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Class Imbalance Wafer Defect Pattern Recognition
Based on Shared-database Decentralized Federate:
Learning Framework
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Abstract—In this paper, a novel shared-database decentralized ~ Serving as an important quality control technique in wafer
federated learning framework (SDeceFL) is developed for wafer manufacturing, a number of wafer pattern recognition (DPR)
defect pattern recognition (DPR). Specifically, a differential methods have been proposed to identify/analyze the defects

privacy shared-database strategy is proposed to overcome the -
inter-class heterogeneity problem of different clients and enhance of the wafers. By using DPR, the source of defects (e.g.,

data privacy. A deformable convolutional auto-encoder (DCAE) Materials, manufacturing processes, and equipment) can be
is designed for data augmentation for handling class imbalance. properly identified. By doing so, wafer manufacturers are able
The vision transformer (ViT) is employed for wafer DPR. The to take actions in time to adjust the industrial process, which
proposed DCAE-ViT-SDeceFL framework is validated on three ~,.1d reduce the manufacturing costs, improve wafer quality

public data sets (e.g., WM-811K, NEU-CLS-64, and CIFAR- . .
100). Experimental results show the superiority of the SDeceFL and thus strengthen the competitive position of manufacturers

framework over Ratio Loss-FedAvg, MOON, FedNH, BalanceFL, in the market [21], [47]. It is known that using a proper wafer
FedAvg, DeceFL and swarm learning. Compared with some deep DPR technology can reduce the wafer defect rate effectively
learning methods, experimental results exhibit the effectiveness and bring profits to the manufacturer.
S\Eht/lhglplrzposed DCAE-VIT-SDeceFL method for wafer DPR on it the increasing focus on information protection, in
' the past few decades, data privacy has become an important
Index Terms—Defect pattern recognition, class imbalance, topic in wafer manufacturing. Federated learning can assist
deformable convolutional auto-encoder, vision transformer, de- j, the maintenance of the performance of machine learning
centralized federated leaming, differential privacy. algorithms while protecting the data privacy of local data.
Federated learning has been extensively applied in data pro-
|. INTRODUCTION tection to enhance data transmission under the premise of
_ _ ) _data privacy and security [59]. For example, in [30], a new
With the breakthrough of the internet of things, the int&sgerated learning method has been developed for deep neural
grated circuit (IC) industry has developed rapidly in the pagkyyorks based on iterative model averaging. Recently, a
few years. As an important and fundamental material of the,nster learning-based federated learning approach has been
IC, the wafer plays a critical role in affecting the quality of,rqhosed for fault diagnosis in [59], where different models
the IC. It is known that Wafers are made from high-purity,e yijlized by different users in order to enhance data privacy.
semiconductors through grinding, slicing and other extremaly qgition, in [60], a federated transfer learning framework
demanding processes which are complex and costly. Duripg machinery fault diagnosis has been introduced, where the
the wafer manufacturing process, wafers are easily damagegag, gistributions are employed for bridging the domain gap
influenced by the environment which cause defects. In recéifjirectly. As a popular federated learning method, decentral-
years, many researchers have focused on improving the Wafely federated learning has attracted various attention in the
manufacturing process as well as the manufacturing envirQfli; few years [54]. In [54], a decentralized federated learning
ment to fgbncatg qualified wafer products. Unfortunately, tbeceFL) framework has been developed to simulate the
is nearly impossible to produce non-defect wafers based @fimmunication connections of clients. As a potential research
existing manufacturing processes. direction of federated learning, the DeceFL framework uses
topological graphs to simulate the communication connections,
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ing [8], [24], [43]. Such approaches focus on developindevelop a new data protection wafer DPR framework. Specifi-
algorithmic-level strategies (such as class-balanced loss funally, to tackle the privacy protection issue in the wafer DPR, a
tions [24], [43], [56] and class-balanced training strategiesvel shared-database decentralized federated learning frame-
[8]) to allow the global model to learn the data distributionvork (SDeceFL) is proposed, where a differential privacy
characteristics of each client. For example, in [56], a finshared-database (DPS) strategy is put forward to overcome
grained calibrated cross-entropy loss has been applied in loited inter-class heterogeneity problem of different clients and
updating. In [8], the class semantics have been infused irphance data privacy. A DCAE module is proposed and is inte-
class prototypes. In fact, data augmentation is a suitable cgnated with the vision transformer (ViT) for data augmentation
didate to solve the Non-IID problem in federated learning from wafer DPR to solve the class imbalance problem, which
the perspective of data processing. In this case, a seeminiglyoduces offsets to expand the receptive field by integrating
natural idea is to put forward a new data augmentation stratepg DC kernel in the traditional convolutional auto-encoder
to handle the class imbalance problem in federated learning(CAE). The SDeceFL framework is embedded into DCAE-
this paper, we not only develop an algorithmic-level approadhT for data transmission and global model development with
to solve the heterogeneity problem in federated learning bihe hope of alleviating the impact of fragmented data provided
also investigate the class imbalance problem at the level mf wafer manufacturers. The main contributions of this paper
data source management. can be summarized in the following three aspects:

~ In the past, wafer DPR was carried out based on visugh) A new decentralized federated learning framework is put
inspection by experienced engineers, which is expensive and forward where a DPS strategy is developed to tackle the
time consuming. As an emerging topic in machine learning, data privacy leaks and inter-class heterogeneity problems;
deep learning has attracted an ever-increasing research inte(gyt The DCAE module is developed to expand the receptive
due to its powerful feature extraction ability [41], [42], [49].  field of the convolution and alleviate the class imbalance
Recognizing as a powerful family of deep learning techniques, problem by generating new samples belonging to the
the convolutional neural network (CNN) has been widely used  minority class; and

in wafer DPR due to its strong feature extraction ability [21](c) The proposed DCAE-ViT-SDeceFL framework is applied
For example, a CNN-based method has been introduced in to analyze the public wafer image data for DPR with
[21] for DPR of wafers with mixed defects, where the CNN  promising results, which could benefit wafer manufactur-

models are built based on each type of defect. ers by providing a reliable and efficient defect identifica-

It should be noticed that the quality and quantity of training  tion approach with guaranteed data privacy and security.
data are of vital importance in deep learning [10], [11], [19], The remaining sections of this paper are organized as
[25]. Due to the uncertainty of the manufacturing site, thgyiows. The background of wafer manufacturing, wafer DPR,
defect categories caused by the wafer manufacturing procgg§ federated learning are introduced in Section Il. Then, a
are often imbalanced. Recently, data augmentation has b@gfe| wafer DPR framework is introduced in Section I1I. In
proven to be an effective way to solve the class imbalanegion IV, the experiment setting, data description, and data
problem. Some popular data augmentation methods inclyge_processing are discussed. Section V presents the experi-
the generative adversarial network (GAN), variational autsental results, where the results for the proposed framework
encoder, PixelCNN. In this situation, it seems natural to adogty some selected methods are compared and discussed in

the data augmentation technique to tackle the class imbalageg,il. Finally, conclusions and some possible future research
problem in wafer DPR. Inspired by the above discussiongirections are provided in Section VI.

we aim to develop a new data augmentation method which is
capable of extracting and learning the features with various Il. BACKGROUND

scales and shapes adaptively. In thi tion. th | back d of waf fact
Note that the convolution kernel plays a critical role in n this section, the general background of waler manutactur-
¢ and some widely used wafer defect defection techniques

extracting features, which also affects the computational cdd

of the CNN. In recent years, various convolution kernels hafe® introduced. In addition, the wafer DPR techniques and data

been developed to improve the feature extraction ability gpgmentatlon techniques for wafer DPR are presented.

the CNN by expanding the receptive field [7], [51], [62]. An .

object detection method has been introduced in [62] based®n Wafer Manufacturing

the atrous convolution kernel with different expansion rates. Wafer manufacturing includes various technological sectors

Compared with the traditional convolution kernel, the dilatefe.g., chemical mechanical polishing, exposure, post-exposure

convolution kernel is able to adjust the dilation rate accordirgake, and ion implantation). In general, wafers will be made

to different data sets so as to modify the receptive field [5lhto nano-chips after four core processes (i.e., photolithogra-

In [7], the deformable convolution (DC) has been proposed piy, etching, deposition, and ion implantation).

adaptively learn the features of the object with various scalesOwing to the increasingly demanding requirements (e.g.,

and shapes. Considering the characteristics of DC in expandiog power consumption, good performance, and tiny scale) of

the receptive field, we propose a deformable convolutionabfers, a number of processes (such as evaporation deposition,

auto-encoder (DCAE) module to reconstruct the raw data fdual-ion beam sputtering deposition, and plasma enhanced

DPR. chemical vapor deposition) have been deployed in wafer
Motivated by the above discussions, this paper aims moanufacturing to overcome the problems. Nevertheless, the
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deployment of such processes may cause defects which deep learning architecture for natural language processing
difficult to be detected based on previous experience. To tackled computer vision [9], [23]. In [9], the vision transformer
the defect detection challenges, a variety of wafer defegdtiT) has been proposed where a standard transformer is

detection methods have been developed. directly applied to handle the sequences of image patches for
image processing, which shows competitive or even superior
B. Wafer Defect Detection performance against the CNNSs.

