This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNNLS.2022.3209632, IEEE Transactions on Neural Networks and Learning Systems

FINAL VERSION 1

Partial-Neurons-Based Proportional-Integral
Observer Design for Artificial Neural Networks: A
Multiple Description Encoding Scheme
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Abstract—This paper is concerned with a new partial-neurons-  the research on ANNs and, in particular, the dynamics analysis
based proportional-integral observer (PIO) design problem for jssues (e.g. stability, synchronization and state estimation prob-

a class of artificial neural networks subject to bounded distur- lems) of ANNs have recently received considerable research
bances. For the purpose of improving the reliability of the data . t t 11 1261. 1291, 1401, [42]. [48

transr_nission, the multiple description encod_ing mechanis_m is Interest, see e.g. [1], [26], [29], [ ,]' [42], ,[ . o
exploited to encode the measurement data into two identically ~ In the context of ANNSs, the state information of the artificial

important descriptions, and the encoded data are then trans- neurons plays a crucially important role in accomplishing
mitted to the decoders via two individual communication chan- some specific tasks such as optimization, approximation and
nels susceptible to packet dropouts, where Bernoulli-distributed ¢4t diagnosis. Unfortunately, the states of certain neurons

stochastic variables are utilized to characterize the random . ht not b | irable f h
occurrence of the packet dropouts. An explicit relationship is M!ght Not be always acquirable for many reasons such as

discovered that quantifies the influences from the packet dropouts the large size of ANNs, the tight coupling between neurons,
on the decoding accuracy, and a sufficient condition is provided and the limits of network resources. In this case, an effective
to assess the boundedness of the estimation error dynamics. Fur-way is to estimate the state information of the neurons by
thermore, the desired PIO parameters are calculated by solving ,5king use of the available measurement outputs of the ANNS.
two optimization problems based on two metrics (i.e. the smallest A dinal h h effort has b devoted to th

ultimate bound and the fastest decay rate) characterizing the ' ccor. '”9 Yy, muc resgarc_ erfort has been devoted to the
estimation performance. Finally, the applicability and advantage investigation of state estimation problems for ANNs, and some

of the proposed PIO design strategy are verified by means of an representative results can be found in [8], [21], [22], [25], [28],

illustrative example. [38], [43].

Index Terms—Artificial neural network, partial-neurons-based A typical proportional-integral observer (PIO) contains both
state estimation, proportional-integral observer, multiple descrip- ~ proportional and integral terms in its structure, and is therefore
tion encoding scheme, packet dropout. capable of simultaneously utilizing current and historical infor-

mation. Compared to the traditional Luenberger observer that
uses current information only, the PIO is in a better position
to restrain steady-state error and enhance the insensitivity to
RTIFICIAL neural network (ANN) is an information parameter variations/noises, which are much desired in a great
processing system that imitates the behavior characteariety of engineering applications such as manufacturing,
istics of the human brain or animal nervous system. Owirgwer system, network communication and aerospace [3], [4],
to its outstanding performance in fault tolerance, parallelisif6], [45]. Accordingly, the PIO design problem has attracted a
adaptability and self-organization, the ANN has found extegreat deal of research interest [17], [18], [27], [31], [32] and
sive applications in various fields including, but are not limitedome recent results concerning the PIO design specifically for
to, artificial intelligence, image recognition, signal processingNNs can be found in [46], [47].
[10], [12], [14], [16], [19], [33], [35], [37]. Therefore, the past In practical engineering, it is quite common that certain
few decades have seen an ever-growing enthusiasm towardarons’ measurements are inaccessible, and this leads to
a substantial challenge in the state estimation of ANNSs.
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in a remote way, where the corresponding information aby making use of the measurement information from a frac-
transmitted via network-based communication mediums fton of neurons only; 2) a MDES, which outperforms the
the benefits of low cost and high reliability. Typically, artraditional uniform-quantization-based encoding mechanism
ANN has its measurements collected by the sensors and tlirerrror resilience, is implemented on the sensor-to-observer
transmitted to the remote estimator through the communicaticmannel to elevate the reliability of the codeword transmission;
network, thereby facilitating the remote state monitoring. Neand 3) sufficient conditions are established to assess the
work measurements are often massive high-throughput dataundedness of the error dynamics of the partial-neurons-
and their transmission in the network medium (of limitethased state estimates and also reveal the joint influences from
communication capacity) is inevitably subject to channel cothe randomly occurring packet dropout and decoding errors
gestion which, in turn, results in the phenomenon of data the estimation performance.
packet dropout. In this regard, it becomes a momentousNotation. The notation used here is fairly standard except
task in ANN state estimation problems to leverage adequatbere otherwise stated. For a vector |jall2 and |la]|co
data transmission mechanisms with a view of curbing dati@scribe the Euclidean norm and infinite norm, respectively.
collisions and easing communication overheads. AccordingBor z,y € N*, let (Z) be the remainder obtained on dividing
an increasing research interest has been paid to the statey y and Iet[%J e the quotient, i.ex = yL%J + <§>.
estimation problems for various ANNs under data transmission
mechanisms, see e.g. [7], [34] and the references therein. II. PROBLEM FORMULATION AND PRELIMINARIES
Among commonly deployed data transmission schemes An podel of The Artificial Neural Network
practice, the multiple description encoding scheme (MDES)
has proven to be particularly efficient in mitigating the ad-
verse impact induced by the packet dropout phenomenon aH
enhancing the reliability during data transmission. The MDES- !
based signal transmission consists of three steps, namely, Z.(k+1) =a,z,(k) + ) w,&(z,(k)) + b, (k) (1)
1) encoding the raw data into multiple descriptions with 7=1
fewer bit o_cc_upancies and identica_l impc_)rtance;2) _transmittirflgr L€ €2 {1,2,...,1}, wherez,(k) € R is the state
the descriptions to the _decoder side via parallel md_epend%tptthe ith neuron at time instant; the scalarsa,, b, and
channels; and 3) decoding the data to restore the original one are known constants which represent the state feedback
by using the received descriptions. Note that more descriptiQsufficient, the disturbance coefficient and the interconnection
succegsfully transmitted to the decc_)der would Igad to Sma”ﬁfength between neuronsand j, respectively;u, (k) € R
decoding error and subsequently higher decoding accuracyanotes the disturbance input satisfying
Though MDES has been originated for the purpose of media
communication, it has now been applied in a wide range of o.(k)|? <o 2

engineering systems such as distributed storage systems, diygi > 0 being a given scalar. In additiog,(-) : R — R

sity communication systems and image/audio/video e”COdifEbresents the activation function of thté neuron satisfying
[2], [5], [9], [13], [15], [30], [39]. Nonetheless, despite its

popularity in the general area of signal processing, the MDES (&, (p1)—¢,(p2) — ¢,(p1 _p2))T
has gained relatively little attention in the context of state % _ s _ <0 (3
estimation problems due primarily to the substantial challenge (§J(p1) &(p2) = a1 pQ)) = 3)
in appropriately handling the influence from decoding errénd&,(0) = 0, for Vp1,p2 € R, whereq, and ¢, are known
on estimation performance, and this constitutes another m@@nstants.

vation of our current investigation.

