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Abstract—In this paper, a novel dynamic multiobjective opti-
mization algorithm (DMOA) with a cascaded fuzzy system (CFS)
is developed, which aims to promote objective knowledge transfer
from an innovative perspective of comprehensive information
characterization. This development seeks to overcome the bottle-
neck of negative transfer in evolutionary transfer optimization
(ETO)-based algorithms. Specifically, previous Pareto solutions,
center- and knee-points of multi-subpopulation are adaptively
selected to establish the source domain, which are then assigned
soft labels through the designed CFS, based on a thorough
evaluation of both convergence and diversity. A target domain
is constructed by centroid feed-forward of multi-subpopulation,
enabling further estimations on learning samples with the assis-
tance of the kernel mean matching (KMM) method. By doing so,
the property of non-independently identically distributed data
is considered to enhance efficient knowledge transfer. Extensive
evaluation results demonstrate the reliability and superiority of
the proposed CFS-DMOA in solving dynamic multiobjective opti-
mization problems (DMOPs), showing significant competitiveness
in terms of mitigating negative transfer as compared to other
state-of-the-art ETO-based DMOAs. Moreover, the effectiveness
of the soft labels provided by CFS in breaking the “either/or”
limitation of hard labels is validated, facilitating a more flexible
and comprehensive characterization of historical information,
thereby promoting objective and effective knowledge transfer.

Index Terms—Evolutionary transfer optimization (ETO); cas-
caded fuzzy system; dynamic multiobjective optimization algo-
rithm (DMOA); information characterization; negative transfer

I. INTRODUCTION

Dynamic multiobjective optimization problems (DMOPs),
frequently encountered in many industrial fields, are well rec-
ognized as one of the most representative and important issues.
These problems aptly characterize the rich dynamic properties
present in real-world applications, including both the time-
varying constraints and objectives [6], [19], [29], [39], [51].

This work was supported in part by the Natural Science Foundation of
China under Grant 62073271, the Fundamental Research Funds for the
Central Universities of China under Grant 20720220076, the Natural Science
Foundation for Distinguished Young Scholars of the Fujian Province of China
under Grant 2023J06010, and the National Science and Technology Major
Project of China under Grant J2019-I-0013-0013.

H. Li and Y. Li are with the College of Electrical Engineering and
Automation, Fuzhou University, Fujian 350108, and also with the Fujian
Provincial Key Lab. of Medical Instrument and Pharmaceutical Technology,
Fuzhou University, Fujian 350108, China.

Z. Wang is with the Department of Computer Science, Brunel University
London, Uxbridge UB8 3PH, U.K. Email: zidong.wang@brunel.ac.uk

N. Zeng and P. Wu are with the Department of Instrumental and Electrical
Engineering, Xiamen University, Fujian 361102, China.

Corresponding author: N. Zeng. Email: zny@xmu.edu.cn

The importance of responding appropriately to environmental
changes when addressing DMOPs is emphasized, and the
strategies for effectively managing these dynamic behaviors
have attracted significant attention [1], [11], [23], [25].

In recent years, a substantial number of dynamic multiobjec-
tive optimization algorithms (DMOAs) have been introduced,
including those based on diversity, memory, and prediction
[3], [27], [34], [36], [49]. A notable concern is that the
development of solutions specifically tailored to isolated tasks
or particular scenarios can impede the widespread adoption
of some advanced algorithms. This challenge is intensified
by the growing complexity of engineering systems, which
complicates the assurance of effectiveness and generalization
in the elaborately designed response strategies [28]. Moreover,
initiating optimization algorithms without prior knowledge in
new circumstances is also deemed highly inefficient [38].

In response to the challenges identified above, the evolution-
ary transfer optimization (ETO) technique [38] has emerged
as a novel trend for developing competitive DMOAs. This ap-
proach focuses on rationally utilizing accumulated experiences
from previous environments to enhance optimization efficiency
in new settings. For examples of successful applications of
ETO-based DMOAs, one can refer to [17], [22], [26], [46].
Specifically, ETO methods are dedicated to ensuring that
individuals sufficiently learn from historical information, pri-
marily aiming to achieve high-quality population initialization
in new environments. Consequently, an ensuing challenge is
to effectively transfer valuable knowledge, which undoubtedly
plays a crucial role in overcoming the bottleneck of negative
transfer.

Regarding the issue of “how to transfer”, numerous efforts
have been undertaken from various perspectives. In [40],
based on a linear prediction model, key points within the
population have been predicted and employed as samples
in the target domain Dt. This strategy aims to guide the
population towards thoroughly exploring the most valuable
regions in the decision space, thereby providing a promising
direction for knowledge transfer. A pre-search strategy has
been designed in [18] to establish the target domain, em-
ploying rich methods including penalty boundary intersection,
crossover, and Gaussian mutation operators to sufficiently
enhance the diversity of Dt. This approach helps mitigate
the gathering of inferior solutions, reducing the likelihood
of negative transfer. Additionally, efforts have been made to
decrease the data distribution differences between the source
and target domains [22], [31], [45], addressing the challenge of
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transferring knowledge between non-independently identically
distributed populations.

Notably, in many existing ETO-based DMOAs, one-hot
coding is used to characterize the value of historical infor-
mation based on the dominance relationship [18], [45]. As a
result, individuals in the source domain Ds are labeled either
as “good” solutions with positive labels or “bad” ones with
negative labels. It should be emphasized that such a binary
criterion is highly likely to overlook potentially valuable
information. On one hand, dominated solutions may still offer
considerable diversity in terms of solution density; on the
other hand, non-dominated solutions can lead to redundant
information due to their dense distribution. Therefore, there
is an urgent need to address this issue in order to facilitate a
more objective and comprehensive knowledge transfer, which
is beneficial in alleviating the phenomenon of negative transfer.

Building on the discussions above, this paper introduces
a novel cascaded fuzzy system (CFS) designed to assign
soft labels to individuals in Ds, utilizing the advantages of
fuzzy logic to enable flexible characterization of historical
information. Specifically, by sequentially considering factors
such as crowding distance, solution density, and Pareto rank
of individuals, a comprehensive evaluation of both diversity
and convergence is achieved. This approach allows for a
more objective reflection of the reference value of individuals
compared to the use of hard labels. Moreover, in the proposed
CFS-DMOA, the source domain encompasses individuals from
previous Pareto solutions, center-, and knee-points of multi-
subpopulation, which forms the basis for transferring valu-
able knowledge. A center-point-based feed-forward prediction
strategy is employed to establish the target domain Dt, offering
a promising direction for knowledge transfer. Additionally,
with the aid of the kernel mean matching (KMM) method,
individuals in Dt are used to further assess the importance of
samples inDs, thus circumventing the need to labelDt without
prior knowledge of searching in the new environment.

The main contributions of this study are outlined as follows.

1) A novel ETO-based algorithm, CFS-DMOA, is devel-
oped, paving a new way to overcome the challenges
of negative transfer from an innovative perspective of
information characterization.

2) A cascaded fuzzy system is designed to provide compre-
hensive evaluations of historical information, thus pro-
moting objective knowledge transfer with considerable
flexibility.

3) The KMM method is utilized to avoid labeling individ-
uals in the target domain without prior knowledge, en-
abling further assessments of the importance of learning
samples.

The remainder of this paper is organized as follows. Prelim-
inaries are provided in Section II, the proposed CFS-DMOA
is detailed in Section III, results and discussions are presented
in Section IV and, finally, conclusions are drawn in Section V.

II. PRELIMINARIES

A. Problem Formulation of DMOPs

Without loss of generality, a minimized DMOP can be
formulated as [22]:{

min F (x, t) = [f1(x, t), f2(x, t), ..., fm(x, t)]

s.t. x ∈ Rn, G(x, t) = 0, H(x, t) ≤ 0
(1)

where x lies in an n-dimensional decision space, which
satisfies the equality and inequality constraints G and H .
F : Rn → Rm realizes the mapping to an m-dimensional
objective space, and time variable t refers to the current
environment.

Dominance relationship between two decision variables at
time t can be described as:{

∀ i ∈ {1, 2, ..., m}, fi(x1, t) ≤ fi(x2, t)

∃ j ∈ {1, 2, ..., m}, fj(x1, t) < fj(x2, t)
(2)

where x1 ≺t x2 means x1 dominates x2. Based on Eq. (2), if
an individual x cannot be dominated by any other individuals,
then x is termed as the Pareto solution at time t. In particular,
definitions of the time-varying Pareto set (PSt) and Pareto
front (PFt) are given as:

PSt = {x|¬∃ x∗ ∈ Rn, x∗ ≺t x}
PFt = {F (x, t)|x ∈ PSt}

(3)

where time variable t implies the dynamic behaviors in
DMOPs, and as a result, how to accurately track the changing
optimal solutions is one of the major concerns in develop-
ing effective DMOAs. For the optimization tasks in each
individual environment, mature evolutionary algorithms [10],
[20], [30], [44], [50] can be directly employed as the static
optimizer.

