the classifier is designed to predict the types of
fault signals from the target domain, with both the source and
target domain classifiers sharing the same weight. It consists
of the remaining 3 layers of 1D ResNet-18 (comprising
2 convolutional layers and 1 fully connected layer (FC)).
Notably, using a 1D ResNet-18 model offers advantages such
as enhanced storage efficiency, minimized space requirements,
and simplified saving and deployment processes. The detailed
parameter information of UCILN is shown in Table I.

TABLE I
DETAILED STRUCTURE OF UCILN

Layer Channels × kernel size Output size
Input / (1, 1024)
Conv1d 64× 7, stride = 2 (64, 512)
ResBlock 1 (64× 3)× 4, stride = 1 (64, 512)
ResBlock 2 (128× 3)× 4, stride = 1 (128, 256)
ResBlock 3 (256× 3)× 4, stride = 1 (256, 128)
ResBlock 4 (512× 3)× 2, stride = 1 (512, 64)
PQ encoder / (64, 32)
Replay buffer / (r+1, 64, 32)
PQ decoder / (r+1, 64, 512)
ResBlock 5 (512× 3)× 2, stride = 1 (r+1, 512, 64)
FC / (r+1, number of classes)
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B. Semi-frozen and Semi-updated Incremental Strategy

As depicted in Figure 1(b), new fault-type data from two
domains is continuously introduced to update the model, while
the compressed features of previously trained data are stored
in replay buffers to mitigate catastrophic forgetting.

To achieve a balance between retaining old knowledge
and acquiring new information, UCILN employs a semi-
frozen and semi-updated incremental strategy. Specifically,
during training, the replay buffer and classifier are updated
to adapt to new class data, while the PQ encoder/decoder and
feature extractor remain frozen after phase 0 to preserve the
effectiveness of stored information. Consequently, the learning
strategy varies between phase 0 and subsequent incremental
phases.

1) Learning strategy in phase 0: In phase 0, the opti-
mization of the feature extractor and classifier is conducted
independently from the optimization of the PQ encoder and
decoder. The feature extractor θG and classifier θF are firstly
trained. The multi-kernel maximum mean discrepancy loss is
applied to minimize the distribution difference between source
and target domains:

L0
mmd =

1

N2
s

Ns∑
i=1

Ns∑
j=1

k(xs
i , x

s
j)−

2

NsNt

Ns∑
i=1

Nt∑
j=1

k(xs
i , x

t
j)

+
1

N2
t

Nt∑
i=1

Nt∑
j=1

k(xt
i, x

t
j)

(1)

where k(·, ·) is the Gaussian kernel function [12]. Alongside
L0

mmd, the standard cross-entropy loss L0
cls is calculated within

the source domain to measure the difference between the
predicted probabilities and the actual labels:

L0
cls = −

Ns∑
i=1

ysi log ŷ
s
i (2)

where ŷsi represents the model’s predicted classification prob-
ability for samples from the source domain. Therefore, the
overall optimization objective for θG and θF is:

min
θG,θF

L0 = min
θG,θF

(L0
cls + λ · L0

mmd) (3)

where λ represents the trade-off parameter.
Following the training of θG and θF in phase 0, their

parameters remain fixed to train the PQ codebook, a pivotal
component of the PQ encoder/decoder (considering that the
data processing in the memory module remains consistent
across both domains, the relevant illustration does not differen-
tiate between domains for the sake of simplicity and clarity.).
Specifically, after feeding data into the feature extractor, the
set of extracted feature X ′ = {x′

i}Ni=1 is obtained. In the
PQ encoder, X ′ is transformed into a matrix form and then
partitioned into M subspaces:

X ′ =


x′
11 x′

12 . . . x′
1M

x′
21 x′

22 . . . x′
2M

...
...

. . .
...

x′
N1 x′

N2 . . . x′
NM

 (4)

where x′
ij represents the i-th tensor of the j-th subspace. Next,

the K-Means clustering algorithm [15] is applied to determine
K cluster centers of each subspace. For M subspaces, a cluster
center matrix C is obtained as follows:

C =


c11 c12 . . . c1M
c21 c22 . . . c2M

...
...

. . .
...

cK1 cK2 . . . cKM

 (5)

where czj represents the z-th cluster center of the j-th sub-
space. Through iterative optimization, update C by minimizing
the Euclidean distance between x′

ij and its assigned cluster
center czj , which is shown as follows:

min
C

Lpq = min
C

N∑
i=1

M∑
j=1

K∑
z=1

∥x′
ij − czj∥2 (6)

Therefore, the comprehensive optimization objective for
phase 0 encompasses both components:

min
θG,θF ,C

L0
total = min

θG,θF
(L0

cls + λ · L0
mmd) + min

C
Lpq (7)

After the optimization of phase 0 is completed, the data fea-
tures from phase 0 are encoded and stored in the replay buffer.
Specifically, for the PQ encoding process, each subvector x′

ij

is mapped to the cluster index lij of its nearest cluster center
czj in C (trained by (6)) as follows:

lij = argmin1≤z≤K∥x′
ij − czj∥2 (8)

Consequently, x′
i is encoded into M labels, which is denoted

as (9):
ai = [li1, li2, . . . , liM ] (9)

Therefore, after the completion of phase 0, A0
s = {asi , ysi }

Ns
i=1

and A0
t = {ati}

Nt
i=1 are respectively stored in the replay buffers

of the source and target domains. After phase 0, θG and C
are frozen, while θF and replay buffers are updated in the
subsequent incremental phases.

Remark 1: In light of the requirement for class incremental
learning networks to adapt to a continuous stream of data,
a maximum memory threshold is established for the replay
buffer. To elaborate, the buffer retains quantized indices up to
its maximum capacity. Upon reaching this limit, samples are
randomly removed from the class that has accumulated the
most instances.

2) Learning strategy in following phases: After the comple-
tion of phase 0, UCILN employs streaming learning techniques
[10], [13] to learn new types of samples one by one, allowing
it to timely capture new patterns and information.

