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Abstract
The integration of digital twins (DTs) in healthcare is critical but remains limited in real‐
time patient monitoring due to challenges in achieving low‐latency telemetry transmission
and efficient resource management. This paper addresses these limitations by presenting a
novel cloud‐based DT framework that optimises real‐time healthcare monitoring,
providing a timely solution for critical healthcare needs. The framework incorporates a
Pyomo‐based dynamic optimisation model, which reduces telemetry latency by 32% and
improves response time by 52%, surpassing existing systems. Leveraging low‐cost, low‐
latency multimodal sensors, the system continuously monitors critical physiological pa-
rameters, including SpO2, heart rate, and body temperature, enabling proactive health
interventions. A DT definition language (Digital Twin Definition Language)‐based time
series analysis and twin graph platform further enhance sensor connectivity and scal-
ability. Additionally, the integration of machine learning (ML) strengthens predictive
accuracy, achieving 98% real‐time accuracy and 99.58% under cross‐validation (cv = 20)
using the XGBoost algorithm. Empirical results demonstrate substantial improvements in
processing time, system stability, and learning capacity, with real‐time predictions
completed in 17 ms. This framework represents a significant advancement in healthcare
monitoring, offering a responsive and scalable solution to latency and resource con-
straints in real‐time applications. Future research could explore incorporating additional
sensors and advanced ML models to further expand its impact in healthcare applications.
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1 | INTRODUCTION

A digital twin (DT), commonly abbreviated as DT, is referred to
as a virtual model that mirrors a tangible entity and is charac-
terised by dynamic, reciprocal connections. Digital twin is
defined as a virtual representation of a physical entity that fa-
cilitates real‐time data exchange between its virtual and physical
counterparts. In healthcare,DTs are presented as a breakthrough
solution, addressing challenges, for example, early detection of
medical conditions or monitoring of chronic illnesses in real
time. Monitoring a heart patient's DT allows healthcare pro-
viders to, for example, assess the probability of an impending
cardiac event, thereby enabling timely interventions. In the

future, the use of DTs is anticipated to significantly influence
personalised therapies and interventions [1, 2].

Advanced optimisation techniques such as Pyomo have
been integrated into healthcare systems to optimise decision‐
making processes in DTs. For instance, Pyomo has been
applied to optimise complex systems such as healthcare lo-
gistics and patient monitoring, demonstrating its versatility in
resource allocation and real‐time data management [3, 4].
These capabilities align well with the dynamic and evolving
nature of DTs, allowing for enhanced efficiency and perfor-
mance in healthcare applications.

Digital technologies and services have been demonstrated
to be beneficial for healthcare professionals and patients alike,
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as they facilitate data collection, clinical communication, dis-
ease management, and other related functions [5–7]. Further-
more, DT has the potential to bridge gaps in current healthcare
systems, that is, the delay in getting patient data during
emergencies or in remote regions, offering the potential ben-
efits of immediate diagnostic insights and timely medical in-
terventions [8].

The objective of Digital Twin for Healthcare (DTH) is to
digitally replicate select aspects of human anatomy and physi-
ology, specifically the organs of the human body, through the
creation of a digital lifestyle. Although there have been some
developments in the field of cardiology, the utilisation of DTH
remains in its nascent stage, and its extensive adoption for the
betterment of public health is expected to take several years [9].
In contrast, the monitoring, optimisation, and planning capa-
bilities of DTs render them efficacious in enhancing popula-
tion health as constituents of public health management
systems [10].

Furthermore, advanced guidance on the implementation of
a digital transformation is provided by academia, making it
significantly difficult to identify a universally applicable solu-
tion for its execution. Digital twin has been employed in aca-
demic and professional contexts to investigate the impact of
social distancing, as evidenced by studies conducted by Punn
et al. [11]. The inaccessibility of implementation architecture
information is a recurring issue in research pertaining to Digital
Transformation. Despite the limited number of researchers
who have directed their efforts towards the key components
required for the production of a DT, a reference design has not
yet been established, as evidenced by the literature [12].

Building on the challenges and limitations described pre-
viously, our study proposes an architecture that integrates
cloud computing, IoT, machine learning (ML), and artificial
intelligence (AI) to remotely monitor and assess patient health.
Through sensors, data is transmitted to the cloud. A virtual
patient replica, utilising this framework, offers monitoring,
trend prediction from medical history, and collaborative patient
scenarios. The primary contributions of this study are as
follows:

1. The proposal of a novel DT architecture, based on the
cloud and healthcare wearables, integrated with a Pyomo‐
based dynamic optimisation model. This architecture
serves as a foundation for a DTH scenario and addresses
the challenges of real‐time monitoring, improving system
scalability, and resource management, while enhancing the
accuracy of emergency alerts for patients.

2. The presentation of a study on DTH using ML for com-
parison, diagnosis, and prediction, ensuring consistent re-
sults by comparing seven different ML algorithms.

3. The proposal of a cost‐effective DT simulation framework
for twin graphs, using JavaScript Object Notation for
Linked Data (JSON‐LD) and sensors, for monitoring and
health tracking in humans, utilising pay‐as‐you‐go cloud
services.

4. This study also aims to validate the design through a
comparison of physical and digital data utilising time series

insight (TSI), with Flask used to validate the ML model.
Latency calculations were conducted and the results indicate
a relatively low value compared to prior studies.

The remaining sections of this study are structured as follows:
In Section 2, the background and foundational concepts of DT
technology are discussed. In Section 3, a review of the available
literature on DT in healthcare is provided. A cloud‐based DT
architecture is proposed in Section 4. Section 5 describes the
framework developed on the basis of the twin graph. The
implementation setup is presented in Section 6. Section 7 de-
scribes Proof of Concept (PoC). The Results and Discussions
are presented in Section 8. Finally, Section 9 provides the
conclusion and future work for this study.

2 | BACKGROUND

The digital transformation process that is currently trans-
forming many industries, including health, began with the
launch of the Industry 4.0 project in 2013. The approach relies
heavily on advanced technologies, for example, IoT, cloud and
edge computing, AI, and big data analytics [13–15]. The DT
paradigm, based on the aforementioned technologies, allows
for the digital transformation of any system and is commonly
utilised by industrial and engineering companies. Over the
previous decade, DT technology has been recommended for
healthcare applications. One of the most impressive DT ap-
plications is the Healthcare DT (DTH) [16].

In the realm of Industry 5.0, emphasis is placed on
addressing human needs, from healthcare provision to the
fulfilment of personal growth and self‐actualisation goals. This
shift has catalysed a transformation within the healthcare
sector, where DT technology has been adopted to embed
human‐centric approaches in intelligent manufacturing sys-
tems, thereby enhancing rapid diagnostics and monitoring [17].
Nevertheless, the ambition to synchronise the physical and
digital dimensions through DT encounters notable hurdles,
chiefly the challenge of achieving instantaneous alignment
between the two spheres [18, 19].

In the research on DTs, optimisation techniques were
pivotal in managing complex, resource‐driven healthcare sys-
tems. The Pyomo optimisation library was utilised in various
fields, demonstrating its versatility in solving resource alloca-
tion and logistical challenges [3]. Though not always directly
applied to healthcare, Pyomo's capacity to optimise complex
systems was highlighted. Its combination with solvers like
CPLEX proved effective for tasks such as healthcare logistics,
energy systems, and predictive modelling [20, 21]. This
demonstrated Pyomo's potential for real‐time healthcare
monitoring and resource management, improving efficiency
and reducing latency.

The research in DT further encompasses the enhancement
of wireless body area networks, alongside the deployment of
advanced signal processing and sensors that support DT, with
the integration of Markov decision processes and AI to elevate
both efficiency and reliability in health monitoring systems
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[22–24]. Within smart homes, DT applications strive to
improve the monitoring, prediction, and control of health
parameters, utilising an array of wireless and wearable tech-
nologies [25, 26]. In the healthcare sector, professionals utilise
DT in conjunction with cloud and IoT‐edge computing,
blockchain, and ML, aiming to deliver intelligent predictive
diagnostics and secure health data management. This DT
framework significantly advances monitoring capabilities
[27, 28].

