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Abstract— With the rapid development of high-speed
train, health monitoring of high-speed train traction power
system has gradually become a popular research topic.
The traction asynchronous motor, as a key component in
the traction power systems, greatly affects the reliability,
stability, and safety of high-speed train operation. Normally,
when faults occur, the train needs to immediately slow
down or even stop to avoid unimaginable losses, resulting
in limited fault data. Traditional data-driven fault diagnosis
methods may face the local optimum problem during the
optimization process when training samples are insuffi-
cient. In this study, a novel gossip strategy-based fault
diagnosis method is proposed to prevent the local optimum
problem, thus improving fault diagnosis performance. The
proposed gossip strategy-based fault diagnosis method
is validated on the hardware-in-the-loop (HIL) high-speed
train traction control system simulation platform, and the
experimental results unequivocally show that the proposed
method outperforms other well-known methods.

Index Terms— high-speed train, fault diagnosis, local op-
timum, gossip strategy, neural network.

I. INTRODUCTION

H IGH-SPEED train has the advantages of punctuality,
comfort, and convenience, and has become a main-

stream transportation choice in recent years. Due to its
widespread adoption, the health monitoring of high-speed
trains is paramount to ensure reliability and stability during

This work is partially supported by the National Natural Science
Foundation of China (62233012), the Jiangsu Provincial Qinglan Project
(2021), the Research Development Fund of XJTLU (RDF-20-01-18),
XJTLU Research Enhancement Fund (REF-23-01-008) and the Suzhou
Science and Technology Programme (SYG202106).

Yihao Xue and Xiaohan Chen are with the School of Ad-
vanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou,
China, 215123, and also with the Department of Electrical En-
gineering and Electronics, University of Liverpool, Liverpool, L69
3GJ, United Kingdom (email: Yihao.Xue21@student.xjtlu.edu.cn; Xiao-
han.Chen20@student.xjtlu.edu.cn).

Rui Yang is with the School of Advanced Technology, Xi’an
Jiaotong-Liverpool University, Suzhou, 215123, China (email:
R.Yang@xjtlu.edu.cn).

Baoye Song is with the College of Electrical Engineering and Automa-
tion, Shandong University of Science and Technology, Qingdao 266590,
China (email: Songbaoye@sdust.edu.cn).

Zidong Wang is with the Department of Computer Science, Brunel
University London, Uxbridge, Middlesex UB8 3PH, United Kingdom
(email: Zidong.Wang@brunel.ac.uk).

Corresponding author: Rui Yang

operation [26]. The traction system, a crucial component of
high-speed trains, can provide power during operation. Among
the components of the traction system, the asynchronous motor
plays a vital role in determining the power, energy consump-
tion, and control characteristics of high-speed train [39]. Once
the traction asynchronous motor fails, the power supply to the
system is immediately interrupted, leading to disruptions in
normal railway operations. Therefore, the health monitoring
and fault diagnosis of traction asynchronous motors are of
utmost importance for ensuring the reliable operation of high-
speed train.

In recent years, researchers have shown widespread interest
in data-driven fault diagnosis methods [8], [38]. These ap-
proaches can involve establishing diagnostic models based on
historical data without the need to construct complex physical
models [21], [48]. Therefore, data-driven methods are widely
applied in various fields such as state estimation [7], [30],
[43], consensus control [4], [11], [13], object detection [10],
[36], [46], optimal control [20], [22], [37], and fault diagnosis
[2], [15], [34]. As one of the main research directions of data-
driven methods, deep learning technology incorporates feature
learning into the model-building process, enabling automatic
learning of pattern features from samples [29], [35]. When
sufficient fault data is available, these methods can effectively
extract deep fault features and perform accurate fault diagnosis
[26], [27]. However, for high-speed train fault diagnosis,
obtaining an ample amount of fault data is challenging. In the
event of a fault in the traction system of a high-speed train,
immediate deceleration or even a complete stop is necessary
to prevent substantial losses. Consequently, only a restricted
amount of fault data can be recorded and utilized for fault
diagnosis, posing challenges for existing deep learning-based
methods in high-speed train fault diagnosis [5], [33].

Considering the scarcity of data in high-speed train fault
diagnosis, accurately estimating complex model parameters
poses a challenge, restricting the overall model performance
and impeding the comprehensive capture of intricate structures
and representations within the fault data. Such a challenge
often manifests as the model getting trapped in local optimum
within the parameter space [45]. As a result, facing the
frequent challenge of local optimum in existing fault diag-
nosis methods, especially in scenarios with limited fault data,
current research has proposed various solutions. These efforts
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primarily focus on two key aspects: optimization algorithm
improvement [9] and lightweight model design [40].

To address the potential local optimum problem in high-
speed train fault diagnosis, researchers have made improve-
ments to the traditional deep learning methods by focusing on
enhancing optimization algorithms and designing lightweight
models [9], [40]. Regarding the enhancement of optimization
algorithms, the emphasis is typically on two aspects: (1)
Incorporating the momentum term into the gradient descent
algorithms to effectively prevent the drawback of easily get-
ting trapped in local optimum, thereby improving the model
stability during convergence process [23]; (2) Implementing
adaptive learning rate methods, where small (large) learning
rate is applied to update low-frequency (high-frequency) pa-
rameters [45]. However, relying solely on momentum terms
and adaptive learning rates may not always be sufficient
to ensure that the models will not trap in local optimum
during convergence process, leaving the possibility for further
improvement in existing methods.