After feature extraction, the PQ encoder encodes the feature
of newly introduced data using (8) and (9), which is subse-
quently stored in the replay buffer. Simultaneously, in each
domain, r encoded representations are randomly selected from
the stored data in previous phases (Ap−1, Ap−2, . . . , A0) and
mixed with newly encoded representation for reconstruction.
Therefore, a total of r+1 representations are reconstructed in
each domain per replay. In the PQ decoder, the encoded repre-
sentation ai is decoded to obtain an approximate representation
x̃′
i of the original feature x′

i. This process involves locating the
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corresponding cluster center czj based on the cluster index lij
stored in ai, and then using this cluster center to approximate
the original feature. The corresponding formula is shown as
follows:

x̃′
ij = czj , where z = lij (10)

where x̃′
ij represents the decoded representation of x′

ij . Fi-
nally, these decoded features are then fed into the classifier to
predict fault labels.

To achieve domain adaptation, the multi-kernel maximum
mean discrepancy is applied to the output features of the
classifier, which is defined as:

Lp
mmd =

1

(r + 1)2

r+1∑
i=1

r+1∑
j=1

[(k(x̃
′s
i , x̃

′s
j )−2k(x̃

′s
i , x̃

′t
j )+k(x̃

′t
i , x̃

′t
j )]

(11)
where x

′s
i and x

′t
i represent reconstructed features per replay

in the source and target domain respectively. Besides, the stan-
dard cross-entropy loss on reconstructed data Lp

cls is calculated
in the source domain:

Lp
cls = −

r+1∑
i=1

ysi log ŷ
s
i (12)

where ysi represents the actual labels of reconstructed features
in the source domain and ŷsi represents the corresponding
predicted classification probability. Therefore, the overall op-
timization objective for incremental learning after phase 0 is
defined as follows:

min
θF

Lp
total = min

θF
(Lp

cls + λ · Lp
mmd) (13)

C. Fault Diagnosis Process

The UCILN-based unsupervised cross-domain class incre-
mental fault diagnosis process consists of the following five
steps:

Step 1. Data collection and preprocessing in the initializa-
tion phase: Collect data from faulty equipment in both the
source and target domains, segment the long sequence data
into 1024-sample segments, and preprocess it using min-max
normalization.

Step 2. Model initialization: Initialize the feature extractor
θG, classifier θF , and codebooks. Encode and store the features
extracted by the feature extractor in the replay buffer through
the PQ encoder. After training, save the parameters of the
feature extractor θG and classifier θF , as well as the codebooks
and replay buffer data in the memory module of two domains.

Step 3. Data collection and preprocessing in incremental
phase: Collect new fault type data in two domains and apply
the same preprocessing as shown in step 1.

Step 4. Incremental training: Restore the parameters of the
feature extractor θG and classifier θF saved in the previous
phase. Additionally, reinstate the codebooks and replay buffer
data in the memory module. Perform streaming learning on
the incremental datasets by extracting features using feature
extractor and compressing and storing features with PQ en-
coder. Mix the newly encoded representation with randomly
selected fault representation from replay buffer. Finally, update
the memory module and classifier θF , and save the updated

parameters of the feature extractor θG and classifier θF , as
well as the codebooks and replay buffer data in the memory
module.

Step 5. Target domain fault diagnosis: Apply the trained
feature extractor θG and classifier θF on Dp

t , and output the
diagnosis results for target domain data.

When new fault types appear, steps 3, 4 and 5 are repeated
for target domain fault diagnosis. To illustrate the fault diag-
nosis process clearly, the pseudo-code of UCILN is provided
in Algorithm 1.

Algorithm 1 UCILN-based Fault Diagnosis Process

Input: Labeled source domain fault data Dp
s = {xs

i , y
s
i }

Ns
i=1

and unlabeled target domain fault data Dp
t = {xt

i}
Nt
i=1

Output: Diagnosis results for target domain data

Optimization in phase 0:
for each batch in D0

s and D0
t do

1. Train feature extractor θG and classifier θF by (3);
2. Train the PQ codebooks by (6);
3. Encode and save data of phase 0 by (8) and (9);
4. Save θG, θF , and codebooks.

end for

Optimization in subsequent phases:
for each sample in Dp

s and Dp
t of current phase do

1. Restore θG, θF , codebooks and replay buffer data
stored in previous phase p− 1;

2. Extract features by the feature extractor θG;
3. Compress and store features with PQ encoder by (8)

and (9);
4. Mix the newly encoded representation with r ran-

domly selected representation;
5. Decompress the encoded representation by (10);
6. Predict fault labels by the classifier θF ;
7. Update θF by (13);
8. Save θG, θF , and codebooks.

end for

Target domain fault diagnosis:
1. Apply the trained feature extractor θG and classifier

θF on Dp
t ;

2. Output the diagnosis results for target domain data.

III. EXPERIMENTAL RESULTS AND ANALYSIS

To validate the effectiveness of UCILN, this study com-
pares it with seven class incremental learning models on two
datasets. In addition, five ablation experiments are conducted
to further validate the reliability of UCILN.

A. Dataset Description

UCILN is assessed on a widely used bearing fault dataset
from Case Western Reserve University (CWRU), as shown in
Fig. 2. The dataset includes drive-end faults covering health
(H), inner race fault (IR), outer race fault (OR), and ball fault
(BF). The faults are sampled at 12 kHz, generated through
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an electro-discharge machine with fault diameters of 7 mils,
14 mils, 21 mils, and 28 mils. The bearings experience four
loads ranging from 0 to 3 horsepower, leading to diverse data
distributions corresponding to each load condition.

Fig. 2. The Testbed of the CWRU dataset

TABLE II
SETTING OF FAULT TYPES IN DIFFERENT PHASES OF THE CWRU

DATASET

Label Condition Diameter Phase
0 H 0

01 IR 21
2 OR 21
3 BF 21
4 BF 28 1
5 IR 28 2
6 BF 7 3
7 BF 14 4
8 IR 7 5
9 OR 7 6

In this experiment, data obtained under the 3-horsepower
condition is used as the source domain data, whereas data from
the 1-horsepower condition is designated as the target domain
data. Each domain includes ten fault classes with the setting
of fault types in different phases outlined in Table II. The long
sequential data undergoes preprocessing and segmentation into
1024-sample segments using min-max normalization, forming
800 training samples and 200 testing samples for each fault
class within each domain. The experiment starts by selecting
data from the four fault classes in each domain as the initial
set in phase 0. Subsequently, in each subsequent incremental
phase, one new fault class from both domains is introduced
into the model for incremental training.