Additionally, DT has been employed to devise frameworks
that aid in clinical monitoring, evaluating patient needs, and
identifying emergency risks promptly [29]. For instance, in
thoracic healthcare, the Lung‐DT framework integrates AI
with historical radiological data and IoT sensor inputs to
accurately classify lung diseases, thereby improving upon
traditional diagnostic methodologies. However, challenges, that
is, the absence of data storage within this framework pose
hurdles for end‐users [30]. The concept of the Virtual Human
Twin has been introduced, offering a detailed digital repre-
sentation of human pathophysiology and suggesting a coop-
erative infrastructure, which is instrumental in advancing the
development and uptake of DT in healthcare [31, 32].

3 | RELATED WORK

Grieves developed a comprehensive framework for the DT
model, introducing a foundational concept that models a sys-
tem in three dimensions: physical object, virtual entity, and
link. This framework laid the groundwork for DT applications
across various domains, demonstrating the potential for ac-
curate, interconnected system representations [33]. Building on
this, Tao et al. extended the model to a five‐dimensional ar-
chitecture, incorporating DT‐related information and re-
sources to enhance the DT framework's capacity for
representing complex systems in greater detail [34].

In healthcare, researchers have applied DT models by
integrating big data and AI‐driven models to simulate human
physiology, showing potential to provide tailored clinical so-
lutions. However, despite this promise, significant technolog-
ical, privacy, and ethical challenges still limit the practical
deployment of DTs in healthcare [35].

A novel DT approach was investigated by Yang et al. in
which cardiovascular casts, CT scans, and simulation algo-
rithms were used to operate ultrasound probes in virtual en-
vironments. This approach contributed to the development of
a method for learning standard views and anatomical re-
lationships in virtual foetal heart imaging, though limitations
were observed due to inconsistencies with real foetal heart
structures, restricting its practical application in healthcare [36].

A framework focused on high‐fidelity cardiac electro-
physiology DTs using clinical 12‐lead electrocardiogram
(ECGs) was developed by Gillette et al., and challenges in
creating precise anatomical and functional twins for cardiac
care were addressed. Although this framework represents an
advancement in accurate cardiac DT modelling, the integration
of cloud computing and IoT for real‐time monitoring was not

included. As a result, essential components, such as real‐time
data handling, visualisation, analysis, and latency consider-
ations, were omitted, with a primary focus placed on managing
costs [37, 38].

In ref. [39], an automated gait data control system for a
fully actuated lower limb exoskeleton DT was proposed for
medical rehabilitation. Through this approach, improvements
in interaction, autonomy, and safety were achieved via simu-
lation trials. The application of deep learning and big data
analytics within healthcare DTs was explored by Lv et al.,
where sensor data was analysed for real‐time health moni-
toring, representing a significant advancement in digital health
solutions. However, considerations for cost and latency were
not incorporated into their framework [40].

A cloud‐based framework for elderly healthcare, named
CloudDTH, was developed by Liu et al., combining big data,
cloud computing, and IoT to deliver accurate and efficient
healthcare services using DT technology. Despite these ad-
vancements, the framework does not thoroughly address real‐
time data latency issues or cost implications, nor are details
provided on integrating ML for predictive analytics within
healthcare DTs [41].

A decentralised architecture for the Industrial Internet of
Things was developed by Lin et al., utilising blockchain, ora-
cles, and DTs to facilitate secure and efficient data exchanges
and computing collaborations between physical and digital
entities. However, the integration of cloud computing and IoT
for real‐time health monitoring was not addressed, and dis-
cussions on latency issues and cost implications were also
omitted [42]. Deep learning methodologies, such as Artificial
Neural Networks, have been used to create a robust framework
for analysing health datasets, ensuring precise and timely health
insights [43]. Personal DT (PDT) technology was explored by
Sahal et al., who demonstrated its potential to transform
healthcare by enabling precise decision‐making and personal-
ised treatment choices [44].

Recent developments have highlighted the application of
optimisation techniques within DT frameworks. For example,
the use of Pyomo in optimising resource allocation and lo-
gistics in healthcare and other sectors has demonstrated sig-
nificant flexibility in handling complex systems and enabling
real‐time decision‐making [3, 20]. Through these applica-
tions, a foundation has been established for more efficient
resource management and latency reduction in critical health-
care contexts, which is essential for advancing DT technologies
in this domain.

In ref. [45], DT architecture and robotic systems were
applied to enable reliable testing of synthetic soft tissue
products, demonstrating potential for advancing medical de-
vice and biomechanics research. A DT‐based, AI‐driven
analysis of disease parameters and patient data was proposed
by Voigt et al., contributing to improved diagnostic accuracy,
treatment outcomes, and preventative healthcare measures
[46]. Research in ref. [47] focused on the development of
medical cyber‐physical platforms with multiple layers for data
collection, data processing, cloud infrastructure, and actuation.
In addition, wearable devices and AI were used by Chen et al.
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to analyse data and simulate human processes, enhancing the
understanding of user motivations, emotions, and preferences
to improve user experience [48].

A smart clothing system with multiple sensors based on
DT technology was developed by Yu et al. to address user
interaction limitations in existing smart clothing systems.
However, considerations for integrating cloud computing for
real‐time data processing, as well as the impact of latency and
cost on system performance, were not explicitly included in
this study [49]. Additionally, the use of actigraphs has been
highlighted as crucial in applications such as interactive games,
health monitoring, and bipolar illness prediction, contributing
to improved well‐being and allowing assessment of physical
activity levels for psychological evaluation [50]. To achieve
greater dependability, predictability, and accuracy in therapeutic
results, computer simulations were proposed for collaboration
with tissue engineering by the authors of [51].

In ref. [52], a framework for DT in remote surgery was
presented, offering a foundational approach for applying DTs
in surgical settings. A cardio‐twin structure was introduced to
diagnose ischaemic heart disease at the edge, providing an
innovative solution for decentralised cardiac diagnosis [53].
Additionally, a convolutional neural network was employed to
differentiate non‐myocardial diseases from cardiac conditions
using Physio Bank's ECG database, achieving an accuracy of
85.77% and a classification time of 4.8 s, contributing to more
efficient cardiac disease differentiation [54].

Zhong et al. introduced Interactive Digital Twin Virtual
Reality (IDTVR), a cloud‐based framework designed to create
interactive DT environments using virtual reality (VR) tech-
nology, demonstrating the potential of VR in DT applications
for rehabilitation. However, latency issues and the cost impli-
cations of large‐scale deployment were not extensively
addressed, and the study focused primarily on rehabilitation
without exploring broader healthcare monitoring applications
[55]. Jia et al. proposed a concurrent end‐to‐end synchroni-
sation and multi‐attribute data resampling‐enabled DT scheme,
aiming to improve modelling accuracy and efficiency. Despite
these advancements, the study does not extensively consider

latency issues, cost implications, or broader healthcare moni-
toring capabilities [56].

Recent developments in DT systems for asthma home
monitoring have enhanced reliability, efficacy, and capacity to
evaluate breathing strategies, triggers, and environmental data
[57]. Constant performance in patient data evaluation and
interpretation has highlighted the dependability of DT systems
in practical medical contexts. The management and treatment
of asthma through DT‐enabled mobile applications, gadgets,
and remote monitoring systems have facilitated early inter-
vention [58]. A wide range of DT applications in healthcare has
indicated DT's potential to improve patient care and enable
continuous monitoring. A comparative analysis of these
frameworks and our proposed system, shown in Table 1,
highlights key criteria, such as real‐time monitoring, resource
efficiency, and latency reduction, demonstrating how gaps
identified in previous studies are addressed.

In summary, valuable insights into DT and healthcare ap-
plications have been provided by these studies, though gaps
remain in addressing real‐time data processing, resource effi-
ciency, and latency reduction. In response, a solution is pro-
posed through the integration of cloud computing, IoT, and
the Pyomo optimisation model to enhance real‐time moni-
toring, decision‐making, and resource allocation. Higher ac-
curacy, reduced latency, and greater scalability are achieved,
offering a comprehensive and efficient healthcare monitoring
solution.