Dedicated to alleviating the local optimum issue, re-
searchers have proposed numerous lightweight models for
high-speed train fault diagnosis with limited samples [6], [38].
Lightweight models aim to effectively reduce model size and
computational parameters, extracting common fault features
rather than specific ones, thus avoiding local optimum caused
by limited data [14]. However, existing studies often utilize
pruning algorithms or employ concise model structures to
reduce the computational parameters, which may result in in-
complete or insufficient in-depth information due to structural
constraints, subsequently affecting the diagnostic accuracy.
Noted that the limitations of existing methods for avoiding
local optimum problem are listed in Table I.

TABLE I
LIMITATIONS OF EXISTING METHODS IN AVOIDING LOCAL OPTIMUM.

Existing methods Literature Limitations
Momentum term [9], [18], [23] Risk of oscillation or divergence.
Adaptive learning rate [9], [16], [45] Persistence of local optimum problem.
Pruning algorithm [6], [12], [42] Potential loss of beneficial neuron.
Concise model structure [14], [38], [40] Incomplete in-depth feature.

Based on the literature analysis above, although existing re-
search on optimization algorithm enhancement and lightweight
model design can address the potential local optimum issue in
high-speed train fault diagnosis, there is possibility for further
improvement. An intuitive idea is to propose an efficient opti-
mization algorithm to enhance the model convergence perfor-
mance and introduce a parameter-limited deep neural network
model to ensure the model’s proficiency in in-depth feature
extraction. In this way, the improved fault diagnosis method
can offer the following advantages: (1) Significantly avoiding
local optimum during the optimization process, thereby pro-
moting model convergence; (2) Effectively extracting in-depth
fault features and circumventing local optimum due to the
lightweight network structure, thereby enhancing diagnostic
performance.

Drawing on the preceding discussion, the objective of this
study is to enhance the efficacy of high-speed train fault
diagnosis by proposing a novel neural network optimization al-
gorithm and introducing a lightweight fault diagnosis method.

Specifically, leveraging the benefits of the gossip strategy in
knowledge sharing and consensus building, which can assist
the model in exploring various regions of high-dimensional
space during the convergence process to circumvent local
optimum and converge towards the optimal global solution.
Therefore, a novel gossip strategy-based optimization method
is proposed in this study to steer clear of suboptimal solutions
that may emerge during the convergence process. Moreover,
capitalizing on the advantages of separable convolution and
long short-term memory (LSTM) in reducing the model pa-
rameters while maintaining excellent feature extraction capa-
bilities [24], [38], this study devises an efficient separable
convolution LSTM (SC-LSTM) model. In comparison to other
sophisticated neural network models, the constructed SC-
LSTM can exhibit exceptional proficiency in capturing tem-
poral dependencies in lengthy sequences and has remarkable
generalization and expression abilities in environments with
limited fault data.

In summary, the proposed intelligent gossip strategy-based
SC-LSTM method can adeptly extract fault features with
limited model parameters while averting the potential local
optimum problem in high-speed train fault diagnosis. The key
contributions of this study include:

1) A novel gossip strategy-based optimization algorithm is
proposed to address the local optimum challenge during
the model convergence.

2) An efficient gossip strategy-based SC-LSTM method is
proposed for intelligent high-speed train fault diagnosis,
aiming to capture temporal dependencies of extensive
sequences and extract in-depth fault features with lim-
ited model parameters, enabling the mitigation of local
optimum issue.

3) The proposed gossip strategy-based SC-LSTM method
is successfully applied to fault diagnosis in high-speed
train traction motors, and experimental results demon-
strate its superiority over six existing fault diagnosis
methods. Additionally, the proposed gossip strategy-
based optimization algorithm demonstrates satisfactory
results under different initialization conditions compared
to several well-known optimization algorithms.

The remaining parts of this paper can be organized in
three sections. Section II provides a technical description
and explanation of the proposed gossip strategy-based fault
diagnosis method. In Section III, the proposed method is
compared with six existing fault diagnosis methods on the
hardware-in-the-loop (HIL) high-speed train traction control
system simulation platform. Finally, Section IV summarizes
the conducted research and outlines future works.

II. METHODOLOGY

A. Gossip Strategy-based Optimization Algorithm
The origin of the gossip strategy can be traced back to the

research on distributed systems [1]. One significant challenge
in distributed systems is to ensure that all nodes in the network
have consistent information, especially when the network is
dynamic or subject to failures. The gossip strategy can facil-
itate direct information sharing among nodes without relying
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on a centralized coordinator or broadcasting information to all
nodes. This decentralized information propagation enhances
system robustness and fault-tolerance. In the event of a node
failure, information can still propagate through the remaining
nodes, swiftly updating information in a dynamic system.