B. Analysis of State-of-the-art DMOAs

Recently, plenty of competitive DMOAs have been emerg-
ing, where many efforts have been carried out to effectively
cope with the dynamic behaviors in DMOPs. To accurately
track the movement of Pareto sets, a novel cluster prediction
strategy has been proposed in [43], where the trajectory of
cluster center points is employed to predict the evolutionary
direction of population. As compared to the direct prediction
manner based on the population centroid, the proposed method
in [43] has successfully captured the deviation information
of adjacent individuals. Moreover, to make potential correc-
tion of the predicted evolutionary direction, small mutations
have been introduced to excellent individuals, which further
improves the prediction accuracy. In [41], the authors have
emphasized that most DMOAs fail to associate their response
strategy with the environmental changing intensity and, in this
regard, an ensemble learning-based response framework has
been developed, which enables to dynamically adjust three
different strategies based on the measured changing intensity.
Additionally, a boundary point-oriented learning method has
been introduced in [41], which has the similar effect of en-
hancing the population diversity as introducing the individual
mutations in [43].
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To keep both well population convergence and diversity,
in [1], a combinational response mechanism has been devel-
oped, which provides three different groups of solutions to
form the initial population, including the propagated previous
Pareto solutions based on the crowding distance, the random
individuals generated by differential evolution and mutation
operators, and the solutions obtained via a special points-
based knowledge transfer method. Particularly, it is noticeable
that when making the transfer learning response, the source
domain covers information from the Pareto, center-, and
boundary-points. As essentially a prediction-based strategy, the
knowledge transfer-based response focuses on predicting high-
quality initial population, and such setting benefits a sufficient
learning of the inherent predictable patterns. Consequently,
the other two groups of solutions in [1] can be regarded as
the supplementary to enrich the predicted initial population,
thereby making it more adaptive to the new environment.
Similarly, in [49], the authors have combined an elitism-based
transfer learning strategy and a diversity maintenance method,
where the former leverages knowledge from the elites selected
from historical environments, and the latter is responsible for
increasing the population diversity.

To sum up, predicting reliable solutions in the new envi-
ronment is quite promising for effectively handling DMOPs,
which is exactly the focus of ETO-based DMOAs, and mean-
while, above advanced work also suggests the importance of
sufficient information mining. Otherwise, it is highly possible
to induce the negative transfer phenomenon, and aiming at
this challenging bottleneck, some state-of-the-art ETO-based
advanced DMOAs are specially discussed in next subsection.

C. Alleviating the Negative Transfer

In the context of solving DMOPs, ETO-based algorithms
are dedicated to effectively utilizing accumulated search ex-
periences to accelerate evolution in new environments. Con-
sequently, overcoming negative transfer has emerged as a
particularly challenging issue. This problem refers to the
misleading of search processes in incorrect directions, which
can significantly hinder the progress [24].

To address negative transfer in environments with slight
changes but unchanged Pareto sets (PS), the solutions before
and after transfer have been merged in [35], which are
then selected based on non-dominated sorting and crowding
distance [2] to facilitate population initialization. Similarly,
to maximize the benefits of the knowledge transfer strategy,
diversity-based responses have been adopted as supplements in
[23], which have been effective in mitigating negative transfer
in environments that undergo drastic changes.

In [24], a clustering-based transfer strategy has been de-
signed and demonstrated to be effective in mitigating negative
transfer by facilitating knowledge transfer between similar
clusters across different environments. In [45], another clus-
tering difference-based transfer learning strategy has been
developed. In this algorithm, source domain Ds consists of
the previous Pareto solutions (denoted as PSt−1) and some
other dominated solutions, which are deemed as the positive
and negative samples, respectively. To establish target domain,

firstly the population has been divided into 5 clusters, and
then the samples in Dt are obtained via the feed-forward of
above cluster centers, where the non-dominated and dominated
solutions are labeled as positive and negative, respectively.
By using the clustering method, the information in population
has been sufficiently explored, and moreover, the feed-forward
prediction has improved the similarity between Ds and Dt,
thereby reducing the possibility of negative transfer. Moreover,
a knowledge reconstruction-examination strategy has been
proposed in [46], which incorporates all previous optimal solu-
tions to thoroughly extract useful information. To be specific,
several knowledge clusters have been obtained based on Pareto
solutions in historical environment, and those cluster centers
have been merged to perform the non-dominated sorting
operation. For those clusters having the first Pareto rank, the
individuals therein are labeled as positive; otherwise, negative
labels will be given. Though above strategy is promising to
maximize the utility of historical data, it still deserves further
investigations on whether the individuals in clusters with poor
convergence (i.e., the large Pareto rank) are totally useless.

In addition, considering the potential for low-quality so-
lutions to cause negative transfer, special attention has been
given to the information in knee-points [16]. Within an imbal-
anced transfer learning framework, the estimated knee-points
by the proposed trend prediction model have been labeled
as “1”. On the contrary, those non-knee-points have been
labeled as “0”, and Ds covers the PSt−1 and some random
solutions. This method has proven effective in generating a
high-quality initial population, whereas merely referring to
the knee-points possibly loses attention to other information.
In [40], multiple predicted key-points including center, polar,
and boundary points have been employed as the samples in
Dt, which can collectively reflect the overall population status.
Besides, some individuals obtained by the feed-forward of
center-point have been employed as the supplements to those
screened solutions by knowledge transfer strategy, thereby
compensating the prediction accuracy so as to mitigate the
negative transfer. Nevertheless, similar to most algorithms, the
source domain in [40] only considers Pareto solutions from
previous environment, which may hinder the comprehensive
knowledge transfer.

It should be pointed out that although aforementioned
ETO-based algorithms have proven effective in alleviating
negative knowledge transfer, it has been observed that the
characterization of historical information is generally achieved
through hard labels [16], [24], [45], [46]. Such “either/or”
judgments on the values of previous solutions are highly likely
to overlook potentially important information. This limitation
has motivated the introduction of soft labels to enable a
more comprehensive characterization of historical evolutionary
experiences, thereby promoting a more objective knowledge
transfer. Additionally, rich information has been covered in the
established source domain, which aims to facilitate thorough
and comprehensive knowledge transfer.

III. METHODOLOGY

In this section, the proposed CFS-DMOA is detailed, high-
lighting its major innovation, that is, the designed cascaded
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fuzzy system. Particularly, the output of CFS is a soft label in
[0, 1], which dedicates to objectively reflecting the reference
values of the historical information; and the input variables
of CFS take full consideration of both solution convergence
and diversity, which are displayed in Fig. 1 for an intuitive
illustration.

(a) Pareto rank (b) Crowding distance (c) Distribution density

Fig. 1. Visualizations of the inputs to CFS in 2-dimension case.

A. Comprehensive Historical Information Characterization

As is shown in Figs. 1(a)-1(b), the Pareto rank (denoted as
PR) and the crowding distance [2] (denoted as CD) of previous
solutions are employed as the inputs of CFS, which are
commonly adopted to evaluate the convergence and diversity
of individuals, respectively. In general, lower PR means the
corresponding solution is harder to be dominated, and larger
CD refers to better diversity, which can be calculated as [2]:

CD(x) =
∑
m

fm(xm
+)− fm(xm

−)

max fm −min fm
(4)

where m is the number of objective functions, max fm and
min fm stand for the maximum and minimum value of the
m-th objective with regard to the Pareto front that x belongs
to. xm

+ and xm
− are two adjacent individuals to x that satisfies

fm(xm
+) > fm(x) > fm(xm

−), which can be obtained by
sorting solutions of the same front in a descend order of fm(·).

A noticeable issue is that according to Eq. (4), once a
solution falls into the red dash box in Fig. 1(b), the crowd-
ing distance will be a constant, and in this regard, another
distribution density (denoted as DD) is defined in this study
as a complement to CD, which measures the uniformity of
solutions on Pareto front (see Fig. 1(c)). In following Eq. (5),
definition of above distribution density is given as:

DD(x) =
1

m

∑
m

min
{dm+
dm−

,
dm−
dm+

}
(5)

where dm+ and dm− represent the distance between solution x
to xm

+ and xm
−, respectively, which can be described as:

dm+ = ∥F (x)− F (xm
+)∥2

dm− = ∥F (x)− F (xm
−)∥2

(6)

where ∥·∥2 measures the Euclidean distance, both xm
+ and xm

−
maintain the same physical meanings as in Eq. (4). Combining
the illustration of Fig. 1(c), when dimension of objective space
is 2, the distribution density of individual x is the ratio of
shorter distance to the longer one in the red dash box, which
takes value in interval (0, 1], and the larger DD corresponds
to more even distribution of x with the adjacent solutions.

Consequently, in total three variables will be inputted to the
designed CFS and, by doing so, the diversity of an individual
can be described in a more holistic manner, thereby realizing
comprehensive characterization of the historical information.
Moreover, it should be pointed out that in above Eqs. (4)-(6),
the description of time variable t is omitted for convenience,
and when calculating CD(·, t) and DD(·, t) in dynamic en-
vironments, fitness values at corresponding times should be
matched.

