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Abstract—This paper is concerned with the distributed set-
membership estimation problem for a class of discrete time-
varying systems over binary sensor networks. For binary sensors,
the cases of fixed and time-varying thresholds are considered. In
both cases, the information useful for state estimation purposes
is extracted by utilizing the crossings of binary measurements at
two adjacent time instants, and then distributed estimators are
constructed for each sensor node with the aid of the available
measurements, where a set of vector saturation functions is
introduced to resist the adverse effect of outliers during signal
transmission. A novel distributed set-membership performance
index is provided by averaging over the ellipsoidal constraints
of all sensor nodes, and the local performance analysis method
is employed to establish sufficient criteria that guarantee the
existence of desired estimators whose parameters are then derived
for every node by recursively optimizing certain ellipsoids in the
sense of matrix trace. The applicability and feasibility of the
distributed set-membership schemes developed in this paper are
verified by two illustrative examples.

Index Terms—Binary sensors, sensor networks, binary mea-
surements, distributed set-membership estimation, local perfor-
mance analysis.

I. INTRODUCTION

Over the past two decades, the ever-growing popularity
of sensor networks (SNs) has made it possible to collect a
huge amount of information through sensors densely deployed
in the interested region [2], [5], [6], [21], [23], [25], [30],
[39]. Accordingly, a key issue with SNs is about how to
acquire robust yet reliable state estimates of the monitored
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plants through available network measurements. In response
to the large scale of SNs, the state estimation algorithms
are expected to be scalable and this has demanded the rapid
development ofdistributedestimation techniques whose idea
is to use each sensor to estimate the system state via local
communications among neighboring nodes [42], [45], [48].
In fact, owing to their distinctive advantages in improving
computation efficiency and saving communication resources,
the distribution estimation techniques have recently received a
surge of research attention with various algorithms appeared
in the literature, see e.g. distributed Kalman filtering schemes
[31], distributedH∞ estimation strategies [36], distributed
fusion estimation [16], [19], distributed moving-horizon es-
timation methods [3], [4], and distributed set-membership
estimation techniques [20], [24], [29].

Binary sensors have been widely utilized in nowadays SN
mainly because of their cost-effectiveness [33], [38] and small
overhead in terms of energy and bandwidth in communication
[2]. Up to now, binary SNs have found many successful ap-
plications in engineering practice including consensus control
[38], source localization [2], tracking control [13], system
identification [33], [37], [37], privacy protection [34], etc. For
more applications of binary sensor, the readers are referred
to [37] and the references therein. As a binary sensor can
only provideone bitof measurement output, it appears to be
especially challenging as how to extract useful/beneficial in-
formation from such extremely coarse measurements. To date,
some initial efforts have been devoted to extractfunctional
information from binary measurements (BMs) which could
help capture the dynamics involved in the sensor outputs, see
[3], [15] via the switching of BMs in case of deterministic
noises and [38], [40] via a certain distributed function in case
of random noises [38], [40]. Also, much research interest has
recently been focused on many BM-related dynamics analysis
problems which include, but are not limited to, consensus
control [38], source localization [2], system identification [40],
[41], and parameter and state estimation problems [3], [4],
[15], [49].

In the context of binary sensors, the thresholds determining
the binary outputs have played a vitally important role in the
related dynamics analysis problems. Up to now, most existing
results concerning BMs have been obtained based onfixed
thresholds for analysis convenience and easy implementation
[3], [4], [15], [33], [49], [52]. For binary sensors with such
fixed thresholds, the corresponding measurement outputs con-
tain very limited useful information that can be utilized for

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI: 10.1109/TSMC.2024.3409611, IEEE Transactions on Systems, Man, and Cybernetics: Systems



FINAL VERSION 2

state estimation purposes. In this case, it makes both practical
and theoretical sense to look intotime-varyingthresholds so
as to facilitate the extraction of more functional information
with the increasing crossing times of BMs. In this regard,
some pioneering results have been published on a number of
dynamics analysis issues, see e.g. distributed Kalman filtering
[31], parameter estimation [47], system identification [41],
[53], tracking control [13], and recursive estimation [7]. In
particular, the threshold has been designed in [41] based on
the estimated parameter at the current instant.