Concluding the literature review carried out so far, iB. Measurements of Partial Neurons

makes both theoretical and practical sense to look into theag giscussed previously, it is often the case in practice that
partial-neurons-based PIO design problem for ANNs undgpyy o fraction of neurons have their measurement outputs
the MDES. In doing so, we are confronted with three potentigl aijaple for dynamics analysis. In this paper, without loss of

challenges outlined as follows. 1) For a given ANN with onl enerality, we assume that the outputs of the firgt < ()
partial accessible measurements, it appears non-trivial to mgg'urons éan be accessed, which are modeled by
ify the conventional P10 for the sake of estimating the states of '

all neurons. 2) With many kinds of data transmission strategies v (k) = ¢, (k) 4)

in hand, it is a demanding task to choose a proper one that A .

not only alleviates the packet-dropout-induced impacts but al¥gere fors € & = {1.’ 2,....h}, (k) € R is the

improves the reliability of data transmission. 3) In the presengéeasurement output andis a known constant.

of the decoding errors, it is mathematically difficult to pin

down the boundedness condition of estimation error dynamfes Multiple Description Encoding Scheme

while quantifying the effects from the decoding errors on the In the realization of ANNs, data transmissions often suffers

estimation performance. It is, therefore, the main aim of thisom the phenomenon of packet dropouts due to limited

paper to cope with the above-identified challenges. communication capacity. To improve the efficiency of resource
The primary contributions made in this paper are highlighttilization, the MDES is used to alleviate the adverse effects

ed as follows:1) a partial-neurons-based PIO is developedhduced by the packet dropouts. As shown in Fig. 1, the two

that is capable of estimating the all neuron states of ANNEescription encoding scheme is adopted in this paper. Under

Consider an ANN witH neurons described by the following
8de|:
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n—— . P is triggered to generate the decoded value. Furthermore, if

(Newonl ) (Newon2 ) .- (Newonh - ( Newon/ )  the packet-dropout occurs in both channels “C 1" and “C 2
e o o o (i.e. ¢*(k) = 0, ¢%(k) = 0), neither of description packet is
‘ e ‘ Sensor Sensor transmitted to the decoder. According to the zero-order holder
n® A T a® (ZOH) strategy, the latest decoded measurenygiit — 1) is
utilized to generate the estimation signal.
ke || | ‘E“""‘”‘ reokr! ‘“"‘“ Based on the above analysis, let us introduce three random
C‘lg‘"‘) czlz(k) c1lg 3 czlr ® c1lg,(k> czlr,(m variables(, (k) (n = 0, 1, 2) as follows:
ﬁ o \E'_\ Lrg m ﬁﬂ [e @ m Calk) 2 5(p(k), n), (k) = ¢"(k) + ¢ (k)
' \(k)l ' uk)l c y,(k)l 2
where ° ¢,(k) =1 and

s
E{¢o(k)} £¢ = (1 — ¢u)(1 — ¢a)

E{Ci(k)} £ = ¢u(l — ¢a) + da(l — ¢u)

Fig. 1: Partial-neurons-based PIO design problem under

MDES for ANN. E{C2(k)} ZCQ = ¢uda.
Here,o{-, -} is the Kronecker delta function defined as
o 1, i=j
such a scheme, each sensor measurement is encoded into two 0, i#j.

enote the decoding error as,, (k) = i,(k) —vy.(k) with n
0, 1, 2) representing the number of received description
ackets Ab|d|ng by the reception of the description packets

different descriptions according to the corresponding encodlng
rules, and then the descriptions are simultaneously transmit (?
to the decoding devices via two mutually independent ch

nels.
The mathematical model of the MDES can be EXpressedzeEﬁtgr?]gricggte ru;u(je) ?Srl%tctl(;aeéglzsstrategy, the decoded mea-
follows. el
Encoder: (k) =Co(k), (k= 1) + C1 (k) (5 (k) + €1.(k))
(k) =7 (y.(k)) + G (k) (3 (k) + e2,.(F))
{mk) ) €Y ) ok (k — 1) + (1 = Golk)) k)
+ Gi(k)er (k) + Ca(k)ea, (k). (7)

where /7 (-) and ¢¢(-) are two encoding functions, angl(k)

andr,(k) are two individual descriptions af, (k). .
Decoder: D. Partial-Neurons-Based PIO

By means of the decoded measurements from the first

Yak),  wheng"(k) =1, ¢%(k) =0 d mea |
4 u 4 neurons, the PIO to be designed is of the following form:
g M), wheng (k) =0, ¢() = 1 fors—1.2 ... h
P (k). k), whengt (k) = 1,6 (k) = 1 T
9,k — 1), when ¢ (k) = 0, ¢ (k) = 0(6) 2,k +1) =a,2,(k Zwugj i, (k
where, for: € 9, y,(k) is the decoding value corresponding N
to y,(k); h¥(-) and hd(-) are two-side decoding functions +fro(k )tf“(yl( A) — aud(k))
and he(-, -) is the central decoding function. Here, two ok +1) =0.(k) + f3,.(5.(k) — c..(k))
mdependent identical-distribution Bernoulli sequengé&sk) 8)
and ¢¢(k) are utilized to govern the phenomenon of packet * fore=n+1,h+2 ....1

dropout with probability distributions:
Prob{¢% (k) = 1} =¢,, Prob{¢“(k) =0} =1— ¢,

d n d n
Prob{¢"(k) = 1} =¢a, Prob{¢"(k) =0} =1 . wherez, (k) € R is the state estimate of thth neurony(k) €

Remark 1:In accordance with (6) and Fig. 1, if no packetR is the integral of theth neuron’s output estimation error;
dropout occurs (i.e¢®(k) = 1, ¢%(k) = 1), both the de- andf,,, fo, andfs, are the observer gains of thh neuron.
scription packets, (k) andr,(k) are received, and the central Remark 2:In the practical application of ANNSs, it is quite
decoderhS(-, -) (labeled as “CD”) is enabled to perform thecommon that the outputs of some neurons are immeasur-
decoding operation. If the packet-dropout occurs in chanrale/inaccessible because of the large network size and the
C 1" only (i.e. ¢“(k) = 0, ¢¢(k) = 1), only the description complicated network topology. Accounting for this, a partial-
packetr, (k) is available to the side decodgf(-) (labeled as neurons-based PIO is constructed, in which only the state esti-
“SD 2"). If the packet-dropout occurs in channel “C 2" onlymates for the firsk. neurons are generated with “innovations”.
(i.e. 9“(k) = 1, ¢%(k) = 0), only the description packet(k) In fact, with more neurons having accessible measurement
is available and the side decodkf(-) (labeled as “SD 1") outputs, a better estimation performance can be achieved.