UCILN is also evaluated using a dataset from Paderborn
University (PU), as illustrated in Figure 3. This dataset consists
of vibration signals from 6203-type ball bearings, captured
using piezoelectric accelerometers attached to the bearing
housings, with a sampling frequency of 64 kHz. It comprises
vibration and motor current signals from 32 ball bearings,
including 12 with artificially manufactured damage, 14 with
real damage samples generated from accelerated lifetime tests,
and 6 in normal condition. Four failure modes are IR, OR, H,
and certain compound faults (IR-OR). The severity of faults is
determined by the extent of damage, specifically, the length of
the damaged surface in the rolling direction (0–2 mm, 2–4.5
mm, >4.5 mm).

The dataset consists of four operational conditions, deter-
mined by varying the rotational speed of the drive system,
the radial forces on the bearings, and the load torque on the
drive system. In this experiment, data from the condition with a
radial force of 1000 N is considered as the source domain data,
while data from the condition with a radial force of 400 N is
considered as the target domain data. Each domain comprises
10 fault classes, and the setting of fault types in different
phases is provided in Table III. Preprocessing of the long
sequence data is conducted similarly to that for the CWRU
dataset.

Fig. 3. The Testbed of the PU dataset

TABLE III
SETTING OF FAULT TYPES IN DIFFERENT PHASES OF THE PU DATASET

Label Bearing Code Condition Phase
0 K001 H

01 KI15 IR
2 KA15 OR
3 KI17 IR
4 KA16 OR 1
5 KA04 OR 2
6 K004 H 3
7 K002 H 4
8 K003 H 5
9 KI04 IR 6

B. Evaluation Metrics

This study employs metrics from [39] to evaluate the
methods, with a focus on incremental accuracy and incremen-
tal forgetting rate. Besides, a new metric (memory rate) is
proposed in this paper to provide a comprehensive evaluation
of the model. These metrics play a crucial role in assessing
the effectiveness of class incremental learning methods, where
an ideal model is characterized by a high average incremental
accuracy and a minimal average incremental forgetting rate.
Table IV provides a summary of the evaluation metrics in-
volved in the experiment with detailed explanations as follows:

1) Accp evaluates the classification accuracy of model in
phase p for all seen classes.

2) Forp is used to evaluate the degree of forgetting of
previously learned knowledge by the model in phase p.
Following the completion of the task in phase p, the
incremental forgetting rate for the task in phase i is
calculated as follows:

f i
p = max

t∈0,...,p−1
(ct,i − cp,i), ∀i < p (14)
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TABLE IV
EVALUATION METRICS

Evaluation Metrics Formula

Incremental accuracy Accp

Incremental forgetting rate Forp = 1
p

∑p−1
i=0 f i

p

Memory rate MRp = 1
2 (Accp + 1− Forp)

Average incremental accuracy Acc = 1
P

∑P
i=1 Acci

Average incremental forgetting rate For = 1
P

∑P
i=1 Fori

Average memory rate MR = 1
P

∑P
i=1 MRi

where ct,i denotes the classification accuracy of the
model on the task in phase i after learning the task in
phase t. Consequently, the forgetting rate for the phase
p can be computed as:

Forp =
1

p

p−1∑
i=0

f i
p (15)

3) A new metric MRp is introduced in this paper to
comprehensively evaluate the model of phase p:

MRp =
1

2
(Accp + 1− Forp) (16)

4) The average incremental accuracy of the model is:

Acc =
1

P

P∑
i=1

Acci (17)

where P represents the total number of incremental
phases after the initial phase.

5) The average incremental forgetting rate of the model is:

For =
1

P

P∑
i=1

Fori (18)

6) The average memory rate of the model is:

MR =
1

P

P∑
i=1

MRi (19)

C. Comparative Experiments

In this experiment, the effectiveness of UCILN is compared
with seven other class incremental learning models— Fine-
tuning, iCaRL [27], PASS [40], MAFDRC [2], AANets [22],
MEMO [38], and GSAEMA [25]—utilizing the CWRU and
PU dataset. UCILN innovatively considers both the data
distribution differences between old and new classes and the
differences between the source and target domain data distribu-
tions. The goal of this experiment is to compare different class
incremental learning methods to evaluate the effectiveness of
UCILN in handling these two types of distribution differences.
Since existing comparison methods do not comprehensively
address both types of differences, this experiment ensures a
fair comparison by training all models with simultaneous input
from both source and target domains. Additionally, it employs
the same unsupervised domain adaptation techniques and 1D

ResNet-18 backbone as UCILN to ensure that both types of
differences are accounted for in the comparison.

UCILN utilizes Faiss PQ [16] for the quantization-decoding
operation, with 32 codebooks and a codebook size of 256.
The size of the replay buffer for each domain is set to 80%
of the total training samples (i.e., 6400 samples). The specific
hyperparameters in the experiments are detailed in Table V.
Based on Table I and Table V, the complexity metrics of
UCILN are as shown in Table VI. “FLOPs (both domains)”
indicates the floating-point operations required across both
domains to measure computational complexity. “Total params”
shows the total number of parameters in the model, while
“Trainable params” refers to the number of parameters that can
be adjusted during training. Additionally, the table provides
the average time for codebook training and the storage space
required for the codebook, as well as for parameters θG and
θF , and for data of specific shapes.

TABLE V
THE HYPERPARAMETERS OF THE EXPERIMENTS FOR UCILN

Hyperparameters Value

Epochs 150
Batch size 128
The size of each codebook 256
The number of codebooks 32
Reconstructed old instances per replay 50
Replay buffer size in each domain 6400
Initial learning rate 0.01
Final learning rate 0.001

Each method undergoes training via the stochastic gradient
descent algorithm with a separate learning rate decay strategy
for each class [26], [42]. The learning rate decay factor is
determined as below, with the initial and final learning rates
(ηi and ηf ) set as 0.01 and 0.001, respectively:

γ = ec, where c = s · ln
(
ηf
ηi

)
(20)

where s represents the decay step size, signifying that decay
occurs after each processing of a sample of length s.

1) Case Study on CWRU Dataset: The experimental re-
sults of different methods are shown in Table VII. Since all
methods initialize the 1D ResNet-18 in the same way, there is
no difference in the test results in phase 0, with an accuracy
of 99.50% in the target domain. Therefore, the result of phase
0 is omitted in Table VII.