When the underlying system is subjected to deterministic
norm-bounded noises, the set-membership estimation is re-
garded to be an efficient approach whose aim is to use the
available measurements to recursively calculate a bounding
ellipsoid containing the accurate states, see [50] and the
references therein. In relation to SNs, the distributed set-
membership estimation issue has recently attracted a surge
of research interest [20], [28], [29], [44], and many excellent
algorithms have been developed for systems undergoing vari-
ous imperfect measurements that might be induced by coding-
decoding communications [24], cyber-attacks [25], [46], and
measurement saturations [43]. However, when it comes to
the coarsest measurements such as BMs, the corresponding
results have been really scattered, and this gives rise to another
motivation for the current investigation.

Outliers, as a kind of abnormalities that are significantly
deviated from their normal value, are often encountered in
industrial applications as a result of deception attacks, sen-
sor failures, environmental sudden changes, impulsive noises
with heavy tails, etc. [1]. As is well known, the distributed
estimation is realized via the information exchange among
neighboring sensor nodes and, if the transmitted information
is contaminated by outliers, the performance of the distributed
estimators might be seriously impaired [2], [35]. As such, it
is critically important to reduce the adverse outlier-induced
impact and, along this line, an effective way is to introduce
certain delicately designed functions (e.g. the Huber function
[35] and the saturation function [10], [11], [51]) to restrain
the effect of possible outliers. Following this idea, this paper
aims to propose a novel saturation function to accomplish the
outlier-resistant design of the BM-based distributed estimators.

Summarizing the discussions made thus far, we conclude
that it is of great theoretical and practical significance to
conduct a major study on examining the impact of the BMs
on the desired performance of the distributed set-membership
estimators. In doing so, we are faced with the fundamental
issues as follows: 1) how to extract the information from
BMs and reduce the conservatism stemming from the fixed
threshold in terms of estimation accuracy? 2) how to resist the
harmful effect of the possible outliers during the information
transmission? 3) how to establish an adequate performance
index that accounts for the distributed set-membership esti-
mation over the entire SN? and 4) how to further develop
local conditions for every sensor node to deal with distributed
set-membership estimation issues with BMs? Accordingly, the
main objective of this paper is to tackle these identified issues.

The main novelties of this paper are highlighted as follows:
1) the distributed set-membership estimation problem is, for

the first time, investigated for a class of discrete time-varying
systems over binary SNs; 2) a new time-varying threshold
for binary sensors is purposely designed to improve the
estimation accuracy; 3) a novel performance index regarding
the distributed set-membership estimation is proposed in the
average sense over all the sensor nodes; and 4) indicator-
variable-dependent conditions are derived for each sensor
node to guarantee the average performance of the distributed
set-membership estimation in both cases of fixed and time-
varying thresholds.

The structure of this paper is outlined as follows. In Section
II, the underlying system and the BMs are formulated, and
the time-varying threshold strategy is proposed. Furthermore,
a new method is developed to extract the information from
BMs, and a novel average performance index is put forward
to reflect the overall distributed set-membership estimation
scheme. The main results under two kinds of thresholds are
presented in Sections III and IV, respectively. Two numerical
simulation examples are provided in Section V to demonstrate
the effectiveness of distributed set-membership estimation
schemes developed in this paper. Section VI concludes this
paper by pointing out some future research directions.