z,(k+1) =a,,(k)+ Zwugj z,(k 9
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4
_In the sequel, denoting, () = z,(k) — #,(k), the estima- + (o (k) + Co)-Feo(k)
tion ?rror:jylna2m|cs f(})thh neuron is obtained as: + (fl(k) + 471)961(@
PROrE= LS l + (Go(k) + &) Fealk) (13)
Z.(k+1) =(a, — foc)@, (k) + b, (k) + Y w,&,(k) where
P . {A_cm —Fl} Y2 m P {B]
- fl,LQL(k) - Co(k)f27L€0,L(k) o F3O I ’ 10|’ 10
- Cl(k)fQ,Lgl,L(k) - CQ(k)fQ,LEQ,L(k) o é |:—F2:| k é k) — =
0+ 1) =0u(k) + i () + Colk)fieo,(K) TR e Rel e
Gi(k) 2G(k) — G, CG(k) £ Gk) — G

+ C1(k) f,e1,0 (k) 4+ Ca(k) f3,82,. () (10
o forv=nh+1,h+2 ...,1,

z,(k+1) =a,2,(k)+ bv,(k

+ Z Wugj

(11)

where

gL(k) é§ (xb(k)) - f(iL(k))

E. Problem Statement

Definition 1: The dynamics of the augmented system (13)
is said to be exponentially ultimately bounded in mean-square
sense if there exist constaris< o« < 1, 8 > 0 andy > 0
such that

E{|9(k)|*} < a*B+7. VE>0 (14)

For presentation clarity, we introduce the following notawhere~ is said to be an asymptotic upper bound|df)]|2

tions: in mean-square sense.
cok) 2 [50,1(14) c0.2(k) Eo,h(k)] T '_I'he objective of this paper is to devise a PIO for ANN (1) by
N T using decoded measurements from only a part of neurons such
e1(k) £ [e11(k) e12(k) e1,n(k)] that a) the exponentially mean-square ultimate boundedness of
k) 2 k k N the augmented system (13) is guaranteed subject to bounded
e2(k) . (e2a(k)  e22(k) EQ’hT ) disturbances(k) and the decoding erroes (%), £1(k), e2(k),
i(k) £ [21(k) Z2(k) - @(k)] and b) appropriate observer parameters are determined through
; : - T minimizing the attained upper bounds or maximizing the deca
ER) £ ak) &(k) & (k)] A PP 9 Y
o(k) £ [or(k) va(k) - wk)]”
y(k) 2 [i(k)  yo(k) yh(k)]T [1l. MAIN RESULTS
k) 2 [?jl(k) s () yh(k)]T A. MuIFipIe Descr_iption Encoding Procedure_ _
N T In this subsection, we endeavor to formalize the encoding
o(k) = [Ql(k) 02(k) Qh(kﬂ procedure through two steps, nameihe index generation step
A =diag{a1, a2, ..., a} andthe index assignment stefpecifically, the measurement
B =diag{b;, by, ..., b} output is quantified into the corresponding index by the index
T generation operation, and then the generated index is assigned
OO —dlag{cl, C2y, ..., Ch} . . . .
_ to the corresponding cell of a certain mapping matrix on the
Fou=diag{fi1,  frz2, -, fin} basis of the nested index assignment principle [36].
Foo =diag{fo,1, f22, ---s fon} Index Generation: To begin with, the scalar quantizer
Fsy =diag{fs1, fs2, .-, fan} n7.(-) : R = R is constructed as follows:
C=[Co Onxa—nmy], W=lwylix d, z>d
F, F —d, < —=d
Lo = o) R I,
. —d+ -, —dtu <z < —d+u
Accordingly, the estimation error dynamics can be rearranged
in the following compact form: (15)

wherez € R denotes the signal to be processéds a known

E(k+1) =(A — F,C)z(k) + Bu(k) + WE(k) scalar representing the saturation valgiés a positive integer
— Fro(k) — Co(k) Faeo (k) corresponding to the quantization level; andu, are defined
B by u; £ 2(t — 1)dg~" anduy £ 2tdg~", respectively, for

G (k)Faei(k) — Co(k) Faea(k) (12) e {1,2,...,g}. As can be seen from (15), the interval
o(k + 1) =o(k) + F5CZ(k) + Co(k)Fseo(k) [—d, d] is divided intog parts®;(d) (i € &) with
Fseq(k Fseq(k).
TaE B ) + Gk e k) Ri(d) = [—d+2(i — 1)dg™", —d + 2idg™")
By setting 9(k) = [z7(k) gT(k)]T, one obtains the _ .

following augmented system:

Ik +1) = 9(k) + #WE(k) + Bu(k)

=0

d) () R;(d)
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for any(i,j € &) andi # j. 113
To ensure that the quantizer(-) is not saturated, we 21415
introduce an adjustable parametgrand define 61719
(K
m (v, (k)) = mm(%)) 8|10 11
! _ 12 13|15
such that, oncdy,(k)| > d, y,(k)/m, belongs to the interval 416 17
[—d, d]. Consequently, it can be concluded that the quantiza-
tion errore, (k) £ y,(k) — n,(v.(k)) is computed as 18 | 19 ] 21
20 | 22
k) < (16)
o ] Fig. 2: Nested index assignment fpr= 8 andq¢ = 1 in [36].
Forn, (y.(k)) € R, (k) (d), the following index is generated
0, (1. (1 (k) ) = (k) (7
with m, (k) € & ands € $. are used to place the corresponding indices. In this paper, we

Index Assignment: The generated indexu,(k) can be are interested in the mapping matrix only f_or the case 1. _
assigned into the corresponding cell of the mapping mati this sense, the cells located on the main diagonal and its
M by applying the nested assignment principle. Without lo&$arest diagonals of the mapping matrix are placed indices,
of generality, we assume that the mapping matvixis ap x p and the exgmple of the n.este.d assignment principle with8
matrix with p being an even number. Subsequently, in the ligi'd¢ = 1 is showcased in Fig. 2.
of the location in the mapping matrixt, a pair of descriptions )

