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Abstract—In this paper, a novel shared-database decentralized
federated learning framework (SDeceFL) is developed for wafer
defect pattern recognition (DPR). Specifically, a differential
privacy shared-database strategy is proposed to overcome the
inter-class heterogeneity problem of different clients and enhance
data privacy. A deformable convolutional auto-encoder (DCAE)
is designed for data augmentation for handling class imbalance.
The vision transformer (ViT) is employed for wafer DPR. The
proposed DCAE-ViT-SDeceFL framework is validated on three
public data sets (e.g., WM-811K, NEU-CLS-64, and CIFAR-
100). Experimental results show the superiority of the SDeceFL
framework over Ratio Loss-FedAvg, MOON, FedNH, BalanceFL,
FedAvg, DeceFL and swarm learning. Compared with some deep
learning methods, experimental results exhibit the effectiveness
of the proposed DCAE-ViT-SDeceFL method for wafer DPR on
WM-811K.

Index Terms—Defect pattern recognition, class imbalance,
deformable convolutional auto-encoder, vision transformer, de-
centralized federated learning, differential privacy.

I. I NTRODUCTION

With the breakthrough of the internet of things, the inte-
grated circuit (IC) industry has developed rapidly in the past
few years. As an important and fundamental material of the
IC, the wafer plays a critical role in affecting the quality of
the IC. It is known that Wafers are made from high-purity
semiconductors through grinding, slicing and other extremely
demanding processes which are complex and costly. During
the wafer manufacturing process, wafers are easily damaged or
influenced by the environment which cause defects. In recent
years, many researchers have focused on improving the wafer
manufacturing process as well as the manufacturing environ-
ment to fabricate qualified wafer products. Unfortunately, it
is nearly impossible to produce non-defect wafers based on
existing manufacturing processes.
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Serving as an important quality control technique in wafer
manufacturing, a number of wafer pattern recognition (DPR)
methods have been proposed to identify/analyze the defects
of the wafers. By using DPR, the source of defects (e.g.,
materials, manufacturing processes, and equipment) can be
properly identified. By doing so, wafer manufacturers are able
to take actions in time to adjust the industrial process, which
could reduce the manufacturing costs, improve wafer quality
and thus strengthen the competitive position of manufacturers
in the market [21], [47]. It is known that using a proper wafer
DPR technology can reduce the wafer defect rate effectively
and bring profits to the manufacturer.

With the increasing focus on information protection, in
the past few decades, data privacy has become an important
topic in wafer manufacturing. Federated learning can assist
in the maintenance of the performance of machine learning
algorithms while protecting the data privacy of local data.
Federated learning has been extensively applied in data pro-
tection to enhance data transmission under the premise of
data privacy and security [59]. For example, in [30], a new
federated learning method has been developed for deep neural
networks based on iterative model averaging. Recently, a
transfer learning-based federated learning approach has been
proposed for fault diagnosis in [59], where different models
are utilized by different users in order to enhance data privacy.
In addition, in [60], a federated transfer learning framework
for machinery fault diagnosis has been introduced, where the
prior distributions are employed for bridging the domain gap
indirectly. As a popular federated learning method, decentral-
ized federated learning has attracted various attention in the
past few years [54]. In [54], a decentralized federated learning
(DeceFL) framework has been developed to simulate the
communication connections of clients. As a potential research
direction of federated learning, the DeceFL framework uses
topological graphs to simulate the communication connections,
which protects the network from external network attacks
and effectively reduces the impact of clients’ communication
disruption on the overall federated learning system. Thus,
the DeceFL framework seems to be a suitable candidate for
protecting sensitive data in wafer manufacturing.

Within federated learning, the non-independently and iden-
tically distributed (Non-IID) characteristic observed across
heterogeneous clients results in substantial divergence when
updating local clients, thereby presenting a fundamental chal-
lenge to the global model aggregation. A few studies have
attempted to address the Non-IID problem in federated learn-
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ing [8], [24], [43]. Such approaches focus on developing
algorithmic-level strategies (such as class-balanced loss func-
tions [24], [43], [56] and class-balanced training strategies
[8]) to allow the global model to learn the data distribution
characteristics of each client. For example, in [56], a fine-
grained calibrated cross-entropy loss has been applied in local
updating. In [8], the class semantics have been infused into
class prototypes. In fact, data augmentation is a suitable can-
didate to solve the Non-IID problem in federated learning from
the perspective of data processing. In this case, a seemingly
natural idea is to put forward a new data augmentation strategy
to handle the class imbalance problem in federated learning. In
this paper, we not only develop an algorithmic-level approach
to solve the heterogeneity problem in federated learning but
also investigate the class imbalance problem at the level of
data source management.

In the past, wafer DPR was carried out based on visual
inspection by experienced engineers, which is expensive and
time consuming. As an emerging topic in machine learning,
deep learning has attracted an ever-increasing research interest
due to its powerful feature extraction ability [41], [42], [49].
Recognizing as a powerful family of deep learning techniques,
the convolutional neural network (CNN) has been widely used
in wafer DPR due to its strong feature extraction ability [21].
For example, a CNN-based method has been introduced in
[21] for DPR of wafers with mixed defects, where the CNN
models are built based on each type of defect.

It should be noticed that the quality and quantity of training
data are of vital importance in deep learning [10], [11], [19],
[25]. Due to the uncertainty of the manufacturing site, the
defect categories caused by the wafer manufacturing process
are often imbalanced. Recently, data augmentation has been
proven to be an effective way to solve the class imbalance
problem. Some popular data augmentation methods include
the generative adversarial network (GAN), variational auto-
encoder, PixelCNN. In this situation, it seems natural to adopt
the data augmentation technique to tackle the class imbalance
problem in wafer DPR. Inspired by the above discussions,
we aim to develop a new data augmentation method which is
capable of extracting and learning the features with various
scales and shapes adaptively.

Note that the convolution kernel plays a critical role in
extracting features, which also affects the computational cost
of the CNN. In recent years, various convolution kernels have
been developed to improve the feature extraction ability of
the CNN by expanding the receptive field [7], [51], [62]. An
object detection method has been introduced in [62] based on
the atrous convolution kernel with different expansion rates.
Compared with the traditional convolution kernel, the dilated
convolution kernel is able to adjust the dilation rate according
to different data sets so as to modify the receptive field [51].
In [7], the deformable convolution (DC) has been proposed to
adaptively learn the features of the object with various scales
and shapes. Considering the characteristics of DC in expanding
the receptive field, we propose a deformable convolutional
auto-encoder (DCAE) module to reconstruct the raw data for
DPR.

Motivated by the above discussions, this paper aims to

develop a new data protection wafer DPR framework. Specifi-
cally, to tackle the privacy protection issue in the wafer DPR, a
novel shared-database decentralized federated learning frame-
work (SDeceFL) is proposed, where a differential privacy
shared-database (DPS) strategy is put forward to overcome
the inter-class heterogeneity problem of different clients and
enhance data privacy. A DCAE module is proposed and is inte-
grated with the vision transformer (ViT) for data augmentation
in wafer DPR to solve the class imbalance problem, which
introduces offsets to expand the receptive field by integrating
the DC kernel in the traditional convolutional auto-encoder
(CAE). The SDeceFL framework is embedded into DCAE-
ViT for data transmission and global model development with
the hope of alleviating the impact of fragmented data provided
by wafer manufacturers. The main contributions of this paper
can be summarized in the following three aspects:
(a) A new decentralized federated learning framework is put

forward where a DPS strategy is developed to tackle the
data privacy leaks and inter-class heterogeneity problems;

(b) The DCAE module is developed to expand the receptive
field of the convolution and alleviate the class imbalance
problem by generating new samples belonging to the
minority class; and

(c) The proposed DCAE-ViT-SDeceFL framework is applied
to analyze the public wafer image data for DPR with
promising results, which could benefit wafer manufactur-
ers by providing a reliable and efficient defect identifica-
tion approach with guaranteed data privacy and security.