B. Cascaded Fuzzy System

Based on previous introduction, in the designed CFS, the
crowding distance and distribution density of an individual are
firstly inputted to the first layer, whose output is deemed as
the diversity score, and is then further inputted to the second
layer along with the Pareto rank, which eventually outputs the
soft label of the individual. Notice that the values of soft labels
are mapped into interval [0, 1], and the larger label symbolizes
the higher reference value. As a result, the designed fuzzy
system is in a cascaded form, which contains two sub-systems
with double inputs and single output, and the merits of such
structural designing include following two aspects. On one
hand, the progressive order of three inputs has rich logical
hierarchy in terms of comprehensive individual evaluations,
which benefits generating objective and reliable soft labels; on
the other hand, it can effectively decrease the required numbers
of fuzzy rules, thereby simplifying the designing difficulty. For
better understanding, the diagram of CFS is shown in Fig. 2,
and details are summarized in Table I.

Fig. 2. Diagram of the designed CFS.

TABLE I
INPUTS AND OUTPUTS OF CFS

Layer Variable Domain Membership function Fuzzy sets

1st
CD (I11) [min,max] Gaussian {NB,NS,ZO,PS,PB}
DD (I12) [min,max] Gaussian {NB,NS,ZO,PS,PB}

Diversity (O1) [0, 1] Triangular {NS,ZO,PS}

2nd
Diversity (I21) [min,max] Gaussian {NB,NS,ZO,PS,PB}

PR (I22) [max,min]1 Triangular {NS,ZO,PS}
Soft label (O2) [0, 1] Triangular {NB,NS,ZO,PS,PB}

1 Since lower Pareto rank implies better convergence, the input PR is sorted in a descend
order for fuzzification.

Remark 1: O1 and I21 will be processed based on their own
membership function and fuzzy sets, and the domain of I21 is
essentially the real output range of O1.

In Table I, [min,max] indicates that the domains depend on
the minimal and maximal values of corresponding input, and
fuzzy sets are assigned evenly based on the domains, where
NB, NS, ZO, PS, and PB refer to the fuzzy sets of Negative-
Big, Negative-Small, Zero, Positive-Small, and Positive-Big,
respectively, which generally imply the property transition
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from bad to good. Notice that except for the Pareto rank PR,
larger value of all variables in Table I means better property.

Moreover, the fuzzy rules applied in the designed CFS are
displayed in Table II, where inference instances with the two
superscript symbols are provided as follows.
† If an individual has both large crowding distance and

large distribution density, then it is deemed to own well
diversity.

‡ If an individual locates in Pareto front with large rank,
and simultaneously the diversity is poor, then it is as-
signed with a small soft label.

TABLE II
FUZZY RULES IN THE DESIGNED CFS (I21 = O1)

First layer

I11

O1 I12
NB NS ZO PS PB

NB NS NS NS ZO ZO
NS NS NS NS ZO ZO
ZO NS NS ZO PS PS
PS ZO ZO PS PS PS
PB ZO ZO PS PS PS†

Second layer

I21

O2 I22
PS ZO NS

NB ZO NS NB‡

NS ZO NS NS
ZO PS ZO NS
PS PS PS ZO
PB PB PS ZO

Above inference results conform to the logic in previous
discussions. Additionally, the defuzzification process in the
designed CFS is realized by following centroid method [42]:

Out =

∑|O|
k=1 yk · µk(yk)∑|O|

k=1 µk(yk)
(7)

where |O| is the number of output fuzzy sets, yk and µk(yk)
refer to the fuzzy output and membership degree on the k-th
set, respectively.

C. Acquisition of Source Domain

In the proposed CFS-DMOA, to realize sufficient learning
from rich historical evolutionary information, the previous
Pareto solutions, center- and knee-points in multiple subpopu-
lations are employed as the samples in source domain Ds.
In this regard, the Pareto set PSt at each environment is
firstly divided into Kt subpopulations based on the K-means
clustering method [14], where the number of cluster (i.e., Kt)
is determined as:

Kt = 3 + ⌊3× |PSt|
N
⌋ (8)

where N is the population size, ⌊·⌋ is the floor function, and
| · | is the cardinality of set.

Next, center- and knee-points of the Kt subpopulations
(denoted as P

(t)
k , k = 1, 2, ...,Kt) are obtained, where the

former refers to the individual closest to the sub-population
centroid, and the latter is the individual whose phenotype is
the farthest to the line (in 2-dimensional case, denoted as ℓb)
determined by the two boundary points of the corresponding
PF, which can be described as:

F (kpk) = arg max
u∈F (Pk)

dis(u, ℓb) (9)

where kpk and F (Pk) denote the knee-point and the Pareto
front of the k-th subpopulation (time variable is omitted

for simplicity), respectively, dis(·) measures the Euclidean
distance. The obtained center- and knee-points are then further
expanded in an interpolation manner to derive a center group
(Gc) and a knee group (Gk), as is displayed in Algorithm. 1,
where the simulated binary crossover operator [32] is adopted
to enrich the diversity. Moreover, the previous optimal solu-
tions are stored in a Pareto group (Gp), and eventually, samples
in Ds will be selected from the above three groups according
to a scoring mechanism shown in following Eq. (10).

Algorithm 1 Pseudo-code of acquiring Gc and Gk

Input:
Sub-populations P

(t)
1 , P

(t)
2 , ..., P

(t)
Kt

Output:
Center group Gc and knee group Gk

1: Obtain center-point cp and knee-point kp of each P
(t)
·

2: Gc ← cpk, Gk ← kpk (k = 1, 2, ...,Kt)
3: For i, j ∈ {1, 2, ...,Kt}(i ̸= j)
4: Generate random numbers r1, r2 ∈ (0, 1)
5: Gc = Gc ∪ r1 ∗ cpi + (1− r1) ∗ cpj

6: Gk = Gk ∪ r2 ∗ kpi + (1− r2) ∗ kpj

7: EndFor
8: Further enrich Gc and Gk with simulated binary crossover
9: Return Gc, Gk

Sc =
|PSt+1|t|
|PSt|

Sk =
|{x ∈ PSt|I(x) > Ie}|

|PSt|
Sp = 0.2

(10)

where I(x) refers to the impact suffered by individual x, and
Ie is the average impact level regarding the dynamic behaviors
in environment, which are defined as [21]:

I(x) = max
j∈{1,2,...,m}

∣∣∣fj(x, t+ 1)− fj(x, t)

fj(x, t) + µ0

∣∣∣
Ie = max

j∈{1,2,...,m}

1

|PSt|
∑

x∈PSt

∣∣∣fj(x, t+ 1)− fj(x, t)

fj(x, t) + µ0

∣∣∣ (11)

where m is the number of objectives, and µ0 avoids the
denominator equaling zero.

To be specific, proportion of individuals in PSt that still
maintain non-dominated status at time t + 1 is defined as
the score of Gc, as the less impact of environmental changes
on the population convergence, the more individuals in PSt

may still be Pareto solutions at time t + 1, which implies
the stability of the converged population and encourages the
learning from center group. Score of Gk measures the ratio
of severely affected individuals in PSt, and the larger Sk,
the more it is recommended to take full use of the diversity
information in Gk, which promotes the adaptiveness to new
environment. Score of Gp is fixed at a constant, which ensures
that Ds covers information from previous Pareto solutions.
Besides, the individuals in Gp are updated in a first-in-first-
out manner, which avoids unnecessary memory burdens and
keeps the stored solutions related to the coming environments
[28].
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In the next step, the normalized scores are adopted as
the sampling weights to select individuals from three groups,
respectively, which are further assigned with the soft labels via
the designed CFS to eventually acquire the source domain Ds,
and above procedure is summarized in Algorithm. 2, where the
predefined capacity of Ds equals to the population size.

Algorithm 2 Acquisition of source domain
Input:

Gc, Gk, Gp, and source domain capacity ns

Output:
Source domain Ds

1: Initialize Ds ← ∅
2: Obtain scores of three groups according to Eqs. (10)-(11)
3: Normalize above scores such that S̃c + S̃k + S̃p = 1
4: Select x ∈ Gc to join Ds until |Ds| = ⌊ns × S̃c⌋
5: Pick ⌊ns × S̃k⌋ individuals from Gk to join Ds

6: Fill Ds with x ∈ Gp until |Ds| = ns

7: Assign soft label ys for each xs ∈ Ds via the CFS
8: Ds ← {(x1

s, y
1
s), (x

2
s, y

2
s), ..., (x

ns
s , yns

s )}
9: Return Ds

D. Establishment of Target Domain

In the proposed CFS-DMOA, the target domain Dt is
established based on the centroid feed-forward of multi-
subpopulation. On one hand, the movement trajectory of
center-points implies the potential evolutionary tendency,
which provides promising direction for knowledge transfer;
and on the other hand, multiple prediction results from differ-
ent subpopulations enrich the diversity of Dt, which declines
the influence of samples trapped into local optima, thereby
mitigating the negative transfer phenomenon.

