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Abstract—This paper is concerned with the distributed set- plants through available network measurements. In response
membership estimation problem for a class of discrete time- to the large scale of SNs, the state estimation algorithms
varying systems over binary sensor networks. For binary sensors, 4. expected to be scalable and this has demanded the rapid
the cases of fixed and time-varying thresholds are considered. In o . . . .
both cases, the information useful for state estimation purposes Qevelopment Oﬁ'Str'bUtedeSt'maﬂon techniques whose ,'dea
is extracted by utilizing the crossings of binary measurements at IS t0 use each sensor to estimate the system state via local
two adjacent time instants, and then distributed estimators are communications among neighboring nodes [42], [45], [48].
constructed for each sensor node with the aid of the available |n fact, owing to their distinctive advantages in improving
measurements, where a set of vector saturation functions is computation efficiency and saving communication resources,

introduced to resist the adverse effect of outliers during signal the distributi timation techni h H ved
transmission. A novel distributed set-membership performance € distribution estimation techniques have recently received a

index is provided by averaging over the ellipsoidal constraints Surge of research attention with various algorithms appeared
of all sensor nodes, and the local performance analysis method in the literature, see e.g. distributed Kalman filtering schemes
is employed to establish sufficient criteria that guarantee the [31], distributed H,, estimation strategies [36], distributed
existence of desired estimators whose parameters are then de”"edfusion estimation [16], [19], distributed moving-horizon es-

for every node by recursively optimizing certain ellipsoids in the . . L .
sense of matrix trace. The applicability and feasibility of the timation methods [3], [4], and distributed set-membership

distributed set-membership schemes developed in this paper are €stimation techniques [20], [24], [29].
verified by two illustrative examples. Binary sensors have been widely utilized in nowadays SN

Index Terms—Binary sensors, sensor networks, binary mea- mainly be(.:ause of their cost-effectivenegs [33]’ [38] a”d, Sma”
surements, distributed set-membership estimation, local perfor- Overhead in terms of energy and bandwidth in communication
mance analysis. [2]. Up to now, binary SNs have found many successful ap-
plications in engineering practice including consensus control
[38], source localization [2], tracking control [13], system
identification [33], [37], [37], privacy protection [34], etc. For

Over the past two decades, the ever-growing popularityore applications of binary sensor, the readers are referred
of sensor networks (SNs) has made it possible to collect® [37] and the references therein. As a binary sensor can
huge amount of information through sensors densely deploygsly provideone bitof measurement output, it appears to be
in the interested region [2], [5], [6], [21], [23], [25], [30], especially challenging as how to extract useful/beneficial in-
[39]. Accordingly, a key issue with SNs is about how t@ormation from such extremely coarse measurements. To date,
acquire robust yet reliable state estimates of the monitorggme initial efforts have been devoted to extrhgictional

_ _ _ _ information from binary measurements (BMs) which could
This work was supported in part by the National Natural Science Foundatipn

of China Under Grants 62073070, U21A2019, 61933007, and 62273005, 1§1P capture the dynamics involved in the sensor outputs, see
part by the Hainan Province Science and Technology Special Fund of Ch[i@, [15] via the switching of BMs in case of deterministic

under Grant ZDYF2022SHFZ105, and in part by the Alexander Von Humbolg{yises and [38], [40] via a certain distributed function in case

Foundation of Germany{Corresponding author: Hongli Dong.) . .
Fei Han and Hongli Dong are with the State Key Laboratory of ContinentQ‘c random noises [38], [40]. Also, much research interest has

Shale Oil, Northeast Petroleum University, Daging 163318, China, also witecently been focused on many BM-related dynamics analysis
the Sanya Offshore Oil & Gas Research Institute, Northeast PetroleLg;omems which include, but are not limited to, consensus

University, Sanya 572025, China, also with the Atrtificial Intelligence Energ . . e .
Research Institute, Northeast Petroleum University, Daging, 163318, chig@Ntrol [38], source localization [2], system identification [40],

and also with the Heilongjiang Provincial Key Laboratory of Networking an§41], and parameter and state estimation problems [3], [4],

Intelligent Control, Northeast Petroleum University, Daging 163318, Chinf15] [49]_

(Emails:t oncunt @26. com shi ni ngdhl @i p. 126. com ' . .
Zidong Wang is with the Department of Computer Science, Brunel Uni- In t_he context of binary sensors, Fhe threShOIdS deter_mlnlng

versity London, Uxbridge, Middlesex UB8 3PH, United Kingdom. (Emailtne DInary outputs nave played a Vitally Important role in the
ersi d brid iddl 83 ited Kingd ( ithe b y outputs h layed tally tant rol th

Zi dong. Viang@r unel . ac. uk) related dynamics analysis problems. Up to now, most existing

Hongjian Liu is with the Key Laboratory of Advanced Perception and . . .
Intelligent Control of High-end Equipment, Ministry of Education, Anhuiresults concerning BMs have been obtained basedixanl

Polytechnic University, Wuhu 241000, China, and also with the Schotiresholds for analysis convenience and easy implementation
of Mathematics and Physics, Anhui Polytechnic University, Wuhu 24100?3]’ [4], [15], [33], [49]' [52]_ For binary sensors with such
China. (Email:hj 1 i u1980@nei | . com . .

Guoping Lu is with the School of Electrical Engineering, Nantong Univert'x_ed thres.hollds, the correspondllng measurement o_gtputs con-
sity, Nantong 226019, China. (Emallu. gp@t u. edu. cn) tain very limited useful information that can be utilized for

|. INTRODUCTION

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TSMC.2024.3409611, IEEE Transactions on Systems, Man, and Cybernetics: Systems

FINAL VERSION 2

state estimation purposes. In this case, it makes both practitta first time, investigated for a class of discrete time-varying
and theoretical sense to look intime-varyingthresholds so systems over binary SNs; 2) a new time-varying threshold
as to facilitate the extraction of more functional informatiofor binary sensors is purposely designed to improve the
with the increasing crossing times of BMs. In this regarastimation accuracy; 3) a novel performance index regarding
some pioneering results have been published on a numbettaf distributed set-membership estimation is proposed in the
dynamics analysis issues, see e.g. distributed Kalman filterimgerage sense over all the sensor nodes; and 4) indicator-
[31], parameter estimation [47], system identification [41}ariable-dependent conditions are derived for each sensor
[53], tracking control [13], and recursive estimation [7]. Imode to guarantee the average performance of the distributed
particular, the threshold has been designed in [41] based smi-membership estimation in both cases of fixed and time-
the estimated parameter at the current instant. varying thresholds.