4 | PROPOSED ARCHITECTURE OF
DIGITAL TWIN

The proposed DT architecture was designed using cloud
computing and IoT to enable scalability across healthcare fa-
cilities and patients. Platform‐as‐a‐Service (PaaS) was utilised
to ensure seamless integration of additional sensors and de-
vices without affecting system performance, while edge
computing was employed to reduce latency by offloading
computational tasks to near‐edge devices. Cloud platforms,

TABLE 1 Comparison of various frameworks including our work.

Ref. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

[59] 2020 ✓ ✓ – – – – – – – – –

[60] 2021 ✓ ✓ – ✓ – – – – – – –

[61] 2023 ✓ ✓ ✓ – – – – – – – –

[62] 2023 ✓ ✓ – – – – – – ✓ – –

[63] 2023 ✓ – – ✓ – – – ✓ ✓ – –

[64] 2024 ✓ ✓ – – – – – – ✓ – –

[65] 2024 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓

This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: Criteria: C; C1: Health; C2: IoT; C3: Temporal Analysis; C4: Adversity; C5: Predictive Decision; C6: Time‐Specific; C7: Real‐time; C8: Stability; C9: Security; C10: Resource
Efficiency; C11: Latency Reduction.
Abbreviations: BS, base station; GLPK, GNU linear programming kit; SSL, secure sockets layer; TLS, transport layer security; UE, user equipment.
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such as Azure, supported horizontal scaling, maintaining sys-
tem robustness as patient numbers and data volumes increased.
Figure 1 illustrates the architecture, integrating both cloud and
edge computing for real‐time analysis of mobile health data.

The cloud‐based architecture consists of six layers, inte-
grating cloud and edge computing to enable real‐time data
analysis and monitoring. Algorithm 1 outlines the monitoring
and prediction process for patient health indicators. The sys-
tem collects key health metrics through IoT devices, processes
the data to evaluate fluctuations, and checks whether these fall
within predefined thresholds.

In Section 6, we will explain in detail the context of ML
processing, where the data undergoes an additional normal-
isation procedure, resulting in the updating of the DT model.

4.1 | Problem formulation

Implementing DTs in healthcare faces several critical chal-
lenges, especially in real‐time monitoring. The main obstacles
are as follows:

1. Telemetry Latency: High‐latency transmission delays health
data updates, hindering timely patient monitoring. Reducing
latency is essential for prompt medical interventions.

2. Resource Management: Efficient allocation of resources
across cloud and edge infrastructures is vital to ensure
scalability and cost‐efficiency without compromising
performance.

3. Scalability and System Stability: As the scale of patient
monitoring increases, maintaining both system stability and
scalability becomes more complex, especially in managing
the large volumes of data generated by multimodal sensors.

4. Real‐Time Monitoring and Prediction: Continuous and ac-
curate real‐time monitoring of vital physiological parame-
ters (e.g. SpO2, heart rate (HR), and body temperature
(BT)) remains challenging, particularly when predictive an-
alytics are required for proactive healthcare decisions.

To address these limitations, a cloud‐based DT architecture is
proposed in this paper. By incorporating a Pyomo‐based dy-
namic optimisation model, multimodal sensor integration, and
ML algorithms, the system is designed to reduce telemetry
latency, enhance response time, and improve predictive accu-
racy in real‐time healthcare monitoring. This approach enables
scalable, low‐latency, and resource‐efficient monitoring across
diverse environments. The following provides a detailed
explanation of the layers in the proposed DT architecture,
illustrating how each component contributes to addressing the
identified challenges.

4.2 | Device layer

On the left side of Figure 1 is the device layer of this design
architecture. This layer shows the controller, a NodeMCU
ESP8266 controller, as well as the sensors that a person wears.
The NodeMCU ESP8266 transmits data to the IoT Hub using

F I GURE 1 Proposed architecture: a digital twin (DT) with the cloud layer, the device layer, the communication layer, and the display layer.
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the message queuing telemetry transport (MQTT) protocol,
which operates efficiently in low‐bandwidth, high‐latency IoT
environments. Real‐time communication is fundamental to the
DT (DT) paradigm. Figure 2 illustrates the HR, SpO2 (Blood
Oxygen Saturation), and BT readings, which are sampled and
sent to the communication layer for further processing. The
step‐by‐step process of sensor integration is outlined as
follows:

1. Sensor Selection and Criteria: The sensors used in this
framework are the Max30102 for SpO2 and HR measure-
ments and the MLX90614 for BT measurement. The
Max30102, chosen for its accuracy in capturing HR and
SpO2 data, operates with built‐in LEDs and photodetec-
tors. It uses a 1.8 V supply for the sensor and 3.3 V for the
LEDs, enabling precise pulse oximetry by detecting changes
in light absorption between oxygenated and deoxygenated
blood [66, 67]. The MLX90614 sensor was chosen for non‐
contact temperature measurements, offering accuracy and
reliability, particularly in clinical environments where hy-
giene and patient comfort are priorities. Both sensors were
selected due to their compatibility with low‐power IoT
systems, their precision, and their ability to operate in
healthcare monitoring scenarios.

2. Integration of Sensors into the Framework: The
Max30102 and MLX90614 sensors are integrated into the
framework via the NodeMCU ESP8266, using the I2C
communication protocol. The NodeMCU collects data
from the sensors at regular intervals and transmits it to
the IoT Hub using the MQTT protocol, which ensures
reliable data delivery, even under constrained network
conditions. The integration process, as shown in Algo-
rithm 1, describes the initialisation of the system, sensor
data collection, and transmission of the gathered physi-
ological parameters to the IoT Hub.

3. Data Flow and Real‐Time Monitoring: The NodeMCU
ESP8266 collects multiple sensor readings (SpO2, HR, and
BT), and these are transmitted to the IoT Hub (gateway) for
further processing. The IoT Hub handles device‐to‐cloud
(D2C) communication, ensuring system resilience and
validation through cloud integration. The NodeMCU in-
dicates successful communication with the cloud via the
serial monitor, showing ‘OK’ upon establishing a
connection.

Spo2 ¼ACred ÷DCred
ACIR ÷DCIR:

ð1Þ

4. Algorithm and Implementation: The data flow for moni-
toring patient vitals is implemented in Algorithm 1, where
sensor readings are processed and transmitted in real‐time
to the IoT Hub. The algorithm, implemented using the
Arduino integrated development environment (IDE), en-
sures that the system continuously monitors patients,
updating the DT model with real‐time data and supporting
predictive analytics for patient surveillance.

Algorithm 1. Intelligent Patient Surveillance and
Predictive Analytics with DT (Arduino IDE)

1: Procedure Main:
2: Initialisation: Set devices and IoT
Hub; set time;
3: Input: D(hr, BT, Spo2), HD(Historical
data)
4: Output:
• SD = status of the patient
• DT = Digital Twin model
• FDT = Digital Twin with Machine Learning
5: ΔDDT ¼Dðt0Þ − Dðt0 − 1Þ # Change in data at
time t0
6: V¼Vþ 1 # Calculate number of data
points
7: if V¼ 20 then
8: D¼ maxðDðnÞÞ − minðDðnÞÞ # Data
difference
9: Dr ¼ maxðDÞ − minðDÞ # Range of data
values
10: if ΔD < 0 then
11: Dξ ¼ ΔD

ΔDþD
�Dr # Supplementary data

flow rate
12: else
13: Dξ ¼ 0
14: D¼ 0
15: end if
16: if n ≠ 1 and ΔD¼ 0 then
17: Mðc0Þ ¼Mðc0 − 1Þ þ 1 # Monitor the
patient
18: end if
19: ifMðc0Þ > 1 then
20: Idf ¼Dr �

ðMðc0Þ−1Þ
Ts

# Data flow rate
21: end if
22: else
23: if n¼ 1 or ΔD ≠ 0 then
24: Mðc0Þ ¼Mðc0 − 1Þ
25: end if
26: end if
27: Mðc0Þ continues for the
next cycle of monitoring
28: End of Procedure

F I GURE 2 Sensor output in the IoT device network.
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4.3 | Digital model layer

The virtual object model aims to provide users with medicine
reminders and emergency alerts while monitoring a patient's
physiological status in using wearable devices. It involves
constructing a participant's history, sensor model, and behav-
ioural model to characterise activities, for example, medication
and crisis behaviour. These models can predict future actions
and enable evaluation, reasoning, and prediction using rules of
associations, restrictions, and deductions, as shown in Figure 1.
The DTH model is expressed as follows:

DTH ¼ ðPi; Sm; Bm ; Fm; NcÞ; ð2Þ

Pi includes personal information, for example, name, gender,
age and historical data. This information is utilised as a
foundation for managing personal health Sm mostly consists
of medical sensor data, for example, HR, SpO2 and BT. This
model must design a behavioural model Bm to characterise
the state of a person, a sick person or an elderly person to
monitor his status, including the quantity of medicine taken or
crisis behaviour, for example, cardiac arrest or respiratory ar-
rest. Nc describes the Internet connection between the cloud
environment and devices. Finally, model evolution is con-
ducted in parallel, and models are calibrated to run synchro-
nously with physical objects. The advanced models provide
more precise estimation, optimisation and forecasting of
operational process model ðFmÞ.