In wafer manufacturing, uncertainties (e.g., complex envi-
ronments and variations of processing parameters) may easily Federated Learning
cause defects in the manufactured wafers. By analyzing th
electron microscope images of the wafer, the defects exhi
different spatial patterns. It is known that there are nine typg
of defects in wgfer manufacturing including center, donut tion, the wafer data is fragmented into sevelth islands
edge-loc, edge-ring, local, near-full, random, and scratch [4

o i " hich not only enhances user privacy but also causes the data
Specifically, the anomaly of film deposition leads to the edg_%'olation problem. Thealata islandsacross enterprises makes

I(;)cf detfeﬁt, and thle an_omaly olfdetchlng Itiadf to Iﬂ:je fed?e'”f?%iifﬁcult to establish big data mechanisms for data sharing.
elect. neven cleaning would cause the local detects, other words, it is nearly impossible to build an effective

human mistakes r.esult in the Qear-full defects in wafers. achine learning model only based on the fragmented data.
reduce the defective rate of chips, a number of wafer defect

detecti thods (including both model-based method Jo tackle the aforementioned problem, it seems reasonable
etection methods (including both model-based me 0ads apply the federated learning technique to balance the data
data-driven methods) have been developed to monitor

ducti ’ -t b vzing the elect ﬁvacy/securiw and communication cost [54]. Different from
production process in real-ime by analyzing the €lectigly i jized learning where the whole data set is trained on a
microscope images of wafers.

o £ th ¢ -k del-based wafer def single node, a generalized model is established on distributed
det n::'_ 0 (teh rr(;os_ \t/ve ) lntown TE el Ias; tvr\wla er deleovices collaboratively via federated learning, which makes it
etection methods is template matching. In [2], the sequentf sible to solve thdata islandsproblem. Generally, federated

similarity detect|_0n algorlfchm (which is recognized as one ? arning techniques are capable of decreasing communication
the best matching criteria) has been proposed for accurgle. . ooy ensuring data privacy during the data transmis-

defect detection. Neverthelegs, the templ_ate matching methgl hitransfer by training and aggregating local models into a
may suffer from the uncertainty, especially the randomne Rbal model

of template selection, which is time-consuming for real-worl Aggregating local models into a global model is a critical

deployment. i§sue in federated learning. In recent years, a large number

Recently, data-driven methods have been widely used .
assess the quality of wafers [39]. Among existing data—drivi; federated learning methods have been put forward [30],

methods, image processing methods have been success Eﬁg For example, the federated averaging (FedAvg) algorithm

. : : . been proposed in [30] where the centralized federated
adopted in detecting possible defects by analyzing the OlefFecarning ispdepployed to[ er]lhance the generalization ability
of images. In [39], a spatial attention bilinear CNN has bee

roposed to classify defective castings and non-defective on%?sthe model and alleviate the overfitting problem. In [59],
brop 9 federated transfer learning algorithm has been proposed

X i : a
It is known that many existing defect detection methods €30 fault diagnosis, where a federal initialization stage is
oduced to keep similar data structures during the distributed

detect wafer defects effectively [40]. Nevertheless, considerinnq
) ; ylnics
the potential problems (e.g., lacking wafer defect data, high . o
: : : eature extraction stage, and a federated communication stage
labeling cost, unsatisfactory model), there is a need to deve 90 . : X X
. _1S"Turther implemented using deep adversarial learning. Unfor-
some advanced wafer DPR methods in wafer manufacturlr[%. . : .
hately, the centralized federated learning-based algorithms
N would face a high communication burden and vulnerability
C. Wafer Defect Pattern Recognition once the central client fails or is affected by a cyber-attack.
In wafer defect detection, pattern recognition plays a critic&ery recently, in [54], a principled DeceFL is proposed, which
role in extracting and analyzing the features of various wafeglies only on local information transmission between clients
defects. The wafer DPR indicates the accurate recognitionasfd their neighbors instead of using a central client for sharing
wafer defect patterns, which aims to identify the anomaliedl the acquired data. In wafer manufacturing, data security and
through the manufacturing process. In recent years, the CdNvacy are of critical importance for enterprises. Based on
has become one of the most preferred models in the fieldtbeé above discussions, the federated learning techniques could
DPR [21]. tackle the data sharing problem for solving ttata islands
The feature learning performance of the CNN is highlin wafer DPR.
dependent on the features extracted through the continuouBederated learning faces a major challenge due to the class
accumulation of convolutional layers. A number of CNNgénbalance in the training data of each client, leading to a
with specifically designed network architectures have beeotable impact on the performance of model learning. In
proposed (e.g., the AlexNet, the GoogLeNet, the VGGNdhe past few years, numerous studies have been conducted
and the ResNet [13]). With the development of the attentian order to improve the performance of federated learning
mechanisms, the transformer has become the state-of-thesartNon-11D data. In [43], the ratio loss has been introduced

.eOwing to the increasing importance of data security and
ﬁvacy, a variety of data protection mechanisms have been
ﬁsigned by many wafer manufacturing enterprises. In this sit-
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in the FedAvg framework to mitigate the effect of the classbalance problem; 3) the VIT is utilized to extract the
imbalance problem. In [24], the model-contrastive loss haefect features by using the multi-head self-attention (MSA)
been designed and added to the local model in the FedAvgchanism for DPR. The overall scheme of the developed
framework to resolve the heterogeneity between clients (Nomafer DPR framework is shown in Fig. 1.

[ID). In [8], a federated learning framework, the FedNH, has

been proposed, which uniformly distributes class prototypes jn .

the latent space and then infuses the semantics into prototy/p&)(és-rhe DCAE-based Data Augmentation Approach
smoothly. In [37], a long-tail federated learning framework It is known that the convolution kernel is capable of
named BalaceFL has been proposed, which can robustly lestwudying the geometric changes of objects by using sliding
both common and rare classes. windows and scale-invariant feature transformations. The ker-
nels are employed to extract the features of the input data with
different shapes. With a certain number of convolution kernels,

E. Data Augmentation . . .
o stacking the convolutional layers could expand the receptive
Data augmentation is one of the popular avenues for hapyg  specifically, the receptive field expands linearly as the

diing class imbalance in federated leamning. As & populaimper of convolutional layers increases. Nevertheless, the
family of data augmentation methods, data generation methegsresponding computational cost of the convolution process
are widely employed in both academia and industry, which cift.reases exponentially. Related studies have shown that the

be classified into statistical-based methods, probabilistic-bagg}formance of the CNN's is constrained by the receptive field
methods, and deep learning-based methods [33]. to some extent [51].