Take the subpopulation P
(t)
k of PSt as an example, it is

firstly formulated as a center and a set of manifolds, which is
used to describe the solution distribution in P

(t)
k and can be

calculated as [52]:

X̃
(t)
k = {x̃|x̃ = x− X̄

(t)
k , x ∈ P

(t)
k } (12)

where X̄
(t)
k is the center of P (t)

k . By feed-forward prediction,
the new position of X̄

(t)
k at next time t + 1 can be obtained

by:
k0 =argmin

i
∥X̄(t)

k , X̄
(t−1)
i ∥2

X̄
(t+1)
k = X̄

(t)
k + (X̄

(t)
k − X̄

(t−1)
k0

)
(13)

where X̄
(t−1)
k0

is center of the closest subpopulation of PSt−1

to P
(t)
k .

Next, the new locations for x ∈ P
(t)
k can be obtained in

dimension-wise as:

x
′

d = X̄
(t+1)
k,d + x̃d + εd (d = 1, 2, ..., n) (14)

where n is the dimension of decision space, ε· ∼ N (0, σ2) is
the Gaussian noise used to enhance population diversity, and
the variance σ2 is calculated as [52]:

σ2 =
1

n

( 1

|X̃(t)
k |

∑
x̃∈X̃

(t)
k

min
z̃∈X̃

(t−1)
k0

∥x̃− z̃∥2
)2

(15)

where k0 keeps the same meaning as in Eq. (13), X̃(t)
k and

X̃
(t−1)
k0

are the manifolds of subpopulation P
(t)
k and P

(t−1)
k0

,
respectively.

At last, the target domain Dt can be established by merging
the predicted new individuals of all subpopulations of PSt,
and above procedure is displayed in Algorithm. 3.

Algorithm 3 Establishment of target domain
Input:

Sub-populations {P (t)
k }

Kt

k=1 and {P (t−1)
k }Kt−1

k=1

Output:
Target domain Dt

1: Initialize Dt ← ∅
2: Obtain subpopulation center of PSt−1 as C = {Ck}Kt−1

k=1

3: For k = 1, 2, ...,Kt

4: Get center and manifolds of P (t)
k via Eq. (12)

5: Feed-forward the P
(t)
k center according to Eq. (13)

6: For xi ∈ P
(t)
k

7: Predict the new solution x
′

i based on Eqs. (14)-(15)
8: Dt = Dt ∪ x

′

i

9: EndFor
10: EndFor
11: Return Dt

Remark 2: Different from Ds, the label information is not
contained in Dt in the absence of prior knowledge of searching
in the new environment t+ 1.

Remark 3: Information from the previous two environments
t− 1 and t is required to establish target domain.

E. Kernel Mean Matching-based Knowledge Transfer

According to Algorithms. 2-3, label information is only
accessible in source domain, and in this regard, the kernel
mean matching (KMM) method [12] is applied to assist the
knowledge transfer from Ds to Dt , which maps samples
in both domains to a high-dimensional reproducing kernel
Hilbert space (RKHS), where it is expected to minimize the
distribution difference of the two groups of mapped data by
weighting xs ∈ Ds as [22]:

β∗ = argmin
β

∥∥∥∥∥ 1

ns

∑
xs∈Ds

βΦ(xs)−
1

nt

∑
xt∈Dt

Φ(xt)

∥∥∥∥∥
2

(16)

where ns and nt stand for the capacity of Ds and Dt,
respectively, Φ is the mapping function to generate RKHS. In
particular, the finally obtained β = [β1, β2, ..., βns

] contains
weights of each sample in source domain, which can be
deemed that the importance of xs ∈ Ds is further estimated
with reference to xt ∈ Dt, and larger weight corresponds to
more valuable learning sample.

As a result, the acquired weighted individuals
{(βi,x

i
s, y

i
s)}

ns
i=1 can be used to train a regression model in

the new environment and, by doing so, individuals in Dt are
only adopted for initializing weights of the training samples,
which avoids the labeling process without prior searching
experiences. Moreover, since solving Eq. (16) is equivalent
to decrease the data distribution difference between Ds and
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Dt [9], the non-independent identical distribution property of
solutions at different environments [18] is well considered,
which benefits the effective knowledge transfer.

In addition, the Boosting technique [33] is applied to train
the regression model, which is responsible for screening the
high-quality individuals in new environment to form the initial
population. Above mentioned knowledge transfer process is
presented in Algorithm. 4, where the support vector machine
is employed as the base learner, and the selection threshold is
set as σr = 0.7.

Algorithm 4 Knowledge transfer-based population initializa-
tion
Input:
Ds, Dt, the number of base learner Nb, population size
N , and selection threshold σr

Output:
Initial population Popini

1: Obtain weights β for xs ∈ Ds by Eq. (16)
2: For k = 1, 2, ..., Nb

3: Train a weak model Rk(·) by {(βi,x
i
s, y

i
s)}

ns
i=1

4: Calculate regression error ratio ϵk of Rk

5: If ϵk ≥ 0.5
6: break
7: EndIf
8: Obtain confidence coefficient as αk = ϵk

1−ϵk
9: Update training weight βi of sample (xi

s, y
i
s)

10: EndFor
11: Calculate weight for each Rk as ϕk = ln( 1

αk
)

12: Form strong model R(·) with weighted median of Rk

13: Screen individuals in the new environment as:

Popini ← {x|R(x) ≥ σr}

until |Popini| = N
14: Return Popini

F. Complexity Analysis of CFS-DMOA

To estimate the computational complexity of CFS-DMOA,
following aspects are mainly considered:

(1) Using K-means clustering method to obtain Kt subpop-
ulations costs complexity of O(Nn), where N is the
population size and n is the dimension of decision space.

(2) When deriving the Gc and Gk based on Kt subpop-
ulations, the interpolation operation costs complexity
of O(K2

t ) < O(N) and the crossover operator costs
complexity of O(Nn).

(3) The adaptive acquisition of Ds based on the scoring
mechanism in Eq. (10) costs complexity of O(N) +
O(Nm), and when assigning soft labels via the CFS,
it costs the largest complexity of O(N2m) for the non-
dominated sorting operation to calculate the Pareto rank,
where m is the dimension of objective space.

(4) The complexity of establishing Dt via centroid feed-
forward of multi-subpopulation is less than O[Kt(Kt−1+
Nn)]. As the numbers of subpopulations Kt and Kt−1

are constants, above complexity can be approximated as
O(Nn).

(5) Lastly, the complexity of using Boosting technique to
train the support vector regression model is O(N2n).

Therefore, it can be deemed that regardless of the static
optimizer, the computational complexity of the proposed CFS-
DMOA is O(N2m) +O(N2n) = O(N2n) as generally there
is n > m. Finally, the overall framework of the proposed
CFS-DMOA is displayed in Algorithm. 5 for a clear view.

Algorithm 5 Framework of CFS-DMOA
Input:

Static optimizer Sopt, objective F , environment indicator
{t = 1, 2, ..., T}, and population size N

Output:
Pareto sets of all environments PS = {PSt}Tt=1

1: Initialize PS ← ∅, Gp ← ∅
2: For t = 1, 2, ..., T
3: If t = 1 —— t = 2
4: PSt = Sopt(F , t)
5: else
6: Derive Gc and Gk according to Algorithm. 1
7: Acquire source domain Ds based on Algorithm. 2
8: Assign soft labels for samples in Ds by CFS
9: Establish target domain Dt based on Algorithm. 3

10: Obtain initial population Popini via Algorithm. 4
11: PSt = Sopt(F , t, Popini)
12: EndIf
13: Get subpopulations of PSt by K-means algorithm
14: Update Gp = Gp ∪ PSt

15: While |Gp| > 1.5×N
16: Remove solutions from Gp in first-in-first-out manner
17: EndWhile
18: EndFor
19: Return PS

Remark 4: At the first two environments, the population is
directly initialized by the static optimizer.

IV. RESULTS AND DISCUSSIONS

In this section, the proposed CFS-DMOA is comprehen-
sively evaluated to verify the effectiveness and reliability in
solving DMOPs.

A. Experimental Environments

1) Benchmark Functions and Comparison Algorithms: To
comprehensively evaluate the performance of CFS-DMOA,
nine well-known DF series DMOPs are adopted as the test
functions in this study, including 5 bi-objective (DF1-DF4,
DF8) and 4 tri-objective problems (DF11-DF14) [15]. It is
noticeable that these selected functions cover rich dynamic
behaviors, for example, both DF1 and DF3 have changing
PF geometry, which requires the algorithm to well track
the concavity-convexity variations; on the DF2 problem, the
population will suffer severe diversity loss, which implies a
thorough search in the whole decision space. Moreover, the
time-varying PS of DF8 has a stationary centroid, and the
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changing PF contains the knee regions; on the complex tri-
objective problem DF13, partial PF geometry will be discon-
nected; and on DF14, the number of knee regions can also be
time-varying. Consequently, employing above test problems
benefits a thorough validation on the proposed CFS-DMOA
in terms of effectively handling various DMOPs.