Building on the aforementioned principles, this study in-
tegrates the gossip strategy into the convergence process of
neural networks and proposes a novel gossip strategy-based
optimization algorithm tailored for high-speed train fault di-
agnosis. This integration allows the model to circumvent local
optimum through information exchange, thereby enhancing
the convergence performance of traditional neural network
optimization algorithms. Concretely, a designated number of
recorders are incorporated during the convergence process,
and in each iteration, these recorders probabilistically save
the current model parameters. During the model convergence
process, if the loss value of the model ceases to decrease after
a predetermined number of iterations, all recorders engage
in a weighted average computation between the recorded
model parameters and the current model parameters. In in-
stances where the model converges to a local optimum, the
information exchange and parameter combination mechanisms
among recorders contribute to bolstering the global exploration
capability of the optimization process, facilitating escape from
the local optimum. The proposed gossip strategy-based op-
timization algorithm follows a structured four-step process,
as illustrated in Fig. 1, including local update, information
exchange, parameter combination, and collective update.
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Fig. 1. Flowchart of the proposed gossip strategy-based neural network
optimization algorithm.

1) Local Update: In the local update phase, the SoftMax
cross-entropy function is adopted to classify multi-class faults.
For the training set
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hypothesis function hθ (x) can be represented as follows:
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where θ = [θ1, θ2, . . . , θκ ] represents the set of parameters
associated with each class in the multi-class classification
model. The cost function can be represented as follows:
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1
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where j = 1, 2, . . . ,κ, and 1 represents a logic function
outputting 1 for a true condition and 0 otherwise.

To address the minimization problem of the cost function
L (θ), firstly, the cost function L (θ) needs to be simplified
into the following form:
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Then the partial derivative of L (θ) is calculated as below:
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Finally, the gradient function is obtained as below:

∇L (θ) =

[
∂L (θ)

∂θ1
,
∂L (θ)

∂θ2
, . . . ,

∂L (θ)

∂θκ

]
(5)

The obtained gradient function ∇L (θ) is plugged into the
stochastic gradient descent algorithm [31] to minimize L (θ).
Specifically, assuming that the model parameters recorded
by the recorders at the t-th iteration during model training
process are represented as θ(t), in each iteration of the neural
network over the specified subset of training data (Xi; yi), the
following update needs to be performed:

θ (t) = θ (t− 1)− η∇L (θ (t− 1)) (6)
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Fig. 2. Structure diagram of the proposed gossip strategy-based SC-LSTM fault diagnosis model.

where η represents the learning rate, and ∇L (θ (t− 1))
signifies the gradient of the loss function L concerning the
parameters θ (t− 1) computed on a mini-batch training data
(Xi; yi).

2) Information Exchange: In this step, a series of recorders
are introduced to store the model parameters at different
iteration periods. During the model convergence period, there
exists a slight probability that the model parameters of the
current iteration will be saved to a random recorder. This
implies that there is a certain probability of sharing between
the model parameters of different iteration periods and the
recorders. Assuming there are k recorders participating in the
information exchange step, the parameters received by the i-th
recorder can be signified as θi(t) (i ∈ [1, 2, . . . , k]), i.e. the
model parameters saved by the recorder at the t-th iteration.

3) Parameter Combination: If the loss value cannot be
reduced after a certain number of iterations during the model
convergence, it is possible that the model has been trapped in
local optimum. In this way, the recorders that stored previous
model parameters need to engage in combination operation
with the current model parameters, thereby assisting the model
escape from potential local optimum. In other words, the
model needs to combine the parameters of current iteration
with the parameters received by the recorders at different
iterations. In this study, a weighted average of the current
model parameters and the model parameters saved by the
recorders is performed. Let βi denotes the weight associated
with the parameters stored by the i-th recorder, the combined
parameters θc(t) for recorder i can be computed as below:

θc(t) = α · θ(t) +
k∑

i=1

βi · θi(t) (7)

where α is a weighting factor that determines the proportion of
the current model parameters. The weight βi can represent the
proportion of model parameters saved by the recorders, which
is predefined or dynamically determined based on factors such

as information exchange frequency, recorder performance, or
other heuristics. Through parameter combination, it is able
to integrate the parameter information saved by the recorders
with the parameter information of the current iteration. If the
model of current state is in a local optimum, the parameter
combination operation can assist the model in escaping from
the local optimum state.

4) Collective Update: After the parameter combination step,
a set of updated model parameters can be obtained via the
weighted average of the parameters from the current iteration
and the parameters saved by the recorders. In the collective
update step, the model is updated via gradient descent based
on the updated model parameters, with the collective update
process expressed as follows:

θ(t+ 1) = θc(t)− η∇L (θc(t)) (8)

B. Fault Diagnosis Procedure based on Gossip
Strategy-based SC-LSTM Method

This paper proposes a novel lightweight gossip strategy-
based SC-LSTM method for high-speed train fault diagno-
sis. By incorporating a lightweight model structure and an
innovative optimization algorithm, the proposed method can
mitigate the local optimum challenge and improve diagnostic
performance. The process of the proposed method is depicted
in Fig. 2, with detailed model information exhibited in Table II.
The model takes the high-speed train fault signals as the
input data, dividing the collected signals into multiple sample
segments. The lightweight SC-LSTM model comprises con-
volutional layers, separable convolutional layers, and LSTM
layers. Following the model feature extraction, the proposed
gossip strategy-based optimization algorithm is employed for
iterative model convergence. Ultimately, the trained model is
utilized for accurate and efficient fault diagnosis.