II. PROBLEM FORMULATION

A digraph G(V ,S,A) is utilized to describe the com-
munication topology of the SN considered in this paper.
Specifically, V , {1, 2, · · · , N} denotes the sensor node
set, S , {(i, j) : i, j ∈ V} indicates the edge set, and
A , [aij ]N×N refers to the adjacency matrix. Moreover,
(i, j) ∈ S if and only if aij > 0. If a directed edge
(i, j) ∈ S, then j is called a neighbor ofi that has access
to the information from sensor nodej. For sensori, all its
neighbors are denoted asNi , {j ∈ V : (i, j) ∈ S, j 6= i}.
To be specific,Ni , {ji1 , ji2 , . . . , jipi } with pi ,

∑N

j=1 aij

and qi ,
∑N

j=1 aji being the in-degree and out-degree of
sensor nodei, respectively. Assume that the digraph is weakly
connected, which means that there exists an undirected path
from every node to other node. For more details about weakly
connected digraph, the readers are referred to [36].

Consider a class of linear discrete time-varying plants:
{

xs+1 =Asxs +Bsws,

yi,s =Ci,sxs +Di,svi,s
(1)

wherexs ∈ R
nx represents the system state to be estimated;

yi,s ∈ R denotes the input to binary sensor nodei that
cannot be observed directly;ws ∈ R

nw and vi,s ∈ R
nv are

unknown but bounded noises;t ∈ Z
+ refers to time instant;

andAs, Bs, Ci,s andDi,s are known time-varying matrices
with appropriate dimensions.

Assumption 1:The noise sequences{ws}t∈Z+ and
{vi,s}∈Z+ are, respectively, confined to the following
ellipsoidal sets:

Ws ,
{

wT
s T

−1
s ws ≤ 1

}

,

Vi,s ,
{

vTi,sR
−1
i,s vi,s ≤ 1

} (2)

where {Ts}t∈Z+ and {Ri,s}t∈Z+ are sequences of known
positive definite matrices with compatible dimensions.
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A. Binary Measurement with Fixed Threshold

The measurement output of binary sensori (i ∈ V) with a
fixed threshold is given as follows:

z̄i,s = ~i(yi,s) =

{

1, if yi,s ≥ κi;
0, if yi,s < κi

(3)

wherez̄i,s ∈ R is the output of the BM andκi ∈ R is a fixed
constant.

The distributed estimator under BM with a fixed threshold
is given as follows:

x̄i,s+1 =Atx̄i,s +
∑

j∈Ni

H̄ij,sσ̄i,s(x̄i,s − x̄j,s)

+ πi,sK̄i,s(κi − 0.5(Ci,s+1As + Ci,s)x̄i,s)

(4)

where

πi,s ,|z̄i,s+1 − z̄i,s|, (5)

κi = 0.5(1− ςi,s)yi,s + 0.5(1 + ςi,s)yi,s+1, if πi,s = 1. (6)

Here, x̄i,s is the estimate of system on sensor nodei; ςi,s ∈
[−1, 1] is an uncertain variable; and̄Ki,s and H̄ij,s are the
estimator gains to be determined later.

Remark 1:From (3), the BM of sensor nodei provides
only one bit of information at each time instant, and this is
insufficient for state estimation purposes. As such, we like
to extract as much useful information as possible from the
switchings of the BM. Clearly, at the crossing time instants
of the BMs, we haveπi,s = 1 and then (6) (i.e.,κi falls in
betweenyi,s andyi,s+1), and such functional information can
be utilized to construct the desired estimator.

The vector saturation function̄σi,s(·): R
nx 7→ R

nx is
defined by:

σ̄i,s(ψij,s) ,
[

σ̄
(1)
i,s (ψ

(1)
ij,s) σ̄

(2)
i,s (ψ

(2)
ij,s) · · · σ̄

(nx)
i,s (ψ

(nx)
ij,s )

]T

with

σ̄
(l)
i,s(ψ

(l)
ij,s) , sign(ψ(l)

ij,s)min{̟(l)
i,s, |ψ

(l)
ij,s|} (l = 1, 2, . . . , nx)

where̟(l)
i,s > 0 is a known constant; and sign(·) and | · |

are, respectively, the signum function and the absolute value
function.