To further show the competitiveness of CFS-DMOA as an
algorithm designed with the idea of ETO, other 4 state-of-
the-art ETO-based DMOAs are employed as the comparison
algorithms, where the response strategies to the changing
environments include knee-point-based imbalanced transfer
learning (KITL) [16], knowledge guided Bayesian classi-
fication (KGBC) [46], clustering difference-based transfer
learning (CDTL) [45], and a hybridization of key-point-
based transfer and center-point-based feed-forward prediction
(HKTCFP) [40]. Above comparison algorithms are named as
KITL-DMOA, KGBC-DMOA, CDTL-DMOA, and HKTCFP-
DMOA, respectively, and more information of these algo-
rithms can be found in Section II-C.

2) Experimental Settings and Evaluation Metrics: For fair
comparison, all the algorithms utilize the same static optimizer
MOEA/D [48], where the population size is set to 100 and
120 for bi- and tri-objective problems, respectively. Dimension
of the decision space for all benchmarks is fixed at 10, and
on each test function, three groups of dynamic parameter
setting of (nt, τt) ∈ {(1, 10), (5, 10), (10, 10)} are deployed,
where nt and τt represent the severity and frequency of
environmental changes, respectively. The maximum generation
is set as τ = 20× τt, which indicates that the algorithms will
search for Pareto solutions in 20 different environments, and in
each individual environment, the static optimizer performs 10
epochs of optimization. In addition, to alleviate the influence
of randomness, 20 independent experiments are performed
for each test, and the results in average level are reported,
including the Wilcoxon rank sum test [5] with the significance
level of 0.05.

In this study, the mean inverted generational distance
(MIGD) and mean hyper volume difference (MHVD) [21],
[40] are adopted as the main evaluation metrics, which can be
obtained by:

MIGD =
1

T

T∑
t=1

IGD(PFt)

MHVD =
1

T

T∑
t=1

(
HV (PF ∗

t )−HV (PFt)
) (17)

where T is the number of environments, PFt and PF ∗
t refer to

the obtained Pareto front and the true PF, respectively. IGD(·)
and HV (·) are calculated as [21]:

IGD(PFt) =

∑
x∈PF∗

t
d(x, PFt)

|PF ∗
t |

HV (PFt) =
⋃

x∈PFt

ν(x, zref )
(18)

where d(·) stands for the least Euclidean distance, and ν(·)
is the Lebesgue measure of volume enclosed by PFt and

the reference point zref . Both MIGD and MHVD are com-
prehensive indicators, and the smaller values correspond to
better performance, whereas in practice, the former focuses on
convergence and the latter emphasizes diversity of algorithms.

B. Benchmark Evaluations

In Table III, benchmark evaluation results of all algorithms
on MIGD are presented, where “+/-” indicates the proposed
CFS-DMOA performs significantly better/worse than corre-
sponding algorithm, and “≈” suggests equivalent performance.

According to Table III, the proposed CFS-DMOA per-
forms significantly better than KITL-DMOA, CDTL-DMOA,
KGBC-DMOA, and HKTCFP-DMOA in 25, 17, 19, and 17
out of 27 cases, respectively, which shows the superiority
of CFS-DMOA as an ETO-based DMOA. It is found that
merely on problem DF4, CFS-DMOA has relatively poor
performance, which is slightly inferior to CDTL-DMOA in the
test case of (nt, τt) = (10, 10) and yields comparable results
to KGBC-DMOA in the other two cases. On the complex
tri-objective problem DF14, CFS-DMOA obtains the optimal
MIGD results in all test cases with three groups of different
dynamic parameter settings, and moreover, as can be seen from
Fig. 3 that CFS-DMOA is able to provide stable convergence
in most changing situations, which implies that the population
can realize accurate track to the time-varying PS, thereby
demonstrating the reliability of CFS-DMOA to handle the
dynamic behaviors. Additionally, in Table IV, comparison on
environment-level average running time is reported, which can
quantify the computational expensiveness of the algorithms. It
is found that the proposed CFS-DMOA yields 3 best results
and ranks the second on an overall level. Combining with
the above discussed convergence performance, this is also an
encouraging result.

Next, the benchmark evaluation results regarding to MHVD
are reported in Table V. It is found that the proposed CFS-
DMOA and other four comparison algorithms obtain 10, 6, 3,
3, and 5 best results, respectively, which shows the excellent
comprehensive performance of CFS-DMOA. In particular,
DF2 problem poses great challenges for the DMOAs to well
maintain the population diversity, as the varying PSt will
be mapped to the same PFt in a period of time, while the
proposed CFS-DMOA yields 2 out of 3 best results in related
test cases. On DF8 problem, where the geometric shape of PF
fluctuates from convex to concave, the proposed CFS-DMOA
performs not so well as KITL-DMOA, which suggests the
importance of information in knee-points. Based on above
analysis, it can be concluded that the proposed CFS-DMOA
is a competitive ETO-based DMOA, which is promising to
overcome the bottleneck of negative transfer and exhibits both
satisfactory convergence and diversity in most test cases.

Moreover, by comparing the knowledge transfer procedure
in above different algorithms, it is inferred that the advantages
of CFS-DMOA mainly owe to the following three aspects: 1)
firstly, the source domain in CFS-DMOA covers rich infor-
mation from historical Pareto solutions and the center-, knee-
points of multi-subpopulation, which lays the solid foundation
for comprehensive knowledge transfer; 2) the individuals in
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TABLE III
BENCHMARK EVALUATIONS OF DIFFERENT ETO-BASED DMOAS IN TERMS OF MIGD

Functions nt, τt KITL-DMOA CDTL-DMOA KGBC-DMOA HKTCFP-DMOA CFS-DMOA

DF1
1,10 0.3314±3.19e-02(+) 0.2519±1.73e-02(-) 0.2492±2.05e-02(-) 0.3090±1.08e-01(≈) 0.2776±1.48e-02
5,10 0.1520±1.78e-02(+) 0.1278±8.90e-03(+) 0.1397±1.30e-02(+) 0.1339±3.33e-02(+) 0.1064±7.01e-03

10,10 0.1437±3.01e-02(≈) 0.1358±8.04e-03(+) 0.1548±1.66e-02(+) 0.0880±1.75e-02(-) 0.1268±6.88e-03

DF2
1,10 0.2205±1.95e-02(+) 0.1608±1.47e-02(-) 0.1801±1.65e-02(-) 0.1791±1.39e-02(≈) 0.1834±8.82e-03
5,10 0.1137±1.78e-02(+) 0.0854±8.09e-03(≈) 0.1055±1.21e-02(+) 0.1089±1.29e-02(+) 0.0817±4.24e-03

10,10 0.1085±1.19e-02(+) 0.0843±6.53e-03(+) 0.0979±1.12e-02(+) 0.1156±2.65e-02(+) 0.0755±4.15e-03

DF3
1,10 0.7937±1.58e-01(+) 0.4995±2.88e-02(+) 0.5046±3.63e-02(+) 0.6186±5.72e-02(+) 0.4675±1.23e-02
5,10 0.7229±9.64e-02(+) 0.4706±3.43e-02(≈) 0.5097±1.82e-02(+) 0.5451±3.81e-02(+) 0.4639±2.16e-02

10,10 1.2143±1.94e-01(+) 0.5589±2.64e-02(-) 0.6483±4.91e-02(+) 0.7019±6.78e-02(+) 0.5745±2.94e-02

DF4
1,10 0.7614±1.10e-01(+) 0.6072±8.50e-02(+) 0.4982±5.31e-02(≈) 0.6923±1.06e-01(+) 0.5191±4.35e-02
5,10 1.4829±1.02e-01(+) 0.6294±8.47e-02(≈) 0.5864±6.39e-02(≈) 0.6961±1.18e-01(+) 0.6044±2.87e-02

10,10 2.6522±8.74e-02(+) 0.5231±5.66e-02(-) 0.5965±8.19e-02(-) 0.6606±6.96e-02(≈) 0.6174±4.09e-02

DF8
1,10 0.8089±1.90e-02(+) 0.3329±2.85e-02(+) 0.2605±2.48e-02(≈) 0.3210±2.14e-02(+) 0.2642±2.47e-02
5,10 1.0853±2.89e-02(+) 0.3712±2.26e-02(+) 0.3144±2.15e-02(≈) 0.3849±2.00e-02(+) 0.3077±2.58e-02

10,10 1.1027±1.79e-02(+) 0.3569±2.07e-02(+) 0.3261±1.82e-02(+) 0.3930±1.74e-02(+) 0.3090±2.53e-02

DF11
1,10 0.2097±3.15e-02(+) 0.1545±7.89e-03(+) 0.1468±7.14e-03(+) 0.1643±1.05e-02(+) 0.1363±4.38e-03
5,10 0.1877±2.00e-02(+) 0.1553±8.97e-03(+) 0.1478±6.79e-03(+) 0.1398±5.58e-03(≈) 0.1378±2.90e-03

10,10 0.1837±1.68e-02(+) 0.1534±6.46e-03(+) 0.1465±4.16e-03(+) 0.1362±5.47e-03(≈) 0.1377±3.91e-03

DF12
1,10 0.6261±4.86e-02(+) 0.4887±1.98e-02(+) 0.4790±2.03e-02(+) 0.5400±7.71e-02(+) 0.4651±1.28e-02
5,10 0.6572±5.78e-02(+) 0.4994±1.44e-02(-) 0.5192±1.22e-02(≈) 0.5117±4.31e-02(-) 0.5213±1.31e-02