4.4 | Communication layer

Real‐time data exchange between the device layer, the edge
layer and the cloud layer is made possible by the communi-
cation layer. The protocols that have been implemented in the
communication layer are HTTPS and MQTT, as shown in
Figure 2. The communication layer ðCLÞ includes three parts
expressed as follows:

CL ¼ ðCL−PD; CL−VD; CL−PV Þ; ð3Þ

where CL−PD, CL−VD, and CL−PV denote the communication
between physical objects and DT data ðDDT Þ, virtual objects
and DDT , and physical and virtual objects, respectively. The
DDT model includes data from physical and virtual objects.
The data source, value, unit, and sample size all play a role in
the data that are sent and received throughout each
communication.

The model and the interaction between the real‐time data
inputs and our learning system through a sequence of trans-
formations and updates aimed at optimising action decisions
based on rewards. Initially, the state transitions are dictated by

stþ1 ¼ f ðst; at; etÞ; ð4Þ

where stþ1 is the next state, st is the current state, at is the
current action taken based on the policy, and et is an external

factor in the environment. The system evolves over time
influenced by actions and external factors. Actions are selected
using a ML model

at ¼MLðst; θÞ; ð5Þ

designed to maximise the perceived rewards. Where at is the
action decided by the ML model based on the current state st
and model parameters θ. These rewards are calculated as
follows:

Rt ¼MLðst; at; θÞ: ð6Þ

This represents the reward calculated by the ML model
based on the current state st, action at, and parameters. Re-
wards are used to continually refine the model's policies via the
update equation

θnew ¼ θold þ α∇θJðθÞ; ð7Þ

ensuring the system learns to respond more effectively to dy-
namic conditions. Where θnew and θold are the updated and
previous parameters of the model, respectively, α is the
learning rate, and JðθÞ is the objective function, typically the
expected reward. Additionally, the system's performance is
evaluated using a loss function

LðθÞ ¼
�
Rt − R̂tðθÞ

�2
; ð8Þ

where LðθÞ is the loss function, Rt is the actual reward
received, and R̂tðθÞ is the predicted reward, given the model
parameters θ. In the learning agent, the stream analytics
(feature extraction)

Xt ¼ analyseðstÞ; ð9Þ

where Xt represents the features extracted from the state st by
the stream analytics process. Also, guiding further refinements
to model parameters through the learning process

θnew ¼ θold − η
∂L
∂θ
; ð10Þ

the η is the learning rate, and the partial derivative ∂L
∂θ represents

the gradient of the loss function with respect to the model
parameters, thereby achieving a balance between exploration
and exploitation in decision‐making.

4.5 | Display layer

As shown in Figures 1 and 2, the significance of the Display
Layer inside the DT system, which is mostly based on a cloud
platform. The fundamental aspect of the layer is the integration
of TSI for the purpose of data analytics, as well as storage for
data preservation. On the other hand, the Azure Digital Twins
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(ADT) explorer specifically caters to the visual exploration and
administration of DT. Function apps have become an essential
intermediary, facilitating the connection between TSI and the
twin graph. This connection allows for efficient data flow and
processing using the capabilities of visual studio.

At the core of the architectural framework lies the DT
Definition Language (DTDL), which serves to establish the
models of the DT, while the twin graph visually represents the
interconnectedness between these models. The layer reaches its
peak with a wide range of output channels, for example,
JSON‐LD for the exchange of data, short message service
(SMS) for immediate warnings, and a variety of notifications
sent via mobile, online, and email interfaces. Also, real‐time
data from a diverse array of inputs, including HR, SpO2, and
BTmonitors, are aggregated at a physical device and DT layers.
This data is encapsulated within a state st, and transitions based
on both internal dynamics and external feedback

stþ1 ¼ f
�
st; yt

�
; ð11Þ

reflecting the system's adaptive capabilities. Data is processed

Pd ¼ processðdataÞ; ð12Þ

analysis is

Ar ¼ analyseðdataÞ; ð13Þ

and monitored for critical thresholds to generate alerts

Na ¼ alertðdataÞ; ð14Þ

all of which are displayed in a comprehensive alert system
designed to support medical staff in real‐time decision‐making

Vd ¼ displayðvisualsÞ: ð15Þ

This integration not only facilitates immediate responses
but also enables a continuous feedback loop, enhancing the
system's accuracy and responsiveness.

In addition, DT data healthcare services include the
physical and digital states of items, as well as information on
services and how those two states are fused, as shown below.

DDT ¼ ðDPA;DDO;DHS;DFÞ; ð16Þ

where DDT is DT data from physical and virtual objects,
DPAis the physical asset data, DDO is the digital object data,
DHS is the data from historical data (record in hospital), and
DF is the data fusion. The equivalent value at the present time,
denoted by t0, can be expressed as follows:

ΔDDT þ¼Dðt0Þ − Dðt0 − 1Þ: ð17Þ

The data processing responsibilities, illustrating data
transfer and processing in the proposed architecture, which are
explained in Sections 4.2 and 4.3.

5 | FRAMEWORK DEVELOPED ON
THE BASIS OF TWIN GRAPH

Digital Twin Definition Language is an open modelling lan-
guage in ADT that promotes transparency and interoperability.
It allows developers to define twins based on telemetry, attri-
butes, and instructions. Digital Twin Definition Language also
allows for characterising connections between virtual and
physical objects. It requires a common representation of lo-
cations, infrastructure, and assets for interoperability and data
exchange across domains, as shown in Figure 1.

In the present work, DTDL uses JSON‐LD, an open
language akin to JSON. The DTH platform allows remote
monitoring and health tracking. It is scalable for smart de-
vices and patients. An IoT hub sends patient monitoring
data to the cloud through a twin‐graph platform. Serverless
Functions apps reduce code, infrastructure administration,
and expenses. Within the broader context of the research,
Algorithm 2 was implemented to synchronise data between
IoT devices and the DTs environment. The following key
steps were involved.

1. At the outset of the algorithm, necessary libraries are im-
ported, including the DTs software development kit for
NET, cloud Identity for authentication, as well as additional
utilities for parsing and managing IoT device data. These
libraries are crucial for establishing a secure connection to
DTs, facilitating authentication and enabling the manipu-
lation of DT data.

2. The environment variables are mainly ADT_URL, which
stands in place for the DTs instance endpoint uniform
resource locator (URL). The URL is important because it
directs the algorithm to the right DT service, hence
applying updates to the right environment with no
confusion.

3. This shields the algorithm from being initiated in the
environment variable case where ADT_URL is not
configured; all such cases are logged. If ADT_URL is un-
defined, then all parameters should be set up; otherwise, an
error log is generated.

4. Credential objects are crafted through Default Cloud
Credential method for smooth authentication in the suite of
cloud services. After that, the connection is built with DTs
through the use of these newly crafted credentials to
establish a secure and strong link with the DT client object.

5. Next, the UpdateDigitalTwin function is invoked using the
device's unique identifier and a dictionary of updated data,
which accurately reflects the latest sensor information on
the DT. This ensures that the DT properly holds the latest
status of the physical device.