(<.(k), 7,(k)) is determined. Here, (k) and, (k) correspond B- Decoding Procedure

to the row and column locations, respectively. In this subsection, we are interested in developing a de-
The index assignment functiop,(-) : NT — NT x N* is coder by using the received codewords. The key point of the
given as decoding procedure is to obtain the decoded vajlé) as

accurately as possible based on the received location informa-

J(ma (k) & (X7 (ma(k)), x§ (ma(k
X (ma (k) (X (ma (k) x; (ma (K) tion of the indexm, (k) in the mapping matrix\. Note that,

N—

(M(/{) +1, (k) + 1)7 if v,(k)=1 (()\;1ving to the %os)sibledd(rc;p?rl:t of tlhe descript}io? gackg(tﬁ)
: _ : the row number) and, (k) (the column number) during data
(pu(k) +1, (k). !f vi(k) = 0 and . (k) fs even transmission, the value of index, (k) might be inaccurate and
= q (m(k), (k) +1), if v,(k) =0andu, (k) is odd  thys the decoding accuracy might be unqualified. In view of
(1o (k) + 2, (k) + 1), if v, (k) =2 andy,(k) is even  this, one viable way to achieve the desired decoding accuracy
(1 (k) + 1, (k) +2), if v,(k) =2 and i, (k) is odd is to construct an index estimator for the sake of obtaining an
(18) estimate of the indexn, (k) in terms of the reception of the
with descriptions.
ma (k) ma (k) The following index estimation strategies are developed
(k) =] —=] = | ——=] based on the individual situation of the available descriptions
2q+1 3 at the decoder side.
v (k) :<ml(/€)>: <m1(k)>. o Case 1:neither of channels suffers from the packet
2¢+1 3 dropouts. The central decoder is activated to determine
Here, x"(-) denotes the row assignment function apf{-) the estimated indes, (k) based on the available descrip-

stands for the column assignment function, by which the tionsc(k) andr, (k). The estimated index, (k) can be
single descriptionm, (k) is mapped into the description pair eApr|C|tLy ccalculated as follows:
(.(), 7,(k)) with i (k) £ o7 (6 (k), (k)

r 36, (k) —2, if ¢ (k) =1k
G (k) =x" (m, (k) (k) it (k) = 7.(k) _
7u(k) =X (ma (k). 3¢.(k) =3, if ¢, (k) =7,(k)+ 1 andg,(k) is odd
' A ={ 3,(k), if ¢,(k) =7,(k)—1 andg,(k) is odd
In this case, the encoding functiofy-) and/;(-) in (5) are 36,(k) — 4, if ¢ (k) =7(k) + 1 andq,(k) is even
presented as follows: 3¢,(k) =1, if (k) =7(k)—1 andg,(k) is even
r r (20)
(k) =x; (91 (m(yﬂﬂ))) wheres(-, ) is the index estimation function. It is not
(19) difficult to find that the estimation accuracy is 100% and
0 (yu (k) =x¢ (91 (nz (yz(k)))). the index estimation error is
mz(k) £ mz(k) - mz(k) =0 (21)

Remark 3:According to the regulations of the nested as-
signment principle stated in [36], the cells located on the maine. Case 2:only one of the channels suffers from the packet
diagonal and the nearegty diagonal of the mapping matrix dropouts. If the packet-dropout occurs in channel “C 17,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI:
10.1109/TNNLS.2022.3209632, |IEEE Transactions on Neural Networks and Learning Systems

FINAL VERSION 6

decoder “SD 2" is triggered to determine the estimated Bearing (30) in mind, we have the conclusion that the
index m, (k) based on the received descriptiorik). In  decoding erroe, (k) satisfies (25)-(26), which ends the proof.

this case, we set the diagonal element of thek)-th [ |
column as the estimation of,(k), which is determined  Remark 4:Inspired by (25)-(26), we can rewrite the decod-
as ing error as follows

i, (k) £ o (1(k)) = 37.(k) — 2. (22) e(k) =Co(k)lleo(R) Il + Cu (k) [lex (R)
If the packet-dropout occurs in channel “C 27, decoder + Co(k)[e2(R) |- (31)

“SD 1”is enabled to determine the estimated indexk) Combinina (25)-(26) together vield
based on the received descriptigrik). Similarly, the ombining (25)-(26) together yields

diagonal element of thg (k)-th row is utilize to generate h
the estimation ofn, (k). Accordingly, we have ler (k)| < w1(k) £ Z (5€z(k))2 32)
i, (k) 2 0% (s,(k)) = 3,(k) — 2. (23) =
Here,c?(-) ands(-) are the index estimation functions.aln
From (22)-(23), we can easily find that R h )
lea (k)| < (k) £ 4| Y (aulk))™. (33)

i, (k)] < 2. (24) —

« Case 3:both of channels “C 1" and “C 2" suffer from pyrthermore, when neither of the description packets is trans-
the packet dropouts. In such a case, based on the ZQ¥itted to the decoder, a reasonable assumption is that the
strategy, the latest decoded measuremgtt — 1) is  ypper bound of|o(k)|| is greater thanw; (k). Recalling the
directly employed to compensate the valueya(). condition @y (k) = bwy(k), there exists a positive scalar

x> 5 such that
C. Analysis of the Decoding Error

After developing the encoding and decoding procedures,
we are now in a position to conduct a detailed mathematicalDefinings(k) = E{s(k)} as the average decoding error, we
analysis for the purpose of evaluating the decoding error inoatain
guantitative way.

leo(R)|I < Kooz (k). (34)

Theorem 1:For the MDES (5)-(6), the decoding error be- e(k) =E{Co(k)}leo(R)I| + E{C(k)}|ex ()
tween the measurement(k) and the decoded valug, (k) + E{C2 (k) Hle2(F) |l
(1 € 9) satisfies =Colleo(®)ll + Culler(R) || + Callea(k) |
() — {5171(k), for the side decoder 25) <Corma(k) + G (k) + Gewa(k)
SV T\ ey (k), for the central decoder =(kCo + 51 + C2)wa2(k)
and ER(Pu, pa, w2 (k)). (35)
le1. (k)| < e (k) _ - . .
{ s (k)] < (k) (26) 1t is easy to see thaR(¢y,¢q, wa(k)) is monotonically

decreasing with respect t¢,, and ¢,. As such, we draw
Proof: To begin with, by recurring to the expressions ofhe conclusion that, with the decrease of packet dropout rate
(k) andv,(k), we have (i.e. the increase af,, or ¢4), the upper bound of the average
ma(k) = 3. (k) + v (k). 27) decoding error wquld decrease as well, which caters to the
practical engineering.
In line with (18) and (22)-(23), the index estimation error

satisfies o . D. Analysis of the Estimation Error
|7, (k)| < {0’ two descrl_ptl_ons_ are re_celved 28) To start with, a useful lemma is provided as follows to
2, one description is received facilitate the subsequent derivation.
Based on (20) and (22)-(23), the inverse quantization func-Lémma 1:For any real-valued vectors z, and matrixt” >
tion can be constructed as follows: 0 of compatible dimensions, the following holds:

5 (1 (2 (k) — 1)d TYs 1TV S < @iV 4 25Ty s 36
(k) 2 —a+ P ZC ) FYreYE<pIYEL Y (30

for 1, (k) € &. Consequently, the decoder functions can B¥herey > 0 is a given constant.

expressed as Theorem 2:Let the pqsitive scalargq, vs, ©3, Par P51 L6
the observer gain matrices,, F> and F3 be given. Suppose
he (s (k)) =, (crf (gz(k))) that there exist positive scalats, v, 13, 14, s, 16, and
; vy positive definite matrixZ satisfying the following inequality:
B (k) =i (of (7 (R)) (30) 1
U, - {‘1’5 *3} <0 37)
e (k). 7)) =i (o (s (R), (k) ) v
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where +2(Co(k) + Co)eg (k) F T ZWE(k) + 2(Co(k) + o)
Ul 2diag{0?, —ihol, —3l, —pal, —bsI,} x 85(@9@1@: v(k) +2 (Culk) + C)et (Nk)ﬁz Z
ad W B HGF 0 0 x AI(k) +2(Cu(k) + G et () FTZHE(k)
3 6 0 0 0 0 +2(&(k) + Q) el (k) FT Z2B0(k) +2(So(K) + Go)

L O P x (G (k) + )T R FTZFeo(k) +2(Galk) + Go)

o 0 0 o0 U o0 x &3 (k)F" Z.9(k) +2(Ca(k) + G2)e3 (k). F T Z
0 0o 0o o0 o U ) x WEK) +2(Ca(k) + o)l (k) FT ZBu(k)

VA ezl wle [‘Z t+ ﬁlﬁ%z— Y61 _;61] +2(Co(k) + Go) (C2(k) + Co)e3 (k) FT ZFeo ()

e T o +2(G(K) +G) (o) + B)F (M FT 2T )}

. » G.2. &, _E{ﬁT(k)(MZ,Qz Z)9(k) + EX (k)W T ZWE (k)

Yi=Vestee®, 1= \/ o T T oT ()BT ZB0(k) + Gz () 7T Z.F=o(h)

g 2 3 & L +<161 ()FTZFe1(k) + Goes (k) FTZ Fea(k)

VIS Gr ot o+ o F Qo 2 diaglQ, 0} + 26T (k)W T 2t 9(k) + 27 (k) BT Z.t9(k)

A & PPN R + 207 (k)BT ZW E(k) + 200es (k) F T Za/0(k)

TR T 20t (DFTZHER) + 2och ()77 2804

O daglany, ae o ) + 28T (R)FT 2 K) + 20T (R)FT ZWEK)

Q2 =diagg21, 22, ..o, g} + 26T (k). FT Z2Bu(k) + 266 (k) FT 2t (k)
Then, the dynamics of the augmented system (13) is expo- ZT 2T 7 B
nentially ultimately bounded in mean-square sense and the + 268 (MFT 2V (k) 26y ()72 (k)}
asymptotic upper bound is given by :E{ﬁT(k) (MTZQ{ —Z+0Z ) (k) +5T( )

) _ oo x WEZWEK) + o (k) (BT 2B — ho1)v(k)
) Yot + (kb3 + ko + Brhy + 5) l; (T) a8) + T 0 (G FTZF — bal)eo(k) + X (k) (G.FTZ
K Amin(Z)Y1 ' x F —ul)e1(k) +ed (k) (LF " ZF — sI)ea(k)
~ Proof: Construct the following Lyapunov functional can- + 26T (kYW T Z0(k) + 20T (k)BT Z.79(k)
didate: + 20T (K) BT ZWEK) + 200l (k).FT Z.a (k)
V(9(k)) =07 (k) Z0(k). (39) +260eL (k) FTZWEK) + 260el (k) FT 2B (k)
Accordingly, the difference of/ (J(k)) is expressed as + 24:1€1T(k)9TZ,Qﬂ9(k) + 2§1€1T(k)97TZV// ¢ (k)
and then we have + 2Coed (K) FTZWE(K) + 26oes (k) F T Z Bo(k)
£ {7V (9(4))} — 1V (0(k)) + av” (k)v(k) + Pseq (k)eo (k)
T
E V(004 1) - V(08)} + el (R)z1(k) + vse] (R)za (k) . (41)
=IE{ (dﬁ( )+ W Ek) + Bo(k) + (Co(k) + Co)F It is inferred from (3) that
ol TR e ) R
X ea( ) 2 (01 ws(kz) + B (k) Ew] [-Q2 1] )] ST
+ (Co(k) + o) Feo(k) + (Gi( G) Fer(k) Recalling (36), we obtain from (41)-(42) that
+ (&) + ) Fea(k)) — 0" < )m( )}
—E{ﬂT( W T Zat — Z)0(k) + EX (k)W T ZWE(k) E{RV( Ek))}
) o <E{p" (k)¥1p(k)} — 1 E{V (9(k))}
ol (k)BT ZBv(k) + (Co(k) + Co) "eg (k) F T + oo (k)v(k) + Psel (k)eo(k)
x ZFeo(k) + (C1(k) + G) e (k).FT Z2.F 21 (k) + huel (k)e1 (k) + sed (k)ea(k) (43)
+ (k) + G) eF (k) FT ZFea(k) + 26T (k)W "
where
x Z.0(k) 4 20T (k)BT Z/9(k) + 207 (k)BT
x ZWEK) +2(Co(k) + Co)ed (k) FT Za/9(k) p(k) 2 [0T (k) ET(k) oT(k) el(k) T(k) F(k)]"
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VA * * * * =1 Bl — Kt
TEOPR . s o« x S RE{V(9(k)} + %w- (48)
= o | TP \1132 Box % % =0
\Ill - @41 \1142 Jr43 Js 44
1 1 . Noticing p(1) = —1; < 0 andlimp_,o, p(h) = +00, we
0 0 0 0 1 _’%6 conclude that there exists a scaligr> 1 such thaip(hg) = 0.
0 0 0 0 0 Vi Hence, we have
Uit &+ s+ VI T Zd — Z + 1 Z — 6Qn
_ RE{V (9t —E{V (90
p33 2 T <M 49
Uy” S(ps + w6+ 1)B° 2B — ol SR (49)
U EQFTZF —asl, s Ehs+ G and
755 A Cl C_l <_12 7T _
S or Vo Vi Z 2 Wl E{V(¥(®))}
- 2 1 Tio(1 — hf)
U £(G + 2 g + 82 L8y gTrg g <SE{V T ) (50)
G e v e VOO =)
U 29T 2o + 6Qa, V' 2 BT 2o which, together with (39), indicates that
@32% TZ @4lé_ﬁ‘TZ’!Z{
A S E{l0(0)]1°}
VP EQFTZW, VP EGFTZA. 1
. o <A E{V0)}
By applying the Schur Complement Lemma, it is easy to Amin(Z)
see thatl; < 0 can be ensured by (37), which implies that <E {V(9(0))} Fio(1 — hb) (51)
= v t V2
E{RV (d(k))} | Amin(Z)RG Amin(Z2)R5(1 — ho)
— E{V (9(K)) } + 20" (K)u(k) Denoting
+ ¥3eg (k)eo (k) + vhaet (k)ex (k) A fio(1 — h§)
T v3(t) = I Y2,
+ Pse5 (/C)Eg(k) (44) )\min(Z)ﬁo(l — ﬁo)
Denotingy; (k) £ 120+ (ks + 5tb4 + 15) s (k), we have We obtain
from (16) and (33) that o _ 2
v = lim () = o (Z)on (52)
h
_ d .
v1(k) < o0 + (Kibg + 5thy + 05) Z (ﬂg )2 £ ~, (45) Letting
wopot gaB{VOO))
which yields o T daim(2)