When the underlying system is subjected to deterministic The structure of this paper is outlined as follows. In Section
norm-bounded noises, the set-membership estimation is He-the underlying system and the BMs are formulated, and
garded to be an efficient approach whose aim is to use fhe time-varying threshold strategy is proposed. Furthermore,
available measurements to recursively calculate a boundidagiew method is developed to extract the information from
ellipsoid containing the accurate states, see [50] and tB&s, and a novel average performance index is put forward
references therein. In relation to SNs, the distributed sé@ reflect the overall distributed set-membership estimation
membership estimation issue has recently attracted a susgBeme. The main results under two kinds of thresholds are
of research interest [20], [28], [29], [44], and many excelleftresented in Sections Il and IV, respectively. Two numerical
algorithms have been developed for systems undergoing v&imulation examples are provided in Section V to demonstrate
ous imperfect measurements that might be induced by codiitige effectiveness of distributed set-membership estimation
decoding communications [24], cyber-attacks [25], [46], argFhemes developed in this paper. Section VI concludes this
measurement saturations [43]. However, when it comes R@per by pointing out some future research directions.
the coarsest measurements such as BMs, the corresponding
results have been really scattered, and this gives rise to another Il. PROBLEM FORMULATION

motivation for the current investigation. A digraph G(V,S, A) is utilized to describe the com-
Outliers, as a kind of abnormalities that are significantlyunication topology of the SN considered in this paper.
deviated from their normal value, are often encountered $pecifically, V £ {1,2,---,N} denotes the sensor node
industrial applications as a result of deception attacks, seget, S £ {(i,j) : i,j € V} indicates the edge set, and
sor failures, environmental sudden changes, impulsive noisg¢s= [a;;]yxn refers to the adjacency matrix. Moreover,
with heavy tails, etc. [1]. As is well known, the distributedi, j) € S if and only if a;; > 0. If a directed edge
estimation is realized via the information exchange amorig j) € S, then; is called a neighbor of that has access
neighboring sensor nodes and, if the transmitted informatias the information from sensor node For sensori, all its
is contaminated by outliers, the performance of the distributegdighbors are denoted ag; £ {j € V: (i,j) € S,j #i}.
estimators might be seriously impaired [2], [35]. As such, ito be specificN; £ {ji,, jiy, - - -  Jip, } with p; = Z;V:l aij
is critically |mp0rtant. tolreduce the gdverse _outlle_r-lnduc%d g 2 Z;V:l a;; being the in-degree and out-degree of
impact and, along this line, an effective way is to introduCgsnsor node, respectively. Assume that the digraph is weakly
certain delicately designed functions (e.g. the Huber funCt'%nnected, which means that there exists an undirected path
[35] and the saturation function [10], [11], [51]) to restraifyom every node to other node. For more details about weakly
the effect of possible outliers. Following this idea, this papennected digraph, the readers are referred to [36].
aims to propose a novel saturation function to accomplish theconsider a class of linear discrete time-varying plants:
outlier-resistant design of the BM-based distributed estimators.
Summarizing the discussions made thus far, we conclude Tsp1 =Asws + Bsws, 1)
that it is of great theoretical and practical significance to Yis =CisTs + Dj s0i s
conduct a major study on examining the impact of the BMs " . )
on the desired performance of the distributed set-membersHige e s € K™ represents the system state to be gsumated,
estimators. In doing so, we are faced with the fundamentél® < R denotes the input to b|1?ary sensor ntzldehat
issues as follows: 1) how to extract the information frorffanot be observed dlrec.tlyas.e I% v and ;s < R.U are'
BMs and reduce the conservatism stemming from the ﬁxé@known but bounded noisesic Z re_fers to t|_me msta_mt,
threshold in terms of estimation accuracy? 2) how to resist tﬁ@d 4s, Bs, C” a_nd Di*? are known time-varying matrices
harmful effect of the possible outliers during the informa\tio}llvIth approprlate.dlmenspns.
transmission? 3) how to establish an adequate performa cgssumption 1:The noise sequ_ences{ws}tez+ and_
index that accounts for the distributed set-membership es?‘t —?=S}€_Z* are,. respectively, confined to the following
mation over the entire SN? and 4) how to further develo lipsoidal sets:
local conditions for every sensor node to deal with distributed W, & {w?T;lws <1},
set-membership estimation issues with BMs? Accordingly, the oA {vT Ry < 1}
main objective of this paper is to tackle these identified issues. " LeTs TS =
The main novelties of this paper are highlighted as follow¥here {7Ts}icz+ and {R; ;}.cz+ are sequences of known
1) the distributed set-membership estimation problem is, fepsitive definite matrices with compatible dimensions.

)
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A. Binary Measurement with Fixed Threshold Dy 6 édiag{(IJ(l) 32 é(’.lm)} ,

17,87 T 13,87 ") T 43,8
The measurement output of binary sensdt € V) with a
fixed threshold is given as follows:

ij,8? ) T ig,s

Tijs Adlag{ Dw \if(.’.“)}.

Remark 2:1t is a common method to use the saturation
= 17 If yl S 2 K/Zy . . . . .
Zis = hilyis) = o) Yis < i (3) functions for suppressing the adverse outlier-induced impact
- _ ’ ' _ _ [10], [11], [35], [43]. The focus is how to deal with the satura-
wherez; ; € R is the output of the BM and; € R is a fixed tjon function during the analysis. In [35], the Huber function

constant. (it is also a saturation function) has been directly used to
The distributed estimator under BM with a fixed thresholgyove the desirable properties of the estimator. Differently, the

is given as follows: sector-bounded constraint has been commonly used to address
Fioir =AiFis + Z Hij 1o (Tis — Tjs) the vector saturation function [10], [11], [43]. Nevertheless,

= @) those two new matrices in the formulation of sector-bounded
_ = _ constraints could lead to unnecessary conservatism. In this

+ i K s (i = 0.5(Chsr1 As + Cis)Tis) paper, we tackle this issue by developing an equivalent form
where (7) by introducing two indicator variables. Also, we can make
full use of the information o#);; ; via (7).