Algorithm 2. Digital Twin Data Update

1: Start
2: Import necessary libraries
3: Input: E (EventGridEvent), L (log)
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4: Output: Status of the update
5: AU ← getenv(‘ADT_URL’)
6: if httpClient is true then
7: curl_easy_setopt(httpClient)
8: end if
9: if AU ¼ null then
10: L. LogError(“Error: ‘ADT_URL’ is not
set”)
11: else
12: C← Credentials() % Default cloud
credential
13: DT C← (AU, C) % Digital Twin Client
14: L. LogInformation(“Connected to
ADT”) % Log the connection status
15: if E ≠ null and E. Data ≠null then
16: DM ← JObject.Parse (E. Data) %
Device Message
17: DI ← DM. GetValue(‘IoTHub Id’).
ToString() % Device ID
18: DS ← DM. GetValue
(‘DeviceData’). ToString() % Device Data
19: L. LogInformation(“Device ID:
" þ DI ", DeviceData: " þ DS) % Log device
information
20: UD ← new Dictionary<string,
object>() % Update Twin Data
21: UD. Add(“DeviceData”, DS) % Add
device data to dictionary
22: DT C.UpdateDigitalTwin(DI, UD) %
Send update to Digital Twin
23: end if
24: end if
25: End of function

Digital Twin Definition Language was used not only to
define telemetry data streams but also to describe the re-
lationships between IoT devices, sensors, and virtual models.
These definitions were fed into the twin graph to model real‐
time interactions between physical and virtual entities. The
twin graph provided a structured view of how physical assets
(e.g. sensors) communicated with the DT system, ensuring
scalability and the easy integration of new devices.

Additionally, the algorithm is designed to efficiently
manage a high volume of events, reducing latency and guar-
anteeing timely updates to DTs, thus addressing performance
and scalability concerns. The scalability of our system, as
supported by the communication protocols listed in Table 2,
demonstrates the capability of our architecture to handle
increased traffic and data load efficiently. Protection for sen-
sitive data during transmission and access is ensured through
encrypted communications and secure authentication methods,
upholding compliance with privacy standards and regulations.

Moreover, seamless integration with the system's archi-
tecture is achieved by Algorithm 2, enabling dynamic updates
to DTs and mirroring changes in the physical world. Crucially,
this algorithm works in conjunction with IoT Hub for device
management and DTs for modelling and simulating real‐world

environments, becoming indispensable for the system's
monitoring, analysis, and response capabilities as illustrated in
the PoC, referenced in Subsection 7.2.

In Figure 3, a patient is connected to two sensors using a
knowledge graph, allowing for multiple sensors and moni-
toring. An integrated environment is created, monitoring
SpO2, HR, and BT in the cloud. Machine learning is used to
predict patients' future states, demonstrating the development
of a novel architecture with multiple applications. In Figure 4,
the expanded framework is illustrated in ADT explorer,

F I GURE 4 Implementation of digital twin (DT) in Azure Digital
Twins (ADT) explorer.

F I GURE 3 Structure of digital twin (DT) using the twin graph.

TABLE 2 System parameters.

Parameter Value

Scenario Indoor/outdoor

Channel band/Bandwidth 2.4 GHz/20 MHz

BS/UE Tx power 20/15 dBm

Traffic MQTT, sensor data

Packet size 1024 bytes

Data transmission
frequency

2–8 Hz

Communication protocols MQTT over SSL/TLS, I2C

Security TLS with X.509 certificates, hybrid
encryption

Solver GLPK (linear programming solver)

Integrity verification Merkle tree validation

Authentication Certificate‐based authentication

Abbreviations: BS, base station; GLPK, GNU linear programming kit; SSL, secure
sockets layer; TLS, transport layer security; UE, user equipment.
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showing the monitoring capabilities for BT, SpO2, and HR
across multiple patients. Connections are established between
each patient and their respective sensors via an ESP8266
controller, allowing data transmission to a user monitoring
entity. The design is scalable to accommodate various patient
demographics, capturing attributes.

In Section 6, ML is used to develop a novel architecture
with multiple applications. A DT instance is created, authen-
ticated via roles, and fed data from IoT edge devices through
representational state transfer (REST) application program-
ming interface (APIs). The operator assigns roles to members
and doctors, while ADT enables querying, model updates, and
data visualisation through the explorer. Models are authored in
DTDL and stored as JSON‐LD files.

6 | IMPLEMENTATION SETUP

Digital twin platform for intelligent healthcare systems was
developed, utilising cloud computing, wearable devices, data
analytics, and ML. This platform enabled remote patient
monitoring by creating virtual patient replicas. The physical and
virtual elements of the system were implemented, with the
physical element's functionality outlined in Algorithm 1 and the
virtual element's data transfer, processing, and decision‐making
described in Algorithm 2. Machine learning techniques were
applied, and seven different algorithms were evaluated to select
the optimal predictive model.

Figure 5 presents the sequence diagram, depicting the in-
teractions between system components and the data flow
during telemetry processing. The diagram illustrates the gen-
eration, validation, and handling of telemetry data, supporting
bidirectional communication for healthcare monitoring.
Telemetry was received, validated, and processed, followed by
real‐time visualisation and data archiving. The ML model
deployed in the system enhanced decision‐making, while
automated alerts were triggered based on the telemetry data.

Table 2 outlines the system parameters, highlighting secu-
rity protocols (e.g. transport layer security [TLS] with X.509
certificates and hybrid encryption) and data transmission
methods such as MQTT over secure sockets layer/TLS.
Adjustable data transmission frequencies (2–8 Hz) allowed for
flexibility in patient monitoring. The GLPK solver optimised
telemetry frequency, improving system responsiveness, while
Merkle Tree validation ensured data integrity.

6.1 | Pyomo model with Digital Twin

The Pyomo model was integrated into the DT framework to
optimise telemetry transmission and manage resources. As
illustrated in Figure 1, Pyomo's linear programming function-
ality dynamically adjusted telemetry frequency and prioritisa-
tion in response to network conditions, reducing latency and
maintaining efficient CPU and network performance. Algo-
rithm 3 describes the process of telemetry optimisation and
resource monitoring.

Algorithm 3. Telemetry Optimisation and Resource
Monitoring with Pyomo

1: Procedure: Telemetry Transmission and
Optimisation
2: Initialisation:
3: Connect devices to IoT Hub
4: Initialise Pyomo model for
optimisation (set frequency, priority)
5: Measure initial network and CPU usage
6: Step 1: Data Collection and Telemetry
Generation
7: Generate telemetry data (normal and
abnormal) for heart rate, SpO2, and
temperature
8: Log telemetry data and send to cloud
9: Step 2: Pyomo Model Optimisation
10: Define variables for telemetry
frequency and priority in the Pyomo model
11: Set constraints on frequency and
priority ranges
12: Solve the Pyomo model to minimise
latency L
13: Step 3: Transmit Telemetry and Measure
Resource Usage
14: Send telemetry data to the cloud
15: Measure CPU usage and network usage
before and after telemetry transmission
16: Calculate data sent during
transmission
17: Step 4: Log Resource Efficiency
18: Log CPU usage, network usage, and
telemetry data in the resource efficiency log
19: Step 5: Update Telemetry Transmission
Frequency
20: Adjust telemetry transmission
frequency based on Pyomo model results
21: Update frequency for the next
telemetry transmission cycle
22: Repeat the Process:
23: Continue generating telemetry,
optimising transmission, and monitoring
resources in the next cycle
24: End of Procedure

6.2 | Data acquisition

The ML model was trained to predict cardiovascular disease,
hyperthermia, and abnormal SpO2 using data from the
MIMIC‐III clinical database [68]. Volunteers' data were
collected to validate the model, with vital metrics labelled ac-
cording to medically accepted ranges. Abnormal readings were
classified if they exceeded these thresholds. Body temperature
ranged from 36.5 to 37.3°C; heartbeats per minute ranged
from 60 to 100; SpO2 should be at least 95% [69, 70].
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6.3 | Data preparation

Data were analysed using statistical methods, histograms, and
outlier detection. Missing data were handled using imputation
techniques, and feature selection reduced the input size. The
Pearson correlation coefficient was used to examine variable
dependence, as described in Algorithm 4. Outliers were
removed, and the dataset was normalised to ensure accuracy
and consistency.