The remaining sections of this paper are organized as
follows. The background of wafer manufacturing, wafer DPR,
and federated learning are introduced in Section II. Then, a
novel wafer DPR framework is introduced in Section III. In
Section IV, the experiment setting, data description, and data
pre-processing are discussed. Section V presents the experi-
mental results, where the results for the proposed framework
and some selected methods are compared and discussed in
detail. Finally, conclusions and some possible future research
directions are provided in Section VI.

II. BACKGROUND

In this section, the general background of wafer manufactur-
ing and some widely used wafer defect defection techniques
are introduced. In addition, the wafer DPR techniques and data
augmentation techniques for wafer DPR are presented.

A. Wafer Manufacturing

Wafer manufacturing includes various technological sectors
(e.g., chemical mechanical polishing, exposure, post-exposure
bake, and ion implantation). In general, wafers will be made
into nano-chips after four core processes (i.e., photolithogra-
phy, etching, deposition, and ion implantation).

Owing to the increasingly demanding requirements (e.g.,
low power consumption, good performance, and tiny scale) of
wafers, a number of processes (such as evaporation deposition,
dual-ion beam sputtering deposition, and plasma enhanced
chemical vapor deposition) have been deployed in wafer
manufacturing to overcome the problems. Nevertheless, the
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deployment of such processes may cause defects which are
difficult to be detected based on previous experience. To tackle
the defect detection challenges, a variety of wafer defect
detection methods have been developed.

B. Wafer Defect Detection

In wafer manufacturing, uncertainties (e.g., complex envi-
ronments and variations of processing parameters) may easily
cause defects in the manufactured wafers. By analyzing the
electron microscope images of the wafer, the defects exhibit
different spatial patterns. It is known that there are nine types
of defects in wafer manufacturing including center, donut,
edge-loc, edge-ring, local, near-full, random, and scratch [47].
Specifically, the anomaly of film deposition leads to the edge-
loc defect, and the anomaly of etching leads to the edge-ring
defect. Uneven cleaning would cause the local defects, and
human mistakes result in the near-full defects in wafers. To
reduce the defective rate of chips, a number of wafer defect
detection methods (including both model-based methods and
data-driven methods) have been developed to monitor the
production process in real-time by analyzing the electron
microscope images of wafers.

One of the most well-known model-based wafer defect
detection methods is template matching. In [2], the sequential
similarity detection algorithm (which is recognized as one of
the best matching criteria) has been proposed for accurate
defect detection. Nevertheless, the template matching methods
may suffer from the uncertainty, especially the randomness
of template selection, which is time-consuming for real-world
deployment.

Recently, data-driven methods have been widely used to
assess the quality of wafers [39]. Among existing data-driven
methods, image processing methods have been successfully
adopted in detecting possible defects by analyzing the defect
of images. In [39], a spatial attention bilinear CNN has been
proposed to classify defective castings and non-defective ones.
It is known that many existing defect detection methods can
detect wafer defects effectively [40]. Nevertheless, considering
the potential problems (e.g., lacking wafer defect data, high
labeling cost, unsatisfactory model), there is a need to develop
some advanced wafer DPR methods in wafer manufacturing.

C. Wafer Defect Pattern Recognition

In wafer defect detection, pattern recognition plays a critical
role in extracting and analyzing the features of various wafer
defects. The wafer DPR indicates the accurate recognition of
wafer defect patterns, which aims to identify the anomalies
through the manufacturing process. In recent years, the CNN
has become one of the most preferred models in the field of
DPR [21].

The feature learning performance of the CNN is highly
dependent on the features extracted through the continuous
accumulation of convolutional layers. A number of CNNs
with specifically designed network architectures have been
proposed (e.g., the AlexNet, the GoogLeNet, the VGGNet,
and the ResNet [13]). With the development of the attention
mechanisms, the transformer has become the state-of-the-art

deep learning architecture for natural language processing
and computer vision [9], [23]. In [9], the vision transformer
(ViT) has been proposed where a standard transformer is
directly applied to handle the sequences of image patches for
image processing, which shows competitive or even superior
performance against the CNNs.

D. Federated Learning

Owing to the increasing importance of data security and
privacy, a variety of data protection mechanisms have been
designed by many wafer manufacturing enterprises. In this sit-
uation, the wafer data is fragmented into severaldata islands,
which not only enhances user privacy but also causes the data
isolation problem. Thedata islandsacross enterprises makes
it difficult to establish big data mechanisms for data sharing.
In other words, it is nearly impossible to build an effective
machine learning model only based on the fragmented data.

To tackle the aforementioned problem, it seems reasonable
to apply the federated learning technique to balance the data
privacy/security and communication cost [54]. Different from
centralized learning where the whole data set is trained on a
single node, a generalized model is established on distributed
devices collaboratively via federated learning, which makes it
feasible to solve thedata islandsproblem. Generally, federated
learning techniques are capable of decreasing communication
costs and ensuring data privacy during the data transmis-
sion/transfer by training and aggregating local models into a
global model.

Aggregating local models into a global model is a critical
issue in federated learning. In recent years, a large number
of federated learning methods have been put forward [30],
[59]. For example, the federated averaging (FedAvg) algorithm
has been proposed in [30] where the centralized federated
learning is deployed to enhance the generalization ability
of the model and alleviate the overfitting problem. In [59],
a federated transfer learning algorithm has been proposed
for fault diagnosis, where a federal initialization stage is
introduced to keep similar data structures during the distributed
feature extraction stage, and a federated communication stage
is further implemented using deep adversarial learning. Unfor-
tunately, the centralized federated learning-based algorithms
would face a high communication burden and vulnerability
once the central client fails or is affected by a cyber-attack.
Very recently, in [54], a principled DeceFL is proposed, which
relies only on local information transmission between clients
and their neighbors instead of using a central client for sharing
all the acquired data. In wafer manufacturing, data security and
privacy are of critical importance for enterprises. Based on
the above discussions, the federated learning techniques could
tackle the data sharing problem for solving thedata islands
in wafer DPR.

Federated learning faces a major challenge due to the class
imbalance in the training data of each client, leading to a
notable impact on the performance of model learning. In
the past few years, numerous studies have been conducted
in order to improve the performance of federated learning
on Non-IID data. In [43], the ratio loss has been introduced
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in the FedAvg framework to mitigate the effect of the class
imbalance problem. In [24], the model-contrastive loss has
been designed and added to the local model in the FedAvg
framework to resolve the heterogeneity between clients (Non-
IID). In [8], a federated learning framework, the FedNH, has
been proposed, which uniformly distributes class prototypes in
the latent space and then infuses the semantics into prototypes
smoothly. In [37], a long-tail federated learning framework
named BalaceFL has been proposed, which can robustly learn
both common and rare classes.

E. Data Augmentation

Data augmentation is one of the popular avenues for han-
dling class imbalance in federated learning. As a popular
family of data augmentation methods, data generation methods
are widely employed in both academia and industry, which can
be classified into statistical-based methods, probabilistic-based
methods, and deep learning-based methods [33].

During the past few years, a number of probabilistic image
generation methods have been proposed [32]. In [32], several
probability-based models have been put forward to generate
different defect patterns (e.g., annular defect patterns, mixed
defect patterns, repetitive defect patterns, and random defect
patterns). It should be noticed that the performance of the
probabilistic-based methods and statistical-based methods is
heavily dependent on expert knowledge. For some high-
dimensional and irregularly shaped defects, it would be ex-
tremely difficult for experts to recognize defects only based
on empirical experience, thereby influencing the quality of the
data generation process.

With the rapid development of hardware equipment, a vari-
ety of deep learning-based methods have been put forward for
data generation. For example, in [26], a generative adversarial
network has been put forward to obtain high-quality thermal
images based on data augmentation.