In the proposed fault diagnosis method exhibited in Fig. 2
and Table II, an efficient lightweight SC-LSTM model is
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TABLE II
DETAILED INFORMATION OF THE SC-LSTM.

Layer Filters
(Units)

Kernel/
Stride

Activation
Function Input Output

Input / / / (N, 1) (N, 1)
Conv1D 32 64/2 ReLU (N, 1) (N/2, 32)
Batch Norm / / / (N/2, 32) (N/2, 32)
Conv1D 32 64/2 ReLU (N/2, 32) (N/4, 32)
Batch Norm / / / (N/4, 32) (N/4, 32)
Depthwise Conv1D 32 8/1 ReLU (N/4, 32) (N/4, 32)
Pointwise Conv1D 32 1/1 ReLU (N/4, 32) (N/4, 32)
Batch Norm / / / (N/4, 32) (N/4, 32)
Depthwise Conv1D 32 8/1 ReLU (N/4, 32) (N/4, 32)
Pointwise Conv1D 32 1/1 ReLU (N/4, 32) (N/4, 32)
Batch Norm / / / (N/4, 32) (N/4, 32)
Flatten / / / (N/4, 32) (8N)
Reshape / / / (8N) (N/16, 128)
LSTM 128 / / (N/16, 128) (N/16, 128)
LSTM 64 / / (N/16, 128) (N/16)
Dense / / SoftMax (N/16) n

introduced to achieve accurate fault diagnosis for high-speed
trains and avoid the potential local optimum issue. Specifically,
considering the effectiveness of conventional convolutional
layers in fault feature extraction, they are utilized to capture the
fault patterns and general characteristics of the input samples.
Subsequently, the separable convolutional layers are set after
the convolutional layers to delve into profound fault features
while significantly reducing the parameters involved in con-
volutional operations. Table II delineates that the separable
convolution comprises two parts: depthwise convolution and
pointwise convolution. The depthwise convolution operates
independently on feature vectors within each channel, captur-
ing in-depth features of the fault signals; simultaneously, the
pointwise convolution performs weighted operations on each
channel’s feature vectors to establish relationships between
channels and obtain the final feature representation [38].
Additionally, the LSTM layers are employed to leverage long-
term memory and low computational parameters, capturing
temporal fault characteristics, and effectively addressing issues
like gradient vanishing or exploding [24].

To enhance clarity in illustrating the fault diagnosis process,
Algorithm 1 presents the pseudocode of the proposed fault
diagnosis method. The proposed gossip strategy-based fault
diagnosis method mainly consists of five steps:

1) Data Acquisition and Preprocessing: collect the relevant
operational signal data (such as current, voltage, speed,
etc.) from the high-speed train traction motor, divide
the collected long sequential signal data into sample
segments, and conduct normalization.

2) Model Initialization: initialize the weights and biases of
the introduced SC-LSTM model.

3) Model Training: randomly shuffle the operational signal
segments and partition them into training and test sets. In
each iteration, select a specified subset from the training
set for model training and update the network parameters
utilizing the backpropagation algorithm.

4) Iterative Optimization: utilize the proposed gossip
strategy-based optimization algorithm to enhance the
effectiveness of gradient descent and mitigate the local
optimum problem.

5) Model Validation: utilize the SoftMax function to com-
pute the distribution probability of each test sample
across different fault categories. The fault prediction

Algorithm 1 Gossip strategy-based fault diagnosis method

Input data: D =
{
x(i), y(i)

}ℑ
i=1

Output: The optimal fault prediction
{
ŷ(j)

}ℑ
j=1

Initialize the model
for each epoch do

for each batch do
1. Extract the in-depth and time-series features of
x(i) by separable convolution and LSTM;
2. Compute cost function L (θ) by (1) and (2);
3. Obtain the gradient ∇L(θ) by (3) to (5), and
conduct local update of parameters θ via (6);
4. Save the current model parameters θ(t) with a
tiny probability to a random recorder for
information exchange;
5. Perform parameter combination by (7) if the loss
value no longer decreases;
6. Continue to update the combined model
parameters θc(t) via (8).

end for
Log the current classification result

{
ŷ(j)

}ℑ
j=1

end for
return The optimal fault prediction

{
ŷ(j)

}ℑ
j=1

result is determined by selecting the category with the
highest probability.

6) Fault Diagnosis: upon receiving new operational data,
the trained model is capable of conducting fault diagno-
sis. The model can provide output information regarding
the state of the high-speed train traction system, encom-
passing the identification of faults and the categorization
of specific fault types.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed gossip strategy-based fault diagnosis method
is validated on the HIL high-speed train traction control system
simulation platform as shown in Fig. 3. In this paper, the
proposed method is compared to other recently published
methods on the same simulation platform. The models used
in this study are implemented using TensorFlow and Keras,
trained on a server featuring a Xeon(R) Intel(R) CPU E5-
2678v3@2.50GHz, 64-GB main memory, and an NVIDIA
Titan RTX GPU.