In order to clearly present the results in the table, the
incremental accuracy and incremental forgetting rate curve of
UCILN and compared methods in different phases are shown
in Figure 4(a) and 4(b) respectively. UCILN consistently
attains the highest incremental accuracy throughout all phases
and exhibits the lowest incremental forgetting rate compared to
the other methods. UCILN significantly mitigates catastrophic
forgetting, with an average incremental accuracy of 97.04%
and an average incremental forgetting rate of 0.91%, effec-
tively supporting incremental learning of knowledge and the
retention of knowledge from existing tasks. As the memory
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TABLE VI
COMPLEXITY OF UCILN

Phase Input shape
FLOPs

(both domains)
Total

params
Trainable
params

Average codebook
training time

Codebook storage space
(both domains)

Storage space
for θG and θF

Storage space
for (1, 1024)

Phase 0 (1,1024) 0.70G 3.85M 3.85M 28s 1MB 6.04 MB 46.12 byte
Incremental phases (1,1024) 10.80G 3.85M 1.58M / 1MB 6.04 MB 46.12 byte

TABLE VII
RESULTS OF COMPARED EXPERIMENTS IN THE TARGET DOMAIN ON THE CWRU DATASET (%)

(BOLD AND UNDERLINE REPRESENT THE BEST AND SECOND BEST RESULTS RESPECTIVELY.)

Phase Fine-tuning PASS [40] MEMO [38] GSAEMA [25] iCaRL [27] MAFDRC [2] AANets [22] UCILN
Incremental Accuracy (%)

1 78.30± 0.00 79.59± 4.63 78.70± 0.40 80.70± 1.23 84.90± 0.60 93.63± 0.53 98.20± 0.31 98.40± 0.25

2 66.08± 0.00 51.19± 1.68 67.58± 2.67 76.90± 0.45 91.77± 0.23 89.76± 0.76 91.75± 0.24 98.91± 0.27

3 43.57± 0.00 50.92± 0.08 70.86± 1.35 74.00± 3.00 82.02± 3.98 89.21± 1.06 85.71± 0.30 98.29± 0.44

4 43.94± 0.00 54.50± 1.01 70.19± 2.12 76.80± 2.67 78.20± 4.60 84.33± 1.16 83.38± 0.33 95.06± 0.41

5 26.00± 0.00 52.67± 1.08 73.44± 0.95 76.10± 1.89 74.54± 3.40 82.32± 1.44 85.72± 0.19 96.05± 0.21

6 25.80± 0.00 49.83± 0.17 75.95± 2.25 77.30± 2.34 69.78± 2.38 79.06± 1.15 81.20± 0.20 95.50± 0.21

Acc 47.28± 0.00 56.45± 1.44 72.79± 1.62 76.97± 1.93 80.20± 2.53 86.39± 1.02 87.66± 0.26 97.04± 0.31

Incremental Forgetting Rate (%)
1 26.50± 0.00 73.04± 1.46 1.50± 0.67 9.70± 0.57 17.50± 1.38 5.17± 1.78 1.75± 0.34 1.49± 0.18

2 62.44± 0.00 39.88± 4.44 12.92± 2.00 4.80± 2.12 5.81± 0.06 5.43± 1.84 11.38± 0.57 0.75± 0.09

3 81.33± 0.00 53.42± 2.63 9.83± 0.17 8.77± 1.34 16.29± 4.55 6.18± 0.19 17.50± 0.53 0.62± 0.27

4 78.03± 0.00 52.25± 1.13 16.13± 2.00 13.23± 0.98 17.44± 7.54 10.50± 0.36 16.22± 0.42 1.56± 0.40

5 82.85± 0.00 55.90± 1.78 11.13± 1.67 14.60± 2.76 15.13± 1.63 11.71± 1.93 8.18± 0.65 0.32± 0.07

6 84.58± 0.00 66.25± 1.25 10.24± 1.77 18.85± 1.45 18.75± 2.22 14.26± 1.94 14.63± 0.74 0.70± 0.18

For 69.29± 0.00 56.79± 2.28 10.29± 1.38 11.66± 1.54 15.15± 2.90 8.87± 1.34 11.61± 0.54 0.91± 0.20

Memory Rate (%)
1 75.90± 0.00 53.28± 1.59 88.60± 0.14 85.50± 0.33 83.70± 0.39 94.23± 0.63 98.23± 0.02 98.46± 0.04

2 51.82± 0.00 55.66± 1.38 77.33± 0.34 86.05± 0.84 92.98± 0.09 92.17± 0.54 90.19± 0.17 99.08± 0.09

3 31.12± 0.00 48.75± 1.27 80.51± 0.59 82.62± 0.83 82.87± 0.29 91.52± 0.44 84.11± 0.12 98.84± 0.00

4 32.95± 0.00 51.13± 0.56 77.03± 0.06 81.79± 0.85 80.38± 1.47 86.92± 0.40 83.58± 0.05 96.75± 0.02

5 21.57± 0.00 48.38± 0.35 81.15± 0.36 80.75± 0.44 79.71± 0.89 85.30± 0.25 88.77± 0.23 97.84± 0.17

6 20.61± 0.00 41.79± 0.54 82.86± 0.24 79.23± 0.45 75.52± 0.08 82.40± 0.40 83.29± 0.27 97.40± 0.02

MR 39.00± 0.00 49.83± 0.95 81.25± 0.12 82.65± 0.20 82.52± 0.53 88.76± 0.44 88.03± 0.14 98.06± 0.06

rate (MRp) offers a comprehensive perspective on incremental
accuracy and incremental forgetting rate, UCILN still consis-
tently outperforms the other methods as depicted in Figure
5.

Fine-tuning and PASS experience catastrophic forgetting,
with incremental forgetting rates averaging 69.29% and
56.79%, respectively. Both methods show a significant drop
in incremental accuracy. Fine-tuning’s incremental accuracy
declines from 78.30% in phase 1 to 25.80% in phase 6, while
PASS decreases from 79.59% to 49.83% over the same pe-
riod, indicating that neither model can maintain classification
accuracy on all previously seen data. From Figure 4, it can
be seen that the initial accuracy of MEMO and GSAEMA
is relatively low, but as the training stages progress, the
incremental accuracy shows an increasing trend. This indicates
that the models may require more training in the initial stages
to overcome catastrophic forgetting. iCaRL, MAFDRC and
AANets demonstrate relatively high incremental accuracy in
the first few phases. However, in terms of incremental forget-
ting rate, these models exhibit instability. In phase 6, iCaRL’s
incremental forgetting rate reaches 18.75%, MAFDRC reaches
14.26%, AANets reaches 14.63%, while UCILN is only at
0.70%.