Algorithm 4. Data preprocessing functional element

1: Input: BT, HR, Spo2
2: Output: Results
3: Results ← list()
4: for feature 2 [BT, HR, Spo2] do
5: if isNormalised(feature) is True then
6: removeOutliers(feature)
7: resize(feature)
8: format(feature)
9: Results.append(feature)
10: else
11: continue
12: end if

13: end for
14: return Results

6.4 | Data standardisation and model
evaluation

The StandardScaler technology was used to standardise the data.
In addition, 75% of the data was utilised for training purposes,
whereas only 25% was used for actual testing. In this modelling
process, we evaluate seven widely used ML classification algo-
rithms and compare their performance [71, 72]: Random forest,
Gaussian Naïve Bayes, logistic regression (LR), K‐nearest
neighbours, decision tree (D‐Tree), XGBoost and support vec-
tor machine.

In Figure 6, the structure of the XGBoost‐based model
design is presented. The model was optimised using the
following hyperparameters: a learning rate of 0.01, a maximum
depth of 3, and 100 estimators. These values were selected
after performing grid search to tune the hyperparameters,
ensuring that the model achieved the best possible predictive
performance. As a result, the XGBoost model delivered high
accuracy and efficient real‐time predictions of health outcomes.

F I GURE 5 Model of the digital twin (DT) sequence diagram.
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7 | PROOF OF CONCEPT

7.1 | Integration and communication of IoT
health devices

Figure 2 presented the integration of IoT devices within a
physical model, demonstrating health data transmission. The
serial monitor captured the output from an ESP8266
module, including telemetry such as HR and BT. These data
points are timestamped and transmitted to an IoT node, as
indicated by the dashed red lines. The physical model
depicted the configuration of connected devices: the
NodeMCU ESP8266 microcontroller, MAX30102 pulse ox-
imeter, and MLX90614 infrared thermometer, representing a
patient. This setup demonstrated the practical application of
IoT in health monitoring, aligning with earlier discussions in
Subsection 4.5.

In addition to SpO2, HR, and BT, the framework is
designed to support additional sensors for monitoring blood
pressure, motion, and glucose levels. The adaptable architec-
ture allowed for the integration of these sensors, ensuring real‐
time transmission and analysis through cloud‐based systems,
providing comprehensive and personalised healthcare moni-
toring in both clinical and home settings.

Real‐time monitoring has been designed to be highly
effective in clinical and home environments. The system,
utilising IoT devices like ESP8266 microcontrollers, trans-
mitted health data to the cloud in real time. This allowed
physicians, caregivers, and family members to receive alerts
and insights promptly. Predictive analytics powered by ML
(e.g., XGBoost) provided forecasts with 98% accuracy,
supporting decision‐making for healthcare professionals.

In home settings, the portable IoT devices and lightweight
sensors ensured patients were monitored remotely without dis-
rupting daily activities. The cloud‐based system provided real‐
time health updates and alerts, enabling timely care even in
remote areas.

7.2 | Schematic and data flow analysis in
Digital Twin systems

Figure 4 displayed the configuration of the DT network within
the DTs explorer, illustrating the flow of patient data through
connected sensors. Data from BT and HR sensors converged
at the ESP8266 microcontroller, demonstrating its role in
biometric data aggregation and transmission. Telemetry and
attributes from IoT devices were defined by the DTDL schema
and streamed in real time for analysis using the twin graph
platform.

The system leveraged Time Series Insights (TSI) for pro-
cessing time‐series data and detecting anomalies. The flow of
patient data was visualised and traced through the twin graph,
ensuring accuracy in both virtual and physical states, with trend
analysis provided by TSI. Figure 7 depicted the schematic
design of the health monitoring system, where patient‐specific
data and sensor interfaces are integrated into a modular DT
environment for comprehensive health management. Figure 8
presented live data from health‐monitoring sensors
(MAX30102 for SpO2 and HR and MLX90614 for BT). The
metrics are updated dynamically, validating the system's ca-
pacity for continuous patient monitoring.

7.3 | Function execution for IoT Hub and
digital twins integration

Figure 9 illustrated the invocation logs of a function app, acting
as an intermediary between the IoT Hub and DTs. The logs
confirmed that telemetry data was processed upon receiving an
event trigger, with details of device IDs, authentication, and
timestamps. The telemetry data are decoded and used to up-
date the DT's state.

7.4 | Temporal analysis and validation of
biometric data streams

Figure 10 showed a tabulated excerpt of biometric data from
TSI, representing timestamped readings of BT, HR, and SpO2.

F I GURE 6 Structure of the XGBoost‐based model design. The
flowchart illustrates the stages from data input to final prediction, detailing
the feature engineering and machine learning (ML) process.

F I GURE 7 Structure of the digital twins (DTs) model for health
monitoring.
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This tabulation validated the structure of data used for temporal
analysis, highlighting continuous telemetry captured from pa-
tient monitoring sensors. Figure 18 presented a graphical rep-
resentation of biometric readings over time, visualising trends
for HR, SpO2, and BT. The fluctuations in the data streams were
plotted, providing insights into the patient's physiological status
and validating the system's monitoring capabilities.

7.5 | Privacy and ethical considerations in
Digital Twin healthcare systems

The integration of DTs and cloud computing for healthcare
monitoring raised privacy and ethical concerns. Strong
encryption is used to protect patient data during transmission
between IoT devices, DTs, and the cloud. End‐to‐end

encryption secured the data both in transit and at rest, while
secure authentication protocols ensured that only authorised
healthcare providers can access the information.

Patient consent is prioritised through opt‐in digital agree-
ments, ensuring that patients retained control over their data.
Role‐based access control is implemented to enforce fine‐
grained permissions. Our framework adhered to privacy‐by‐
design principles to minimise data exposure and ensure
transparency in data processing.

Building on previous research focused on DT security and
secure task offloading mechanisms in edge computing [73], this
framework further enhanced cybersecurity for DTs in health-
care systems, addressing specific challenges related to data
privacy and security.

8 | RESULTS AND DISCUSSIONS

8.1 | Model comparative analysis

The final ML model was selected after a comprehensive
comparison of multiple models. Key metrics, including accu-
racy ðAÞ, were assessed alongside computational time. Accu-
racy, calculated using true positive ðT PÞ, true negative ðT N Þ,
false positive ðFPÞ, and false negative ðFN Þ, is shown below:

Að%Þ ¼
TP þ TN

TP þ TN
þ FP þ FN � 100: ð18Þ

Figure 11 compares the accuracies of the seven classifiers
tested, with XGBoost exhibiting the highest accuracy. All
models achieved over 82%, demonstrating the robustness of
the methodology. Figure 12 provides confusion matrices for
each classifier, illustrating the distribution of correct and
incorrect predictions.

8.2 | Analysing machine learning metrics
and model selection

Several performance metrics, including Precision ðPÞ, Recall
ðRÞ, and F1 Score ðFÞ, were evaluated to assess model effi-
ciency in healthcare applications.

F I GURE 8 Live data feed from health monitoring sensors.

F I GURE 9 Function invocation logs for IoT and digital twins (DTs)
synchronisation.

F I GURE 1 0 Biometric data table from time series insights. F I GURE 1 1 Comparison of the accuracy of used models.
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Precision ðPÞ, defined as the ratio of correctly predicted
positive observations to total predicted positive observations,
is calculated as follows:

P ¼
TP

TP þ FP
: ð19Þ

Recall ðRÞ, measuring correctly predicted positive obser-
vations out of all actual positives, is calculated as follows:

R¼
TP

TP þ FN
: ð20Þ

The F1 Score ðFÞ, representing the harmonic mean of
Precision and Recall, is given by

F ¼ 2�
ðR � PÞ

R þ P
: ð21Þ

Figure 13 compares Precision, Recall, and F1 Score for all
models, with XGBoost achieving the best balance between
these metrics.

Figure 14 presented the receiver operating characteristic
(ROC) curves of all models, indicating that XGBoost was
observed to achieve an area under the curve (AUC) value close
to 1, signifying excellent performance in distinguishing be-
tween classes. Additionally, Figure 15 compares the computa-
tional times of the models, showing that XGBoost offers a
reasonable balance between accuracy and efficiency compared
to other models.