Lz —z g L
Ti,s =|Zis+1 — Zi,ss _ ®) Defining the estimation erray; £ xs—T; s, ONe calculates
i = 0.5(1 =i s)yi,s +0.5(1 4+ s)yisy1, if s =1. (6) from (1), (4), (5), (6), and (7) that
Here, z; s is the estimate of system on sensor nege; s € €ist1

[—1,1] is an uncertain variable; anfl; ; and H;; ; are the

estimator gains to be determined later. =As€is + Bows = Y Hijs®ijs(€),5 — €i0)

Remark 1:From (3), the BM of sensor node provides B ij B
only one bit of information at each time instant, and this is = > Hi oI = 045,) (205 — Doy s
insufficient for state estimation purposes. As such, we like JEN
to extract as much useful information as possible from the —0.5m; s K o (Ci 51145 + Ci 5)Ei s
switchings of the BM. Clearly, at the crossing time instants — 0.57;.561,sKi.s (Cisp1 As — Cy.)as

of the BMs, we haver; ; = 1 and then (6) (i.e.x; falls in

betweeny; ; andy; 1), and such functional information can = 05755 K s Dis i+ 0.57i,564,6 Ki5 Di s Vs

be utilized to construct the desired estimator. —0.5m; «K; o(Ci sy 1 Biwy + Di g 410i,511)
The vector saturation functiod; s(-): R™ — R" is — 0.57,56i,sKi s (Ci s+1Bswt + Di 51105, 511).  (8)
defined by: . T T’
Letting ;s = [2] ézs} , Wi = [wl, wl,] ., and
GiaWi) 2[00 @0 a2 o al @S] G2 Wl ol of,]", one has
with Nis41 =(As — 0.57; ki sCi s + Z Hij,s(i)ij,s)ni,s
_(), (1 1 N
o (i) £ sign( ) ) min{ewl ) W} (=12, n0) A JN
l + Z HijsPijsnjs + (Bs = 0.57 sKi s Di s )i s
Wherew() > 0 is a known constant; and sigh and | - | JEN:
are, (espectlvely, the signum function and the absolute value B Z Moo (I — (i)ij,s)(2¢/ij,s e )
function. B —
Now, we introduce two indicator variabIeE s and \Ifl? IEN
as follows: where
(i)(.l.) S 1’ if |wzg s| <w z 27 ‘AS édiag{Asv As}’ Ki,s £ diag{O, Ki,s}a
1,8 0, otherwise o2 { 0 0 ]
\ij(l) é 1, if wz(j,) > wz(l‘; ©s §i,s(0if+1As - AC’i.,s) (Cz s+1A + Cz s)
v 0, otherwise Hij s =diag{0, H;j s},  ®i55 = diag{0, ®;; 51,
and then obtain the following new form of the saturation B, & Bs 0 0 DA 021 022 023
function: Bs 0 0 1,8 DZ(S) D( ) D( )
5'1(2 (7/’1(?5) (I)z(i)swz?s ( — (i)z(i?s)(2lpgé)s — 1)@1(2 Dz(zsl) AOz s+1B + Si, sCz erlBs; z] s — dlag{o \I/’Lj s}
22 23
Next, we obtain the following compact form: D( Y2D; — GuDis, Dg,s) 2 Dis1 + SiysDist1

i (Vijs) = Pijathije + (I — i) 2050 — Dewie (7) Assumption 2:For a nodei € V, the initial value;,o
satisfies
where .
T T -1,
al_q . 2 . ~ 2 Mio®Qiomio <1 (10)
Y TR LY N ) N 2
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where@; o > 0 is a given positive definite matrix. Let us consider the measurement output of ke binary
For the given digrapldj, consider the linear discrete time-sensor with a time-varying threshold as follows:
varying system (1) with BMs (3) and the distributed estimator L i >
(4). In the case of BMs with fixed thresholds, our objectives zis = hi(yis) = { 0’ . yzl,s -
. v My <Tis
are stated as follows: : '
. for a given positive definite matrix sequenf@; .} o7+, Wherezi, € R is the BM andr; . € R is a time-varying
design the sequences of estimator gqihs,s}562+ and threshold. Furthermore, _|e’q_’s é T + (,01'25 with .Ti being a
{Hij.«}scz+ such that the following constraint holds forfixed constant ang; . being a time-varying variable.

(13)

anys € Z+: Next, design the distributed estimator for sensor nodéh
N the following form:
1 T n—1
N Zm,sQi,s Nis < 1 (11) Tis1 =AsTi s + 0 s Ki s0i s + Z Hijs0i5(Cijs), (14)
i=1 JEN;
» minimize TrQ; ) at each time instant for sensor node Ois =|2is11 — Zis| (15)

(i € V) in a fully distributed manner. o ) . N
Remark 3:1t should be noted that (11) is actually an\’\'herexiviIS the Stf‘t? estlrpate from sensor nade;,; =
average performance constraint on all sensor nodes, whicH’i§ . Cisi,a Gijs = Tis — Tjr ANAK; . aNd Hy;,; are the

different from that of the existing distributed set-membersh esired es’qmator gains to be deter_mlnedllater.
estimation in [24]. For example, in [24], the desired perfor- Clearly, if 5, = 1, then falls in the interval between
mance constraint has been given for a sensor nagdollows: Yi:s ~ #i.s @Nd¥icr1 — iss1, Which can be modelled as

DOl <1, i€V Tis =0.5((Yis+1 — @is1) + (Yis — Pirs))
1,8 %i,s 1,8 = 5 .

(16)
+0.50;,s((Yi,s41 — Qis+1) — (Yi,s — ©is))

Nevertheless, given the large scale of SNs, a natural idea _ ) )
would be to set the average performance over all sensor noWé$redi,s € [—1,1] is an uncertain variable, and; ; € R
(rather than on an individual node), and this gives rise ®Y0lves according to the dynamic equation as follows:
the motiva’Fion for us to propose t_he distributaderageset- Gisi1 = (1= 20, )pis + (Cisi1As — Cis)dis (A7)
membership performance constraint (11). ’ T ’ o

Remark 4:Note that (11) can be converted into an ellipwhereh; ; is a known time-varying real number belonging to
soidal constraint by means of the augmented method. To the interval[0, 0.5].

specific, by lettingns 2 [nf, i, - n%_sf’ (11) can In the following, we begin to discqss the boundedness of
be rewritten as ’ vi.s. For the convenience of expression, denote

ne Qs e <1 (12) hi(s) éofélggs hig,  Di(s) 21— 2hi(s),
Wherngl = %diag{@lys, Q2. QN,S}- @1(8) £ max |§5i,t| y  Pis = (Ci,s+1A3 - Ci,s)ji,s-