A. Description of the HIL High-Speed Train Traction
Control System Simulation Platform

The current signal data are sourced from the HIL high-
speed train traction control system simulation platform, jointly
established by Central South University and Zhuzhou Electric
Locomotive Research Institute, as shown in Fig. 3. This
simulation platform comprises five main components: a signal
conditioner, a personal computer (PC), a traction control unit
(TCU), a power source and a dSPACE real time simulator
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DRTS

Power

Source

TCU

PC

Signal

Conditioner

Fig. 3. HIL high-speed train traction control system simulation platform.

(DRTS). The dSPACE simulator is utilized to implement high-
speed computation of the simulation platform under both nor-
mal and fault states, while the TCU is equipped with a traction
asynchronous motor control program and hardware protection
measures. To inject faults in the HIL setup, modifications to
the relevant system settings can be made, following the traction
and driving control system fault injection benchmark platform
[41]. The collected dataset encompasses pre-set current signals
for three fault types: rotor broken bars (RBB), inter-turn short
circuit (ISC), and air gap eccentricity (AGE). These current
signals are acquired through sensors monitoring the rectifier
AC-side current, under specific working condition (280 km/h)
and severity levels (minor, moderate, and serious), with a
sampling frequency of 2.5 kHz. Consequently, there are ten
operation states, comprising one normal state and nine fault
states, each with specific information outlined in Table III,
with visualization exhibited in Fig. 4.

TABLE III
FAULT DETAILS OF HIL HIGH-SPEED TRAIN SIMULATION PLATFORM.
Label Fault

Type
Severity

Level Fault Location Working
Condition

(a) Normal None Traction Asynchronous Motor 280 km/h
(b) RBB Minor Traction Asynchronous Motor 280 km/h
(c) RBB Moderate Traction Asynchronous Motor 280 km/h
(d) RBB Serious Traction Asynchronous Motor 280 km/h
(e) ISC Minor Traction Asynchronous Motor 280 km/h
(f) ISC Moderate Traction Asynchronous Motor 280 km/h
(g) ISC Serious Traction Asynchronous Motor 280 km/h
(h) AGE Minor Traction Asynchronous Motor 280 km/h
(i) AGE Moderate Traction Asynchronous Motor 280 km/h
(j) AGE Serious Traction Asynchronous Motor 280 km/h

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 4. Normalized rectifier AC-side current signals for ten operation
states of the HIL high-speed train traction control system simulation
platform.

B. Performance Comparison with Existing Methods

In this study, we validate the proposed high-speed train
fault diagnosis approach by benchmarking it against six re-
cently published deep learning-based methods: 1-dimensional
CNN (1DCNN) [17], CNN-LSTM (CLSTM) [3], deep CNN
(DCNN) [28], gated recurrent unit-multilayer perceptron
(GRU-M) [47], 6-layer residual neural network (ResNet06)
[44], and 1-dimensional separable convolutional neural net-
work (Sep-CNN) [14]. To underscore the effectiveness of
the proposed SC-LSTM method, we also explore lightweight
alternatives, including CLSTM, ResNet06, and Sep-CNN.
These lightweight models aim to maintain diagnostic accuracy
while reducing model complexity and computational demands.
Additionally, to comprehensively explicate the superiority of
the proposed method over other methods, the ablation exper-
iments are conducted across various fault diagnosis methods.
Specifically, the gossip strategy-based optimization algorithm
is selectively applied to enhance the optimization process
of each model. Furthermore, ten repeated experiments are
undertaken to assess the effectiveness of various methods,
and the experimental results are exhibited in Fig. 5 and Ta-
ble IV, comprising the best accuracy, worst accuracy, average
accuracy and the model trainable parameters. It is noteworthy
that the ten repeated experiments use the same number of
training samples but different randomly selected subsets of
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Without Gossip Strategy-based Optimization Algorithm

Best Acc Worst Acc Average Acc
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Fig. 5. Performance of different methods on HIL high-speed train
traction control system simulation platform.
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1DCNN CLSTM DCNN GRU-M ResNet06 Sep-CNN SC-LSTM

1DCNN CLSTM DCNN GRU-M ResNet06 Sep-CNN SC-LSTM

Without gossip strategy-based optimization algorithm

With gossip strategy-based optimization algorithm

Fig. 6. Visualization of features extracted by different methods based on t-SNE.