As a well-known branch of deep learning, the auto-encoder
(AE) has been widely used in unsupervised learning for feature
extraction, which demonstrates competitive or better feature
extraction performance than the probabilistic-based methods
[3]. The standard AE contains an encoder and a decoder, where
the encoder is used to sample and learn the original features,
and the decoder is employed to decode the features so as to
reconstruct the original input. In the past few years, many
AE-based methods have been developed for representation
learning. For instance, the CAE has been presented in [29]
which combines the convolution and pooling operations of
the CNN with AE for hierarchical feature extraction. The
CAE has been extensively used in noise reduction and data
reconstruction. Nevertheless, thelimited receptive field of the
traditional convolution operator becomes a bottleneck for the
development of the CAE.

III. M ETHODOLOGY

In this paper, a novel DCAE-ViT-SDeceFL framework
is developed for wafer DPR where 1) a novel SDeceFL
framework with DPS strategy is proposed; 2) a DCAE-based
data augmentation approach is designed to solve the class

imbalance problem; 3) the ViT is utilized to extract the
defect features by using the multi-head self-attention (MSA)
mechanism for DPR. The overall scheme of the developed
wafer DPR framework is shown in Fig. 1.

A. The DCAE-based Data Augmentation Approach

It is known that the convolution kernel is capable of
studying the geometric changes of objects by using sliding
windows and scale-invariant feature transformations. The ker-
nels are employed to extract the features of the input data with
different shapes. With a certain number of convolution kernels,
stacking the convolutional layers could expand the receptive
field. Specifically, the receptive field expands linearly as the
number of convolutional layers increases. Nevertheless, the
corresponding computational cost of the convolution process
increases exponentially. Related studies have shown that the
performance of the CNNs is constrained by the receptive field
to some extent [51].

Compared with the traditional convolution kernel, the DC
has the offset field which could enlarge the receptive field and
improve the sparse spatial sampling capability. The DC learns
from offsets by an additional convolution kernel with the same
size as the input feature mapx, where the number of channels
is 2N corresponding toN two-dimensional offsets. After that,
the input feature mapx and offsets are jointly used as the input
of the next layer.

By introducing the offsets to the traditional convolution
kernel, DC is designed to expand the receptive field. For the
ith pixel location of imagepi on the output feature mapyout
of the DC is calculated as follows:

yout (pi) =
∑

pn∈R

w (pn) · x (pi + pn +△pn) (1)

whereR denotes the convolution kernel;w (·) is a function to
calculate the weights and biases;pn represents thenth position
in the convolution kernel;{△pn|n = 1, ..., |R|} denotes the
offset of thenth position in the convolution kernelR; and
x represents the input feature map. Note that the size of the
convolution kernelR is the size of the receptive field.

It is worth mentioning that the bilinear interpolation method
is used to solve the non-integer offset△pn problem in DC.
The interpolated coordinates can be expressed as follows:

X (β) =
∑

α

G (α, β) ·X (α) (2)

whereβ denotes an arbitrary fractional location (β = p0+pn+
△pn); X (·) represents the feature map after convolution;α is
the enumeration of all integral spatial locations inX ; G(·, ·)
is the two-dimensional bilinear interpolation kernel, which can
be expressed as follows:

G (α, β) = g (αx, βx) · g (αy, βy) (3)

whereg (a, b) = max (0, 1− |a− b|).
In this paper, the DCAE is proposed where the DC kernel

is integrated with the traditional CAE to further improve
the receptive field. The developed DCAE is a sparse spatial
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Fig. 1. Flowchart of the proposed wafer DPR framework

sampling technique, which could compress the structure in-
formation of image neighboring locations into a fixed grid,
resulting in better feature capturing performance compared
with the traditional convolution. Based on the feature capturing
capability and the self-learning capability of the DCAE, the
class imbalance wafer images are reconstructed and generated.
The loss function of the proposed DCAE is given below:

LDCAE =

∑n

i=1

(

yi − y
′

i

)2

n
(4)

wherey represents the actual label;y
′

i represents the predicted
label; andn represents the number of categories.

1) Structure of the DCAE:The data generation process is
summarized into four steps:

(a) Input the real samples into the DCAE;
(b) Encode the input to the intermediate variableY ;
(c) Add noises intoY as Ŷ ;
(d) Decode the integrated variablêY for generating new

samples.

It is worth noting that the integration of random noises into
input images would lead to the generation of different samples.
In this paper, more samples are obtained for the minority class
by employing the DCAE so as to alleviate the class imbalance
problem.

In the proposed DCAE module, the encoder includes the
DC layer and the pooling layer, which is used to capture the
core feature and map the image to a high-dimensional space.
The decoder is made up of a transpose convolutional layer
and an upsampling layer for decoding the high-dimensional
feature map. In addition, the “MAE” loss function is used in
the proposed DCAE module for parameter optimization.

It should be noted that the deep neural network with a large
convolution kernel (DNNLCK) may include a large number of
training parameters, which requires high computational cost
[38]. Compared with the DNNLCK, the proposed method
could effectively reduce the model parameters and extract the
defect feature at different scales by employing DC. A single
convolutional layer may result in a simple model structure that
is unable to capture the underlying patterns in the training
data, leading to underfitting. In contrast, DCAE, compared to
CAE under the same conditions, can leverage DC layers for
more flexible receptive field control, capturing defect features
at varying scales and improving model performance. To further
enhance the model’s feature representation capability and
alleviate underfitting problems, we can increase the channel
numbers of DC kernels to improve the expressive power of
the convolutional layers.

B. The ViT-based Defect Pattern Recognition

In wafer defect classification, the number of defect samples
in certain categories may be very small due to the fact
that there may be a significant imbalance in the number of
defect samples in different categories. In this case, the trained
model would perform poorly for minority classes at the defect
classification stage, which results in classification bias. ViT is a
defect classification model that utilizes the self-attention (SA)
mechanism and the MSA mechanism.

Specifically, the augmented data obtained from the DCAE
are fed into the ViT. During the “Patch Embedding” process,
the images are chunked into blocks with the same size. Then,
each block is flattened into a vector. The positional information
is concatenated to the flattened vectors during the “Position
Embedding” process. After the “Patch Embedding” process
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and “Position Embedding” process, a special character class
token is concatenated to each vector. Subsequently, the features
of the vectors are extracted from the “Encoder Blocks” and
performed global pooling. Finally, the obtained features are
fed into the “MLP Head” for image classification where the
MLP is the multilayer perceptron.

It is known that the standard transformer is designed for
text-based tasks. In order to process the two-dimensional im-
age data, the patch embedding module is designed in the ViT
to flatten the two-dimensional image data to one-dimensional
text-like data.

The encoder of the ViT proposed in [9] can be treated
as a feature extraction module, which consists of an MSA
mechanism and an MLP block. The MSA mechanism is an
extension of the SA mechanism. The MSA mechanism can be
described as follows:

Attention (Q,K, V ) = softmax
(

QKT/
√
d
)

V (5)

whereQ, K, V represent the query vector, key vector, and
value vector, respectively;d = D/k guarantees that the
number of computations and parameters remains unchanged
when the number of headsk is changed;D represents the di-
mensionality of patch embedding; andsoftmax(·) represents
the sum of normalized probabilities of1.

The image classification process of the ViT [9] can be
summarized as follows:

z0 =
[

Mclass;M
1
pE;M2

pE; . . . ;MN
p E

]

+ Epos (6)

z
′

l = MSA(LN (zl−1)) + zl−1 (7)

zl = MLP
(

LN
(

z
′

l

))

+ z
′

l (8)

y = LN
(

z0L
)

(9)

whereMp ∈ R
N×(P 2

·C) denotes sequences of image patches;
P represents the height and weight of each image patch;
N = (H ×W ) /P 2 denotes the resulting number of patches;
E ∈ R

(P 2
·C)×D denotes the fully connected layer;Epos ∈

R
(N+1)×D represents the position embedding;z

′

l denotes the
output feature map of thelth encoder block;l denotes the
number of encoder block(l = 1, . . . , L); MSA(·) represents
the calculation process of the MSA mechanism;MLP(·) is the
multi-layer perceptron (MLP) block;LN (·) denotes the layer
norm (LN);z0L denotes the feature map of class token; andy is
the output of the ViT algorithm. Note that in ViT, the learnable
embedded class tokensy need to pass through an MLP layer
with the number of classes as the dimension, followed by a
softmax activation function, in order to obtain the probability
information for each defect category. The category prediction
label is then determined by selecting the class with the highest
probability.