It is worthwhile noting that the introduction of a fixed o=t=s

threshold would yield a certain conservatism on the desiredLemma 1 considers two special cases over the time horizon
performance. First, (11) implies that a constraint is poséd< t < s: 1) h;; # 0; 2) h;y = 0,Vt > 0.

on the system state,. More specifically, letting@; . = Lemma 1:¢; , is confined to the following ellipsoidal set:
{Qi1.5,Qiz.s}, it follows from (11) that B2t <)

N N
% Z 2l Qs + % Z el Qs < 1,5 >0, where 2
=t =t A (i(0) + 22720 1@ie]) if ki =0;
which means that % >V 27Q e, < 1. Next, '~ ((hi(s))s%_(o) i (1fﬁi(5>_>s¢i(5))2 if hi¢#0.
the fourth term of the right-hand side in (8) (i.e., 1=ha(s) ’ "

0.57;,45i,s K, (Ci s+1As — Ci,5)xs) can be regarded as the Now, we present a recursive formula ofs.

multiplicative uncertainty [14], which could be a source for Lemma 2:If there exists a positive real numbey, such
undesired estimation performance degradation. In view tfat»? < 7; ; holds, then one has

these two observations, in the next subsection, we propose 7

2 ——1
a time-varyingthreshold strategy regarding the BM with the Pist1Tisr1 = 1
hope to mitigate the induced conservatism. where
_ _ 2 .
B. Binary Measurement with Time-Varying Threshold Fiog1 2 (Vs + 2isl)” ) !f hi,s = 0;
((1 — 2hi,s)w/7:i,s + |@175|) R if hi75 }é 0.

As opposed to its fixed (or time-invariant) counterpart, the
time-varying threshold could increase the crossing times ofThe proofs of Lemmas 1 and 2 are derived via (17) and
the BMs, thereby helping extract more functional informatiothus are omitted due to the space-saving.
from the measurement dynamics and improving the estimationrRemark 5:The time-varying threshold proposed in this
accuracy, see [7], [41], [53] for some representative resultspaper has such a structurg;; = 7; + ¢, 5, Whereyp; 4 is
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introduced to adjust the fixed threshotd for reducing the G and the positive definite matrix sequen{®, ;}.cz+ be
conservatism. Actually, according to Lemma ¢, , could given. The desired objective of this subsection is twofold:
be seen as a bounded disturbance of the fixed threshold) design the sequences of estimator gdiAs . },cz+ and
In addition, from the dynamic equation (17) of; s, the {H;j<}scz+ such that the following constraint holds for
introduction ofh; , is helpful to increase the design freedom.  anys ¢ Z+:
Due to the introduction of time-varying threshold, we need to

calculate the threshold; ; and weightr; ; according to (17)

and Lemmas 1 and 2, respectively. It should be noted that

_Zezs zselsgl

(20)

the additional burden of nodeat every time instant i©(1)
through the analysis of computational complexity.
The vector saturation functiom; 4(-): R" +— R"= is

defined by:

T
015(Giia) 2 [0 0@ o ()]
with

l l l
Ul(z(gz(])s) z] s<zg s ( (I)E])s)( \Ijgg)s )pg 2
where
o0 2l L, it [¢il < ot
48 0, otherwise
\Ij(l) L 11 if <lj s > pgli7
498 0, otherwise
By denoting
1) 2 (1)
Dy 6 _d|ag{ ijss Pijigr s @i },
1 2 Ng
Wijs _d|ag{\I/§J)S, \1/;)5, . .,¢§j75>} ,

o 2 [ oo [ )

one further has

0i(Gijos) = Dij sGijos + (I — Dijs)(2¥s5.6 — I)pi s

Denotinge; s = x5 — &, the estimation error dynamics
of sensor nodeé under the case of time- -varying threshold

calculated as follows:

Z Hijs®ijs(ejs — €is)

JEN;

= Y Hijo(I = ®i,0) (2054
JEN;

—0.50; s K; s(Ci o115 + Cis)eis

—0.50;,50;,s K s(Ci 51145 — Ci s )eis

—0.50; s(1 + 6; 5)K; sCi s11Bsws

—0.50; s(1 — 6; 5) K s Dj sv;

—0.56; 5(1 + 51 S)K’L sDi. ,s+1Vi s+1

+0; (1 = his — his0i s) K s0i s

€i,s+1 :Asei,s + Bsws -

- I)pi,s

(18)

Assumption 3:For a sensor nodee V, the initial estima-

tion errore; o satisfies the following constraint

N
1
N Z ez:OPi,_Olei-,O S 1 (19)

=1
whereP; , > 0 is a given positive definite matrix.

2) minimize {Tr( m)}sew at each time instant.

Inspired by the idea of the ellipsoid fusion in [32], (20)
can be seen as the fusion af ellipsoids with the weighted
coeﬁicients%. After some simple algebraic operations, (20)
can be rewritten as

(xs — & )TP*( - <1-v (21)
where
IS * A 1 —1
I Z «rz )89 - N ;Pi,s ’

1
éN Zi.;:rspz s 1'7;73 - (‘%:)TPS*‘%:

Lemma 3:For given a set of estimates; ; (i € V and
s > 0), there always exists a set of positive definite matrices
P; s > 0 such that} < 1.

Proof: See Appendix VII-A. |

By means of Lemma 2, one knows that (21) corresponds
to an ellipsoid constraint, wherg’ can be regarded as a
fusion estimate ofi;; ; with weighted matrix% (P;)*lﬂfsl.

In addition, (20) implies that the ellipsoid constraifat, —
:E:Z-VS)TPZ Sl(:cs Z;.s) < 1 holds for any sensor nodec V.

The intersection of these ellipsoid constraints is characterized
by (21) since it is equivalent to (20).

Remark 6:1t is noted that the uncertain term involvirg
gvould yield a certain conservatism for the design of distributed
estimation scheme. In this context, it makes sense to reduce
the adverse effect of such an uncertain term. According to
(16), if
901'.,5 - yi,sa (22)

then the uncertainties can be completely eliminated but, un-
fortunately, (22) cannot be true due to the existence of noises.
Under the time-varying threshold proposed in this paper, one
knows from (18) that); ; is not related to the system state,
which implies that the negative effect of the uncertainty can
be mitigated to some extent.