TABLE IV
PERFORMANCE OF DIFFERENT METHODS ON HIL HIGH-SPEED TRAIN

TRACTION CONTROL SYSTEM SIMULATION PLATFORM.
Methods Best Acc Worst Acc Average Acc Model Params

Without gossip strategy-based optimization algorithm
1DCNN [17] 96.10% 8.35% 46.26% 9, 004, 042
CLSTM [3] 99.64% 76.50% 94.58% 861, 922
DCNN [28] 89.20% 36.66% 76.76% 3, 162, 894
GRU-M [47] 48.00% 30.04% 42.91% 14, 712, 846

ResNet06 [44] 95.74% 83.03% 92.78% 1, 074, 986
Sep-CNN [14] 99.36% 66.33% 93.03% 20, 891

SC-LSTM 99.73% 89.47% 98.43% 203, 274

With gossip strategy-based optimization algorithm
1DCNN [17] 85.03% 81.31% 83.18% 9, 004, 042
CLSTM [3] 100.00% 93.47% 98.45% 861, 922
DCNN [28] 81.85% 76.13% 79.89% 3, 162, 894
GRU-M [47] 76.68% 74.41% 75.44% 14, 712, 846

ResNet06 [44] 96.64% 92.38% 95.41% 1, 074, 986
Sep-CNN [14] 99.00% 88.20% 96.06% 20, 891

SC-LSTM 100.00% 99.18% 99.66% 203, 274

TABLE V
PERFORMANCE ENHANCEMENT BY INCORPORATING GOSSIP

STRATEGY-BASED OPTIMIZATION IN DIFFERENT METHODS.
Methods Best Acc Worst Acc Average Acc

1DCNN [17] −11.07% 72.96% 36.92%
CLSTM [3] 0.36% 16.97% 3.87%
DCNN [28] −7.35% 39.47% 3.13%
GRU-M [47] 28.68% 44.37% 32.53%

ResNet06 [44] 0.90% 9.35% 2.63%
Sep-CNN [14] −0.36% 21.87% 3.03%

SC-LSTM 0.27% 9.71% 1.23%

the training dataset, ensuring the fairness and reliability of
the results. For clarity, in Table IV, optimal accuracy results
and minimum model parameters are highlighted in bold font,
while suboptimal accuracy results and model parameters are
underlined.

The SC-LSTM method, without leveraging the gossip
strategy-based optimization algorithm, exhibits enhanced di-
agnostic accuracy compared to alternative methods, with im-
provements ranging from 0.37% − 51.73% (best accuracy),
6.44% − 81.12% (worst accuracy), and 3.85% − 55.52%
(average accuracy). When employing the gossip strategy-based
optimization algorithm, the proposed method maintains its
advantages over other methods, with improvements spanning
from 0 − 23.32% (best accuracy), 5.71% − 24.77% (worst
accuracy), and 1.21% − 24.22% (average accuracy). The

experimental findings unequivocally establish the superiority
of the proposed method over the other six recently published
methods in terms of fault diagnosis performance. Furthermore,
as indicated in Table V, the integration of the gossip strategy-
based optimization algorithm leads to overall performance
enhancements across different methods, particularly notable
for the worst and the average accuracy.

Concerning the model trainable parameters, it is evident
that despite the competitive fault diagnosis performance of
1DCNN, DCNN, and GRU-M methods, the presence of the
potential local optimum problem impedes further enhancement
in the diagnostic accuracy. Conversely, the lightweight models
CLSTM, ResNet06, and Sep-CNN achieve commendable re-
sults owing to their concise model structures. However, due to
the structural or layer limitations inherent in these lightweight
models, their diagnostic accuracy is marginally lower than that
of the proposed method. In summary, the proposed method
can adeptly reduce model parameters, mitigating the risk
of encountering the local optimum issue while ensuring the
in-depth feature extraction capability. The best, worst, and
average accuracy shown in Table IV can distinctly underscore
the superiority of the proposed fault diagnosis method.

To visually illustrate the efficacy of the gossip strategy-
based optimization algorithm in alleviating local optimum
and underscore the superiority of the proposed SC-LSTM
method, t-SNE is employed to visualize the worst results
of different methods in ten repeated training experiments.
The visualization results presented in Fig. 6 reveal that the
proposed SC-LSTM method, whether with or without the
gossip strategy-based optimization algorithm, exhibits com-
pact and well-separated data clusters, with almost all samples
congregating in their respective regions. In contrast, among the
other six methods without the inclusion of the gossip strategy-
based optimization algorithm, 1DCNN and GRU-M evidently
manifest the local optimum issue, as evidenced by numerous
samples from different categories mingling in the same region.
Additionally, CLSTM, DCNN, ResNet06, and Sep-CNN mis-
classify 3-4 states into the same category. With the integration
of the gossip strategy-based optimization algorithm, although
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some methods still struggle to accurately distinguish a few
samples, there is a notable improvement compared to scenarios
without the inclusion of the gossip strategy-based optimization
algorithm. Generally speaking, the proposed gossip strategy-
based optimization algorithm can effectively enhance model
convergence stability, mitigate local optimum, and contributes
to an overall improvement in diagnostic accuracy.

C. Performance Comparison with Different Number of
Training Samples

In high-speed train operation scenarios, acquiring sufficient
fault data poses a considerable challenge, primarily due to
stringent safety considerations. Our study strategically ad-
dresses this limitation by employing a random selection of
varying training sample sizes, ranging from 500 to 4000, to
thoroughly evaluate the fault diagnosis performance of both
the proposed method and six other approaches. Additionally,
we ensure that each sample is unique, thereby avoiding any
potential biases caused by duplicate samples. To fortify the
reliability of our findings, ten repeated experiments are still
conducted to mitigate the impact of neural network random-
ness on diagnostic results. The average diagnostic accuracy of
these methods under various training sample sizes is depicted
in Fig. 7, with detailed comparisons presented in Table VI.
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Fig. 7. Performance of different methods on HIL high-speed train trac-
tion control system simulation platform with different training samples.