10,10 0.6501±6.77e-02(+) 0.4418±1.79e-02(-) 0.4863±1.61e-02(+) 0.4608±3.00e-02(≈) 0.4686±1.29e-02

DF13
1,10 1.0000±1.32e-01(+) 0.3791±2.67e-02(+) 0.3638±3.19e-02(+) 0.4213±4.50e-02(+) 0.3320±2.30e-02
5,10 0.4847±8.43e-02(+) 0.3213±1.54e-02(+) 0.3427±3.04e-02(+) 0.3287±3.78e-02(+) 0.2973±1.09e-02

10,10 0.3668±2.00e-02(+) 0.3190±2.34e-02(≈) 0.3350±2.81e-02(+) 0.2892±1.71e-02(-) 0.3066±1.45e-02

DF14
1,10 0.3485±7.76e-02(+) 0.2374±1.51e-02(+) 0.1262±2.48e-02(+) 0.2276±5.49e-02(+) 0.1096±8.97e-03
5,10 0.1745±2.77e-02(+) 0.1288±1.07e-02(+) 0.1318±1.02e-02(+) 0.1764±6.78e-02(+) 0.1152±8.23e-03

10,10 0.1174±8.69e-03(≈) 0.1270±9.00e-03(+) 0.1284±1.06e-02(+) 0.1354±3.72e-02(≈) 0.1173±5.95e-03
+ / - / ≈ 25 / 0 / 2 17 / 6 / 4 19 / 3 / 5 17 / 3 / 7 -

TABLE IV
COMPARISONS ON AVERAGE RUNNING TIME PER EACH ENVIRONMENT

Functions KITL-DMOA CDTL-DMOA KGBC-DMOA HKTCFP-DMOA CFS-DMOA
DF1 1.87(1) 2.15(2) 3.10(5) 2.32(4) 2.22(3)
DF2 1.88(1) 2.27(3) 3.26(5) 2.15(2) 2.33(4)
DF3 1.52(2) 1.60(3) 2.96(5) 1.49(1) 1.60(3)
DF4 1.75(1) 2.03(2) 4.02(5) 2.16(4) 2.12(3)
DF8 1.92(3) 1.90(1) 4.26(5) 1.91(2) 2.09(4)
DF11 3.95(4) 3.52(1) 8.38(5) 3.56(3) 3.53(2)
DF12 3.64(4) 3.11(2) 6.47(5) 3.13(3) 3.09(1)
DF13 3.53(4) 3.38(2) 6.23(5) 3.49(3) 3.32(1)
DF14 3.65(4) 3.31(2) 5.60(5) 3.37(3) 3.24(1)

Overall rank 3 1 5 4 2

source domain are assigned with the more flexible soft labels,
which comprehensively evaluates the historical information,
thereby guaranteeing the objective knowledge transfer; and 3)
the individuals in target domain are used to further estimate the
importance of xs ∈ Ds, which avoids the potential negative
transfer caused by the subjective sample labeling on Dt. In
this regard, three different CFS-DMOA variants are designed
for comparisons in the subsequent experiments to verify the
rationality of above inferences.

C. Influences of Information Diversity in Ds

To investigate whether the rich information contained in
the established source domain can promote comprehensive

knowledge transfer, an algorithm variant CFS v1-DMOA is
designed, which merely learns from the previous Pareto so-
lution. With the same basic environmental settings, compari-
son results under two groups of dynamic parameter settings
(nt, τt) ∈ {(1, 10), (10, 10)} are displayed in Table VI, where
the reported indicator “MSp” refers to the mean spacing
metric, which measures the algorithm diversity in terms of
the solution distribution on PF, and the definition is given as:

Sp(PFt) =

√
1

|PFt| − 1

∑
x∈PFt

(D(x)− D̄)

MSp =
1

T

T∑
t=1

Sp(PFt)

(19)

where D(x) is the distance between x and its nearest neighbor
on PFt, and D̄ takes the average of all D(·). Notice that the
smaller MSp, the better diversity with more evenly distributed
Pareto front.

According to the results, in most test cases, as compared
to the algorithm variant CFS v1-DMOA with only one in-
formation source, the original CFS-DMOA presents better
performance in both convergence and the evenness of solution
distribution. On one hand, rich information can no doubts
provide more selections for the knowledge transfer, which
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Fig. 3. Convergence comparison among different ETO-based DMOAs on 9 benchmark problems with (nt, τt) = (5, 10).

benefits training a more reliable regression model to screen
promising high-quality individuals in the new environment; on
the other hand, the excessive reliance on the previous Pareto
solutions is likely to make the population fall into the potential
local optima, and the blind learning from harmful information
could even lead to the negative knowledge transfer. For ex-
ample, it is highly possible for CFS v1-DMOA to suffer the
negative transfer on DF3, and in Fig. 4, the obtained PFt by
above two algorithms in three different environments of DF3
is illustrated.

As is shown, the original CFS-DMOA can better trace the
time-varying PF, which indicates the advantages of learning
from rich samples. Simultaneously, notice that the source
domain is established adaptively according to the designed
scoring mechanism in Eqs. (10)-(11), which associates differ-
ent learning samples with the changing environment, thereby
promoting more effective knowledge transfer [21].

0

1

0

2

t=16
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CFS_v1-DMOA

Fig. 4. PFt in three environments on DF3 obtained by two algorithms, where
(nt, τt) = (1, 10).

D. Advantages of Applying Soft Labels

In the proposed CFS-DMOA, the samples in source domain
is comprehensively evaluated via the cascaded fuzzy system,
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TABLE V
BENCHMARK EVALUATIONS OF DIFFERENT ETO-BASED DMOAS IN TERMS OF MHVD

Functions nt, τt KITL-DMOA CDTL-DMOA KGBC-DMOA HKTCFP-DMOA CFS-DMOA

DF1
1,10 0.3132±2.42e-02(+) 0.2534±1.37e-02(-) 0.2469±1.49e-02(-) 0.2857±1.93e-02(≈) 0.2759±1.21e-02
5,10 0.1650±1.57e-02(+) 0.1408±1.06e-02(+) 0.1493±1.14e-02(+) 0.1390±2.69e-02(+) 0.1235±8.63e-03

10,10 0.1645±2.37e-02(≈) 0.1543±8.58e-03(+) 0.1684±1.52e-02(+) 0.1035±1.81e-02(-) 0.1492±7.45e-03

DF2
1,10 0.2193±1.78e-02(+) 0.1639±1.32e-02(-) 0.1821±1.55e-02(≈) 0.1802±1.39e-02(≈) 0.1880±1.08e-02
5,10 0.1188±1.47e-02(+) 0.0926±8.89e-03(≈) 0.1106±1.15e-02(+) 0.1170±1.06e-02(+) 0.0887±6.20e-03

10,10 0.1098±9.65e-03(+) 0.0934±7.99e-03(+) 0.1021±1.20e-02(+) 0.1113±1.92e-02(+) 0.0841±6.53e-03

DF3
1,10 0.4622±2.64e-02(+) 0.4516±1.80e-02(+) 0.4334±1.51e-02(≈) 0.4823±2.01e-02(+) 0.4247±1.06e-02
5,10 0.4574±2.80e-02(+) 0.4407±2.33e-02(+) 0.4358±1.79e-02(+) 0.4434±2.94e-02(+) 0.4178±1.55e-02

10,10 0.5633±4.33e-02(+) 0.4752±1.31e-02(≈) 0.4943±2.07e-02(+) 0.5137±3.13e-02(+) 0.4786±2.08e-02

DF4
1,10 0.2675±4.35e-02(-) 0.3177±2.65e-02(+) 0.2747±2.95e-02(-) 0.3311±1.96e-02(+) 0.2984±1.80e-02
5,10 0.2467±4.28e-02(-) 0.3123±3.07e-02(≈) 0.2885±2.75e-02(-) 0.3259±3.39e-02(≈) 0.3108±1.51e-02

10,10 0.3232±3.77e-02(+) 0.2175±2.55e-02(-) 0.2374±2.97e-02(-) 0.2713±2.71e-02(≈) 0.2543±1.79e-02

DF8
1,10 0.0281±7.56e-03(-) 0.0912±9.48e-03(+) 0.0704±1.00e-02(-) 0.0938±1.50e-02(+) 0.0833±8.57e-03
5,10 0.0499±1.00e-02(-) 0.1702±1.62e-02(≈) 0.1605±2.01e-02(≈) 0.1897±1.45e-02(+) 0.1707±1.53e-02

10,10 0.0432±7.72e-03(-) 0.1819±1.23e-02(≈) 0.1772±2.43e-02(≈) 0.1961±1.80e-02(+) 0.1810±2.19e-02

DF11
1,10 0.0732±1.20e-02(+) 0.0681±8.08e-03(+) 0.0609±1.07e-02(≈) 0.0765±1.06e-02(+) 0.0567±5.96e-03
5,10 0.0670±7.50e-03(+) 0.0621±8.93e-03(+) 0.0588±7.52e-03(+) 0.0495±5.77e-03(≈) 0.0510±5.87e-03