During the past few years, a number of probabilistic image compared with the traditional convolution kernel, the DC

generation methods have been proposed [32]. In [32], sevetgk the offset field which could enlarge the receptive field and
probability-based models have been put forward to genergie, e the sparse spatial sampling capability. The DC learns
different defect patterns (e.g., annular defect patterns, mixegn, offsets by an additional convolution kernel with the same
defect patterns, repetitive defect patterns, and random defggh, 55 the input feature map where the number of channels
patterns). It should be noticed that the performance of the, \ corresponding tav two-dimensional offsets. After that,

probabilistic-based methods and statistical-based methodsyis input feature map and offsets are jointly used as the input
heavily dependent on expert knowledge. For some highf ihe next layer.

dimensional and irregularly shaped defects, it would be ex-gy jhiroqucing the offsets to the traditional convolution

tremely difficult for experts to recognize defects only bas%meh DC is designed to expand the receptive field. For the

on empirical experience, thereby influencing the quality of th[?n pixel location of imagey; on the output feature mag,..;

data. generatiop Process. i of the DC is calculated as follows:
With the rapid development of hardware equipment, a vari-

ety of deep learning-based methods have been put forward for Your (pi) = Z w (pn) - = (pi + Pn + Lpn) 1)

data generation. For example, in [26], a generative adversarial PR
network has been put forward to obtain high-quality thermal i i i
images based on data augmentation. whereR denotes the convolution kerne;(-) is a function to

As a well-known branch of deep learning, the auto—encodfé(f‘lcu'ate the We_ights and biases;represents theth position
(AE) has been widely used in unsupervised learning for featdfe the convolution kernel{Ap,[n = 1,...,|R|} denotes the
extraction, which demonstrates competitive or better featfgSet of thenth position in the convolution kernek; and
extraction performance than the probabilistic-based methotigePresents the input feature map. Note that the size of the
[3]. The standard AE contains an encoder and a decoder, whgfgvolution kernelrz is the size of the receptive field.
the encoder is used to sample and learn the original featured! iS worth mentioning that the bilinear interpolation method
and the decoder is employed to decode the features so aiStgSed to solve the non-integer offsép, problem in DC.
reconstruct the original input. In the past few years, marﬁ)‘le interpolated coordinates can be expressed as follows:
AE-based methods have been developed for representation
learning. For instance, the CAE has been presented in [29] X (B) = ZG(O‘vﬂ) - X (a) )
which combines the convolution and pooling operations of @
the CNN with AE for hierarchical feature extraction. Thevheres denotes an arbitrary fractional locatioh € po+p,, +
CAE has been extensively used in noise reduction and ddta,,); X (-) represents the feature map after convolutioiis
reconstruction. Nevertheless, thmited receptive field of the the enumeration of all integral spatial locationsXn G(,-)
traditional convolution operator becomes a bottleneck for tlethe two-dimensional bilinear interpolation kernel, which can
development of the CAE. be expressed as follows:

[Il. M ETHODOLOGY G (o, B) = g (az, Bs) - g (ay, By) (3

In this paper, a novel DCAE-ViT-SDeceFL frameworkwhereg (a,b) = max (0,1 — |a — bJ).
is developed for wafer DPR where 1) a novel SDeceFL In this paper, the DCAE is proposed where the DC kernel
framework with DPS strategy is proposed; 2) a DCAE-basésl integrated with the traditional CAE to further improve
data augmentation approach is designed to solve the cld®s receptive field. The developed DCAE is a sparse spatial
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Fig. 1. Flowchart of the proposed wafer DPR framework

sampling technique, which could compress the structure in-It should be noted that the deep neural network with a large
formation of image neighboring locations into a fixed gridgonvolution kernel (DNNLCK) may include a large number of
resulting in better feature capturing performance comparedining parameters, which requires high computational cost
with the traditional convolution. Based on the feature capturig8]. Compared with the DNNLCK, the proposed method
capability and the self-learning capability of the DCAE, theould effectively reduce the model parameters and extract the
class imbalance wafer images are reconstructed and generatetect feature at different scales by employing DC. A single
The loss function of the proposed DCAE is given below: convolutional layer may result in a simple model structure that
9 is unable to capture the underlying patterns in the training
S (yi — y;> data, leading to underfitting. In contrast, DCAE, compared to
- (4) CAE under the same conditions, can leverage DC layers for
more flexible receptive field control, capturing defect features
wherey represents the actual labef; represents the predictedat varying scales and improving model performance. To further

Lpcag =
n

label; andn represents the number of categories. enhance the model's feature representation capability and
1) Structure of the DCAEThe data generation process iglleviate underfitting problems, we can increase the channel

summarized into four steps: numbers of DC kernels to improve the expressive power of

(@) Input the real samples into the DCAE; the convolutional layers.

(b) Encode the input to the intermediate variablg

(c) Add noises intdy” asY’; R B. The ViT-based Defect Pattern Recognition

(d) Decode the integrated variable for generating new  |n wafer defect classification, the number of defect samples

samples. in certain categories may be very small due to the fact

It is worth noting that the integration of random noises intthat there may be a significant imbalance in the number of
input images would lead to the generation of different samplatefect samples in different categories. In this case, the trained
In this paper, more samples are obtained for the minority clas®del would perform poorly for minority classes at the defect
by employing the DCAE so as to alleviate the class imbalanckssification stage, which results in classification bias. ViT is a
problem. defect classification model that utilizes the self-attention (SA)
In the proposed DCAE module, the encoder includes tieechanism and the MSA mechanism.
DC layer and the pooling layer, which is used to capture the Specifically, the augmented data obtained from the DCAE
core feature and map the image to a high-dimensional spaaee fed into the ViT. During the “Patch Embedding” process,
The decoder is made up of a transpose convolutional laytbe images are chunked into blocks with the same size. Then,
and an upsampling layer for decoding the high-dimensioreéch block is flattened into a vector. The positional information
feature map. In addition, the “MAE”" loss function is used ifis concatenated to the flattened vectors during the “Position
the proposed DCAE module for parameter optimization. Embedding” process. After the “Patch Embedding” process
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and “Position Embedding” process, a special character cladassification informationM,;,ss of the image. The input
token is concatenated to each vector. Subsequently, thefeamhierzension(P2 . C) is embedded into th® dimension by a
of the vectors are extracted from the “Encoder Blocks” artdainable linear projection, which is called patch embedding.
performed global pooling. Finally, the obtained features afithe patch embedding with dimensi¢¥, D) is the input of
fed into the “MLP Head” for image classification where the¢he encoder block. After the MSA combined with linear layers
MLP is the multilayer perceptron. to capture important feature information, the final output is
It is known that the standard transformer is designed far feature map with a size ofN + 1, D), where the MLP
text-based tasks. In order to process the two-dimensional ioensists of fully connected layers and two dropout layers with
age data, the patch embedding module is designed in the Wit Gaussian Error Linear Units (GELU) activation function.
to flatten the two-dimensional image data to one-dimensior@mpared with the ReLU and ELU activation functions,
text-like data. GELU exhibits better smoothness, continuity, and convergence
The encoder of the ViT proposed in [9] can be treatedhte. GELU can effectively adapt to the distribution of various
as a feature extraction module, which consists of an MS#age features. Therefore, GELU is selected as the activation
mechanism and an MLP block. The MSA mechanism is danction of ViT [34].
extension of the SA mechanism. The MSA mechanism can beThe loss function of the ViT is computed by sparse cate-
described as follows: gorical cross-entropy, which is described as follows:

) _ T M N
Attention (Q, K,V) = softmax (QK /\/E) V(5 Lyur — _% Z ZU; log (17;) (10)

where @, K, V represent the query vector, key vector, and i=1 j=1
value vector, respectivelyy = D/k guarantees that theWh
number of computations and parameters remains unchange
when the number of headsis changedD represents the di- -’
mensionality of patch embedding; ardftmax(-) represents and M is the number of samples.

the sum of normallz_e_d p_robab|l|t|es of ) Remark 1:LN and BatchNorm (BN) are the two most
The image classification process of the MIT [9] can bE“ommonly used data normalization methods [50]. Compared
summarized as follows: with LN, BN will mix all samples in a batch together
20 = []\/[class;]\/[;E§M5E; . ;MéVE] + Epos (6) When calcullating thg mean and variance, Wh_ich may d_e;troy
/ the correlation relationship of the data. During the training
7 =MSA (LN (21-1)) + 211 (") process of the ViT model, the input images are divided into
z; = MLP (LN (zl)) + zl (8) multiple patches through a process called Patchification. LN,
0 which performs normalization along the feature dimension,
y=1LN (ZL) ©) is suitable for handling variable-length data like patches. LN
whereM, € RV*(P*C) denotes sequences of image patchelelps maintain the relative order between positions and ensures