It is worth mentioning that the original imageM ∈
R

W×H×C (whose height isH , weight isW , and number of
channels isC) is reshaped into a sequence of flattened 2D
patchesMp ∈ R

N×(P 2
·C). The ViT introduces the learnable

position embedding to record the position and update the
information Epos in order to make up for the loss of the
image position information during reshaping the images. In
addition, the ViT introduces the class token to record the

classification informationMclass of the image. The input
dimension

(

P 2 · C
)

is embedded into theD dimension by a
trainable linear projection, which is called patch embedding.
The patch embedding with dimension(N,D) is the input of
the encoder block. After the MSA combined with linear layers
to capture important feature information, the final output is
a feature map with a size of(N + 1, D), where the MLP
consists of fully connected layers and two dropout layers with
the Gaussian Error Linear Units (GELU) activation function.
Compared with the ReLU and ELU activation functions,
GELU exhibits better smoothness, continuity, and convergence
rate. GELU can effectively adapt to the distribution of various
image features. Therefore, GELU is selected as the activation
function of ViT [34].

The loss function of the ViT is computed by sparse cate-
gorical cross-entropy, which is described as follows:

LV iT = − 1

M

M
∑

i=1

N
∑

j=1

yij log
(

ŷij
)

(10)

whereŷij is the predicted probability that samplei belongs to
j, andyij is a sign function that takes 1 when the true class of
i is equal toj and 0 otherwise;N is the number of classes;
andM is the number of samples.

Remark 1: LN and BatchNorm (BN) are the two most
commonly used data normalization methods [50]. Compared
with LN, BN will mix all samples in a batch together
when calculating the mean and variance, which may destroy
the correlation relationship of the data. During the training
process of the ViT model, the input images are divided into
multiple patches through a process called Patchification. LN,
which performs normalization along the feature dimension,
is suitable for handling variable-length data like patches. LN
helps maintain the relative order between positions and ensures
the stability and reliability of the normalization process. By
applying LN in the feature dimension, the ViT model can
effectively handle the patches and capture meaningful rep-
resentations from the input data. This enables the model to
maintain the positional information and achieve stable and
reliable normalization throughout the training process. In this
paper, in order to retain the time relationship of data during
normalization, LN is employed as the normalization method.

C. The SDeceFL Framework

Considering the aforementioned weaknesses of the cen-
tralized federated learning, the decentralized federated learn-
ing framework has been proposed in [54] for decentralized
training and parameter aggregation (based on the local in-
formation transferring between clients and their neighbors).
Here, the clients identify their “neighbors” through a time-
invariant/time-varying topology graph. The SDeceFL frame-
work reduces the burden of the central server caused by exces-
sive client communication. The topology graph of the different
federated learning and swarm learning (SL) frameworks is
shown in Fig. 2.

By using the Erdos Renyi method, we randomly generate
an undirected Erdos Renyi connectivity graph withn nodes
and the corresponding connection probabilityp [54]. Whether
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Fig. 2. The topology graph of the different federated learning and swarm
learning framework

an edge exists between each pair of nodes in the graph is
determined independently according to a specified probability.
In this case, the SDeceFL framework can properly simulate
the complex communication situations between clients in
reality. In theory, all edges between nodes should communicate
with each other as the number of generations increases.
Unfortunately, due to some special reasons (e.g., business
competition or network outage), the client can only choose
to communicate with other clients in a few rounds of training.
Compared with centralized federated learning, the random
local communication between clients can effectively simulate
complex data sharing in reality and alleviate the single node
failure when training a global model.

By assigning different connection probabilities to the
clients, the fragmented data sharing in the realistic scenario
is simulated, where data sharing is no longer dependent on
the central server. In federated learning, the connected clients
need to build local models and then establish the global model.
The global model aggregation and parameter updating of the
SDeceFL framework can be summarized as follows:

ωk (t+ 1) =

K
∑

j=1

Wkjωj (t)− ϕt∇Fk (ωk (t)) (11)

K indicates the number of SDeceFL clients;k is a client;
t represents thet-th iteration;ωk(t) is the estimated global
optimum for thek-th client att-th iteration;ϕt is the learning
rate; ∇Fk (ωk (t)) represents the gradient calculated by the
local client k in the t-th iteration; andWij indicates the
connection between the clientsi and j. To be specific, the
information transmission between clientsi andj occurs when
Wij > 0. Wij = 0 indicates no information transmission
betweeni andj. WhenWij > 0, the clienti is referred to as
a neighboring client of clientj. The set of all such clientsj
is denoted asNi = {j|Wij > 0, ∀j ∈ N}.

In the SDeceFL framework, each federated client is updated
locally, in which the weights are updated according to the
undirected topology graph. In detail, the Erdos Renyi method
is used in this paper to generate the topology graphGnp

with n nodes and the edge connectivity probabilityp, and
finally return the adjacency matrix. Then, the established
global model is sent to each federated client to initialize the
weights of each client.

The local loss functionFk (ω) , F (Dk;M) is the user-
specified loss function on the data setsDk where the model
parameters are defined byω in the modelM . TheF (D;M)
can be reformulated byF (ω) , 1

K

∑K
k=1 Fk (ω) whereK

denotes the number of connected clients, andF (ω) represents
the average loss function on all data. The global loss function
could be designed in a private and centralized manner from
the global perspective. In this case, the global loss function
is not given to any local client. A local loss function is then
designed and distributed to the local client, which is part of the
global loss function. In such cases, data are locally stored with
guaranteed security, and the global loss function is protected
even for the clients.

Based on the DeceFL, the SDeceFL framework is put
forward where a DPS strategy is proposed for tackling the
inter-class heterogeneity of different clients. The class im-
balance problem in a single client is effectively tackled by
data augmentation in the DCAE module, but there may exist
label heterogeneity problems among different clients. The
DPS strategy effectively deals with label heterogeneity by
1) constructing a shared database that contains the label
distributions of the clients trained by the two participating
clients; and 2) utilizing the obtained shared database to train
the global model, which acquires prior knowledge of the label
distributions for model training. The main procedure of the
DPS strategy is divided into four steps:

(a) Randomly select a certain percentage of samples from
each client to build a public database;

(b) Add Laplace noises into the obtained database known as
the shared-database;

(c) Train the global model using the shared-database;
(d) Distribute the weights of the trained global model to the

selected clients for local training.

It is worth pointing out that the Laplace noises are introduced
into the sampled client data to achieve differential privacy,
which ensures the non-disclosure of client data information
within the public database. The shared-database is employed
to train the global model whose weights are distributed to the
local clients participating in data distribution. By doing so, the
local client is aware of part of the data distribution information
of its neighboring clients as priori knowledge, which would
benefit the further local client training. The schematic diagram
of the proposed DPS strategy for two local clients is shown
in Fig. 3.

Each federated client runs the training algorithm locally,
and the estimation of global parameters is transferred to
its neighbors. The federated client calculates the average of
the neighbors’ weights/gradients and generates the aggre-
gated weights in the next iteration when receiving additional
weights/gradients from the neighbors. In the SDeceFL frame-
work, each federated client completes the updating process
when receiving/sending local weights to neighbors instead of
aggregating and transmitting to the third-party central clients.

The procedure of the SDeceFL algorithm is provided in
Algorithm 1.