10,10 0.0680±8.31e-03(+) 0.0619±5.54e-03(+) 0.0581±5.37e-03(+) 0.0485±6.41e-03(≈) 0.0524±6.28e-03

DF12
1,10 0.1660±2.56e-02(≈) 0.1896±1.56e-02(+) 0.1651±1.86e-02(≈) 0.2272±3.81e-02(+) 0.1644±1.64e-02
5,10 0.1133±2.08e-02(≈) 0.1053±1.05e-02(≈) 0.0948±7.02e-03(-) 0.1427±2.74e-02(+) 0.1048±1.32e-02

10,10 0.1043±1.71e-02(+) 0.0938±1.42e-02(≈) 0.0873±7.39e-03(≈) 0.1336±2.69e-02(+) 0.0926±8.00e-03

DF13
1,10 0.3849±2.18e-02(+) 0.2417±1.50e-02(+) 0.2335±1.81e-02(+) 0.2606±3.44e-02(+) 0.2209±1.95e-02
5,10 0.2809±4.35e-02(+) 0.1890±1.46e-02(+) 0.2073±1.64e-02(+) 0.1662±2.42e-02(-) 0.1796±1.27e-02

10,10 0.1939±2.41e-02(≈) 0.1853±2.19e-02(≈) 0.2040±2.03e-02(+) 0.1398±1.75e-02(-) 0.1900±1.62e-02

DF14
1,10 0.2838±3.98e-02(+) 0.2450±1.44e-02(+) 0.1127±2.36e-02(≈) 0.1891±3.78e-02(+) 0.1006±1.41e-02
5,10 0.1551±2.94e-02(+) 0.1253±1.95e-02(+) 0.1124±1.40e-02(+) 0.1361±5.91e-02(+) 0.0914±1.32e-02

10,10 0.0740±1.13e-02(-) 0.1247±3.15e-02(+) 0.1019±1.27e-02(+) 0.0819±2.20e-02(≈) 0.0912±7.96e-03
+ / - / ≈ 17 / 6 / 4 16 / 3 / 8 13 / 6 / 8 17 / 3 / 7 -

TABLE VI
INFLUENCES OF INFORMATION DIVERSITY IN SOURCE DOMAIN ON

ALGORITHM PERFORMANCE

Functions nt, τt
MIGD MSp

CFS v1-DMOA CFS-DMOA CFS v1-DMOA CFS-DMOA

DF1
1,10 0.2404±1.81e-02 0.2776±1.48e-02 0.0356±1.81e-02 0.0342±1.70e-02
10,10 0.1434±1.54e-02 0.1268±6.88e-03 0.0166±8.82e-03 0.0133±5.34e-03

DF2
1,10 0.1692±9.15e-03 0.1834±8.82e-03 0.0557±1.82e-02 0.0561±1.73e-02

10,10 0.0964±6.97e-03 0.0755±4.15e-03 0.0265±9.37e-03 0.0332±1.47e-02

DF3
1,10 4.5740±1.06e+01 0.4675±1.23e-02 0.2541±7.01e-02 0.2798±1.04e-01

10,10 4.6246±6.12e+00 0.5745±2.94e-02 0.1623±7.96e-02 0.1143±5.84e-02

DF4
1,10 0.5594±6.45e-02 0.5191±4.35e-02 0.7710±2.80e-01 0.7295±2.17e-01
10,10 0.6494±5.42e-02 0.6174±4.09e-02 0.9059±3.28e-01 0.8872±2.92e-01

DF8
1,10 0.2716±1.74e-02 0.2642±2.47e-02 0.1257±4.20e-02 0.1224±3.56e-02
10,10 0.3150±2.40e-02 0.3090±2.53e-02 0.0887±2.68e-02 0.0754±2.73e-02

DF11
1,10 0.1523±8.05e-03 0.1363±4.38e-03 0.0435±1.72e-03 0.0449±3.89e-03

10,10 0.1506±5.90e-03 0.1377±3.91e-03 0.0469±2.42e-03 0.0468±9.50e-04

DF12
1,10 0.4788±1.76e-02 0.4651±1.28e-02 0.1299±3.86e-02 0.1368±4.52e-02

10,10 0.4907±2.53e-02 0.4686±1.29e-02 0.0932±3.70e-02 0.0974±3.27e-02

DF13
1,10 0.3580±3.70e-02 0.3320±2.30e-02 0.3738±1.30e-01 0.3204±1.18e-01
10,10 0.3380±3.16e-02 0.3066±1.45e-02 0.3583±7.12e-02 0.3057±1.06e-01

DF14
1,10 0.1272±1.44e-02 0.1096±8.97e-03 0.1379±1.12e-01 0.1035±3.60e-02
10,10 0.1322±1.77e-02 0.1173±5.95e-03 0.1069±4.64e-02 0.0907±3.59e-02

which are then assigned with the soft labels in (0, 1). To
validate the advantages of such strategy in comparison to
the conventional one-hot coding, another algorithm variant
CFS v2-DMOA is designed, where the labels of source do-
main samples are based on the dominance relationship. That

is, in CFS v2-DMOA, the dominated and non-dominated indi-
viduals in Ds are labeled as “0” and “1”, respectively, whereas
the acquisition of Ds is the same as CFS-DMOA. Under the
dynamic parameter settings of (nt, τt) ∈ {(5, 10), (10, 10)},
evaluation results of above two algorithms are displayed in
Table VII.

TABLE VII
PERFORMANCE COMPARISONS BETWEEN ALGORITHMS USING SOFT AND

HARD LABELS

Functions nt, τt
MIGD MHVD

CFS v2-DMOA CFS-DMOA CFS v2-DMOA CFS-DMOA

DF1
5,10 0.1317±1.49e-02 0.1064±7.01e-03 0.1474±1.18e-02 0.1235±8.63e-03
10,10 0.1563±2.15e-02 0.1268±6.88e-03 0.1737±2.04e-02 0.1492±7.45e-03

DF2
5,10 0.0975±7.21e-03 0.0817±4.24e-03 0.1053±6.50e-03 0.0887±6.20e-03
10,10 0.0911±1.08e-02 0.0755±4.15e-03 0.0972±1.02e-02 0.0841±6.53e-03

DF3
5,10 1.3660±3.87e+00 0.4639±2.16e-02 0.4372±2.15e-02 0.4178±1.55e-02
10,10 1.2853±1.93e+00 0.5745±2.94e-02 0.5129±2.23e-02 0.4786±2.08e-02

DF4
5,10 0.6991±1.02e-01 0.6044±2.87e-02 0.3329±3.40e-02 0.3108±1.51e-02
10,10 0.6623±6.21e-02 0.6174±4.09e-02 0.2657±2.04e-02 0.2543±1.79e-02

DF8
5,10 0.3318±2.45e-02 0.3077±2.58e-02 0.1696±2.03e-02 0.1707±1.53e-02

10,10 0.3208±2.44e-02 0.3090±2.53e-02 0.1738±1.66e-02 0.1810±2.19e-02

DF11
5,10 0.1496±5.31e-03 0.1378±2.90e-03 0.0609±7.28e-03 0.0510±5.87e-03
10,10 0.1471±6.24e-03 0.1377±3.91e-03 0.0597±5.73e-03 0.0524±6.28e-03

DF12
5,10 0.5338±2.46e-02 0.5213±1.31e-02 0.1060±1.07e-02 0.1048±1.32e-02
10,10 0.4889±2.27e-02 0.4686±1.29e-02 0.0925±1.26e-02 0.0926±8.00e-03

DF13
5,10 0.3361±2.44e-02 0.2973±1.09e-02 0.2057±1.88e-02 0.1796±1.27e-02
10,10 0.3358±3.50e-02 0.3066±1.45e-02 0.2075±2.11e-02 0.1900±1.62e-02

DF14
5,10 0.1358±1.47e-02 0.1152±8.23e-03 0.1156±1.53e-02 0.0914±1.32e-02
10,10 0.1376±1.46e-02 0.1173±5.95e-03 0.1115±1.56e-02 0.0912±7.96e-03
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Fig. 5. Visualization of soft/hard labels on problem DF11, where (nt, τt) =
(10, 10).

As is shown from Table VII, the original CFS-DMOA wins
all tests in terms of MIGD, and is slightly inferior to the
variant CFS v2-DMOA in merely three test cases with regard
to MHVD, which exhibits the great advantages of using fuzzy
logic to label the source domain samples as compared to the
binary hard labels.

Moreover, on tri-objective problem DF11, the hard and soft
labels in the same environment t = 3 (where the knowledge
transfer strategy works for the first time, see Algorithm. 5)
are visualized in Fig. 5, and it can be observed that: a) some
positive samples (labeled as “1”) are deemed to have the
reference value in a medium level, and b) some dominated
negative learning samples (labeled as “0”) are deemed valuable
by CFS, which are assigned with soft labels even larger than
0.6. Therefore, it can be concluded that the designed CFS
realizes comprehensive estimations on the previous evolu-
tionary experiences from multiple views, which enables the
objective characterization of the historical information rather
than simply referring to the dominance relationship, thereby
effectively alleviating the negative transfer phenomenon.