TABLE VI
PERFORMANCE OF DIFFERENT METHODS ON HIL HIGH-SPEED TRAIN

TRACTION CONTROL SYSTEM SIMULATION PLATFORM WITH DIFFERENT

TRAINING SAMPLES.
Methods 500 1000 2000 3000 4000

Without gossip strategy-based optimization algorithm
1DCNN [17] 31.39% 39.44% 41.86% 45.77% 43.86%
CLSTM [3] 33.61% 63.88% 77.53% 81.87% 91.71%
DCNN [28] 49.43% 51.70% 61.51% 71.18% 77.08%
GRU-M [47] 44.26% 41.53% 50.01% 47.45% 42.73%

ResNet06 [44] 22.83% 43.78% 78.80% 85.52% 92.08%
Sep-CNN [14] 40.98% 80.05% 74.02% 77.54% 86.54%

SC-LSTM 49.79% 87.09% 93.28% 95.96% 97.22%
With gossip strategy-based optimization algorithm

1DCNN [17] 51.99% 57.16% 65.69% 73.76% 80.34%
CLSTM [3] 50.08% 70.39% 86.99% 87.05% 98.42%
DCNN [28] 51.60% 56.93% 65.75% 72.48% 77.80%
GRU-M [47] 48.59% 53.82% 64.03% 70.28% 74.86%

ResNet06 [44] 17.89% 57.60% 85.34% 89.61% 94.32%
Sep-CNN [14] 60.04% 85.69% 80.78% 89.27% 91.04%

SC-LSTM 60.23% 87.84% 90.61% 97.86% 99.47%

TABLE VII
PERFORMANCE ENHANCEMENT BY INCORPORATING GOSSIP

STRATEGY-BASED OPTIMIZATION IN DIFFERENT METHODS WITH

DIFFERENT TRAINING SAMPLES.
Methods 500 1000 2000 3000 4000

1DCNN [17] 20.60% 17.72% 23.83% 27.99% 36.48%
CLSTM [3] 16.74% 6.51% 9.46% 5.18% 6.71%
DCNN [28] 2.17% 5.23% 4.24% 1.30% 0.72%
GRU-M [47] 4.33% 12.29% 14.02% 22.83% 32.13%

ResNet06 [44] −4.94% 13.82% 6.54% 4.09% 2.24%
Sep-CNN [14] 19.06% 5.64% 6.76% 11.73% 4.50%

SC-LSTM 10.44% 0.75% −2.67% 1.90% 2.25%

It can be observed that without using the gossip strategy-
based optimization algorithm, the SC-LSTM method exhibits
an average diagnostic accuracy improvement of at least 0.36%,
7.04%, 14.48%, 10.44%, and 5.14% compared to the other
methods for training sample scales of 500, 1000, 2000, 3000,
and 4000, respectively. Upon the integration of the gossip
strategy-based optimization algorithm to augment the conver-
gence process, the SC-LSTM method continues to exhibit
superiority with improvements of at least 0.19%, 2.15%,
3.62%, 8.25%, and 1.05% over other methods across different
training sample scales. Notably, the proposed gossip strategy-
based optimization algorithm can consistently contribute to
enhancing the overall diagnostic accuracy of each model under
various sample scales, as detailed in Table VII. In general, the
experimental results clearly affirm that the proposed method
can effectively address the local optimum issue, thereby show-
casing positive performance in high-speed train fault diagnosis
across diverse training sample scales.

D. Performance Comparison with Different Optimization
Algorithms

To validate the superiority of the proposed gossip strategy-
based optimization algorithm over other optimization algo-
rithms in high-speed train fault diagnosis, this study intro-
duces several well-known optimization algorithms based on
the review [32], including: stochastic gradient descent with
momentum (SGDM), Nesterov accelerated gradient (NAG),
root mean square propagation (RMSprop), adaptive moment
estimation (Adam), adaptive gradient (Adagrad), and adap-
tive delta (Adadelta). In the experiments conducted in this
study, the model parameters are initialized using the Xavier
uniform (Xa-U) initialization. Furthermore, recognizing the
potential impact of different initialization methods on model
convergence and local optimum, this study refers to [19] and
[25] to select several well-known initialization methods for
a comprehensive evaluation of the above optimization algo-
rithms. These methods include random, LeCun normal (Le-
N), LeCun uniform (Le-U), He normal (He-N), He uniform
(He-U), Xavier normal (Xa-N), and Xa-U initialization.