It should be noted that the random variableXi,j of each pair
of distinct nodes(i, j) is generated according toBernoulli (p)
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Fig. 3. Learning processes for public databases under differential privacy

probability distribution, which is shown as follows:

Xi,j =



















1 Node i and j are connected

with probability p

0 Node i and j are not connected

with probability 1− p

(12)

wherei andj are the node numbers; andp represents the edge
connectivity probability. The normalized Laplace adjacency
matrix W is updated and calculated based on the random
variableXi,j , which is demonstrated as follows:

wi,j =

{

1 if Xi,j = 1

0 if Xi,j = 0
(13)

IV. EXPERIMENTS AND ANALYSIS

In this paper, the proposed wafer DPR framework is applied
to the public data sets, WM-811K. In this section, the descrip-
tion of the data sets and the settings of the related experimental
parameters are first introduced. After that, the proposed DCAE
data augmentation method is evaluated and compared with
some existing data augmentation methods. Then, DCAE-ViT
model is compared with some selected state-of-the-art defect
classification methods. In order to verify the effectiveness of
the proposed method under decentralized federated training,
the centralized federated learning method (i.e., the FedAvg
algorithm), the SL method and the federated learning frame-
work that has been used to deal with class imbalance in recent
years (i.e., Ratio Loss-FedAvg [43], MOON [24], FedNH [8]
and BalanceFL [37]) are selected and compared. Ablation
experiments are also conducted to verify the effectiveness of
the proposed DCAE-ViT-SDeceFL framework.

A. Data Description

The WM-811K public data sets, which is the most widely
used data sets, is adopted in this paper for wafer DPR [47].
The data sets contain information of the defect category, the
production lot, the chip size and the image pixel. There are
811457 wafer images in the data sets, which are collected by

Algorithm 1: The Main Steps of the SDeceFL Frame-
work
Input : The number of clients participating in

federated trainingK;
each clientsNi, (i = 1, 2, . . . ,K);
the data sets of thei-th federal clientDi,

(i = 1, 2, . . . ,K);
the client learning rateLi;
the learning rate of public databasesl;
the iteration numberT ;
the adjacency matrixW ;
the collection ratioε.

Output: Model parameters of clienti at roundn: M i
n.

1 for t ∈ [1, T ] do
2 for each clientNi parally do
3 the clients expand and balance local wafer

samples by training DCAE models with local
data setsDi

4 construct a matrixW for n× n, where each
element is either0 or 1 (1 means there is an
edge between nodei and nodej, and0 means
there is no edge)

5 for each pair of distinct nodes(i, j), generate a
random variableXi,j

6 update and calculate the normalized Laplace
adjacency matrixW according to the random
variableXi,j

7 build a public database by selectingε
percentage of local dataDi from each local
client Ni, and train the ViT using the acquired
database with the learning rate set tol

8 distribute the trained weights to the local client
Ni involved in data sharing in previous step

9 train the ViT model of each federated clientNi

by using the local dataDi with the learning
rate set toLi

10 end
11 update each client’s weight according to Eq. (11)

get the global modelM i
n by global model

aggregation of each clientNi

12 end

experts through the industrial production process. The wafer
images can be divided into 9 classes based on different defect
patterns which are Non-pattern, Center, Donut, Edge-local,
Edge-ring, Local, Near-full, Random and Scratch. In the WM-
811K data sets, 18.2% of the wafer images are Non-pattern,
3.1% of the wafer images have actual defects, and 78.7% of the
wafer images are unlabelled. In order to demonstrate the gen-
eralizability of the proposed DCAE-ViT-SDeceFL framework,
the NEU-CLS-64 public data sets [15] and the CIFAR-100
public data sets are also employed for performance evaluation.
The NEU-CLS-64 public data sets assemble approximately
7000 tiny images with 9 defect classes, i.e., crazing (Cr),
grooves and gouges (GG), inclusion (In), patches (Pa), pitted
surface (PS), rolling dust (RD), rolled-in scale (RS), scratches
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(Sc), and spots (Sp). The CIFAR-100 public data sets assemble
approximately 60000 images with 100 defect classes.

B. Data Pre-Processing and Data Augmentation

In the experiment, 14312 labeled wafer images from the
WM-811K public data sets are selected randomly and formed
the experimental data sets. In the experimental data sets,
93.87% of the wafer images (13436 images) are Non-pattern,
and 6.13% of the wafer images have defects. It should be
noticed that there is an obvious class imbalance problem in
the experimental data sets. In this case, the Non-pattern wafer
images are under-sampled from 13436 to 436. The wafer
images with defects are reconstructed by the proposed DCAE
for data augmentation. Specifically, the wafer images with
defects which belong to Center, Donut, Edge-local, Edge-ring,
Local, Near-full, Random and Scratch are 630, 508, 888, 558,
891, 528, 592, 639, respectively. Similarly, the NEU-CLS-64
public data sets with steel plate defects are reconstructed by the
proposed DCAE for data augmentation, the steel plate images
with defects which belong to SP, Sc, RD, PS, Pa, In, GG and
Cr.

C. Data Processing

After data pre-processing and data augmentation, the ViT
is employed for the wafer defect classification. The wafer
images with the size of96 × 96 × 3 are first split into 256
patches with the size of6× 6, Then, the patches are linearly
embedded and added with the position embeddings whose size
are 256 × 6 × 6. Similarly, we perform the same operation
after resizing steel plate data from64 × 64 to 96 × 96. It is
worth mentioning that an extra learnable class token is also
added in order to store the information of classification. The
resulting sequence of vectors are then fed into the 3-layer
encoder which consists of alternating layers of MSA and MLP
blocks. In the resulting sequence, each vector incorporates
information of other vectors. In this case, the MSA blocks
operate as a feature extractor of the entire sequence where
multiple attention heads are applied to different positions in the
input sequence, therefore, ViT can focus on multiple positions
of the sequence at the same time. in order to extract useful
features and reduce irrelevant noises. The number of the heads
in MSA is set to be 4. The classification information in the
class token is extracted by the dense layer of the MLP blocks
and is treated as the defect classification results.

D. SDeceFL-Based Model Training

In the experiment, the SDeceFL framework is utilized to
train the model. The unprocessed data is divided into four
groups and allocated to four clients randomly. Next, four
clients use local data to train the DCAE model for data
augmentation. The SDeceFL framework is utilized to train the
model. The data set is divided into four groups and allocated to
four clients randomly. The connections between clients in each
iteration are simulated by a time-varying undirected topology
graphG (t) = (N, ε,W ), whereN = {1, 2, 3, 4} denotes the
clients; ε is the time-varying boundaries; andW represents

the corresponding adjacency matrix. Two random nodes are
connected with the probabilityp = 0.5. The information
transmission between the chosen two nodes is determined by
the adjacency matrixW c, which is shown as follows:

W
c =

[

0.5 0.5
0.5 0.5

]

. (14)

In each iteration, four nodes are divided into two groups ran-
domly, which are the communicating nodes and unconnected
nodes. The unconnected nodes don’t participate in the data
communication of this iteration, but they still train and update
the local models. The weight matrix of two unconnected nodes
Wnc is shown as follows:

W
nc =

[

1 0
0 1

]

. (15)

In each round of federated communication, half of the
nodes are randomly selected from all nodes to participate
in communication as a time-varying setting, and the cor-
responding adjacency matrixW c is randomly generated by
using the Erdos Renyi method.Wnc is used to describe the
communication situation of the remaining half nodes which
do not participate in communication. By sequentially drawing
the update of the communication matrix in the simulation
experiment, it can be found that only two nodes communicate
with each other in each round. With the increase in global
training rounds, all nodes will complete the mutual communi-
cation. The time-varying undirected topology for four nodes
is updated according to the following steps, which are shown
in Fig. 4.

Fig. 4. The time-varying topology graph of the SDeceFL framework

Step 1Node 2 and node 3 communicate. Node 1 and node
4 train locally. The corresponding weight matrix is described
as follows:

W
all

1
=







1 0 0 0
0 0.5 0.5 0
0 0.5 0.5 0
0 0 0 1






. (16)

Step 2Node 1 and node 2 communicate. Node 3 and node 4
update locally. The corresponding weight matrix is described
as follows:

W
all

2
=







0.5 0.5 0 0
0.5 0.5 0 0
0 0 1 0
0 0 0 1






. (17)
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Step 3Node 1 and node 3 communicate. Node 2 and node 4
update locally. The corresponding weight matrix is described
as follows:

W
all

3
=







0.5 0 0.5 0
0 1 0 0
0.5 0 0.5 0
0 0 0 1






. (18)

Step 4Node 1 and node 4 communicate. Node 2 and node 3
update locally. The corresponding weight matrix is described
as follows:

W
all

4
=







0.5 0 0 0.5
0 1 0 0
0 0 1 0
0.5 0 0 0.5






. (19)

The steps are repeated until the maximum iteration number
is reached or the model converges, which aims to obtain a
server-like data model interaction in order to guarantee the
information transmission between each group of nodes.