Table 3 depicted cross‐validation (cv = 5) that was con-
ducted to ensure robustness and reliability of the models. The
XGBoost model exhibited the highest cross‐validation accu-
racy (CVA) of 99.58%, which confirmed its strong general-
isability and its ability to avoid overfitting, in contrast to
simpler models such as LR.

Table 4 presented a more rigorous cross‐validation
(cv = 10) conducted, with the XGBoost model maintaining
superior performance, demonstrating stability and consistent
accuracy, with a CVA of 99.58%. This emphasises that the
XGBoost model is resilient to changes in the training data,
making it suitable for deployment in dynamic healthcare
environments.

Table 5 illustrated that cross‐validation with cv = 20 was
conducted for a more exhaustive validation. The XGBoost

F I GURE 1 2 Confusion matrices: (a) D‐Tree, (b) GNBs, (c) K‐nearest
neighbours (KNN), (d) logistic regression (LR), (e) Random forest (RF),
(f) support vector machine (SVM), (g) XGBoost.

F I GURE 1 3 Seven algorithms are compared in terms of (a) Precision, (b) Recall and (c) F1 score.

F I GURE 1 4 ROC curve of seven algorithms. ROC, receiver operating
characteristic.
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model again outperformed all other models with a 99.58%
accuracy, indicating minimal variability in performance.

The XGBoost model was selected based on several
important considerations.

1. Performance Metrics: As shown in Figures 13 and 15,
XGBoost consistently outperformed other models across
all key metrics (Accuracy, Precision, Recall, F1 Score, and
ROC AUC). The model demonstrated particularly high
CVA of 99.58% and a near‐perfect ROC AUC value,
highlighting its effectiveness in distinguishing between
positive and negative health states.

2. Speed and Efficiency: XGBoost exhibited reasonable
computational time (Figure 15), efficiently handling high‐
dimensional healthcare data without compromising speed.
This balance between performance and computational cost
makes it suitable for real‐time healthcare monitoring, where
timely predictions are essential for patient care.

3. Handling Imbalanced Data: Healthcare datasets often have
class imbalances, with significantly fewer positive cases of
certain health conditions compared to negative ones.
XGBoost's ability to optimise both Recall and Precision en-
ables effective management of imbalanced datasets, mini-
mising both false positives and false negatives, which is
critical in healthcare to avoid misdiagnosis and ensure patient
safety.

Once selected, the XGBoost model was deployed using
cloud services, including logic apps, function apps, and stream
analytics, facilitating real‐time access for medical professionals,
caregivers, and patients alike.

8.3 | Comparative analysis of DTH
technologies

Table 6 presents a comparative analysis of various research en-
deavours or undertakings with respect to their technological
frameworks, case study designs, practical implementations,
employment of data visualisation and analysis techniques, la-
tency factors, and cost implications. A comparison of the prior
literature with our proposed article demonstrates how our
research has incorporated and addressed unfinished work from
previous studies.

Additionally, our study proposes further work to be un-
dertaken in the future. Our article focused on the expenses
associated with various devices used in research, with a
particular emphasis on identifying the most cost‐effective op-
tion. The cloud latency was evaluated, yielding an improved
performance of 20–25 milliseconds, demonstrating a signifi-
cant advancement compared to earlier research. Additionally,
the system provided thorough monitoring of outcomes and
patient status, facilitated by the integration of TSI and ADT.

Table 7 provides a concise comparison of key performance
metrics across different frameworks, including our proposed
model, highlighting metrics such as accuracy, response time,
telemetry transmission latency, and resource utilisation effi-
ciency. Our proposed framework demonstrates superior per-
formance with a 98% accuracy, a 52% reduction in response
time, and a 32% improvement in telemetry latency compared
to the other frameworks. Additionally, it optimises CPU usage
and provides continuous patient monitoring with high user

F I GURE 1 5 Comparison of computational times of seven algorithms.

TABLE 3 Summary of results with cross‐validation (cv = 5).

Model CVA (� std) Test accuracy

D‐tree 0.9916 � 0.0042 0.9874

GNB 0.8971 � 0.0143 0.8522

KNN 0.8634 � 0.0146 0.8365

LR 0.8550 � 0.0149 0.8208

RF 0.9958 � 0.0039 0.9874

SVM 0.9149 � 0.0174 0.9057

XGBoost 0.9958 � 0.0039 0.9906

TABLE 4 Summary of results with cross‐validation (cv = 10).

Model CVA (� std) Test accuracy

D‐tree 0.9905 � 0.0099 0.9874

GNB 0.9013 � 0.0215 0.8522

KNN 0.8760 � 0.0252 0.8365

LR 0.8487 � 0.0380 0.8208

RF 0.9947 � 0.0071 0.9874

SVM 0.9139 � 0.0203 0.9057

XGBoost 0.9958 � 0.0070 0.9906

TABLE 5 Summary of results with cross‐validation (cv = 20).

Model CVA (� std) Test accuracy

D‐tree 0.9895 � 0.0125 0.9874

GNB 0.9013 � 0.0326 0.8522

KNN 0.8790 � 0.0402 0.8365

LR 0.8508 � 0.0510 0.8208

RF 0.9937 � 0.0096 0.9874

SVM 0.9212 � 0.0425 0.9057

XGBoost 0.9958 � 0.0084 0.9906
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comfort, showcasing its advantage in real‐time healthcare
applications.

8.4 | Flask deployment for model serving

To facilitate real‐time health predictions based on the XGBoost
model, we developed a REST API using the Flask framework.
The Flask application exposes an endpoint that accepts physi-
ological parameters, performs inference using the trained
XGBoost model, and returns the predicted health status along
with key performance metrics. The implementation of the Flask
code for this model deployment is shown in Figure 16.

Additionally, Postman was used to test the API deploy-
ment, as illustrated in Figure 17. A request containing health
parameters was sent to the model deployed via Flask, and the
real‐time prediction metrics, including accuracy, precision,
recall, and F1‐score, were returned in the response. This
demonstrated the successful deployment and real‐time pre-
diction capabilities of the system.

8.5 | Web portal

The web application was created to facilitate the effective
visualisation of patient data and follow‐up by doctors, care-
givers, and relatives. The site aims to create DT using the
cloud, containing all the features needed to establish a
healthcare DT by employing ADT and ML, as well as storing
and processing recorded data. This cloud also provides the app
logic through which alert messages can be sent via SMS or
email to those monitoring the patient. By displaying the pa-
tient's physical and physiological data and generating pre-
dictions from an ML model, the patient's condition can be
diagnosed quickly.

In addition, as shown in Figure 18(a) and on the website, the
authors successfully tested the prototype by uploading the
detected parameters to the cloud. The digital model was devel-
oped based on sensor specifications, recorded data, historical
data, and data transmission to the cloud. By utilising Time Series
Insights (TSI), a comparison was made between physical and
digital objects, revealing a significant degree of resemblance

TABLE 6 A comparative summary of digital twin (DT) applications in healthcare.

Ref. No. UTa Case study Practical work RTDb DV&Ac LATd Cost

[40](2023) DT, IoT, DL Disease detection and smart
medical service

Analysis of clinical experimental data Yes Yes – –

[37](2021) DT, FEMf, bidomain
model, and 12‐lead ECG

Clinical 12‐lead ECGs for cardiac
electrophysiology DT

MRI, ECG, FEM simulations, parameter
adjustment, electrode placement localisation

No No – Yes

[41](2019) DT, IoT, cloud computing Elderly healthcare services Emergency and regular patient simulation
with hospital wards

Yes Yes – Yes

[42](2023) DT, decentralised learning
with blockchain.