P represents the height and weight of each image patéRe Stability and reliability of the normalization process. By
N = (H x W) /P? denotes the resulting number of patche®PPlying LN in the feature dimension, the ViT model can
E e R(P*O)XD denotes the fully connected layek,,, € effectlve_ly handle the _patches and (_:apture meaningful rep-
R(N+DxD represents the position embeddingdenotes the resentations from_ _the input data_. This enabl_es the model to
output feature map of thé&h encoder blockj denotes the maintain the p_05|t_|onal information anq gch|eve stable and
number of encoder block = 1,..., L); MSA (-) represents rellable.normahzatlon t_hrough_out the training process. In th|s
the calculation process of the MSA mechaniswf;P (-) is the paper, in c_)rder to retain the time relatlonsh|p of_data during
multi-layer perceptron (MLP) blockiN (-) denotes the layer normalization, LN is employed as the normalization method.
norm (LN); 22 denotes the feature map of class token; quisl
the output of the VAT algorithm. Note that in ViT, the learnabl&- The SDeceFL Framework
embedded class tokepsneed to pass through an MLP layer Considering the aforementioned weaknesses of the cen-
with the number of classes as the dimension, followed bytilized federated learning, the decentralized federated learn-
softmax activation function, in order to obtain the probabiliting framework has been proposed in [54] for decentralized
information for each defect category. The category predictidraining and parameter aggregation (based on the local in-
label is then determined by selecting the class with the highéstmation transferring between clients and their neighbors).
probability. Here, the clients identify their “neighbors” through a time-
It is worth mentioning that the original imag@/ < invariant/time-varying topology graph. The SDeceFL frame-
RW*HxC (whose height isH, weight isWW, and number of work reduces the burden of the central server caused by exces-
channels isC) is reshaped into a sequence of flattened 2§lve client communication. The topology graph of the different
patchesM,, € RNx(P*C) The ViT introduces the learnablefederated learning and swarm learning (SL) frameworks is
position embedding to record the position and update tehown in Fig. 2.
information E,,, in order to make up for the loss of the By using the Erdos Renyi method, we randomly generate
image position information during reshaping the images. Bn undirected Erdos Renyi connectivity graph withhodes
addition, the VIiT introduces the class token to record thend the corresponding connection probabitit}p4]. Whether

reg;'- is the predicted probability that sampldelongs to
ndy;'- is a sign function that takes 1 when the true class of
1 is equal toj and 0 otherwise}NV is the number of classes;
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A Federated Learning B, Swarm Learning ~ C. Decentralized The local loss functionf, (w) £ F (Dy; M) is the user-
Federated Learning specified loss function on the data sés where the model
/@ ¢ o o 2 parameters are defined hyin the modelM. The F (D; M)
6—0 —© e ) 6 © can be reformulated by (w) £ % Zszl Fy (w) where K
) denotes the number of connected clients, &nd)) represents
o | s © n o the average loss function on all data. The global loss function
° 0 ° o could be designed in a private and centralized manner from
|

the global perspective. In this case, the global loss function
6 o 6 (3] is not given to any local client. A local loss function is then
designed and distributed to the local client, which is part of the
global loss function. In such cases, data are locally stored with
guaranteed security, and the global loss function is protected
Fig. 2. The topology graph of the different federated leagnémd swarm even for the clients.

learning framework Based on the DeceFL, the SDeceFL framework is put
forward where a DPS strategy is proposed for tackling the

an edge exists between each pair of nodes in the grapHrqger-class heterogeneity of differen.t clients_. The class im-
determined independently according to a specified probabiligglance problem in a single client is effectively tackled by
In this case, the SDeceFL framework can properly simulaf@ta augmentation in the DCAE module,_ but there. may exist
the complex communication situations between clients g€l heterogeneity problems among different clients. The
reality. In theory, all edges between nodes should communici8S strategy effectively deals with label heterogeneity by
with each other as the number of generations increasés.constructing a shared database that contains the label
Unfortunately, due to some special reasons (e.g., busingigfributions of the clients trained by the two participating
competition or network outage), the client can only choosdients; and 2) uuhzmg the optalneq shared database to train
to communicate with other clients in a few rounds of trainingh€ global model, which acquires prior knowledge of the label
Compared with centralized federated learning, the randdfstributions for model training. The main procedure of the
local communication between clients can effectively simulaféPS strategy is divided into four steps:
complex data sharing in reality and alleviate the single nod@) Randomly select a certain percentage of samples from
failure when training a global model. each client to build a public database;

By assigning different connection probabilities to thgb) Add Laplace noises into the obtained database known as
clients, the fragmented data sharing in the realistic scenario the shared-database;
is simulated, where data sharing is no longer dependent ¢¢) Train the global model using the shared-database;
the central server. In federated learning, the connected clierfth Distribute the weights of the trained global model to the
need to build local models and then establish the global model. selected clients for local training.

The global model aggregation and parameter updating of €\ orth pointing out that the Laplace noises are introduced
SDeceFL framework can be summarized as follows: into the sampled client data to achieve differential privacy,
K which ensures the non-disclosure of client data information
wi (t+1) =Y Wigw; (£) — e:VEy (wi (1) (11)  within the public database. The shared-database is employed
j=1 to train the global model whose weights are distributed to the
K indicates the number of SDeceFL clients;is a client; local clients participating in data distribution. By doing so, the
¢ represents the-th iteration; wy,(t) is the estimated global local clientis aware of part of the data distribution information
optimum for thek-th client att-th iteration;; is the learning ©f its neighboring clients as priori knowledge, which would
rate; VF}, (wy (t)) represents the gradient calculated by thlaenefit the further local client training. The schematic diagram
local client & in the t-th iteration; andW;; indicates the Of the proposed DPS strategy for two local clients is shown
connection between the clientsand j. To be specific, the in Fig. 3.
information transmission between cliertandj occurs when ~ Each federated client runs the training algorithm locally,
W;; > 0. Wi;; = 0 indicates no information transmissionand the estimation of global parameters is transferred to
betweeni andj. WhenW;; > 0, the clienti is referred to as its neighbors. The federated client calculates the average of
a neighboring client of clienj. The set of all such clientg the neighbors’ weights/gradients and generates the aggre-
is denoted asv; = {j|W;; > 0,Vj € N}. gated weights in the next iteration when receiving additional
In the SDeceFL framework, each federated client is updatégights/gradients from the neighbors. In the SDeceFL frame-
locally, in which the weights are updated according to tH&ork, each federated client completes the updating process
undirected topology graph. In detail, the Erdos Renyi methd¢hen receiving/sending local weights to neighbors instead of
is used in this paper to generate the topology gréhh aggregating and transmitting to the third-party central clients.
with n nodes and the edge connectivity probability and The procedure of the SDeceFL algorithm is provided in
finally return the adjacency matrix. Then, the establishedlgorithm 1.
global model is sent to each federated client to initialize the It should be noted that the random varialdlg; of each pair
weights of each client. of distinct nodegs, j) is generated according Bernoulli (p)
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H STEPI B STEP2 Algorithm 1: The Main Steps of the SDeceFL Frame-
HHE H E work
! @13 Input : The number of clients participating in