E. Experiment Setup

In order to achieve a comprehensive evaluation of the
proposed DCAE-ViT-SDeceFL framework, two experiments
are conducted: a comparison study and an ablation study. The
details of the experimental platform are CUDA 11.4 and GTX
3080Ti GPU which has data parallelism, and is implemented
with TensorFlow 1.5.0.

1) Comparison Study:The comparison study in this paper
can be divided into data augmentation experiment, classifica-
tion experiment and federated learning experiment.

(a) Data Augmentation Experiment: Resize the wafer image
to the size of26 × 26 × 3 and feed it into the DCAE,
where we set the kernel size in layer 1 and layer 2 of both
encoders to3 × 3, and the number of channels of both
layer 1 and layer 2 are set to be 32. The Adam algorithm
is chosen as the optimizer of the proposed DCAE. The
batch size and the learning rate are set to be 32 and 0.001,
respectively.

(b) Defect Classification Experiment: The input data of the
ViT are the96×96×3 wafer images and the64×64×3
steel plate defect images. The stochastic gradient descent
(SGD) optimizer with momentum is employed, where the
momentum, the learning rate and the batch size are set as
0.9, 0.0001 and 32, respectively. When constructing the
public database, the data collection ratio is set as 0.05,
and the distribution of the noise is chosen as Laplace.
The learning rate of the ViT is set by 0.00005, and the
other parameters remain unchanged.

(c) Federated Learning Experiment: The Adam optimizer is
employed in this experiment, where the momentum, the
initial learning rate, and the batch size are set as 0.9,
0.001, and 32, respectively. The number of clients (i.e.,
num-users) is set to be 4.

2) Ablation Study: In order to verify the effectiveness
of the proposed method, an ablation study is conducted on
three public data sets in which each modification rule is
implemented separately. We use ResNet50-DeceFL without
DCAE data augmentation as the baseline model. Experimental
settings (e.g., optimizer, data sets, and models) are consistent
with the aforementioned comparison study.

V. EXPERIMENT RESULTS AND DISCUSSIONS

A. Results and Discussions of DCAE

In this paper, two performance indicators (i.e., Entropy
and Tenengrad) are employed to evaluate the quality of the
reconstructed images. The proposed method is compared with
some well-known data augmentation methods including the
Wasserstein GAN (WGAN) [1], CAE [53], NL-CAE [45],
GC-CAE [4], ADC-GAN [17], ReAC-GAN [20] and Simple
Diffusion [16].

In the experiment, 2000 images generated by the selected
data augmentation methods are randomly selected to com-
pute the average value of the Entropy and Tenengrad. The
assessment indicators of generated images using the proposed
method and some selected methods are listed in Table I. As
shown in Table I, the Entropy scores of the images generated
by our proposed method are 6.54 and 6.97 on the WM-
811K public data sets and the NEU-CLS-64 public data sets,
respectively. The Tenengrad scores of the images generated
by our proposed method are 10.38 and 6.14 on the WM-811K
public data sets as well as the NEU-CLS-64 public data sets,
respectively. The model size of the DCAE is also compared
with the other methods in Table I. It can be found that the
model size of DCAE is only 0.11 MB.

The DCAE-generated images and original images are de-
picted in Fig. 5. It can be found from Fig. 5 that the generated
samples of different classes successfully exhibit the wafer
defect characteristics of the current class. In this case, we
can conclude that the quality of the images generated by the
DCAE is better than that of the compared methods, which
demonstrates the effectiveness of the proposed DCAE in the
wafer image generation task.

Fig. 5. DCAE generated images and original images
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The DCAE-based data augmentation results are shown in
Fig. 6 and Fig. 7 for two different data sources. Fig. 6 displays
the distribution of the raw data (WM-811K public data sets)
and the data augmented by using the DCAE. In our work, a
certain number of defect categories (e.g., Donut, Edge-Ring,
and Near-Full) are specifically augmented to tackle the class
imbalance problem. The distribution of the raw steel plate
data (NEU-CLS-64 public data sets) and DCAE-augmented
data is presented in Fig. 7. The number of samples in certain
categories (including RD and GG) is augmented. It can be seen
in Fig. 6 and Fig. 7 that the pre-processed data distribution of
wafer and steel plate becomes uniform based on DCAE-based
data augmentation, thus demonstrating the effectiveness of the
DCAE module. The augmented data sets are then divided into
the training set and the testing set with a ratio of 4:1.

Fig. 6. Distribution of raw data and augmented data by using the DCAE

Fig. 7. Generated sample presentations and data distributions

TABLE I
COMPARISON OF EVALUATION INDICATORS OF DATA AUGMENTATION

METHODS

WM-811K NEU-CLS-64
Method Model size(MB) Entropy Tenengrad Entropy Tenengrad

CAE 0.08 5.62 8.85 5.87 5.58
NL-CAE 1.61 6.21 9.68 6.43 5.89
GC-CAE 1.84 6.37 9.95 6.48 6.04
WGAN 9.92 5.96 9.01 6.01 5.76

ADC-GAN 20.45 6.28 9.94 6.51 5.98
ReAC-GAN 45.57 6.43 9.75 6.77 5.95

Simple Diffusion 196.32 6.49 10.12 6.86 6.09
DCAE 0.11 6.54 10.38 6.97 6.14

In this paper, a comparison experiment is conducted to ver-
ify the performance of the proposed model when dealing with
data under different distribution scenarios. In the experiment,
the distribution of the original data is analyzed. The most fre-
quent defect type is defined as the majority class, and the other
eight classes are considered as minority classes. After that,
undersampling and oversampling techniques are employed to
adjust the proportions of the classes. In the experiment, the
distribution scenarios are set as5 : 1 × 8, 10 : 1 × 8, and
20 : 1×8. The ViT is integrated with the selected data augmen-
tation models (e.g., WGAN, CAE, NL-CAE, GC-CAE, ADC-
GAN, ReAC-GAN and Simple Diffusion) and the proposed
DCAE for the classification task. Table II demonstrates the
accuracy of each model under different distribution scenarios.
According to the results, the proposed DCAE model achieves
the highest accuracy (which are 0.933, 0.929, and 0.926) when
combined with the ViT model and consistently outperforms
other methods under three distribution scenarios. The results
show the superior performance of DCAE in data augmentation
for both non-independent and non-identically distributed data.

TABLE II
COMPARISON OF THE ACCURACY BETWEEN DIFFERENT MODELS

Method 5 : 1× 8 10 : 1× 8 20 : 1× 8

CAE 0.843 0.823 0.821
NL-CAE 0.915 0.912 0.899
GC-CAE 0.901 0.897 0.883
WGAN 0.911 0.904 0.893

ADC-GAN 0.917 0.910 0.889
ReAC-GAN 0.922 0.919 0.908

Simple Diffusion 0.926 0.921 0.911
DCAE 0.933 0.929 0.926

Table III shows the performance evaluation of CAE and
DCAE with the same kernel size. In Table III, the Entropy
and Tenengrad scores of the DCAE are higher than those of
the CAE with the same parameter setting, which indicates that
the DC layer outperforms the convolutional layer in extracting
features. Compared with the traditional convolutional layer,
the DC layer has more parameters, which helps the model
learn more complex features and can alleviate the underfitting
problem to some extent.

Table IV shows the results of the comparison experiment
which is used to investigate the impact of different channel
numbers on the model performance. We can see that using only
a two-layer3×3 CNN in CAE cannot achieve the same image
quality as DCAE incorporated with DCN. Under the condition
of 32 channels, DCAE achieves an Entropy of 6.54 and a
Tenengrad of 10.38, while CAE only reaches 6.13 and 9.84
under the same conditions. It can be seen that DCAE with 32
channels surpasses the performance of CAE with 64 channels,
indicating that with the increase of parameter capacity, DCAE
can alleviate underfitting to some extent and achieve better
data augmentation results than the CAE.