E. Effectiveness of KMM Method

KMM method is applied in the proposed CFS-DMOA to
map the individuals in both Ds and Dt to a high-dimensional
RKHS, where the data distribution difference between the two
domains is decreased so as to promote effective knowledge
transfer. To verify the effectiveness of applying KMM method,
an algorithm variant CFS v3-DMOA is designed in this part,
where the samples in target domain directly participate in
training the regression model, whose labels are provided by
the designed CFS. Comparison results between above two
algorithms are displayed in Table VIII, where the reported
metric is MIGD and the dynamic parameter settings include
(nt, τt) ∈ {(1, 10), (5, 10)}.

According to Table VIII, in most test cases, the original
CFS-DMOA outperforms the variant CFS v3-DMOA, which

TABLE VIII
EFFECTIVENESS VALIDATION ON APPLYING KMM

Functions nt, τt CFS v3-DMOA CFS-DMOA

DF1
1,10 0.2961±2.80e-02 0.2776±1.48e-02
5,10 0.1003±9.24e-03 0.1064±7.01e-03

DF2
1,10 0.2189±1.54e-02 0.1834±8.82e-03
5,10 0.0835±1.01e-02 0.0817±4.24e-03

DF3
1,10 0.6303±6.99e-02 0.4675±1.23e-02
5,10 0.4542±5.80e-02 0.4639±2.16e-02

DF4
1,10 0.8516±1.61e-01 0.5191±4.35e-02
5,10 0.7436±1.68e-01 0.6044±2.87e-02

DF8
1,10 0.3052±2.41e-02 0.2642±2.47e-02
5,10 0.3766±2.96e-02 0.3077±2.58e-02

DF11
1,10 0.1576±8.25e-03 0.1363±4.38e-03
5,10 0.1521±7.45e-03 0.1378±2.90e-03

DF12
1,10 0.5523±3.85e-02 0.4651±1.28e-02
5,10 0.4152±3.66e-02 0.5213±1.31e-02

DF13
1,10 0.3612±3.50e-02 0.3320±2.30e-02
5,10 0.3506±2.68e-02 0.2973±1.09e-02

DF14
1,10 0.1209±1.04e-02 0.1096±8.97e-03
5,10 0.1322±2.40e-02 0.1152±8.23e-03

suggests the effectiveness of applying KMM method to al-
leviate the negative knowledge transfer. On one hand, the
weighting process on the learning sample (i.e., the individuals
in Ds) in KMM can be regarded as a further estimation on
the importance of historical information, and as a result, it
promisingly enables highly effective knowledge transfer with
the guidance of individuals in Dt. On the other hand, as it
lacks prior searching experiences in the new environment,
labeling individuals in Dt is more or less subjective, and
in this regard, the application of KMM successfully avoids
the potential negative transfer caused by the improper manual
intervention.

F. Case study of Dynamic Industrial Flow-shop Scheduling

In this subsection, a case study of dynamic flow-shop
scheduling is carried out, where some batches of work-piece
need repairing on the flow line, and the maintenance time spent
in each station (in total 6 stations are placed) depends on the
situation of work-piece. By selecting every maintenance batch
as the research object, a dynamic scheduling optimization
model is accordingly established, whose objectives contain
the minimization of 1) the makespan regarding to the whole
batch, and 2) the summed idle time of all stations. In this case
study, the baseline algorithm employed for comparison directly
applies the static optimizer to obtain the optimal solutions of
each maintenance batch, which treats the dynamic problems
as a series of individual task. By contrast, our algorithm en-
courages the static optimizer to absorb the previous searching
experiences to improve the optimization efficiency.

In the experiment, static optimizer in CFS-DMOA employs
the NSGA-II [2], and other settings remain the same. In
total 30 batches of maintenance tasks are used for algorithm
evaluation (i.e., the experiment contains 30 environments), and
average performance is compared based on following two
defined evaluation metrics. Additionally, both CFS-DMOA
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and the baseline algorithm are run 20 times to alleviate the
influence of randomness.

1) Competence. Suppose Pa and Pb denote the Pareto sets
obtained by two algorithms “a” and “b”, respectively,
and let Pab denote the Pareto solutions in set Pa ∪ Pb.
The ratio of individuals in Pab contributed by Pa (or
Pb) is adopted to reflect the competence of algorithm
“a” (or “b”).

2) Competitiveness. Let nb denote the number of indi-
viduals in Pb that can be dominated by solutions in
Pa, then the proportion of “nb/|Pb|” is deemed as the
competitiveness of algorithm “a”, and vice versa. Notice
that “na/|Pa| + nb/|Pb|” may not equal 1 due to the
existence of non-dominated Pareto solutions.

TABLE IX
COMPETENCE AND COMPETITIVENESS COMPARISON IN THE DYNAMIC

FLOW-SHOP SCHEDULING TASK

Experiments
Competence Competitiveness

CFS-DMOA Baseline CFS-DMOA Baseline
# 1 54.27% 45.73% 50.03% 40.89%
# 2 58.17% 41.83% 52.82% 34.57%
# 3 52.75% 47.25% 47.40% 44.05%
# 4 46.86% 53.14% 42.60% 49.69%
# 5 52.96% 47.04% 46.48% 37.92%
# 6 55.27% 44.73% 50.23% 37.76%
# 7 49.19% 50.81% 44.32% 42.74%
# 8 55.92% 44.08% 50.93% 37.83%
# 9 49.47% 50.53% 39.89% 43.17%

# 10 61.91% 38.09% 56.83% 34.87%
# 11 60.39% 39.61% 50.89% 37.08%
# 12 55.17% 44.83% 45.28% 37.67%
# 13 42.88% 57.12% 34.49% 53.21%
# 14 53.27% 46.73% 45.45% 39.72%
# 15 53.88% 46.12% 45.23% 34.77%
# 16 64.33% 35.67% 58.37% 27.70%
# 17 44.25% 55.75% 36.43% 50.68%
# 18 51.44% 48.56% 46.45% 43.31%
# 19 64.15% 35.85% 59.50% 31.18%
# 20 52.70% 47.30% 50.22% 43.13%

Average 53.96% 46.04% 47.69% 40.10%

According to Table IX, the proposed CFS-DMOA, which
follows the idea of evolutionary transfer optimization, out-
performs the baseline algorithm that individually processes
each scheduling task in most cases, which can contribute
7.92% more Pareto solutions by average in 20 experiments.
Notice that in the 7-th experiment, the baseline algorithm
can averagely provide more than half Pareto solutions in the
30 environment, but its competitiveness score is 1.58% lower
than that of CFS-DMOA. Simultaneously, 47.69% of Pareto
solutions obtained by the baseline will be dominated by the PS
of CFS-DMOA in an average level, and these results indicate
the reliability and practicality of our algorithm in real-world
optimization scenes. According to the scatter plots shown
in Fig. 6, the proposed CFS-DMOA can well adapt to the
changing environments, which is able to provide more Pareto
solutions with better quality for the decision-makers.
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Fig. 6. Scheduling results of two maintenance tasks.

G. Outlook for Future Work

Based on above results and discussions, the proposed CFS-
DMOA has achieved several promising progresses, whereas
there are still some spaces for further improvement. Firstly,
developing more powerful evolutionary algorithms to serve as
the static optimizer no doubts benefits enhancing the over-
all performance [7], [13], [37]; secondly, investigating other
mechanisms to quantify the dynamic behaviors could provide
more in-depth insights on handling DMOPs [21], [41]; lastly, it
is also promising to apply the proposed CFS-DMOA to more
real-world scenes [4], [8], [47], which encourages the pop-
ularization of ETO-based algorithms in various optimization
tasks, where the transfer of previous valuable experiences can
promote better working efficacy.

V. CONCLUSION

In this paper, a novel CFS-DMOA has been proposed to
solve DMOPs, where a cascaded fuzzy system is designed
to objectively characterize the value of historical information.
Based on a comprehensive evaluation in terms of both conver-
gence and diversity, samples in Ds have been assigned with
soft labels, which breaks the limitations of one-hot coding and
benefits promoting objective knowledge transfer. In addition,
KMM method has been applied to avoid labeling samples in
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Dt, which decreases the data distribution difference between
above two domains, thereby benefiting efficient knowledge
transfer.

Experimental results have shown the superiority of CFS-
DMOA in effectively handling various dynamic behaviors,
which outperforms other four state-of-the-art ETO-based
DMOAs in most benchmark evaluations. Moreover, the great
competitiveness of CFS-DMOA with regard to alleviating the
negative transfer has been sufficiently validated, where the
rich information contained in source domain, the introduction
of soft labels, and the application of KMM method have
collaboratively endowed our algorithm with the excellent per-
formance. By promoting objective and comprehensive knowl-
edge transfer, the proposed CFS-DMOA has addressed the
issue of “how to transfer” from an innovative perspective of
information characterization, which paves a new way to break
through the bottleneck of negative transfer.
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