1 federated training<;
h 8
EEHE EHE EHHE

— A E each clientsv;, (i =1,2,...,K);
13 ; 13 Hw” the data sets of theth federal clientD;,
Training 3 (i=1,2,...,K);
q p— q p— the cIient_ learning rateLl-;_
HHE HHE the !earn!ng rate of public databades
@131 @143 the iteration numbef’;
! ! the adjacency matrix’’;
Model ] Model g the collection ratice. _ _
Training EHE Aggregation EHE Output: Model parameters of clientat roundn: M}.
S 3 1 for t € [1,T] do
2 for each clientV; parally do
Fig. 3. Learning processes for public databases under efiffiat privacy 3 the clients expand and balance local wafer
samples by training DCAE models with local
B o o data setsD;
probability distribution, which is shown as follows: 4 construct a matrid¥’ for n x n, where each

element is eitheb or 1 (1 means there is an

1 Node i and j are connected
edge between nodeand nodej, and0 means

with probability p

Xij= _ , (12) there is no edge)
0 Node i and j are not connected 5 for each pair of distinct node@, j), generate a
with probability 1 —p random variableX; ;

update and calculate the normalized Laplace

where: andj are the node numbers; apdepresents the edge 6 . : X
’ J haep g adjacency matriX? according to the random

connectivity probability. The normalized Laplace adjacency

matrix W is updated and calculated based on the random V"_}mableXizj .
variable X; ;, which is demonstrated as follows: ! build a public database by selectiag
percentage of local dat®; from each local
1 if X =1 client V;, and train the ViT using the acquired
Wij = 0 if X, =0 (13) database with the learning rate set/to
i 8 distribute the trained weights to the local client
N; involved in data sharing in previous step
IV. EXPERIMENTS AND ANALYSIS 9 train the ViT model of each federated clieit
In this paper, the proposed wafer DPR framework is applied by using the local datd); with the learning
to the public data sets, WM-811K. In this section, the descrip- rate set tol;

tion of the data sets and the settings of the related experimemtal| end

parameters are first introduced. After that, the proposed DCAE | update each client’'s weight according to Eq. (11)
data augmentation method is evaluated and compared with| get the global mode)! by global model

some existing data augmentation methods. Then, DCAE-VIiT aggregation of each clieny;

model is compared with some selected state-of-the-art defécend

classification methods. In order to verify the effectiveness of

the proposed method under decentralized federated training,

the centralized federated learning method (i.e., the FedAvg . ) )
algorithm), the SL method and the federated learning fram_@gperts through the industrial production process. The wafe

work that has been used to deal with class imbalance in recERgges can be divided into 9 classes based on different defect
years (i.e., Ratio Loss-FedAvg [43], MOON [24], FedNH [8 attern.s which are Non-pattern, Center, Donut, Edge-local,
and BalanceFL [37]) are selected and compared. Ablati&9€-ring, Local, Near-full, Random and Scratch. In the WM-

experiments are also conducted to verify the effectiveness®fLK data sets, 18.2% of the wafer images are Non-pattern,
the proposed DCAE-ViT-SDeceFL framework. 3.1% of the wafer images have actual defects, and 78.7% of the

wafer images are unlabelled. In order to demonstrate the gen-

o eralizability of the proposed DCAE-ViT-SDeceFL framework,

A. Data Description the NEU-CLS-64 public data sets [15] and the CIFAR-100
The WM-811K public data sets, which is the most widelpublic data sets are also employed for performance evaluation.
used data sets, is adopted in this paper for wafer DPR [4The NEU-CLS-64 public data sets assemble approximately
The data sets contain information of the defect category, t@00 tiny images with 9 defect classes, i.e., crazing (Cr),
production lot, the chip size and the image pixel. There ageooves and gouges (GG), inclusion (In), patches (Pa), pitted
811457 wafer images in the data sets, which are collected diyrface (PS), rolling dust (RD), rolled-in scale (RS), scratches
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(Sc), and spots (Sp). The CIFAR-100 public data sets assemthie corresponding adjacency matrix. Two random nodes are
approximately 60000 images with 100 defect classes. connected with the probability = 0.5. The information
transmission between the chosen two nodes is determined by

B. Data Pre-Processing and Data Augmentation the adjacency matri¥l’ ¢, which is shown as follows:

In the experiment, 14312 labeled wafer images from the we = {8:2 8:2}- (14)
WM-811K_pubI|c data sets are selected ranglomly and formedln each iteration, four nodes are divided into two groups ran-
the experimental data sets. In the experimental data s%tgmly which are the communicating nodes and unconnected

.87% of the wafer images (13436 images) are Non-pattern, , °’ - .

93.87% o 9 g b odes. The unconnected nodes don't participate in the data
and 6.13% of the wafer images have defects. It should he """ . ~. o . . )

. . . . communication of this iteration, but they still train and update
noticed that there is an obvious class imbalance problem n . :

. : the local models. The weight matrix of two unconnected nodes
the experimental data sets. In this case, the Non-pattern w ¢ is shown as follows:
images are under-sampled from 13436 to 436. The wafer ' .
images with defects are reconstructed by the proposed DCAE wre = [0 1] (15)
for data augmentation. Specifically, the wafer images with
defects which belong to Center, Donut, Edge-local, Edge-ri
Local, Near-full, Random and Scratch are 630, 508, 888, 5
891, 528, 592, 639, respectively. Similarly, the NEU-CLS-6
public data sets with steel plate defects are reconstructed by
proposed DCAE for data augmentation, the steel plate imag: &
with defects which belong to SP, Sc, RD, PS, Pa, In, GG ar
Cr.

In each round of federated communication, half of the
des are randomly selected from all nodes to participate
’communication as a time-varying setting, and the cor-
responding adjacency matri¥’¢ is randomly generated by
g the Erdos Renyi methol’c is used to describe the
munication situation of the remaining half nodes which
not participate in communication. By sequentially drawing

the update of the communication matrix in the simulation

experiment, it can be found that only two nodes communicate
C. Data Processing with each other in each round. With the increase in global

After data pre_processing and data augmentation, the \}rﬁ.”’"ng roundS, all nodes will Complete the mutual communi-
is employed for the wafer defect classification. The wafé@tion. The time-varying undirected topology for four nodes
images with the size 0fi6 x 96 x 3 are first split into 256 ?s updated according to the following steps, which are shown
patches with the size df x 6, Then, the patches are linearlyn Fig. 4.
embedded and added with the position embeddings whose size
are 256 x 6 x 6. Similarly, we perform the same operation tstEpoch o3 B zud Epoct o ff
after resizing steel plate data frofd x 64 to 96 x 96. It is ! \ !
worth mentioning that an extra learnable class token is also
added in order to store the information of classification. The EB'HE aqu ﬁaﬁ
resulting sequence of vectors are then fed into the 3-layer ’ ’ :
encoder which consists of alternating layers of MSA and MLP
blocks. In the resulting sequence, each vector incorporates
information of other vectors. In this case, the MSA blocks
operate as a feature extractor of the entire sequence where BIIE Fpochs ,”
multiple attention heads are applied to different positions in the \ ot
input sequence, therefore, ViT can focus on multiple positions 5 i 5 g ,{B_ -
of the sequence at the same time. in order to extract useful fR HeH || B
features and reduce irrelevant noises. The number of the heads \ /
i ]
4

w

&

=
~ g

3rd Epoch After N

]

in MSA is set to be 4. The classification information in the
class token is extracted by the dense layer of the MLP blocks
and is treated as the defect classification results.

<
.

=

Fig. 4. The time-varying topology graph of the SDeceFL framew

D. SDeceFL-Based Model Training Step INode 2 and node 3 communicate. Node 1 and node
In the experiment, the SDeceFL framework is utilized ta train locally. The corresponding weight matrix is described

train the model. The unprocessed data is divided into foas follows:

groups and allocated to four clients randomly. Next, four . (1) 0?5 0(_)5 8

clients use local data to train the DCAE model for data Wit =10 05 05 of (1)

augmentation. The SDeceFL framework is utilized to train the 0 00t

model. The data set is divided into four groups and allocated toStep 2Node 1 and node 2 communicate. Node 3 and node 4

four clients randomly. The connections between clients in eagfdate locally. The corresponding weight matrix is described

iteration are simulated by a time-varying undirected topolocs follows:

0.5 05 0 O
graphg (t) = (N,e, W), whereN = {1,2, 3,4} denotes the el _ |05 05 0 0f a7
clients; ¢ is the time-varying boundaries; arid represents ’ o0 oY
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Step 3Node 1 and node 3 communicate. Node 2 and node 4 V. EXPERIMENT RESULTS AND DISCUSSIONS
update locally. The corresponding weight matrix is described

as follows: A. Results and Discussions of DCAE
0.5 0 05 O
Wt {095 é 0(_)5 8}_ (18) In this paper, two performance indicators (i.e., _Entropy
0 0 0 1 and Tenengrad) are employed to evaluate the quality of the