E{RV(9(k))} < —iE{V(I(k))} + 2. (46) we derive from Definition 1 that the dynamics of the aug-
mented system (13) is exponentially ultimately bounded in

For any scalari > 1, it follows that mean-square sense and the asymptotic upper bound is given
E {1V (9(k +1))} —E{r"V(9(k)} by
=RV (9(k+1)) = V(0(k)) } - l
_ 7w, d 2
ﬁkJrlIE{V( )} —ﬁkE{V(ﬁ(k))} Y20 + (kb3 + KCo + 5thg + 1)s5) Z;( g )
=HHIE RV (0(k)) ) + hE(h— DE{V (9(k)) } = Amin(2) 11
s ( _ le{V(ﬁ(k))} + 72) The proof is now complete. u
+ 0 (h—DE{V(9(k))} .
:hkp(h)E{V(ﬁ(k))} 1 R Ly, (47) In this subsection, the PIO is devised by solving two
optimization problems so as to achieve certain performance
where indices.
A OP 1: The first optimization problem is to minimize the
p(h) = h—1—hyy. ultimate bound of the state estimation error dynamics for the

sake of obtaining the best estimation performance. Such an
optimization problem is tackled in Theorem 3.

Theorem 3:Let the posmve scalargy, b2, p3, P4, P5, b6
and scalar, (0 < 1#1 < 1) be given. Suppose that there
RE{V(9(t)} —E{V(9(0))} exist positive scalargi, 15, 14, U5, 1 and positive definite

For any integet > 0, taking cumulative summation for the
left- and right-hand sides of inequality (47) fronto ¢ — 1
with respect tok leads to
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matricesZy, Z,, matricesFy, Fy, Fs satisfying the following

inequalities:
\Ill *
U, {1112 \I}g] <0 (53a)
Z>1 (53b)
where
Ul Ldiag( W3, —ynl, —tsl, —dul, —isI,}
A W B GF o o
v b 0 0 0 0 O
g2a |0 ¥$ 0 0 0 0
2710 0 ¥7 0o o0 O
0 0 0 0 U5 o
0 0 0 0 0 U
;yia [hZ-dQi
\113_—I®Z,\If4ﬁ{¢l,_ .
2 0 2 Y6 Q2 —el
U261+ GuA, WS E /gy + W
Ta S a8a <1 Z% G
WS E\/5+geB, W5 E 4G + @‘F%}—

which gives rise to

)}
S | Y28 + (ki3 + Ko + 5 + 25)
11—

+YFE{V(9(0))}.
Next, it follows readily from (51) and (53b) that
E{[[9(k)|*}

o 4 (kb3 + ko + 5t + s)
1

+YFE{V(9(0))}.

Thus, the asymptotic bound @f/(k)||? (in mean-square sense)
is minimized by solving the optimization problem (54). The
proof is now complete. |

OP 2: The second optimization problem is to optimize the
decay rate of the state estimation error dynamics with aim to
achieve the fastest convergence. Such an optimization problem

E{V(0(k

<

1—4

(60)

o A 42 52 42 is addressed in Theorem 4.
Uy £4/G+ =2 o ¢5 26 2F ZA dlag{Zh Zz} Theorem 4:Let the positive scalard:, o2, ¢s, 1, 5, P6
be given. Suppose that there exist positive scalars)s, s,
is {Zu‘l,— 5O —Fl] Wa {le} Y4, 5, Y and positive definite matrice®,, Z,, Z, matrices
FC Zy |’ 0 Fy, F, Py satisfying the following inequalities:
5 Z1B 2 F 1
o[l 4[] i
Then, the dynamics of the augmented system (13) is expo- T, \I/}L * 0 61b
nentially mean-square ultimately bounded. Moreover, in mean- LT vl < (61b)
square sense, the decay ratdéfk)||? is 1/; and the minimum ST (61c)
of the asymptotic upper bound @f/(k)||? can be obtained by -
solving the following minimization problem: where
, , B , , \ijls édla-g{\:[f§7 _¢211 _121317 _¢4Ia _¢511 }
min o0 + (K3 + KCo + 514 + 1s5) A W B GF 0 0
¥, 0 0 0 0 o0
subject to (53a) and (53b) g22 |0 e o0 0 0O O
- : : _ P7lo o vl 0o o0 o0
In addition, the gains of PIO can be derived by: 0 o0 o 0o U o0
Fo=Z0\F, Fo=Z7'F, Fy—75'F,.  (55) o 0o 0 0o o U
_ Proof: For the reason of notation uniformity, by letting 03 £ — Iy © Z, U3 £ [_Z tZ W x I}
Y1 =1—1; andZ = Z, we have Y6Q2 —s
A N < A A N N A
vl =l (56) U3 EVO+9ad, W5 E o+ Qs
~2 ~2
Noting U2/ 03+ peB, Ui = \/C + = si C—l + ?_1}—
7 z 7 ’ 7 ’ (pz <p3
Fy=Z1F, F»,=ZF,, F3=2.F; (57) C 5 C
9 A o2 S22 2
we perform the congruence transformation to (37) by s _\/C t o P4 ¢5 ]: z% dlag{Zl’ ZQ}
diag{ls ® I, Is ® Z} to produce¥; < 0, which proves 1a 5 N N
that the exponentially mean-square ultimate boundedness of\IJ4 £-2, Y zpl[’\ \114 =7 %I
the augmented system (13) is guaranteed by (53a). A4 [Z1A BC —\F1} W2 [Z1W}
It is inferred from the equatiop(%y) = 0 that BC Zy |’ 0
.1 »[ZiB s[5
b= oo 2] e[
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Then, the dynamics of the augmented system (13) is exponenRemark 5:So far, the partial-neurons-based PIO design
tially mean-square ultimately bounded. Moreover, in meaproblem has been solved for ANNs subject to randomly occur-
square sense, the maximum decay raté(fk)||? is derived ring packet dropout and bounded disturbance under the MDES.
by solving the following maximization problem: In comparison to the available P1O design literature on ANNSs,
our primary results own the following distinctive merits: 1) the
devised PIO is novel as the observer is dedicatedly constructed
subject to (61a)- (61c) (62) to estimate the state of all neurons only based on partially
accessible neuron measurements; 2) the adopted MDES plays
N N o a dominant role in enhancing the reliability of signal transmis-
Py =Z'F, Fy=Z'F, F3=27,"F;. (63) sion (as compared with the traditional uniform-quantization-
based encoding mechanism); and 3) the established theoretical
framework is suited for quantitatively analyzing the influences
from the packet-dropout probabilities and the decoding errors