SGDM NAG RMSprop Adam Adagrad Adadelta Gossip
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Fig. 8. Performance of different optimization algorithms on the pro-
posed SC-LSTM model.
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TABLE VIII
PERFORMANCE OF DIFFERENT OPTIMIZATION ALGORITHMS WITH

DIFFERENT INITIALIZATION APPROACHES ON THE PROPOSED

SC-LSTM MODEL.
Methods Random Le-N Le-U He-N He-U Xa-N Xa-U
SGDM 86.15% 96.63% 84.58% 97.33% 92.75% 90.64% 90.99%
NAG 93.16% 90.69% 88.93% 96.64% 96.41% 95.28% 97.68%
RMSprop 87.75% 97.03% 94.24% 94.94% 93.19% 93.88% 94.32%
Adam 91.96% 87.17% 93.87% 98.55% 98.42% 88.83% 98.22%
Adagrad 51.68% 98.03% 97.64% 96.54% 97.93% 98.79% 90.54%
Adadelta 96.07% 96.37% 95.25% 94.64% 97.46% 94.78% 96.55%
Gossip 93.39% 98.25% 98.35% 98.93% 99.66% 99.55% 99.66%

Given the remarkable performance of the SC-LSTM model
in high-speed train fault diagnosis, the selected optimiza-
tion algorithms are deployed on the SC-LSTM model under
different parameter initialization conditions to verify their
performance. To minimize the impact of randomness in neural
network training, each method undergoes ten repeated ex-
periments, and the average diagnostic accuracy is presented
in Fig. 8 and Table VIII. It can be seen that the proposed
gossip strategy-based optimization algorithm can consistently
achieve satisfactory results under different parameter initializa-
tion conditions. Particularly under Le-N, Le-U, He-N, He-U,
Xa-N, and Xa-U initialization conditions, the average accu-
racy compared to other optimization algorithms increases by
0.22%-11.08%, 0.71%-13.77%, 0.38%-4.29%, 1.24%-6.91%,
0.76%-10.72%, and 1.44%-9.12%, respectively. Notably, Ada-
grad performs relatively poorly under random initialization,
possibly due to the significant variation in initial gradients,
making it challenging to adjust the learning rate based on
past gradients. Additionally, the complex and ill-conditioned
optimization landscapes may hinder Adagrad’s effective con-
vergence. The experimental results provide clear evidence
that the proposed gossip strategy-based optimization algorithm
can effectively alleviate local optimum and has excellent
convergence ability in high-speed train fault diagnosis.

TABLE IX
DETAILED INFORMATION OF DIFFERENT OPTIMIZATION ALGORITHMS ON

THE PROPOSED SC-LSTM METHOD.
Methods Worst

Acc
Training

Loss
Test
Loss Epochs Total

Duration
SGDM 46.46% 0.9119 0.9475 29 29.332s
NAG 91.11% 0.0020 0.0980 198 199.584s

RMSprop 77.59% 0.0556 1.3831 90 110.160s
Adam 88.48% 0.0096 0.5193 188 189.504s

Adagrad 29.76% 0.6466 3.0858 132 128.304s
Adadelta 86.66% 0.0848 0.7903 68 68.544s
Gossip 99.18% 0.0063 0.0141 227 228.816s

To convincingly illustrate the effectiveness of the gossip
strategy-based optimization algorithm, this study compares
the proposed algorithm with several renowned optimization
algorithms in terms of convergence performance, as shown in
Table IX. During the model training process, we monitor the
training accuracy metric. Once the training accuracy ceases
to improve within a certain number of epochs, the best-
performing model on the training set is applied to the test set
for fault diagnosis. Table IX summarizes the detailed informa-
tion of the experiment with the worst diagnostic performance
on the test set under the condition of Xa-U initialization for
different optimization algorithms in ten repeated training runs.
The information includes the worst accuracy, final training

loss, test loss, the number of epochs, and the total duration. It
can be observed that the gossip strategy-based optimization al-
gorithm achieves competitive results in terms of worst diagnos-
tic accuracy, final training loss, and test loss. Additionally, due
to the need for gossip strategy-based optimization algorithm to
synthesize information saved by various recorders for further
gradient descent during the training process, it requires more
epochs for model convergence, resulting in longer processing
time. Overall, the proposed gossip strategy-based optimization
algorithm exhibits more effective convergence performance
and stronger capability to avoid local optimum compared to
other algorithms.

IV. CONCLUSION

To enhance the diagnostic accuracy of high-speed train
traction motors, this paper proposes an innovative gossip
strategy-based fault diagnosis approach, effectively mitigating
the local optimum problem. The SC-LSTM introduced in this
method has a lightweight model structure, and the proposed
gossip strategy-based optimization algorithm can effectively
prevent the local optimum problem by facilitating informa-
tion sharing among multiple recorders. Several comprehensive
comparison experiments are conducted, pitting the proposed
gossip strategy-based SC-LSTM against six recently published
methods. The performance of each method is validated on
the HIL high-speed train traction control system simulation
platform. The diagnostic results clearly indicate the superiority
of the proposed method over the other six methods. The
experimental findings also illustrate that the proposed gossip
strategy-based optimization algorithm can reasonably enhance
the convergence process, effectively addressing the local op-
timum issue and thereby improving diagnostic accuracy. For
future works, it is worthwhile to apply the proposed method
to similar yet different mechanical fault diagnosis tasks, such
as gearbox, engine, and turbine diagnostics. Additionally, to
address the time-consuming nature of the proposed method,
further improvements to the gossip strategy-based optimization
algorithm, such as incorporating momentum factors or adap-
tive modules, could accelerate model convergence and enhance
diagnostic performance.
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