To assess the classification accuracy of the methods for

all fault categories after completing all incremental tasks, the
confusion matrix for phase 6 is depicted in Figure 6. Both
matrices of the Fine-tuning and PASS reveal catastrophic
forgetting, indicating a significant reduction in the model’s
ability to classify old data when new tasks are introduced.
Specifically, following the completion of the task in phase
6, both models demonstrate 100% discriminative capability
towards the newly introduced data (label 9). However, for
labels 3, 4, 5, and 6, the model demonstrates a complete
absence of discriminative capability with the accruacy of
0%. Both methods fail to effectively retain information about
old classes of fault signals. In contrast, MEMO achieves an
accuracy of 94% for predicting label 9, but only 44% for label
1; GSAEMA achieves an accuracy of 99% for predicting label
9, but only 59% for label 1; iCaRL achieves an accuracy
of 98% in predicting label 4, but only 34% in predicting
label 7; MAFDRC and AANets are able to retain most of
the information from the old class data, but their overall
classification accuracy is inferior to that of UCILN. UCILN
demonstrates the capability to achieve a prediction accuracy
of 96% on label 9, while retaining a perfect accuracy of 100%
on previously encountered data with labels 1, 4 and 5.

2) Case Study on PU Dataset: To further evaluate the
performance, UCILN is tested on the PU dataset and compared
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PASS MEMO GSAEMA iCaRL MAFDRC AANets UCILNFine-tuning

Fig. 4. Incremental Accuracy (a) and Incremental Forgetting Rate (b) of
UCILN and Compared Methods in Different Phases on the CWRU Dataset

Fig. 5. Memory Rate of UCILN and Compared Methods in Different Phases
on the CWRU Dataset

Fig. 6. Confusion Matrices for Comparison Methods in Phase 6 (the last phase) on the CWRU Dataset

with seven other methods in terms of incremental accuracy, in-
cremental forgetting rate, and memory rate. The experimental
results are shown in Table VIII. Since all methods initialize
the 1D ResNet-18 in the same way, there is no difference in
the test results during phase 0, with an accuracy of 99.75% in
the target domain. Therefore, the result of phase 0 is omitted
in the table. For clear visualization, the incremental accuracy
and incremental forgetting rate curve are shown in Figure 7(a)
and 7(b) respectively.

From the table and figure, it can be seen that, firstly,
UCILN demonstrates the highest incremental accuracy across
all phases among all methods. This indicates that UCILN
maintains a high discriminative ability towards previously
learned classes while progressively learning new classes. Sec-
ondly, in terms of incremental forgetting rate, UCILN also
outperforms the other methods, with the lowest forgetting rates
across all phases. Particularly noteworthy is that UCILN’s
incremental forgetting rates are even negative in the second
(-0.84%) and third (-2.08%) stages, as well as in the fourth (-
1.98%) and fifth (-1.61%) stages, suggesting a reinforcement

of memory for old classes while learning new ones. Lastly,
as depicted in Figure 8, UCILN achieves the highest memory
rates across all phases among all models, showing its effec-
tiveness in retaining old data while learning new ones.

D. Ablation Experiments

Ablation experiments are performed to evaluate the validity
of UCILN by analyzing the impact of different components
and settings. Table IX provides an overview of the five ablation
experiments along with corresponding descriptions.

The results of the ablation experiments on the CWRU
dataset are summarized in Table X, while Figure 9 shows the
incremental accuracy and incremental forgetting rate curves
of the ablation experiments. In experiment A1, the removal
of the memory module leads to a significant decrease in
the average incremental accuracy to 14.10%. Simultaneously,
there is a remarkably high average incremental forgetting rate
of 99.79%, indicating the essential role of the memory module
in preserving model performance and preventing forgetting.
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TABLE VIII
RESULTS OF COMPARED EXPERIMENTS IN THE TARGET DOMAIN ON THE PU DATASET (%)
(BOLD AND UNDERLINE REPRESENT THE BEST AND SECOND BEST RESULTS RESPECTIVELY.)

Phase Fine-tuning PASS [40] iCaRL [27] MAFDRC [2] GSAEMA [25] MEMO [38] AANets [22] UCILN
Incremental Accuracy (%)

1 73.08± 0.00 67.34± 2.69 76.77± 0.92 81.80± 2.85 71.89± 1.87 90.50± 0.08 91.02± 1.14 95.35± 0.45

2 67.53± 0.00 56.68± 0.24 67.04± 0.54 76.40± 7.16 83.47± 2.41 81.67± 1.89 89.40± 0.68 93.19± 0.56

3 43.16± 0.00 53.33± 0.13 67.50± 0.64 75.91± 5.20 80.35± 0.62 74.14± 2.10 90.37± 1.29 92.91± 0.66

4 34.01± 0.00 50.01± 1.29 66.56± 0.38 72.40± 6.06 72.56± 2.95 76.12± 1.52 83.38± 0.43 92.92± 0.70

5 26.15± 0.00 47.83± 1.03 67.35± 0.49 68.77± 4.85 71.04± 1.14 68.39± 0.52 81.12± 1.01 93.46± 0.15

6 25.36± 0.00 46.17± 0.67 71.20± 0.30 65.34± 5.33 64.25± 0.33 71.85± 1.24 78.60± 0.17 91.12± 0.33

Acc 44.88± 0.00 53.56± 1.01 69.40± 0.55 73.44± 5.24 73.93± 1.55 77.11± 1.22 86.81± 0.79 93.16± 0.48

Incremental Forgetting Rate (%)
1 29.70± 0.00 74.52± 3.52 14.25± 0.50 16.16± 4.85 15.63± 0.78 2.21± 0.54 8.26± 0.76 3.91± 0.47

2 63.14± 0.00 41.91± 2.71 24.30± 1.02 11.56± 4.66 11.79± 2.47 15.52± 2.40 13.17± 0.28 −0.84± 1.09