max ’LZJl

In addition, the gains of PIO are derived by:

Proof: Pre-multiplying and post-multiplying (37) by
diag{ls ® I, Is ® Z} and taking variable substitutions

P =ZF, Fy=ZF on the estimation performance.
Fy=2,F;, W =2, (64)
F. Design of Luenberger Observer
one has _ ) o
ol In this subsection, the design issue of the Luenberger
Uy = [\I/% \173] < 0. (65) observer (a special case of the PIO developed in this paper)
3 3 will be addressed in order to achieve the best estimation
Substitutingy, = /41 into (65) gives performance or the fastest convergence.
- The Luenberger observer is constructed as follows:
_ ¥ *
Vo = [wg \Ifg] <0 (66) ik + 1) =A(k) + We(a(k) + Fa(ii(k) — C(k)) (72)
where with F; being the gain matrix and, accordingly, the dynamics
oL 2diag{ W2, —dol, —ibsl, —ul, —sl,} of estimation error can be formulated as:
o2 3{ Z+4032 —sQi % ] T(k+1) :mﬁc(if) +WE(k) + Bu(k) +v(<0(k) —tgo)&so(k)
0 V6Q2 —el + (CL(k) + C1)Baer (k) + (Ca(k) + C2)Taca(k)
Furthermore, it follows from (73)
Z-DZYZ-1)>0 (67) Where
that AL A-F,C, Fi2-—
7z Y< 7z -2l (68) The following corollaries are easily accessible from Theo-
] ] rems 2-4.
In view of (61b), one confirms Corollary 1: Let the positive scalargy, gz, @3, Pa, @5,
_7 * @6 and scalan); (0 < ¢1 < 1) be given. Suppose that there
[w 7 —Z‘l} <0 (69) exist positive scalargy, 13, V4, ¥5, 16 and positive definite
! matrix Z, matrix §, satisfying the following inequalities:
By means of the Schur Complement Lemma, one finally .
obtain _ 0 *
0 02 o3 <0 (74a)
YT ]
Z+YiZ <0, (70) 51 (74b)
which means that (66) is ensured by (61a). Thus, accordin
to Definition 1, the augmented system (13) is exponentially
ultimately bounded in mean-square sense. O &diag(Qf, —ol, —tbsl, —tul, —1)sI,}
Along the similar line to the proof of Theorem 2, the A N 5 =X
L9t . L W B (¥+ 0 0
following inequality can be obtained: Q0 0 0 0 o
E{[[9(k)|?} 220 Q5 0 0 0 O
L I Q) 0 0 o0
1 (. . _ NN 0 o o o 9 o
<7:D_% 1/12'1} + (51/13 + I<L<0 + 51/14 + 1/15) 0 0 0 0 01 QEl)
)2)k 34 _ s oha [~0iZ —deQ1 x
+ (1= ¢HPE{V(9(0)}, (71) M=-Iez 0 { D> el
based on which the decay rate [of (k )|I? (in mean-square Q2 /01 + @aA, Q82 /By + @ W

sense) is thus determined dy— w% Obviously, after the

maximization problem (62) is solved, the optimum decay rate T2\ /o5 F oo, Q32 C1 Cl C1
can be obtained accordingly, and this completes the prmof. #3 + ¢6b, ! G+ D1 (pz 903
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oa |- G G G A s . IV. NUMERICAL SIMULATION
M=+ =+ =+ 8%, A=ZA+35.C . . . . . .
Y4 Y5 Pe In this section, we leverage an illustrative simulation ex-
WaZW. B27B ample to showcase the effectiveness and advantage of the
’ ’ presented observer design strategy.

Then, the dynamics of the augmented system (73) is expo-The ANN with three neurons is considered in this section
nentially mean-square ultimately bounded. Moreover, in meagith the following parameters:

square sense, the decay ratéfk)|| is ¢/, and the minimum

of the asymptotic upper bound ¢f(k)||?> can be obtained by a1 =0.281, az =0.237, a3 =0.306
solving the following minimization problem: by =0.11, be = 0.12, bs =0.13
L 3 - o M ordeo and the connection weight matrix is set as
min 90 + (K3 + KCo + 594 + 5) ;( p ) o 82 8;1 8‘;’
subject to (74a) and (74b) (75) 01 02 0.3
IIon addition, the gain of Luenberger observer can be derivﬁqiditionally, the activation functions are given by
y P2, (76) &1 (w1(k)) =0.6 tanh (0.2z1(k)) + 0.7z1 (k)

Corollary 2: Let the positive scalarg:, ¢z, @3, P4, @5, &2 (w2(k)) =0.3 tanh (0.5z2(k)) + 0.6z2(k)
6 be given. Suppose that there exist positive scafars)s, &3 (z3(k)) =0.8 tanh (0.123(k)) + 1.05z5(k),
V3, Y4, U5, s and positive definite matrices, Z, matrix3s  \which satisfies the sector bounded condition (3) with
satisfying the following inequalities:
G =0.82, ¢ =0.7