Industrial ecology learns through
data and resource sharing

Experiments and simulations Yes Yes LPTg Yes

[49](2023) DT, 3‐D modelling, DL Smart clothing system Hardware–software integration. Yes Yes – –

[9](2021) DT, IoT, DL, ML DT and IoT could revolutionise
healthcare

DT‐based intelligent context‐aware healthcare
system proposal and implementation

No No – Yes

[10](2022) DT, CanTwin DT technology for workplace
virus control by social distance

CanTwin is presented as a practical example
of an industry case study

Yes Yes 4 s –

[55](2022) DT, cloud computing VR cloud framework for
interactive DT

Proposing an interactive VR DT cloud
infrastructure

– Yes Low
LAT

–

[56](2023) DT, IIoT Precision DT construction. Concurrent end‐to‐end synchronisation and
multi‐attribute data resampling for accurate
and efficient DT production.

– No – Yes

[74](2024) DT, IoT, WBAN Elderly healthcare monitoring
using WBANs

Real‐time health monitoring with a focus on
reducing packet drop ratios

Yes Yes – Mm

Proposed
work

DT, IoT, cloud
computing, ML, and
visualisation

Real‐time monitoring with
integrated virtual and physical
data

Patient data analysis, condition
prediction, alerts, and emergency
simulation via IoT‐cloud framework

Yes Yes Low
(20–
25 ms)

Low
cost

Note: The bold values in the “Proposed work” row were used to emphasize the distinctive and critical strengths of the proposed framework compared to others in the table.
Abbreviations: DV, digital visualization; FEM, finite element method; LAT, latency; LPT, low processing time; RTD, real‐time data.
aUtilised Technology.
bReal Time.
cVisualisation and Analysis.
dLatency.
fFinite Element Method.
gLess processing Time.
mModerate.
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stemming from the DT implementation through the creation of
a digital prototype, as shown in Figure 18(b) and (c).

8.6 | Model performance analysis

Figure 19 shows the comparison of telemetry transmission
latency for our model. It is observed that the latency increases
steadily over time for both cases. However, the Pyomo model
significantly optimised the latency, maintaining it around 20–
25 milliseconds, while without Pyomo, the latency peaks at

40 milliseconds. This improvement demonstrated that inte-
grating the Pyomo model achieved a 32% reduction in
telemetry transmission latency, leading to better real‐time
performance for healthcare monitoring..

Figure 20 presented three performance parameters: run-
time (in seconds), data sent (in bytes), and CPU usage (in
percentage). A noticeable trend is the improved CPU efficiency
with our model, where CPU usage remains relatively stable
compared to the fluctuating performance without Pyomo.
Data transmission and runtime also exhibit improved consis-
tency with the presented model. Overall, the integration of the
Pyomo model results in an 18% improvement in resource
utilisation, enhancing both data transmission efficiency and
computational stability within the system.

Figure 21 illustrated results indicating a significant reduc-
tion in response time when the proposed model is integrated
into the system. The optimisation achieved through the pre-
sented model results in an approximate 52% reduction in
response time, enhancing the system's efficiency in processing
and responding to data.

TABLE 7 Performance comparison of various healthcare monitoring frameworks.

Metric Proposed framework [59] 2020 [63] 2023 [75] 2024 [76] 2025 [77] 2024 [78] 2025 [79] 2025 [80] 2025

A 98% 95% 92% – 95% – – – –

M1 ↓ 52% 50 ms 65 ms ↓ 15%–20% ↓ 20% ↓ 15%–20% ↓ 18% ↓ 10% ↓

M2 ↓ 32% (20–25 ms) 20 ms 25 ms ↓ 10%–15% ↓ 15%–25% ↓ 10%–15% ↓ 18% – ↓

M3 ↑ 18% 15% 10% ↑ ↑ 20.97% ↑ Throughput ↑ 18% ↓ 5.35%4 ↑

M4 Adjustable (2–8 Hz) 4–10 Hz 3–7 Hz Adjustable Adjustable Adjustable Adjustable – –

M5 Stable, optimised Optimised High1 Optimised Optimised Optimised (with DRL) Optimised (A3C) Optimised Optimised

M6 98% 96% 90% 97% – – – ↓ 15.77%2 –

M7 Continuous Continuous Continuous – Distributed – Distributed – –

M8 High Moderate High3 High High High High High High

Note: Metric: M; M1: Response Time; M2: Telemetry Transmission Latency; M3: Resource Utilisation Efficiency; M4: Data Transmission Frequency; M5: CPU Usage; M6: Real‐Time
Accuracy; M7: Patient Monitoring (SpO2, HR, BT); M8: User Comfort; Requires optimisation1; Improved with reduced SLA violation rate2; Non‐invasive sensors3; Improved due to
reduced energy consumption by 5.35%4; ↓: To indicate reduction; ↑: For improvement.
Abbreviations: DRL, deep reinforcement learning; SLA, service level agreement.

F I GURE 1 6 XGBoost model deployment via Flask.

F I GURE 1 7 API deployment testing in Postman for real‐time
prediction. The Postman interface is used to send a request to the model
deployed using Flask, showcasing the real‐time prediction metrics. API,
application programming interface.
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8.7 | Challenges and limitations of the
proposed framework

To establish the DT environment, several challenges were
encountered related to sensor integration, cloud communica-
tion, and system scalability. Specifically, during the data
collection phase, we used the Arduino IDE to programme IoT
devices, such as the ESP8266, which were connected to various
sensors for monitoring health parameters like SpO2, HR, and
BT. Configuring the hardware and ensuring real‐time data
transmission from the sensors to the cloud introduced chal-
lenges in terms of maintaining connectivity, especially in dy-
namic environments with varying network conditions.

For cloud integration, the use of C# and JSON‐LD for
modelling DTs proved effective but presented complexity in
data synchronisation and representation between physical and
virtual models. Challenges were also faced in ensuring secure
and efficient real‐time data flow between sensors and the
cloud, particularly when handling larger data volumes. More-
over, the system's reliance on external tools, such as the ADT
explorer, introduced some limitations in the flexibility of
queries and real‐time visualisation capabilities. These factors
necessitated additional customisations and optimisations to
ensure efficient monitoring and analysis.

Despite these challenges, the framework was designed to
be scalable and adaptable, capable of supporting real‐time
updates. However, the reliance on multiple software compo-
nents could potentially limit its ease of integration with existing
healthcare infrastructure without further customisation. Addi-
tionally, ensuring interoperability between different sensor
types and managing the varying formats of the collected data
posed some integration challenges, which were addressed
through the use of standardised protocols like JSON‐LD.

F I GURE 1 8 (a), (b) and (c) Data (heart rate (HR), Spo2, and body
temperature (BT)) monitoring accessing the cloud server using the dashboard
on the cloud in TSI.

F I GURE 1 9 Comparison of transmission latency over time.

F I GURE 2 0 Performance comparison of runtime, data transmission,
and CPU usage for digital twin (DT) systems with and without Pyomo.

F I GURE 2 1 Response time comparison.
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9 | CONCLUSION

This study successfully developed a system prototype utilising
DT (DT) methodology, IoT, ML, and AI techniques to enhance
data integration and interaction within healthcare. The system
enables intelligent monitoring of physiological parameters, for
example, HR, oxygen saturation (SpO2), and BT. The imple-
mentation of DT in healthcare has demonstrated significant
potential in supporting cloud‐based services for elderly in-
dividuals and those with chronic conditions. Integrated with a
real‐time graphical user interface based on ADT, the system
allows both clinicians and patients to effectively manage and
monitor health. The wearable prototype is lighter, smaller, and
more cost‐effective, facilitating the continuous monitoring of
vital signs.

Edge computing methodologies have been employed to
ensure prompt local assessments, reduce latency, and detect
anomalies. The integration of the Pyomo model resulted in a
32% reduction in telemetry transmission latency, a 52%
reduction in response time, and an 18% improvement in
resource utilisation, demonstrating the system's optimisation
effectiveness. Additionally, the portability and wireless nature
of the device enhance usability. Machine learning techniques
were employed to develop predictive models, achieving a 98%
accuracy rate in real‐time monitoring and 99.06% accuracy
under cross‐validation (cv = 20) using the XGBoost algorithm,
which outperformed others with a training time of 0.25 s.

Future developments may involve incorporating additional
sensors to monitor more vital signs, such as electrocardio-
grams, blood pressure, and GPS, to further refine the DT
representation of patients. Moreover, the integration of 3D
technology and advanced ML in healthcare applications holds
considerable potential for further innovation in this domain.
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