Step 4Node 1 and node 4 communicate. Node 2 and nodd@constructed images. The proposed method is compared with
update locally. The corresponding weight matrix is describé@Me Well-known data augmentation methods including the

as follows: Wasserstein GAN (WGAN) [1], CAE [53], NL-CAE [45],
05 0 0 0.5 GC-CAE [4], ADC-GAN [17], ReAC-GAN [20] and Simple
witt = {g oY 8} @9) Diffusion [16].
05 0 0 0.5

In the experiment, 2000 images generated by the selected

The steps are repeated until the maximum iteration numistta augmentation methods are randomly selected to com-
is reached or the model converges, which aims to obtainPHte the average value of the Entropy and Tenengrad. The
server-like data model interaction in order to guarantee tRésessment indicators of generated images using the proposed
information transmission between each group of nodes. method and some selected methods are listed in Table I. As
shown in Table I, the Entropy scores of the images generated
by our proposed method are 6.54 and 6.97 on the WM-
811K public data sets and the NEU-CLS-64 public data sets,

In order to achieve a comprehensive evaluation of thespectively. The Tenengrad scores of the images generated
proposed DCAE-ViT-SDeceFL framework, two experimentsy our proposed method are 10.38 and 6.14 on the WM-811K
are conducted: a comparison study and an ablation study. Flic data sets as well as the NEU-CLS-64 public data sets,
details of the experimental platform are CUDA 11.4 and GT¥espectively. The model size of the DCAE is also compared
3080Ti GPU which has data parallelism, and is implementegth the other methods in Table I. It can be found that the
with TensorFlow 1.5.0. model size of DCAE is only 0.11 MB.

1) Comparison StudyThe comparison study in this paper The DCAE-generated images and original images are de-
can be divided into data augmentation experiment, classific‘rﬁcted in Fig. 5. It can be found from Fig. 5 that the generated
tion experiment and federated learning experiment. samples of different classes successfully exhibit the wafer
(a) Data Augmentation Experiment: Resize the wafer imagefect characteristics of the current class. In this case, we

to the size of26 x 26 x 3 and feed it into the DCAE, can conclude that the quality of the images generated by the
where we set the kernel size in layer 1 and layer 2 of boBICAE is better than that of the compared methods, which
encoders t®8 x 3, and the number of channels of bottdemonstrates the effectiveness of the proposed DCAE in the
layer 1 and layer 2 are set to be 32. The Adam algorithmafer image generation task.

is chosen as the optimizer of the proposed DCAE. The
batch size and the learning rate are set to be 32 and 0.001,
respectively.

(b) Defect Classification Experiment: The input data of the
ViT are the96 x 96 x 3 wafer images and th@l x 64 x 3
steel plate defect images. The stochastic gradient descent BEis
(SGD) optimizer with momentum is employed, where the
momentum, the learning rate and the batch size are set as
0.9, 0.0001 and 32, respectively. When constructing the
public database, the data collection ratio is set as 0.05,
and the distribution of the noise is chosen as Laplace.
The learning rate of the VIT is set by 0.00005, and the
other parameters remain unchanged.

(c) Federated Learning Experiment: The Adam optimizer is
employed in this experiment, where the momentum, the
initial learning rate, and the batch size are set as 0.9,
0.001, and 32, respectively. The number of clients (i.e.,
num-users) is set to be 4.

2) Ablation Study: In order to verify the effectiveness
of the proposed method, an ablation study is conducted on
three public data sets in which each maodification rule is
implemented separately. We use ResNet50-DeceFL without it !
DCAE data augmentation as the baseline model. Experimental Near-Full Random Scratch
settings (e.g., optimizer, data sets, and models) are consistent
with the aforementioned comparison study. Fig. 5. DCAE generated images and original images

E. Experiment Setup

Real Samples
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The DCAE-based data augmentation results are shown irin this paper, a comparison experiment is conducted to ver-
Fig. 6 and Fig. 7 for two different data sources. Fig. 6 displayf/ the performance of the proposed model when dealing with
the distribution of the raw data (WM-811K public data setgjata under different distribution scenarios. In the experiment,
and the data augmented by using the DCAE. In our work,the distribution of the original data is analyzed. The most fre-
certain number of defect categories (e.g., Donut, Edge-Rirguent defect type is defined as the majority class, and the other
and Near-Full) are specifically augmented to tackle the clasight classes are considered as minority classes. After that,
imbalance problem. The distribution of the raw steel platendersampling and oversampling techniques are employed to
data (NEU-CLS-64 public data sets) and DCAE-augmentedijust the proportions of the classes. In the experiment, the
data is presented in Fig. 7. The number of samples in certdiistribution scenarios are set s: 1 x 8, 10 : 1 x 8, and
categories (including RD and GG) is augmented. It can be seXh: 1x8. The ViT is integrated with the selected data augmen-
in Fig. 6 and Fig. 7 that the pre-processed data distribution tation models (e.g., WGAN, CAE, NL-CAE, GC-CAE, ADC-
wafer and steel plate becomes uniform based on DCAE-basg8N, ReAC-GAN and Simple Diffusion) and the proposed
data augmentation, thus demonstrating the effectiveness of IRRAE for the classification task. Table Il demonstrates the
DCAE module. The augmented data sets are then divided imccuracy of each model under different distribution scenarios.
the training set and the testing set with a ratio of 4:1. According to the results, the proposed DCAE model achieves

5000

4000

3000

Number

2000

1000

DCAE+Under-sampling
Unbalanced Dataset
Under-sampling

Center Donut Edge-LocEdge-Ring Loc  Near-Full Random Scratch None

Defect Pattern

Fig. 6. Distribution of raw data and augmented data by usiegDEAE

the highest accuracy (which are 0.933, 0.929, and 0.926) when
combined with the ViT model and consistently outperforms
other methods under three distribution scenarios. The results
show the superior performance of DCAE in data augmentation
for both non-independent and non-identically distributed data.

TABLE Il
COMPARISON OF THE ACCURACY BETWEEN DIFFERENT MODELS

Method 5:1x810:1x820:1x8
CAE 0.843 0.823 0.821
NL-CAE 0.915 0.912 0.899
GC-CAE 0.901 0.897 0.883
WGAN 0.911 0.904 0.893
ADC-GAN 0.917 0.910 0.889
ReAC-GAN 0.922 0.919 0.908
Simple Diffusion 0.926 0.921 0.911
DCAE 0.933 0.929 0.926

Generated Samples

Table Il shows the performance evaluation of CAE and
DCAE with the same kernel size. In Table Ill, the Entropy
and Tenengrad scores of the DCAE are higher than those of
the CAE with the same parameter setting, which indicates that
the DC layer outperforms the convolutional layer in extracting
features. Compared with the traditional convolutional layer,
the DC layer has more parameters, which helps the model
learn more complex features and can alleviate the underfitting
problem to some extent.

Table IV shows the results of the comparison experiment
which is used to investigate the impact of different channel
numbers on the model performance. We can see that using only
a two-layer3 x 3 CNN in CAE cannot achieve the same image
quality as DCAE incorporated with DCN. Under the condition
of 32 channels, DCAE achieves an Entropy of 6.54 and a
Tenengrad of 10.38, while CAE only reaches 6.13 and 9.84

»('
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Defect Pattern
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Fig. 7. Generated sample presentations and data distrilsutio

TABLE | under the same conditions. It can be seen that DCAE with 32
COMPARISON OF EVALUATION INDICATORS OF DATA AUGMENTATION .
METHODS channels surpasses the performance of CAE with 64 channels,
indicating that with the increase of parameter capacity, DCAE
WM-811K NEU-CLS-64 . e .

Viethod NiodeT Sze(MB) Enfropy  Tenengrad Entropy _Tenengrad CaN alleviate uqderﬂttmg to some extent and achieve better

NEéiE (1)'3? ggi g.gg g% g.gg data augmentation results than the CAE.