3 84.26± 0.00 50.79± 0.69 15.33± 0.17 10.31± 3.93 22.68± 1.92 20.29± 1.40 12.02± 0.75 −2.08± 2.08

4 77.68± 0.00 55.39± 1.10 11.49± 0.73 11.41± 4.05 22.84± 2.63 21.30± 1.21 10.47± 0.62 −1.98± 1.48

5 82.04± 0.00 61.64± 0.36 11.58± 1.13 15.99± 1.13 26.76± 1.35 25.31± 2.53 12.05± 0.20 −1.61± 1.16

6 84.54± 0.00 67.34± 4.27 6.85± 0.63 18.32± 0.94 26.39± 0.89 24.93± 0.77 17.34± 0.74 1.46± 2.27

For 70.23± 0.00 58.60± 2.11 13.97± 0.69 13.96± 3.26 21.02± 1.67 18.26± 1.47 12.22± 0.56 −0.19± 1.43

Memory Rate (%)
1 71.69± 0.00 46.41± 0.42 81.26± 0.21 82.82± 1.00 78.13± 0.55 94.15± 0.23 91.38± 0.19 95.72± 0.01

2 52.20± 0.00 57.39± 1.24 71.37± 0.24 82.42± 1.25 85.84± 0.03 83.07± 0.25 88.12± 0.20 97.02± 0.27

3 29.45± 0.00 51.27± 0.28 76.08± 0.24 82.80± 0.64 78.84± 0.65 76.92± 0.35 89.18± 0.27 97.50± 0.71

4 28.17± 0.00 47.31± 0.10 77.54± 0.18 80.50± 1.01 74.86± 0.16 77.41± 0.16 86.46± 0.10 97.45± 0.39

5 22.06± 0.00 43.10± 0.34 77.89± 0.32 76.39± 1.86 72.14± 0.11 71.54± 1.00 84.54± 0.41 97.54± 0.50

6 20.41± 0.00 39.42± 1.80 82.18± 0.17 73.51± 2.19 68.93± 0.28 73.46± 0.24 80.63± 0.29 94.83± 0.97

MR 37.33± 0.00 47.48± 0.69 77.72± 0.22 79.74± 1.32 76.46± 0.06 79.43± 0.13 86.72± 0.24 96.68± 0.48

PASS MEMOGSAEMAiCaRL MAFDRC AANets UCILNFine-tuning

Fig. 7. Incremental Accuracy (a) and Incremental Forgetting Rate (b) of
UCILN and Compared Methods in Different Phases on the PU Dataset

Fig. 8. Memory Rate of UCILN and Compared Methods in Different Phases
on the PU Dataset

TABLE IX
SUMMARY OF THE ABLATION EXPERIMENTS

Experiments Description

A1 The Memory module is removed.
A2 All convolutional parameters are trainable.
A3 The streaming setting is removed.

A4 The size of replay buffer in each domain is set to
25% (2000 samples) of all training samples.

A5 The number of reconstructed instances r is set to 20.

In experiment A2, all convolutional parameters are allowed
to be trained, with the result of an average incremental accu-
racy of 39.68% and a relatively high incremental forgetting

rate of 73.82%. This suggests that by freezing the parameters
of the feature extractor, information from old data can be
preserved. Additionally, freezing parameters ensure that the
features of old data preserved by the model remain effective
across incremental phases [13]. Therefore, the semi-frozen and
semi-updated incremental strategy plays a crucial role in the
effective operation of the model.

In experiment A3, the removal of the streaming learning
setting leads to noticeable fluctuations in the model’s incre-
mental accuracy. Specifically, a negative incremental forgetting
rate (-5.73%) is observed in phase 4, indicating that the model
unexpectedly reinforces the memory of old tasks during the
learning of new tasks. This indicates that the removal of
the streaming learning setting causes the model’s learning
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TABLE X
RESULTS OF ABLATION EXPERIMENTS IN THE TARGET DOMAIN (%)

(BOLD AND UNDERLINE REPRESENT THE BEST AND SECOND BEST
RESULTS RESPECTIVELY.)

Phase A1 A2 A3 A4 A5 UCILN
Incremental Accuracy (%)

1 20.00± 0.00 40.09± 0.10 79.50± 0.00 98.40± 0.25 98.40± 0.25 98.40± 0.25

2 16.67± 0.00 41.41± 0.21 66.28± 0.13 98.25± 0.75 98.75± 0.09 98.91± 0.27

3 14.29± 0.00 46.50± 0.43 40.86± 0.36 97.42± 0.22 97.78± 0.41 98.29± 0.44

4 12.50± 0.00 45.75± 0.09 37.32± 0.05 94.31± 0.81 94.93± 0.26 95.06± 0.41

5 11.11± 0.00 39.22± 0.19 22.67± 0.39 95.22± 0.75 95.50± 0.13 96.05± 0.21

6 10.00± 0.00 25.09± 0.50 27.67± 0.48 94.59± 0.18 95.30± 0.32 95.50± 0.21

Acc 14.10± 0.00 39.68± 0.25 45.72± 0.24 96.37± 0.49 96.77± 0.24 97.04± 0.31

Incremental Forgetting Rate (%)
1 99.50± 0.00 74.25± 0.12 25.13± 0.00 1.49± 0.18 1.49± 0.18 1.49± 0.18

2 99.75± 0.00 65.12± 0.22 12.62± 0.00 0.75± 0.24 0.93± 0.02 0.75± 0.09

3 99.83± 0.00 73.83± 1.19 17.90± 0.56 0.87± 0.16 0.70± 0.21 0.62± 0.27

4 99.87± 0.00 68.53± 0.73 −5.73± 0.21 1.81± 0.56 1.58± 0.48 1.56± 0.40

5 99.90± 0.00 74.82± 0.41 14.80± 0.20 1.25± 0.25 0.77± 0.08 0.32± 0.07

6 99.91± 0.00 86.35± 0.01 9.03± 0.39 2.83± 0.43 2.06± 0.37 0.70± 0.18

For 99.79± 0.00 73.82± 0.45 12.29± 0.23 1.50± 0.30 1.26± 0.22 0.91± 0.20

Memory Rate (%)
1 10.25± 0.00 32.92± 0.01 77.19± 0.00 98.46± 0.04 98.46± 0.04 98.46± 0.04