Q=% * 77 . ;
2= 102 o3 <O (772) 42 =0.75, gz = 0.6
1 q/g :113, q:; = 1.05.
=0 ] <0 am) |
3 3 It is assumed that the measurements of the first two neurons
Z>1 (77c) can be obtained and with
where c1 =12 ¢ =0.1.
Qg Sdiag{Q, —¢ol, —sl, —vul, —¢sI} Moreover, the initial values of ANN (1) are setag0) = 0.7,
A W B (S 0 x2(0) = —0.5, 23(0) = 0.4, and the initial values of PIO (8)-
Q 0 0 0 0 0 (10) and Luenberger observer (72) are chosen as zero. The
22l|0 Q@ o o0 o0 o0 external disturbances are given as
2 — 7
0 o % 9 g(z)g 0 v1(k) =0.1 sin(1.1k)
O 0 O 0 0 Q9 va (k) =0.2sin(1.2k)
55 0 k) =0.3sin(1.3k).
QL-IwZ, 082 [_Z+AZ_7/’6Q1 * (k) =0:35in130)
’ Q2 —el
— _ — . A. State Estimation Effects of PIO
05 2V + @ad, Q5 2/ Go + G5V
_ — NS S G N TABLE I: The comparison between Theorem 3 and
Qgé\/ @34‘9068, Qgé\/<l+¢_ll+¢_l2+¢_lgg4 Theorem 4
2 ~2 2 b =
04 |x <2 Cz <2 N S A s R Theorem 3 {1 = 0.94) Theorem 4
£ _\/@’ + @ + b5 + %34’ ASZA+5C Upper bound of||z(k)||2 0.0518 0.0856
Setting-like time 6 4

WEZW, B2ZB, Q27

23 2, Q3 2 Z -2l In this subsection, we utilize the proposed PIO design
Then, the dynamics of the augmented system (73) is expon&gheme based on Theorem 3 and Theorem 4 to achieve
tially mean-square ultimately bounded. Moreover, in meagifferent performances. The parameters of scalar quantizer
square sense, the maximum decay ratéxf)||? is derived (15) are selected as= 17 andg = 20, and the decay rate;
by solving the following maximization problem: in Theorem 3 is taken & 94. Accordingly, the gains of PIO
can be calculated by solving the linear matrix inequalities in
) Theorem 3 and Theorem 4, respectively.

subject to (77a)- (77c) (78)  The state estimation results with respect to the different

In addition, the gain of Luenberger observer is derived by: Performances are shown in Figs. 3-5, where the blue lines
s 14 depict the estimation error dynamics in the case of Theorem 3

Fy= =2y §a (79) and the red lines describe the estimation error dynamics

max 1211
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Fig. 3: Trajectories ofi, (k) subject toTheorem 3and Fig. 5: Trajectories ofis(k) subject toTheorem 3and
Theorem 4 Theorem 4
0.2 T 0.9 T T T T T T T T T
=-=-=Z,(k):Theorem 3/ | V=== ||Z(k)||3: Theorem 3
01k —w— Z5(k):Theorem 4| | 08 —s— ||Z(k)||3: Theorem 4| |
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Fig. 4: Trajectories ofi(k) subject toTheorem 3and Fig. 6: Trajectories of|z(k)||* subject toTheorem 3and
Theorem 4 Theorem 4

subject to Theorem 4. Obviously, by applying Theorem 3 artie P1O outperforms the Luenberger observer in terms of the
Theorem 4, the obtained P10 performs quite well. Additionagstimation performance.

ly, to further elucidate the conclusion on different performance

indices presented in Theorem 3 and Theorem 4, the uper Effect of Packet-Dropout Probabilities on Estimation Er-
bound of the estimation error and the settling-like times (thers and Decoding errors

time _requ_|rgd for the estimation error dynamics to _reach andIn this subsection,
remain within the “steady-state region”) are shown in Table
respectively. From Figs. 3-5 and Table I, we can conclude t
Theorem 3 contributes to a smaller upper bound of estimatiegI
errors while Theorem 4 leads to a less settling-like time.

let us reveal the influence of packet
J}I’ropouts on estimation performance and decoding accuracy.
accomplish this, we repeat the simulations 100 times and
culate the average value of minimum upper bound for
estimation error and decoding error with different packet-

dropout probabilities, and the corresponding results are shown
B. Comparison Between PIO and Luenberger observer in the Tables II-lll. Intuitively, with the increase of packet

In this subsection, simulations are conducted under differddS rate (the decrease of, or ¢q), both the estimation
types of observers (i.e. PIO and Luenberger observer) Rrformance and decoding accuracy deteriorate.
evaluate their respective estimation effect. Fig. 6 depicts the
evolutions of the estimation error dynamics with PIO and V. CONCLUSIONS
Fig. 7 plots the evolutions of the estimation error dynamics In this paper, the PIO design issue has been addressed for
with Luenberger observer. It is evident from Figs. 6-7 that class of ANNs in the presence of bounded disturbance. A
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TABLE II: The minimum upper bounds of estimation error and decoding error
subject to differenty, for ¢4 = 0.01

Minimum upper bounds of estimation error

bu

Minimum upper bounds of decoding error

Theorem 3 Theorem 4
0.99 0.031 0.057 1.076
0.89 0.052 0.079 2.694
0.79 0.068 0.082 2.758
0.69 0.075 0.093 3.129
0.59 0.098 0.154 3.236
0.49 0.104 0.317 4.078
0.39 0.297 0.725 4.239
0.29 0.302 0.971 5.813
0.19 0.543 1.034 7.454
0.09 0.679 1.146 8.071

TABLE lIl: The minimum upper bounds of estimation error ancco@ing error
subject to differentp,, for ¢4 = 0.99

_ Minimum upper bounds of estimation error

bu Theorem 3 Theorem 4 Minimum upper bounds of decoding error
0.91 0.011 0.026 0.236
0.81 0.015 0.029 0.459
0.71 0.018 0.032 0.537
0.61 0.021 0.034 0.641
0.51 0.023 0.038 0.796
0.41 0.026 0.043 0.958
0.31 0.029 0.045 1.239
0.21 0.031 0.052 1.512
0.11 0.037 0.058 1.731
0.01 0.039 0.061 1.804

0.8

0.7

0.6

0.5

031

0.2r

0.1r

-0.1

I
30 40 50 60 70 80

Time(k)

90

has been described by two sequences of Bernoulli-distributed
random variables. Making good use of the stochastic analysis
technique and the Lyapunov method, the effect of the packet
dropouts on the decoding accuracy has been examined and the
boundedness of estimation error dynamics has been analyzed.
For the sake of guaranteeing two different estimation perfor-
mance indices, two optimization problems have been resolved
to obtain the PIO gains. Finally, a simulation example has
been provided to evaluate the developed PIO design scheme.
Our future research themes include the adoption of our main
results to more complex systems, such as complex networks,
multi-agent systems and wireless sensor networks [11], [23],
[41], [44].

100

Fig. 7: Trajectories of|z(k)||* subject toCorollary 1 and

MDES has been employed to convert the measurement signg,
into corresponding codewords, aiming at further improving
the reliability of the communication channel. The codewords
transmissions (from the encoders to the decoders) have undef’

Corollary 2.
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