Remark 2:Compared with the traditional CAE, the proposed
DCAE shows better performance in controlling the receptive
field. DC can adaptively adjust the shape and position of
convolution kernels based on the degree of deformation in the
target, allowing for flexible control over the receptive field.
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TABLE III
PERFORMANCE EVALUATION OFCAE AND DCAE WITH THE SAME KERNEL SIZE

Method Kernel Size (Layer 1) Kernel Size (Layer 2) Entropy Tenengrad Parameters

CAE
3× 3 3× 3 5.62 8.85 20288
7× 7 7× 7 6.36 9.94 109888

13× 13 13× 13 6.87 10.43 378688

DCAE
3× 3 3× 3 6.54 10.38 29539
7× 7 7× 7 6.92 10.53 160096

13× 13 13× 13 7.02 10.78 551776

TABLE IV
PERFORMANCE EVALUATION OF CAE AND DCAE WITH THE DIFFERENT

CHANNELS

Method Channel Entropy Tenengrad Parameters

CAE
16 5.96 9.43 5536
32 6.13 9.84 20288
64 6.32 9.96 77440

DCAE
16 6.12 9.87 7856
32 6.54 10.38 29539
64 6.61 10.44 114368

Compared to the traditional convolutional layer, the DC layer
has a larger number of parameters, which aids the model in
learning more complex features and alleviates the underfitting
problem to some extent.

B. Results and Discussions of Defect Classification

In order to demonstrate the effectiveness of the proposed
framework, several popular classification models (including
WMDPI [35], T-DenseNet [36], PeleeNet [44], ConvNeXt
[27]), WDP-BNN [57], and WaferSegClassNet [31]) are se-
lected for performance evaluation. The classification results of
the proposed framework are compared with the classification
results of selected models. In this paper, four different eval-
uation metrics (i.e., accuracy, recall, precision, and F1 score)
are utilized to evaluate the classification results, which are
described as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(20)

Recall =
TP

TP + FN
(21)

Precision =
TP

TP + FP
(22)

F1 Score = 2 · Precision ·Recall

Precision+Recall
(23)

whereTP denotes true positive;TN represents true negative;
FP is false positive; andFN represents false negative.

In order to fully demonstrate the effectiveness of the ViT-
based defect classifier, in this experiment, three public data sets
(i.e., the original experimental data sets, the under-sampled
experimental data sets and the augmented experimental data
sets) are used to train the proposed model to evaluate the
classification performance the model on data sets with different
distribution. The classification samples are transformed to
two-dimensional by using the t-distributed stochastic neighbor
embedding (t-SNE) and are shown in Fig. 8.

As shown in Fig. 8, the model only learns the majority class
when applying to the original experimental data sets, which is
not satisfactory. For the under-sampled experimental data sets,
the model can distinguish some defects which have obvious
features. For the augmented experimental data sets, the model
is able to separate various defect patterns with satisfactory
accuracy, which achieves the best classification results in terms
of overall performance. It can be found from the figure that
all the models trained by the augmented experimental data
sets have higher classification accuracy than the model trained
by the original experimental data sets. It is worth mentioning
that the classification of the model trained by the original
experimental data sets converges fast, but the model falls
into the local optimal solution for the majority class, and the
model is overfitting. It can also be found in Fig. 8 that the
proposed model trained by an augmented experimental data
set converges fast and has the highest accuracy.

Table V shows the classification accuracy of all selected
models on various defects in the test set. It can be found
that compared with other classification models, the proposed
method shows higher average recognition accuracy for all
defects. Because the multi-head attention mechanism divides
input features into multiple heads to learn different attention
weights and capture different feature subspaces. The multi-
head attention mechanism can make the model distinguish the
features of different categories so as to improve the classifi-
cation performance on imbalanced data with small sizes.

TABLE V
DPRMETHODS

Classifier WMDPI PeleeNet ConvNeXt T-DenseNet WDP-BNN WaferSegClassNet Our Method
Center 92.50% 95.50% 94.10% 84.50% 97.70% 97.10% 96.80%
Donut 91.50% 93.50% 94.40% 91.20% 94.60% 92.40% 95.10%

Edge-Loc 81.80% 90.90% 90.10% 81.50% 93.80% 91.50% 94.10%
Edge-Ring 97.90% 97.60% 95.50% 92.10% 95.80% 94.20% 98.70%

Loc 83.90% 88.50% 90.60% 81.80% 92.10% 92.80% 93.10%
Random 95.80% 95.40% 96.20% 85.30% 95.30% 93.40% 95.30%
Scratch 81.40% 88.90% 91.50% 84.60% 92.20% 93.70% 94.70%

Near-Full 93.30% 91.90% 92.10% 92.60% 94.40% 92.80% 95.60%
None-Pattern 97.90% 100% 99.50% 85.50% 97.50% 97.60% 100%

Average 90.70% 93.60% 93.80% 86.60% 94.80% 93.90% 95.90%

Table VI and Fig. 9 demonstrate the comparison evaluation
of each model. According to Table VI, the proposed model
has the best performance in terms of four evaluation indicators
compared with other models. The accuracy and loss of the ViT
on the training data sets and test data sets are shown in Fig. 10.
According to Fig. 10, after convergence, the model has high
precision in both the training data sets and test data sets, and
there is no obvious overfitting or underfitting problem, which
demonstrates that the training process is relatively smooth.
Parallel computing techniques are used to build the proposed
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(a) (b) (c)

Fig. 8. Visual analysis of classification performance t-SNE: (a) Original data; (b) Under sampling data; (c) Augmented data.

model on GPUs with the hope of saving computational time.
It can be found in Fig. 10 that the proposed model exhibits
satisfactory performance on both the training set and the test
set.

Fig. 9. Comparison of model before and after DCAE

(a) (b)

Fig. 10. ViT-based DPR performance (a) Accuracy; (b) Loss.

TABLE VI
COMPARISON OF EVALUATION INDICATORS OF EACH MODEL

Method F1-Score Precision Recall Accuracy
WMDPI 91.10 89.40 91.60 90.70
PeleeNet 86.80 89.20 85.10 93.60

ConvNeXt 92.40 92.60 91.30 93.80
T-DenseNet 77.90 79.00 76.20 80.80
WDP-BNN 92.20 93.10 93.20 94.80

WaferSegClassNet 92.60 92.90 92.10 93.90
Our Method 94.70 95.60 94.10 95.90

C. Results and Discussions of Federated Learning

Firstly, the raw data are categorized into four groups and
separately allocated to four nodes which are used to simulate
the clients. Secondly, local clients train and use the DCAE to
increase data samples based on the local data. Thirdly, the node
communication topology graph is obtained via Erdos Renyi.
For connected clients, we then carry out 20 rounds of local
training, and 80 rounds of data transmission and aggregation.

Experimental results of the selected methods and the pro-
posed method on three public data sets (including WM-811K,
NEU-CLS-64, and CIFAR-100) are presented in Table VII.
Compared with selected federated learning frameworks (e.g.,
Ratio Loss-FedAvg, MOON, FedNH, BalanceFL, FedAvg, and
DeceFL) and the swarm learning framework, the proposed
framework achieves better performance in terms of average
classification accuracy. The average classification accuracy of
the proposed framework on WM-811K, NEU-CLS-64 and
CIFAR-100 are 0.982, 0.990 and 0.935, respectively.