2 8.46± 0.00 38.15± 0.01 76.83± 0.07 98.75± 0.26 98.91± 0.04 99.08± 0.09

3 7.23± 0.00 36.34± 0.38 61.48± 0.10 98.28± 0.03 98.54± 0.10 98.84± 0.00

4 6.32± 0.00 38.61± 0.32 71.53± 0.08 96.25± 0.13 96.68± 0.11 96.75± 0.02

5 5.61± 0.00 32.20± 0.11 53.94± 0.10 96.99± 0.25 97.37± 0.03 97.84± 0.17

6 5.05± 0.00 19.37± 0.25 59.32± 0.05 95.88± 0.13 96.62± 0.03 97.40± 0.02

MR 7.15± 0.00 32.93± 0.18 66.71± 0.06 97.43± 0.14 97.76± 0.06 98.06± 0.06
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Fig. 9. Incremental Accuracy (a) and Incremental Forgetting Rate (b) in
Ablation Experiments in Different Phases
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Fig. 10. Memory Rate in Ablation Experiments in Different Phases

behavior to excessively emphasize the memory of old data at
certain stages, rather than effectively adapting to the learning
of new data. This phenomenon underscores the importance of
streaming learning settings in maintaining model balance and
adaptability.

In experiment A4, the size of the replay buffer is reduced;
while in experiment A5, the number of reconstructed instances
per replay is decreased. In both experiments, UCILN exhibits
high incremental accuracy and low incremental forgetting rates
in each phase. This is because the setting of streaming learning
allows a much larger number of old samples to be involved in
each training iteration than new samples, enabling the model to
recover information from the old data. The memory rate of the
ablation experiments is depicted in Figure 10, indicating the
crucial role of the replay mechanism, frozen feature extractor,
and streaming learning in UCILN.

E. Performance Evaluation on Different Transfer Tasks
To further evaluate the performance, UCILN is assessed on

six different transfer tasks on the CWRU dataset, namely T30,
T31, T32, T20, T21, and T23. For instance, task T30 represents
a transfer scenario where the source domain data is collected
under a load of 3 horsepower, while the target domain data
is collected under a load of 0 horsepower. The experimental
results are shown in Table XI.

TABLE XI
RESULTS OF DIFFERENT TRANSFER EXPERIMENTS IN THE TARGET

DOMAIN (%)

Phase T20 T21 T23 T30 T31 T32

Incremental Accuracy (%)
0 98.12± 0.00 97.50± 0.00 99.75± 0.00 97.50± 0.00 99.50± 0.00 99.62± 0.00

1 97.60± 0.10 98.30± 0.00 99.90± 0.10 97.20± 0.10 98.40± 0.25 99.80± 0.10

2 98.67± 0.17 98.42± 0.00 99.92± 0.00 98.08± 0.67 98.91± 0.27 99.92± 0.08

3 97.79± 0.43 94.29± 1.14 98.36± 0.36 95.86± 0.00 98.29± 0.44 98.71± 0.71

4 92.75± 0.19 93.88± 0.81 96.44± 0.69 92.44± 0.00 95.06± 0.41 97.87± 0.37

5 94.67± 0.44 96.11± 0.61 97.33± 0.00 93.39± 0.00 96.05± 0.21 97.56± 0.44

6 95.00± 0.25 96.10± 0.55 97.35± 0.10 94.10± 0.45 95.50± 0.21 98.50± 0.00

Acc 96.08± 0.20 96.18± 0.25 98.22± 0.06 95.18± 0.02 97.04± 0.31 98.73± 0.10

Incremental Forgetting Rate (%)
1 0.50± 0.12 −0.50± 0.00 −0.12± 0.12 0.00± 0.13 1.49± 0.18 −0.25± 0.00

2 −0.81± 0.12 −0.12± 0.00 −0.06± 0.00 −1.44± 1.19 0.75± 0.09 −0.37± 0.31

3 −0.25± 0.12 2.17± 0.79 0.13± 0.17 0.50± 0.42 0.62± 0.27 0.46± 0.58

4 1.28± 0.50 1.50± 0.34 0.81± 0.78 1.94± 0.44 1.56± 0.40 0.53± 0.28

5 −0.75± 0.35 0.42± 0.73 −0.02± 0.40 1.50± 0.22 0.32± 0.07 0.90± 0.13

6 −0.42± 0.08 0.46± 0.48 −0.17± 0.31 0.92± 0.19 0.70± 0.18 0.33± 0.12

For −0.07± 0.52 0.65± 0.39 0.09± 0.00 0.57± 0.02 0.91± 0.20 0.27± 0.20

Memory Rate (%)
1 98.55± 0.01 99.40± 0.00 100.01± 0.01 98.60± 0.01 98.46± 0.04 100.03± 0.05

2 99.74± 0.02 99.27± 0.00 99.99± 0.00 99.76± 0.26 99.08± 0.09 100.15± 0.11

3 99.02± 0.15 96.06± 0.18 99.12± 0.10 97.68± 0.21 98.84± 0.00 99.13± 0.07

4 95.73± 0.16 96.19± 0.23 97.81± 0.05 95.25± 0.22 96.75± 0.02 98.67± 0.05

5 97.71± 0.05 97.84± 0.06 98.68± 0.20 95.94± 0.11 97.84± 0.17 98.33± 0.16

6 97.71± 0.08 97.82± 0.04 98.76± 0.11 96.59± 0.13 97.40± 0.02 99.08± 0.06

MR 98.08± 0.09 97.76± 0.07 99.06± 0.03 97.30± 0.14 98.06± 0.06 99.23± 0.05

To provide a comprehensive evaluation of the model’s
performance and effectiveness, this study presents detailed
experimental results from the source domain across the six
transfer tasks mentioned above, as shown in Table XII. The
figures show that UCILN performs exceptionally well across
different transfer learning tasks. In the target domain, the
average incremental accuracy remains above 95%, while in
the source domain, it stays above 99%. This demonstrates the
model’s strong transfer learning capabilities, and the ability to
mitigate forgetting in both domains.