GC-CAE 1.84 6.37 9.95 6.48 6.04 Remark 2Compared with the traditional CAE, the proposed
R 92 290 o oo 376 DCAE shows better performance in controlling the receptive
ReAC-GAN 4557 6.43 9.75 6.77 so5 field. DC can adaptively adjust the shape and position of

Simple Diffusion 196.32 6.49 10.12 6.86 6.09 H H H
DCAE 011 6.64 10.38 6.97 eaa  convolution kernels based on the degree of deformation in the

target, allowing for flexible control over the receptive field.
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TABLE Il
PERFORMANCE EVALUATION OFCAE AND DCAE WITH THE SAME KERNEL SIZE

Method Kernel Size (Layer 1) Kernel Size (Layer 2) Entropy dregrad Parameters
3x3 3x3 5.62 8.85 20288
CAE TxX 7 TxX 7 6.36 9.94 109888
13 x 13 13 x 13 6.87 10.43 378688
3x3 3x3 6.54 10.38 29539
DCAE TxX 7 TxX 7 6.92 10.53 160096
13 x 13 13 x 13 7.02 10.78 551776

TABLE IV As shown in Fig. 8, the model only learns the majority class

PERFORMANCE EVALUATION OF CAE AND DCAE WITH THE DIFFERENT When applylng to the Orlglnal experlmental data SetS’ Wthh |S

CHANNELS . .
not satisfactory. For the under-sampled experimental data sets,

Method Channel Entropy Tenengrad Parameters the model can distinguish some defects which have obvious

16 5.96 9.43 5536 features. For the augmented experimental data sets, the model
CAE 32 6.13 9.84 20288 : . . .

64 6.32 0.96 77440 is able to separate various defect patterns with satls_factory

16 6.12 9.87 7856 accuracy, which achieves the best classification results in terms
DCAE 32 6.54 10.38 29539 of overall performance. It can be found from the figure that

64 6.61 10.44 114368

all the models trained by the augmented experimental data
sets have higher classification accuracy than the model trained

N _ by the original experimental data sets. It is worth mentioning
Compared to the traditional convolutional layer, the DC taygnhat the classification of the model trained by the original

has a larger number of parameters, which aids the modelegperimental data sets converges fast, but the model falls
learning more complex features and alleviates the underfittiio the local optimal solution for the majority class, and the
problem to some extent. model is overfitting. It can also be found in Fig. 8 that the

proposed model trained by an augmented experimental data
B. Results and Discussions of Defect Classification set converges fast and has the highest accuracy.

In order to demonstrate the effectiveness of the proposed-r""bIe v ShO\,NS the cIassnjcanon accuracy of all selected
framework, several popular classification models (includir’ﬁOdels on various defects in the test set. It can be found
WMDPI [35], T-DenseNet [36], PeleeNet [44] ConvNexghat compared with other classification models, the proposed
[27]), WDP-BNN [57], and WaferSegClassNet [31]) are Ser_nethod shows higher average recogqition accuracy fo_r_all
lected for performance evaluation. The classification results%?feas' Becau-se the mulh-head attention m_echamsm d'V_'deS
the proposed framework are compared with the classificatiB‘H)_Ut features into mult.|ple heads to learn different attenuon_
results of selected models. In this paper, four different ev /eights and capture different feature subspaces. The multi-
uation metrics (i.e., accuracy, recall, precision, and F1 sco ad attention mechanism can make the model distinguish the
are utilized to evaluate the classification results, which afgatures of different categories so as to improve the classifi-

: . cation performance on imbalanced data with small sizes.
described as follows: P
TP+TN
Accuracy = (20) TABLE V
TP+ FP+TN+FN DPRMETHODS
TP
Recall = ————— (21) i}

TP + FN Classifier WMDPI_ PeleeNet ConvNeXt T-DenseNet WDP-BNN WatgClassNet Our Method
Center 9250%  9550%  94.10% 84.50% 97.70% 97.10% 96.80%
Donut 9150%  93.50%  94.40% 91.20% 94.60% 92.40% 95.10%
.. TP Edge-Loc ~ 81.80%  90.90%  90.10% 81.50% 93.80% 91.50% 94.10%
Precision = W (22) Edge-Ring ~ 97.90%  97.60%  95.50% 92.10% 95.80% 94.20% 98.70%
+ Loc 83.90%  8850%  90.60% 81.80% 92.10% 92.80% 93.10%
Random  95.80%  95.40%  96.20% 85.30% 95.30% 93.40% 95.30%
.. Scratch ~ 81.40%  88.90%  91.50% 84.60% 92.20% 93.70% 94.70%
Precision - Recall Near-Full  93.30%  91.90%  92.10% 92.60% 94.40% 92.80% 95.60%
F1 Score =2 - (23) None-Pattern  97.90%  100%  99.50% 85.50% 97.50% 97.60% 100%
Precision + Recall Average 90.70%  93.60%  93.80% 86.60% 94.80% 93.90% 95.90%

whereT P denotes true positivel) N represents true negative;

FP is false positive; and” N represents false negative. Table VI and Fig. 9 demonstrate the comparison evaluation
In order to fully demonstrate the effectiveness of the ViTef each model. According to Table VI, the proposed model
based defect classifier, in this experiment, three public data de#s the best performance in terms of four evaluation indicators
(i.e., the original experimental data sets, the under-samplammpared with other models. The accuracy and loss of the ViT
experimental data sets and the augmented experimental datahe training data sets and test data sets are shown in Fig. 10.
sets) are used to train the proposed model to evaluate fkexording to Fig. 10, after convergence, the model has high
classification performance the model on data sets with differgarecision in both the training data sets and test data sets, and

distribution. The classification samples are transformed tioere is no obvious overfitting or underfitting problem, which
two-dimensional by using the t-distributed stochastic neighbdemonstrates that the training process is relatively smooth.
embedding (t-SNE) and are shown in Fig. 8. Parallel computing techniques are used to build the proposed
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Fig. 8. Visual analysis of classification performance t-SNE: (a) Original data; (b) Under sampling data; (c) Augmented data.

model on GPUs with the hope of saving computational tim€. Results and Discussions of Federated Learning
It can be found in Fig. 10 that the proposed model exhibits

satisfactory performance on both the training set and the tesfirstly: the raw data are categorized into four groups and

set.

Accuracy

-+ DCAE PelecNet
DCAE ConyNeXt

—— DCAE+WMDPI

—+— DCAE+T-DenseNet
DCAE+WDP-BNN

-¥- DCAE+WaferSegClassNet

@ DCAE+ViT(Valid)

—— DCAE+ViT(Train)

< Unbalanced+Vit(Valid)

4
&

e
i

o
o

It
o

0 10 20 30 40 50 60 70 80
Epochs

Fig. 9. Comparison of model before and after DCAE
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Fig. 10. ViT-based DPR performance (a) Accuracy; (b) Loss.

separately allocated to four nodes which are used to simulate
the clients. Secondly, local clients train and use the DCAE to
increase data samples based on the local data. Thirdly, the node
communication topology graph is obtained via Erdos Renyi.
For connected clients, we then carry out 20 rounds of local
training, and 80 rounds of data transmission and aggregation.
Experimental results of the selected methods and the pro-
posed method on three public data sets (including WM-811K,
NEU-CLS-64, and CIFAR-100) are presented in Table VII.
Compared with selected federated learning frameworks (e.g.,
Ratio Loss-FedAvg, MOON, FedNH, BalanceFL, FedAvg, and
DeceFL) and the swarm learning framework, the proposed
framework achieves better performance in terms of average
classification accuracy. The average classification accuracy of
the proposed framework on WM-811K, NEU-CLS-64 and
CIFAR-100 are 0.982, 0.990 and 0.935, respectively.