Pi,s+1 — Yi,s+1 =

IIl. M AIN RESULTS REGARDING FIXED THRESHOLDS

In this section, by means of the local performance analysis
(LPA) method on the basis of the vector dissipativity theory,
local sufficient conditions (with respect to any sensor node
1 € V) are first established to ensure the error dynamics (9)
to satisfy the desired performance criterion (11). Next, the
matrices@; s (i € V) are minimized in a fully distributed
manner to obtain the estimator gains. Here, a fully distributed
manner implies that a nodean minimize its owrd); ; subject

Consider the linear discrete time-varying system (1) witto the constraints associated with its neighboring nodes to
BMs (13) and the distributed estimator (14). Let the digrapdalculate the estimator gains.
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The vector dissipation is defined as follows to facilitate the  Proof: See Appendix VII-B. |
subsequent analysis. Up to now, the performance analysis is carried out via the
Definition 1: The system dynamics (9) is vector dissiLPA method in Theorem 1. Next, we begin to deal with the
pative regarding the vector supply rate functi®@ £ uncertain terms in (25) and design the desired estimator gains.
[S1s -+ Sns| if there exist a vector of nonnegative Theorem 2:Consider a sensor nodec V with its neigh-
definite storage function&, 2 [Vi, --- Vy S}T (with  boring sensor nodg < N;. Let a positive definite matrix

V, = 0) and a sequence of nonsingular column sub-stochastiRIUENCE Qi s }scz+ and a scalar sequente, s }sez+ € 7y,
dissipation matricedV, € RN*N such that the following be given. The system dynamics (9) satisfies(he-dependent

vector dissipation inequality is satisfied for alk Z+: constraint condition (11) if there exist real-valued matrix
sequences{kC; s }sez+, {Hijs}tsez+, and scalar sequences
Ve << W,V +8,. (23)  {ir.sYeez+ (t =1,2) satisfying the followingr; ,-dependent
> S >
T recursive linear matrix inequality (RLMI):
Here, for any two vectors = [c1 ¢, -+ cny]| andd = ~
[dy dy - dN}T € RV, ¢ << d means that; < d; Qio,s * *
(Vi=1,2,...,N). Qirs —Qigpr | <0 (26)
Before conducting the performance analysis, an interval- 0 My —dins
valued function of the out-degreg is defined by: where
1+qi i . A
(07 1]7 if qi =0, a N 0 Qgg)s * *
and the supply rate function is chosen as follows: 0 o QP x|
ST 5 PG
3. ANai,S 0 Dg:scias 0 Qz('O,)s
hs . ~ N 7,8 = . 1, S —
Ita Qlg)y 2 — — Ol 2 —diag, { - Q)
For the fixed threshold case, by means of the LPA method, L+a 1+

a sufficient criterion is provided in the subsequent theorem &7, 2 — (1 — a;,)Q; ! + 0.25¢:2,sC{Cis,

20,s

guarantee the vector dissipation of system (9) regarding the =~ =~ 4. = I -
supply rate functionS; ,, which further deduces the desiredio;s = — 3 diag{T, ", R; ;, R; 11} + 0.25¢i2,sD; D s,
performance criterion (11) for the system dynamics (9). - A [s1) &@) A6 &0

Theorem 1:Consider a sensor nodec V with its neigh- Qins = {Qilvs i irs Qz‘l,s] '

[I>

boring sensor nodg¢ € ;. Let a sequence of positive definiten () 2 _ Z Hij oI — Dy ) 2055, — Dy,
matrices{Q; . }.cz+ and a sequence of scaldfs; .},cz+ € P ’ . ’
7,, be given. Then, the system dynamics (9) satisfies the, _ .
Qis—dependent constraint condition (11) if there exist rea-il?s S A = 0.57;,5Ki5Cis + Z Hij,sPijis,
valued matrix sequencesC; s }scz+, {Hij.s }sez+, and scalar JEN;
sequence ¢;1 . }.cz+ Satisfying the followingr; -dependent Q%) 2 [Hilméim Hijpwsfi)iqus} :
matrix inequality: : ' '

. . Ql(-i)s LB, — O-5éi,slci,s@i,57 Mis 2 7 Kis,
QZ—LS i7s+19i1,s + Qip,s <0 (25) éi,s édiag{o, Ciar1As + Ci o},
where i [ 0 O}
i, 2diag{ly),, o), 0, 0l | ’ :Ci,sglAs - C; 0 0
. @7, S é 9
O, 2600 - 1ot QR L (1 - 0y,)Q7), o o ol
s ’ 1 + ql s ’ ) -
P o 0 0 0 }
. Qg _ i,s —
Qgg)s £ — diag, { : —i{qj ijsl} : |Cis+1Bs —Dis Disp1
@ a 1. o The proof of Theorem 2 is achieved by Schur complement
Qig,s = — gd'aQ{Ts R g Risinys lemma, and is thus omitted.
0, g @ q® o® In Theorem 2, conditions are given to guarantee the exis-
tls = { il,s “fils Tlils ilys} ’ tence of the ellipsoidal set containing all possible state values.
Q(}) A Z Hijo(I — 035 ) (20555 — s, In the following, such an ellipsoid is optimized by exerting
e P ’ B ’ the convex optimization approach. Specifically, the optimal

matrix @; s+1 can be obtained by minimizing the sequences

of matrices{Q; s+1}sez+ (¢ € V) to guarantee the locally

optimal estimation performance.

o) & [Hijl,s@jhs Hijpwsiijpi,s}, Corollary 1: Consider a sensor node € V with it-

0D 85 05m K D s neighboring sensor nodg € N;. Let a scalar se-
il,s — s 1,801,858 quence{w; s}.cz+ € 4, be given. The scalar sequence

Qg,)s é-As - 0-57Ti,slci,sci,s + Z ﬂij,s(i)ij,Sa
JEN;
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{Tr(Qi,s+1) }sez+ is minimized if there exist real-valued ma-matrix sequence§K; s}scz+, {Hijs}sez+, and scalar se-
trix sequencegK; s }ocz+, {Mijs}ecz+, and positive scalar quences puit s }scz+ (t = 1,2,3,4,5) such that the following
sequence$o;. s }scz+ (t = 1,2) that can solve the following 0; ;-dependent RLMI holds:

optimization problem _
p p HiO,s * *

min Tr(Qi,erl) (27) Hil s —Pi s+1 * <0 (29)
{Qi,s+1,Ki,s, Hij, s Pit,s } 0 M;J:S s

subject to (26). h
where

IV. MAIN RESULTS UNDERTIME-VARYING THRESHOLDS T, _ édiag{ﬁ%) ’ﬁ(g) 7ﬁ(3) ,ﬁ(é) 7ﬁ(3) 7ﬁ(g) ’ﬁ(g) }7

First, we choose the supply rate function as follows:

4
) 2 Nais  53) o g Yjs -1
S; éNai’S . Hiovs - Z,uis,s B 1+ qi’ Hi075 - _dlaq?i {1 + q.Pjys } s
2,8 1+ ¢ . s=1 J
. T . T (Y T
Following the similar line in Section 111, the local sufficient!io.s =tis.s(Cist14s = Cis)" (Cisp1As = Cis)
Lo . B _ -
criterion is established for each sensor node to 1) guarantee the  _ (1- ai,s)Pi,sla Hl(.o?s = —ui4,srl-_,51 + uw,shﬁs,

vector dissipativity of the system (18) regarding the supply rate,) o r
function S;. ., and 2) further deduce the desired performand&io;s £ — pir, Ty '+ pis,s (Cis41Bs) " (Cis1Bs),

constraint (20) for the system dynamics (18). . ﬁz(g?s 2 o R;s + pis,s DI D .
Theorem 3:Consider a sensor nodec V with its neigh- _ ) , . T
boring sensor nodg € A;. Let a positive definite matrix *'i0,s — — Higs B g+ a5, Dj g1 Dist1,

SeqUenca ).z and a scalar sequento.. oo € 7, iy <[, 0, 0, MY, 09, 19, 07,
be given. Then, the system dynamics (18) satisfiesitfhe )
dependent constraint condition (20) if there exist real-valuélfl?s £ - Z Hij (I —®i5,6)(2Y556 — I)pi.s,

matrix sequences K; s}sez+, {Hijs}sez+, and scalar se- JEN:
quences{iit,s}sez+ (t = 1,2,3,4) such that the following ﬁl(i)s LA, = 0.50; o Ki o (Cia1As + Cyg) + Z Hij o0,
0, s-dependent matrix inequality holds: Jen,

H;ﬂ,s ijlerlHil,s + 10,6 <0 (28) ﬁﬁg £ — [Hij, sPijy s - Hijpi,sq)ijpi,s] ,
where Y, 2B, — 0.50,,K; sCiss1 B, 1) 2 —0.50; K Dy s
Mio,« dliag{TLy),, 115, 11, 100, 1R, G D b T, & = 05010 Ki s Dissyr, T, 2 01,0(1 = i) Ko,

4 Na M; s £-050;,[0 Kis 0 Ko —K;s Kis 2K].
Hg(l)) ézlufis,s - —Z,S_a HSS?S 2 _(1 - O‘i,S)Pil

8 —~ 1+4+q; b The proofs of Theorems 3 and 4 are similar to those of
s o y Theorems 1 and 2, respectively, and are thus omitted.
n® 2 _diag {2 p-1l g 2 —pi $T5 Finally, the optimal matrixP; ,,; can be obtained by mini-
i0,s %1 1 +q 7,8 10,5 .. . S+
5 o (6-)7 R @ o mizing the matrix sequendel; s+1}s>0 for every sensor node
ys = — Miz.,sR{,Sl, o, = _NiS,SRZSIJ,_laHiO,S = —Mm,sf;sl, i (1 € V) to guarantee the optimal estimation performance.
5 Corollary 2: Consider a sensor nodé € V with it-
Moo 20, n®, o9, o, of, oo oo rollary
1 Mo W M e Mo M T s neighboring sensor nod¢ € ;. Let a scalar se-
H&)S £ _ Z Hijs(I — ®45.6) 2V — Dpi s, quence{aiﬂs}sezf € fq be _given. Th_e scalar sequence
JEN: {Tr(P; s+1)}sez+ is minimized if there exist real-valued ma-

trix sequences{K; s}scz+ and {H;js}scz+, and positive

(2) 2 Y Y _ ) . )
I = Z Hijs ®ijs — 0.50i,sKi,s(Cis14s + Cis), scalar sequence§u;; s}scz+ (t = 1,2,3,4,5) solving the

il,s

JEN; S .
optimization problem as follows:
+ As - 0-56i,59i,sKi,s(Ci,s+lAs - Ci,s)7
min Tr(P; s
HZ('i)S 2 - [Hijlvsq)ijlas Hi-jmvsq)ijpws] ) {Pi s41,Ki s, Hij spit,s (i) (30)
Hgf,)s 2B, — 0.50; 4(1 4 6;.4) K; «Ci s 11 B, subject to (29).
Hz('i),)s 2050, ,(1—b:0)KsDis, Remark 7:1t can be observed that Theorems 1-4 are depen-

dent on two indicator variables ; andé; s, respectively. Such
md 2 _ 0.50;,s(1 + 9; ) K sDi 541, a formulation is helpful to reflect the impact of the information
" 2y (1= his — hi.s6s0) K extraction of the BMs on the main results and cover different
vs B8 T ETLS SERS cases for the convenience of expressing the main results.
Theorem 4:Consider a sensor nodec V with its neigh- Remark 8:The distributed filtering algorithms under the
boring sensor nodg € A;. Let a positive definite matrix fixed threshold and time-varying threshold are compared
sequence P, ;}.cz+ and a scalar sequenge; s }.cz+ € -4, In terms of the time complexities. In this paper, the pro-
be given. Then, the system dynamics (18) satisfies”he posed schemes are presented for every node in terms of
dependent constraint condition (20) if there exist real-valued set of RLMIs from Corollaries 1 and 2. The standard
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LMI system has a polynomial time complexity bounded bgnatrix is given as
O(MN?1log(V/e)), whereM is the total row size of the LMI

system,\ is the total number of scalar decision variables,

Y is a data-dependent scaling factor, ands the relative

accuracy set for the algorithm. Here, we assume thand A=
¢ are fixed, which are neglected in the following analysis.