TABLE VII
RESULTS COMPARISON WITH FEDERATED LEARNING AND SWARM

LEARNING METHODS

Dataset WM-811K NEU-CLS-64 CIFAR-100
Ratio Loss-FedAvg 0.941 0.964 0.523

MOON 0.954 0.969 0.675
FedNH 0.961 0.973 0.552

BalanceFL 0.967 0.979 0.726
DCAE+VIT+FedAvg 0.975 0.984 0.925

DCAE+VIT+SL 0.970 0.980 0.927
DCAE+VIT+DeceFL 0.972 0.981 0.923

Our Method 0.982 0.990 0.935

In the process of wafer production and processing, there are
anumber of unstable factors (e.g., commercial competition and
communication outage) in different factories, which makes it
difficult to realize the ideal global communication of central-
ized federated learning. For the centralized federated learning
method, the client data need to be processed by the central
server simultaneously, which leads to high computational costs
[30]. As such, when handling a huge amount of data, the
computational costs of the FedAvg would be extremely high,
which could not be ignored.
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In decentralized federated learning methods, the central
client is eliminated without sacrificing the model convergence
[54]. In the SDeceFL framework, the information is shared
by every local client through the undirected connected graph.
In this situation, completing the mutual communication of all
clients requires sufficient time. Although the computational
cost of model aggregation via SDeceFL may be higher than
that of the FedAvg, we do not need to carry out data aggrega-
tion for establishing the global model of the SDeceFL, which
means that the local client aggregation process is relatively
fast, and small communication burden is brought. As a matter
of fact, local communication and local data training can
greatly reduce the time and cost of aggregation. Compared
with FedAvg, the communication pressure of the SDeceFL
framework during data transmission is lower. By using the
flexible training strategy, the SDeceFL framework is more
appropriate for wafer enterprises than the FedAvg framework
considering the real-world practical cases.

In comparison with the FedAvg framework, the SDeceFL
framework takes a longer time to complete the communication
process because only topological communication between
random local clients is established instead of obtaining the
global communication connection. Note that the model aggre-
gation of the SDeceFL is not to aggregate a global model.
Although the local client aggregation process may take a
relatively long time, the aggregation speed is fast and the
communication pressure is low. After completing the model
aggregation, the running time of the actual DPR is short, which
is acceptable for the inspection of wafer products produced
in the assembly line. As shown in Table VIII, the required
accumulated communication traffic of the FedAvg, the SL,
the DeceFL and the SDeceFL to achieve 97% accuracy on
the WM-881K public data sets are 35283.92 MB, 31814.27
MB, 1590.16 MB and 1732.53 MB, respectively. The required
accumulated communication traffic of the DeceFL and the
SDeceFL frameworks is much smaller than that of other
frameworks. The computational time for SDeceFL to reach
the specified accuracy is only 782.15s. In addition, the de-
centralized federation is not only suitable for the reality of
the client’s communication mechanism and the prevention of
privacy leakage, but also of great significance in reducing the
communication bandwidth and the risk of attacks on the center.

TABLE VIII
THEORETICAL COMMUNICATION TRAFFIC AND TIME TO REACH THE

TARGET ACCURACY

WM-811K(97%)
Method Traffic (MB) Time (s)

DCAE+VIT+FedAvg 35283.92 2136.67
DCAE+VIT+SL 31814.27 1972.81

DCAE+VIT+DeceFL 1590.16 1087.41
DCAE+VIT+SDeceFL 1732.53 782.15

The trained model with the SDeceFL framework, the Fe-
dAvg algorithm, and the SL algorithm on the test data sets
are shown in Fig. 11. As shown in Fig. 11, the accuracy
of the proposed model with SDeceFL is higher than that
of the others on each node. It is worth mentioning that the

SDeceFL framework is able to obtain reliable results without
collecting data from the central server directly, which protects
the original data effectively.

(a) (b)

(c) (d)

Fig. 11. Accuracy of each node in the test set: (a) Node 1; (b) Node 2; (c)
Node 3; (d) Node 4.

Remark 3:Compared to traditional centralized learning, the
SDeceFL framework can promote data sharing and coopera-
tion among different clients and effectively protect the privacy
of their information. Additionally, the SDeceFL framework
takes 1) the characteristics of data; 2) the needs of different
regions and communities in order to build inclusive models.
The SDeceFL framework could effectively prevent the prob-
lem of data monopolization resulting from centralized learning
brought by some large technology companies or organizations.
In wafer manufacturing, the proposed DCAE-ViT-SDeceFL
framework could realize the data cooperation with privacy
protection among different clients and guarantee the reliability
of the produced data.

D. Ablation Study

In this paper, the influence of the proposed modules in our
proposed DCAE-ViT-SDeceFL framework is validated via the
ablation study on WM-811K, NEU-CLS-64 and CIFAR-100
public data sets. Table IX shows the results of the ablation
experiments. The influence of each module is summarized
below:

(a) The influence of the data augmentation module for clas-
sification is presented in the first column of Table IX. By
employing the DCAE for data augmentation, the DCAE-
ResNet50-DeceFL method achieves better classification
accuracy than the baseline by 3.6%, 5.7%, and 3.8%
on the WM-811K, NEU-CLS-64, and CIFAR-100 public
data sets, respectively.

(b) The influence of the ViT module is shown in the second
column of Table IX. By comparing with the baseline, the
ViT-DeceFL improves classification accuracy on WM-
811K, NEU-CLS-64, and CIFAR-100 by 4.8%, 6.6%, and
11.9%, respectively.

(c) The influence of the SDeceFL module is displayed
in the third column of Table IX. Compared with the
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baseline, the ResNet50-SDeceFL method obtains higher
classification accuracy on WM-811K, NEU-CLS-64, and
CIFAR-100 public data sets by 1.4%, 1.6%, and 3.1%,
respectively.

According to the aforementioned experimental results and
the ablation study, we can conclude that the designed DCAE
module for data augmentation improves the classifier by
producing balanced data to tackle the class imbalance problem.
Owing to the strong feature extraction ability, the ViT module
performs as an outstanding classifier which meets the require-
ments of complex classification tasks (such as object detection,
wafer DPR, and steel plate defect detection). Based on the
proposed DPS strategy, the SDeceFL demonstrates superiority
over the DeceFL method, which effectively alleviates the label
heterogeneity problem among clients so as to improve the
classification performance. To conclude, the proposed DCAE-
ViT-SDeceFL framework achieves optimal results on WM-
811K, NEU-CLS-64, and CIFAR-100 public data sets with
the designed modules.

TABLE IX
RESULTS OF ABLATION EXPERIMENTS FORDCAE-VIT-SDECEFL

FRAMEWORK

DCAE ViT SDeceFL WM-811K NEU-CLS-64 CIFAR-100
✕ ✕ ✕ 0.897 0.901 0.737
X ✕ ✕ 0.933 0.958 0.775
✕ X ✕ 0.945 0.967 0.856
✕ ✕ X 0.911 0.927 0.768
X X ✕ 0.972 0.981 0.923
X ✕ X 0.941 0.965 0.829
✕ X X 0.957 0.971 0.901
X X X 0.982 0.990 0.935

VI. CONCLUSION AND FUTURE WORKS

In this paper, a novel privacy protection framework has been
proposed for wafer DPR. A novel SDeceFL framework has
been proposed to tackle the inter-class heterogeneity problem
of different clients and enhance data privacy. A new data
augmentation module, the DCAE, has been developed to tackle
the class imbalance problem. The ViT has been combined with
the DCAE module for DPR of the wafer data under class
imbalance. The proposed DCAE-ViT-SDeceFL framework has
been evaluated and tested on the WM-811K public data sets.
Experiment results have shown the superiority of the proposed
framework over some existing frameworks. The proposed
framework can provide high-quality data for clients which
have sparse or imbalanced data. In addition, the proposed
DCAE-ViT-SDeceFL framework could allow different clients
to train a reliable model while preventing data leakage, which
has unique advantages in data generation and privacy protec-
tion. In the future, we aim to: 1) apply the proposed framework
to other data analysis and fault detection tasks [6], [14], [18],
[55]; 2) employ evolutionary computation methods to choose
the hyperparameters of the ViT-based DPR network [12], [22],
[46], [48]; 3) develop new deep learning-based wafer DPR
methods based on federated learning [28]; 4) design a lower
communication cost and more private parameter fusion sharing
strategy based on the SDeceFL framework [5], [52], [58], [61].
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