TABLE VI
RESULTS COMPARISON WITH FEDERATED LEARNING AND SWARM
LEARNING METHODS

Dataset WM-811K NEU-CLS-64 CIFAR-100

Ratio Loss-FedAvg 0.941 0.964 0.523
MOON 0.954 0.969 0.675
FedNH 0.961 0.973 0.552
BalanceFL 0.967 0.979 0.726
DCAE+VIT+FedAvg 0.975 0.984 0.925
DCAE+VIT+SL 0.970 0.980 0.927
DCAE+VIT+DeceFL 0.972 0.981 0.923
Our Method 0.982 0.990 0.935

TABLE VI

COMPARISON OF EVALUATION INDICATORS OF EACH MODEL In the process of wafer production and processing, there are

— anumber of unstable factors (e.g., commercial competition and

V'\\A”?Atg?;: F;islc(? e F;rgczglon 9F1Qe6c; ! g%c%acy communication outage) in different factories, which makes it

PeleeNet 86.80 8920 8510 9360 difficult to realize the ideal global communication of central-

ConvNeXt 92.40 92.60 91.30 03.80 ized federated learning. For the centralized federated learning
T-DenseNet 77.90 79.00 76.20 80.80 method, the client data need to be processed by the central
WDP-BNN 92.20 93.10 9320  94.80  gerver simultaneously, which leads to high computational costs
Wa(f)el;rsﬁﬂge?:lischNet 9 4?3660 959.5690 9 4?%610 95?3690 [30]. As such, when handling a huge amount of data, the

computational costs of the FedAvg would be extremely high,
which could not be ignored.
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In decentralized federated learning methods, the cent&DeceFL framework is able to obtain reliable results without
client is eliminated without sacrificing the model convergenamllecting data from the central server directly, which protects
[54]. In the SDeceFL framework, the information is sharethe original data effectively.
by every local client through the undirected connected graph.
In this situation, completing the mutual communication of all
clients requires sufficient time. Although the computational
cost of model aggregation via SDeceFL may be higher than...
that of the FedAvg, we do not need to carry out data aggrega- -
tion for establishing the global model of the SDeceFL, which /
means that the local client aggregation process is relatively "'
fast, and small communication burden is brought. As a matter
of fact, local communication and local data training can
greatly reduce the time and cost of aggregation. Comparec ..
with FedAvg, the communication pressure of the SDeceFL -
framework during data transmission is lower. By using the i~
flexible training strategy, the SDeceFL framework is more =~ [/
appropriate for wafer enterprises than the FedAvg framework ,, //
considering the real-world practical cases. . -

In comparison with the FedAvg framework, the SDeceFL (© (d)
framework takes a longer time to complete the communication ]

] L Fig. 11. Accuracy of each node in the test set: (a) Node 1; (b) Node 2; (c)
process because only topological communication betwelqghe 3: (d) Node 4.
random local clients is established instead of obtaining the
global communication connection. Note that the model aggre-Remark 3:Compared to traditional centralized learning, the
gation of the SDeceFL is not to aggregate a global modgiDeceFL framework can promote data sharing and coopera-
Although the local client aggregation process may take ti@n among different clients and effectively protect the privacy
relatively long time, the aggregation speed is fast and te their information. Additionally, the SDeceFL framework
communication pressure is low. After completing the modeikes 1) the characteristics of data; 2) the needs of different
aggregation, the running time of the actual DPR is short, whigbgions and communities in order to build inclusive models.
is acceptable for the inspection of wafer products producgtie SDeceFL framework could effectively prevent the prob-
in the assembly line. As shown in Table VIII, the require¢em of data monopolization resulting from centralized learning
accumulated communication traffic of the FedAvg, the Slorought by some large technology companies or organizations.
the DeceFL and the SDeceFL to achieve 97% accuracy Bnwafer manufacturing, the proposed DCAE-ViT-SDeceFL
the WM-881K public data sets are 35283.92 MB, 31814.27amework could realize the data cooperation with privacy
MB, 1590.16 MB and 1732.53 MB, respectively. The requiregrotection among different clients and guarantee the reliability
accumulated communication traffic of the DeceFL and thsf the produced data.
SDeceFL frameworks is much smaller than that of other
frameworks. The computational time for SDeceFL to rea .
the specified accuracy is only 782.15s. In addition, the dcél—' Ablation Study
centralized federation is not only suitable for the reality of In this paper, the influence of the proposed modules in our
the client's communication mechanism and the prevention Bfoposed DCAE-VIT-SDeceFL framework is validated via the
privacy leakage, but also of great significance in reducing tRglation study on WM-811K, NEU-CLS-64 and CIFAR-100

communication bandwidth and the risk of attacks on the centBHblic data sets. Table IX shows the results of the ablation
experiments. The influence of each module is summarized

(@) (b)

TABLE VIII below:
THEORETICAL COMMUNICATION TRAFFIC AND TIME TO REACH THE (a) The inﬂuence of the data augmentation module for Clas_
TARGET ACCURACY sification is presented in the first column of Table IX. By
WM-811K(97%) employing the DCAE for data augmentation, the DCAE-
Method Traffic (MB) Time (s) ResNet50-DeceFL method achieves better classification
DCAE+VIT+FedAvg ~ 35283.92  2136.67 accuracy than the baseline by 3.6%, 5.7%, and 3.8%
DSt selaar sl on the WM-811K, NEU-CLS-64, and CIFAR-100 public
DCAE+VIT+SDeceFL 173253  782.15 data sets, respectively.

(b) The influence of the ViT module is shown in the second
column of Table IX. By comparing with the baseline, the
The trained model with the SDeceFL framework, the Fe- ViT-DeceFL improves classification accuracy on WM-
dAvg algorithm, and the SL algorithm on the test data sets 811K, NEU-CLS-64, and CIFAR-100 by 4.8%, 6.6%, and
are shown in Fig. 11. As shown in Fig. 11, the accuracy 11.9%, respectively.
of the proposed model with SDeceFL is higher than thaic) The influence of the SDeceFL module is displayed
of the others on each node. It is worth mentioning that the in the third column of Table IX. Compared with the
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baseline, the ResNet50-SDeceFL method obtains higher
classification accuracy on WM-811K, NEU-CLS-64, and
CIFAR-100 public data sets by 1.4%, 1.6%, and 3.1%,!]
respectively.

According to the aforementioned experimental results and?!
the ablation study, we can conclude that the designed DCAE
module for data augmentation improves the classifier by[3]
producing balanced data to tackle the class imbalance problem.
Owing to the strong feature extraction ability, the ViT module
performs as an outstanding classifier which meets the requirg4)
ments of complex classification tasks (such as object detection,
wafer DPR, and steel plate defect detection). Based on the
proposed DPS strategy, the SDeceFL demonstrates superiority
over the DeceFL method, which effectively alleviates the label
heterogeneity problem among clients so as to improve the
classification performance. To conclude, the proposed DCAEjs]
ViT-SDeceFL framework achieves optimal results on WM-
811K, NEU-CLS-64, and CIFAR-100 public data sets with

the designed modules. 7]
TABLE IX (8]
RESULTS OF ABLATION EXPERIMENTS FORDCAE-VIT-SDECEFL
FRAMEWORK
DCAE VIiT SDeceFL WM-811K NEU-CLS-64 CIFAR-100
o O 0 0.897 0.901 0.737 (©]
v 0 0 0.933 0.958 0.775
a v a 0.945 0.967 0.856
0 0 v 0.911 0.927 0.768
v v 0 0.972 0.981 0.923
v O v 0.941 0.965 0.829 (0]
0 v v 0.957 0.971 0.901
v v v 0.982 0.990 0.935
[11]
VI. CONCLUSION AND FUTURE WORKS [12]

In this paper, a novel privacy protection framework has been
proposed for wafer DPR. A novel SDeceFL framework has
been proposed to tackle the inter-class heterogeneity probld#dl
of different clients and enhance data privacy. A new data
augmentation module, the DCAE, has been developed to tackle
the class imbalance problem. The ViT has been combined witf4]
the DCAE module for DPR of the wafer data under class
imbalance. The proposed DCAE-ViT-SDeceFL framework has
been evaluated and tested on the WM-811K public data sets>]
Experiment results have shown the superiority of the proposed
framework over some existing frameworks. The proposefig
framework can provide high-quality data for clients which
have sparse or imbalanced data. In addition, the proposed
DCAE-ViT-SDeceFL framework could allow different clients [17
to train a reliable model while preventing data leakage, which
has unique advantages in data generation and privacy protec-
tion. In the future, we aim to: 1) apply the proposed frameworkgsg;
to other data analysis and fault detection tasks [6], [14], [18],
[55]; 2) employ evolutionary computation methods to choos 19]
the hyperparameters of the ViT-based DPR network [12], [22],
[46], [48]; 3) develop new deep learning-based wafer DPR
methods based on federated learning [28]; 4) design a lower
communication cost and more private parameter fusion sharingO]
strategy based on the SDeceFL framework [5], [52], [58], [61].
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