As for the case of fixed threshold, it can be calculated from

Corollary 1 thatM{ = 2(p; + 2)ny + ny + 2n, + 2 and

N/ = (pi + 2)n2 + 2n, + 2, which implies that the time  Next, consider an industrial nonisothermal continuous
complexity for nodei at every time instant is represented astirred tank reactor (CSTR), which is used to investigate
O((pi+2)*ng+(pi+2)*(nw+2n,+2)nf). Also, it can be cal- distributed /.. consensus filtering problems over sensor net-
culated from Corollary 2 thaM = (2+p;)n, +n,+2n,+3  works (not BSNs) in [12]. In the following, the state matrix of
and N} = (pi + 5)n2 + 3n, + 5, which shows that the time the discretized and linearized state-space model of the CSTR
complexity of the algorithm for nodeé at every time instant js horrowed from [12]. Meanwhile, we take into account the
under the case of time-varying threshold can be represenigde-varying effect. As such, the parameters of the system (1)
asO((pi + 3)*(pi + 2)n% + (pi + 5)%(nw + 20, +3)05). It is set as follows:
can be concluded that there exist no significant difference in .

[ 0.9719  —0.0013 — 0.0lsln(s)] B [0.1]

SO O == O
SO = O OO
SO = OO OO
_ O oo oo
[l ol
O OO O oo

the time complexities of distributed filtering schemes between4, —

the time-varying threshold and the fixed threshold. —0.0340 0.8628 0.1
Remark 9:In comparison with the case of the fixed thresh-Ci,s = [~0.2 0.1 4+0.01sin(s)], D; = 0.1.

old, the introduction of the time-varying threshold developeflhe matricesT, and R

in this paper would help reduce conservatism. First, the multi, 0.25, respectively. The bounded noises are selected
plicative uncertainties can be eliminated to improve the desirgé’iu _ 0_'3 sin(3s) and v;, = 0.5sin(3s), respectively,

estimation performance_. Next,_ the e_stimation error system S#henz, , is transmitted to Node 6, the outliers occur at time
be directly analyzed without imposing any requirements 9Astantss — 10,20, 25 with the abnormal amplitude0z, ..

the system. Nevertheless, the utilization of the time-varying,, parameters of the LPA method are setaas — 0.5

threshold would lead to a slightly increased computationg},. initial system state;, and estimator values, , are set
burden as the estimate at the current instant is needed, to }T - [1 9 12]T’
y T1,0 = . . =

calculate the time-varying threshold at the next time instanf[0 be o o [2'0 -10 o » $20

Remark 10:This paper investigates the distributed set-’- L1, T30 = 08 117, 2o . [1.10.9]7,
membership estimation problem under BMs with fixed an®.0 = [0-8 1.1]", andzso = [1.0 1.0]", respectively.
time-varying thresholds, respectively. Compared with the ex-Example 1: For the case of fixed threshold, the threshold
isting results, this paper exhibits the following characterigarameters of binary sensor nodes are set;as —0.3 (i =
tics: 1) the addressed problem is new in that the BMs ark 2, ---,6). The initial values of; s are given a€); o = 101.
for the first time, considered in a framework of distributedhis simulation example considers two cases, i.e., Case I: no
set-membership estimation via the LPA method; 2) basedtlier-resistant design (i.e., the saturation levels are given as
on the analysis on the fixed threshold case, a novel times,, = [50 50]"); Case II: outlier-resistant design (i.e., the
varying threshold strategy is proposed to further improve thgturation levels are set as;, , = [0.25 0,25} T), Then, all
estimation accuracy; 3) a distributed average set-membersihig estimator parameters can be obtained in terms of Corollary
performance index is proposed over all sensor nodes, whithwith Theorem 2 by means of MATLAB software with the
is more reasonable than the existing performance indices WALMIP toolbox. Under such two cases, all the simulation
individual sensor node; and 4) for each sensor node, logakults are displayed in Figs. 1-5, where Fig. 1 describes the
sufficient conditions are established via the LPA methaihme instants of extracting BMs for every sensor node, Figs. 2
and the estimator gains are derived by recursively solviggd 3 plot||x, — 7; .||> to measure the estimation errors of
the optimization problems on each sensor node in a fullyery sensor node, and Figs. 4-5 draw._ . [|Z;.« — s |2
distributed manner. to measure the consensus errors between every sensor node

and its neighboring nodes, respectively.
It is worth noting that in two cases, the time instants of
V. ILLUSTRATIVE NUMERICAL EXAMPLES extracting BMs are the same due to the fixed threshold. By
comparing Fig. 2 with Fig. 3, and Fig. 4 with Fig. 5, it follows

This section provides two illustrative numerical examples tihat the adverse impact of the outliers would be significantly
demonstrate the effectiveness and applicability of distributeeduced due to the introduction of saturation function.
set-membership estimate schemes with BMs under the fixedExample 2: With the same parameters in Example 1, we

;s are chosen ad; = 0.25/ and

and time-varying thresholds developed in this paper. will verify the advantage of the time-varying threshold over
The communication topology of SN is described byhe fixed threshold. Choos&;, = 10/, h; s = 0.4, and

the digraphg = (V,€,A) with the set of sensor n- ;o = 0. As for the time-varying thresholds, this simulation

odes V = {1,2,3,4,5,6}, the set of edges€¢ = example considers two cases with outlier-resistant design (i.e.,

{(1,3),(2,4),(3,5),(4,6),(5,1),(1,2)} and the adjacency the saturation levels are given as, = [0.25 0.25]T), ie.,
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Fig. 1:

Case lll: ; = —0.3, and Case IVr; = —0.36. Under Cases
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The information extraction instants
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Fig. 2: ||zs — Z:,|* under Case I.

Node 1| |
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Fig. 3: ||zs — 5| under Case II.

Node 1
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Fig. 413 c . |%i,s — Z;,5]” under Case I.

b Node 1
o -+-Node 2|]
-~z Node 3|
-+#-Node 4|
-+-Node 5

-z Node 6]

Fig. 5: 3, |1 Z1,s — %;,s]|* under Case II.

terms of Corollary 2 with Theorem 4 by means of MATLAB
software with the YALMIP toolbox. The simulation results
under these two cases are displayed in Figs. 6-11, where
Figs. 6 and 7 plot the time instants of extracting BMs for
every sensor node, Figs. 8 and 9 desciibge — #; 4||? to
measure the estimation errors of every sensor node, Figs. 10
and 11 plotd "\ [|12:,s — #;||* to measure the consensus
errors between every sensor node and its neighboring nodes,
and Figs. 12 and 13 draw the time-varying threshald of
sensor nodé, respectively.