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI: 10.1109/tim.2024.3500047 IEEE Transactions on Instrumentation and Measurement 



12

TABLE XII
RESULTS OF DIFFERENT TRANSFER EXPERIMENTS IN THE SOURCE

DOMAIN (%)

Phase T20 T21 T23 T30 T31 T32

Incremental Accuracy (%)
0 100.00± 0.00 100.00± 0.00 99.62± 0.00 100.00± 0.00 98.62± 0.00 99.87± 0.00

1 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 99.80± 0.00

2 100.00± 0.08 100.00± 0.00 99.92± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

3 100.00± 0.00 99.79± 0.21 100.00± 0.00 100.00± 0.07 99.86± 0.00 99.86± 0.02

4 99.56± 0.06 99.87± 0.12 99.69± 0.06 99.81± 0.00 99.31± 0.00 99.50± 0.03

5 99.83± 0.00 99.94± 0.06 99.83± 0.00 99.94± 0.06 99.83± 0.02 99.61± 0.01

6 99.85± 0.00 99.95± 0.00 99.90± 0.00 99.95± 0.05 99.80± 0.03 99.50± 0.02

Acc 99.87± 0.02 99.93± 0.01 99.89± 0.01 99.95± 0.01 99.80± 0.02 99.71± 0.03

Incremental Forgetting Rate (%)
1 0.00± 0.00 0.00± 0.00 −0.38± 0.00 0.00± 0.00 −1.38± 0.00 0.00± 0.00

2 0.00± 0.00 0.00± 0.00 −0.19± 0.00 0.00± 0.00 −0.69± 0.00 −0.31± 0.00

3 0.00± 0.17 0.00± 0.00 −0.29± 0.00 0.00± 0.00 −0.38± 0.00 −0.21± 0.00

4 0.16± 0.00 −0.37± 0.62 −0.19± 0.19 0.00± 0.10 0.00± 0.53 −0.03± 0.25

5 −0.27± 0.03 −0.40± 0.40 −0.43± 0.13 −0.20± 0.00 −0.72± 0.23 −0.13± 0.00

6 −0.23± 0.02 −0.33± 0.25 −0.44± 0.17 −0.17± 0.08 −0.60± 0.19 0.15± 0.08

For −0.06± 0.04 −0.18± 0.21 −0.32± 0.08 −0.06± 0.03 −0.63± 0.16 −0.09± 0.03

Memory Rate (%)
1 100.00± 0.00 100.00± 0.00 100.19± 0.00 100.00± 0.00 100.69± 0.00 99.90± 0.00

2 100.00± 0.04 100.00± 0.00 100.05± 0.00 100.00± 0.00 100.34± 0.00 100.16± 0.00

3 100.00± 0.08 99.89± 0.11 100.15± 0.00 100.00± 0.04 100.12± 0.00 100.03± 0.04

4 99.70± 0.03 100.12± 0.25 99.94± 0.06 99.91± 0.00 99.66± 0.17 99.77± 0.09

5 100.05± 0.01 100.17± 0.17 100.13± 0.06 100.07± 0.02 100.28± 0.08 99.87± 0.03

6 100.04± 0.01 100.14± 0.12 100.17± 0.08 100.06± 0.02 100.20± 0.09 99.68± 0.01

MR 99.97± 0.01 100.06± 0.10 100.10± 0.03 100.01± 0.01 100.21± 0.06 99.90± 0.00

TABLE XIII
SUMMARY OF FOUR SIGNAL AUGMENTATION TECHNIQUES

Augmentation Description

Gaussian SNR noise
Add Gaussian noise to the signal by randomly choosing an
SNR value from a range of 3 to 30 dB.

Mask
Mask a segment of the signal with a length selected randomly
to obscure part of the data.

Shift
Shift the signal forward or backward by a randomly chosen
number of steps to vary its temporal position.

Vertical flip Vertically flip the signal to reverse its amplitude values.

F. Plasticity Evaluation

To assess the plasticity of UCILN, this experiment applies
four signal augmentation techniques to perturb the input
data. The model’s plasticity and stability are evaluated by
analyzing its performance under these perturbations, including
incremental accuracy, incremental forgetting rate, and memory
rate. In the study of [4], eight signal augmentation methods
are proposed to expand the training data and improve the
model’s robustness. In this experiment, four of these methods
are adopted, as shown in Table XIII and Figure 11.

This experiment is conducted on the 12 kHz drive-end
fault data from the CWRU dataset, using data from the 2-
horsepower condition as the source domain and data from the
3-horsepower condition as the target domain. The experiment
begins with incremental training on the original signals as
outlined in Table II, encompassing 6 phases. Subsequently,
Gaussian noise, shift, masking, and vertical flip are sequen-
tially applied to the original signals. After each augmentation,
incremental training is performed across all 10 fault types.
The results for all 46 phases are shown in Figure 12. After 46
incremental phases, UCILN achieves an average incremental
accuracy of 98.06%, an average incremental forgetting rate
of only 0.26%, and an average memory rate of 98.90%.
These results demonstrate its ability to adapt to new data and
maintain memory of old data.

Fig. 11. Visualization of Four Augmentation Techniques on Bearing Fault
Signals
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Fig. 12. Results for 46 Phases on the CWRU Dataset

IV. CONCLUSION

This paper proposes a novel unsupervised class incremental
learning network (UCILN) to mitigate catastrophic forget-
ting in cross-domain fault diagnosis, particularly in situations
where the target domain data lacks labels. UCILN processes
both labeled source domain data and unlabeled target domain
data in a streaming setting, which enables the model to timely
diagnose new fault types in both domains. Besides, UCILN
integrates a real feature replay mechanism for replaying data
features to maintain a balance between the acquisition and
retention of knowledge. A memory module is designed to
encode and preserve data distribution in the deep feature space.
In the absence of labels of target domain data, UCILN utilizes
unsupervised deep transfer learning based on discrepancy to
measure the differences between domains for domain adapta-
tion. This study compares UCILN’s performance with seven
other class incremental learning models using the CWRU
and PU datasets. Its performance is also evaluated across
six transfer tasks, and its plasticity is tested under various
perturbations. The experimental results highlight UCILN’s ex-
ceptional accuracy and robustness in diagnosing faults. While
UCILN exhibits promising outcomes, maintaining effective
learning and diagnostic capabilities with a limited number
of samples remains challenging. Future research should focus
on few-shot class-incremental learning, especially given the
limited labeled data for new fault classes in industrial settings.
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