It can be seen from the comparison of Figs. 1 and 6
that the time instants of extracting BMs become less due to
the introduction of the time-varying threshold. Even then, by
comparing Fig. 3 with Fig. 8, and Fig. 5 with Fig. 10, it can
be observed that the performance of distributed filtering would
be significantly improved, which demonstrates the advantage
of time-varying threshold design developed in this paper.

In addition, it follows from Figs. 6 and 7 that the time
instants under case Ill are more than that under Case IV. Next,
by comparing Fig. 8 with Fig. 9, and Fig. 10 with Fig. 11,
it can be observed that the advantage of the time-varying
threshold would be more prominent if choosing a suitable
fixed thresholdr; due tor; s = 7; + ¢, . Therefore, all the
presented simulation results demonstrate that the distributed
set-membership estimation algorithms under BMs with the
fixed and time-varying thresholds developed in this paper are
indeed effective.

65
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Fig. 6: The information extraction time instants under Cdke |

[l and 1V, all the estimator parameters can be obtained in
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VI. CONCLUSIONS
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Fig. 13: 71, under Case IV.

systems under BMs with fixed and time-varying thresholds,
respectively. The useful information has been extracted at the
crossing instants of BMs. The time-varying threshold strategy
has been proposed to reduce conservatism in the case of fixed
thresholds. The distributed estimator with BMs under two
cases has been proposed based on the extracted information
from BMs as well as from the plant and its neighboring
sensor nodes. Then, the distributed average set-membership
performances over all sensor nodes have been proposed, which
has less conservative than the existing performance indices.
Subsequently, the local sufficient criteria have been established
for each sensor node via the LPA method, and the estima-
tor gains have been calculated by solving an optimization
problem on each sensor node in a fully distributed manner.

The distributed set-membership estimation problem h&#nally, two illustrative simulation examples have been given
been investigated for a class of linear discrete time-varyirﬁ@ demonstrate the appllcablllty and effectiveness of distributed
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set-membership estimation schemes proposed in this papeand then calculate the scalar storage function along the system
For further improving the estimation accuracy under BMslynamics (9) as follows:
first research direction is to seek some efficient strategies to

. . 1. — T -1 )
derive more nonzero measurements. Another is to reduce the Vi1 =M, s 1@ sp1Mis+1
uncertainties in the extracted information as far as possible by _XszQzT1 s 1_5+1Qi1,in,s (34)

means of some methods, such as machine learning. In the
end, the potential research interests would be to study tgere

distributed set-membership estimation for more complicated A T T 71T
systems (e.g., the switching system [27], hybrid model [18], Xis S 1 s ] .
and the complicated relationship [17]) and topology (e.g., the N 2 [ann . aniQ . UJT - } '
sequentially connected topology [8]). g

Noticing the following inequality from Assumption 1:

VII. APPENDIX

diag{T, VRL s <1, 35
A. Proof of Lemma 3 515 o e R (35)

Proof: It is easily verified that Lemma 3 always holdsne further has
for the case ofV = 1, and the rest is to prove that Lemma —

, (1= NV, . — Ys . _G.
3 is true whenN > 2. Next, assume thati; .| < [|@2.] < Vistr = (1= is)Vis Z 1+4gq; Vio = o
. < ||y for a given time instant € Z*. According to » JEN: -
(21), one immediately has <X s U1, Qi1 Qi s Xas — (1= o) Q5 i
Qj s —
N - nt Qi injs — Sis
1 Z 7,8 _],S Js )
@) P = - S al Pl (31) jen 14
i=1 1
. - (bil,s < dlag{T Rz s z_sl }gi,s - 1>
From (31), it follows that s
L& *XZ SQlTl sQi. 3+1Qi1,in,s + Xi7SQi0,in,s- (36)
~T —14 T p* ~x
N ;xmp s Tis = (35)° P Substituting (25) into (36) yields
N 554 Qj s
1 ~ —1/A Vi,s-ﬁ-lg( azsvzs+ V, +SZS7
<5 > (@1 + AP @1 + As) — 3 Pl ) J;/ is
1=2
X which, by introducing some notations, can be updated as
=— Tr(P ' As) + 2Tr(P P Adt (32) _ .
N ;( ( ’ ) ( b )) Vi,erl S [sts]z + Si,s (37)
where where
A - - g — — — T
ls :arg;gniaé)?\[ ||Ii.,s - xl,s”, V, = [Vl,s V273 cee VN,S} ,
A Bdpy— 10 As AN, (- anfl - aviis
anitys (L—azs) -+ asn 1+A;;
For given a set of estimatés ; (i = 2,..., N), one always W, =
finds a positive definite matrik; ; > 0 such that the following s o :
inequalities simultaneously hold aniTrs; ANty o (L—on)
_ 1 1 Since (37) holds for any sensor node V', a compact form
1 1
Fis As < 3(N — 1)1’ FiaA xl s 3(]\7 — 1)1' (33) of all sensor nodes is derived as
The proof is complete by substituting (33) into (32). m Vo << W,V +S, (38)
= Nai s Nan,s
B. Proof of Theorem 1 whereS, = {1+zl;’1 " Them

Proof: The mathematical induction method is employeg Agcordingto Dde_finitir(])n 1, the systerln dyna;nics@) Is vector
to perform the proof. First, from Assumption 2, it is s- issipative regarding the vector supply rate functin

S . .
traightforward to have— Ziv x onolm o < 1. Next, at Next, left-multiplying1* on both sides of (38) yields

time instants, assume S 1171 IQilnis < 1. Then, we 17V, <1Tw,V, +17S,, (39)
shall prove+ SV nFe 1 Qi eiimis+1 < 1 holds. For this
purpose, according to Definition 1, we choose the scal‘é(P'Ch further means

storage function as follows: N
— «; Na;
Vist1 < 11— —= — (40
S O TIACIO M

7 o T ~—1
Vis = 1,5 Qi s Mis» =
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Sincel — f‘;—q >0 and VLS > 0, one immediately has  [18]
N - N .
1——2 |V, s <N 1— 22 ). 41
Z( 1+qi) T Z( 1+qg'> “D g
=1 =1
Substituting (41) into (40), one obtains
N [20]
ZmT,sHQ;,lerlm,sH < N. (42)
i=1 [21]

Consequently, the induction is accomplished. Therefore, the

proof of this theorem is completed.
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