Now, we introduce two indicator variables̄Φ(l)
ij,s and Ψ̄

(l)
ij,s

as follows:

Φ̄
(l)
ij,s ,

{

1, if |ψ(l)
ij,s| < ̟

(l)
i,s;

0, otherwise,

Ψ̄
(l)
ij,s ,

{

1, if ψ
(l)
ij,s > −̟(l)

i,s;

0, otherwise,

and then obtain the following new form of the saturation
function:

σ̄
(l)
i,s(ψ

(l)
ij,s) = Φ̄

(l)
ij,sψ

(l)
ij,s + (1− Φ̄

(l)
ij,s)(2Ψ̄

(l)
ij,s − 1)̟

(l)
i,s.

Next, we obtain the following compact form:

σ̄i(ψij,s) = Φ̄ij,sψij,s + (I − Φ̄ij,s)(2Ψ̄ij,s − I)̟i,s (7)

where

̟i,s ,

[

̟
(1)
i,s , . . . , ̟

(nx)
i,s

]T

, ψij,s ,

[

ψ
(1)
ij,s, . . . , ψ

(nx)
ij,s

]T

,

Φ̄ij,s ,diag
{

Φ̄
(1)
ij,s, Φ̄

(2)
ij,s, . . . , Φ̄

(nx)
ij,s

}

,

Ψ̄ij,s ,diag
{

Ψ̄
(1)
ij,s, Ψ̄

(2)
ij,s, . . . , Ψ̄

(nx)
ij,s

}

.

Remark 2: It is a common method to use the saturation
functions for suppressing the adverse outlier-induced impact
[10], [11], [35], [43]. The focus is how to deal with the satura-
tion function during the analysis. In [35], the Huber function
(it is also a saturation function) has been directly used to
prove the desirable properties of the estimator. Differently, the
sector-bounded constraint has been commonly used to address
the vector saturation function [10], [11], [43]. Nevertheless,
those two new matrices in the formulation of sector-bounded
constraints could lead to unnecessary conservatism. In this
paper, we tackle this issue by developing an equivalent form
(7) by introducing two indicator variables. Also, we can make
full use of the information ofψij,s via (7).

Defining the estimation error̄ei,s , xs−x̄i,s, one calculates
from (1), (4), (5), (6), and (7) that

ēi,s+1

=Asēi,s + Bsws −
∑

j∈Ni

H̄ij,sΦ̄ij,s(ēj,s − ēi,s)

−
∑

j∈Ni

H̄ij,s(I − Φ̄ij,s)(2Ψ̄ij,s − I)̟i,s

− 0.5πi,sK̄i,s(Ci,s+1As + Ci,s)ēi,s

− 0.5πi,sςi,sK̄i,s(Ci,s+1As − Ci,s)xs

− 0.5πi,sK̄i,sDi,svi,s + 0.5πi,sςi,sK̄i,sDi,svi,s

− 0.5πi,sK̄i,s(Ci,s+1Btwt +Di,s+1vi,s+1)

− 0.5πi,sςi,sK̄i,s(Ci,s+1Bswt +Di,s+1vi,s+1). (8)

Letting ηi,s ,
[

xTs ēTi,s
]T

, ˆ̟ i,s ,
[

̟T
i,s ̟T

i,s

]T
, and

ξi,s ,
[

wT
s vTi,s vTi,s+1

]T
, one has

ηi,s+1 =(As − 0.5πi,sKi,sCi,s +
∑

j∈Ni

Hij,sΦ̂ij,s)ηi,s

+
∑

j∈Ni

Hij,sΦ̂ij,sηj,s + (Bs − 0.5πi,sKi,sDi,s)ξi,s

−
∑

j∈Ni

Hij,s(I − Φ̂ij,s)(2Ψ̂ij,s − I) ˆ̟ i,s (9)

where

As ,diag{As, As}, Ki,s , diag{0, K̄i,s},

Ci,s ,
[

0 0
ςi,s(Ci,s+1As − Ci,s) (Ci,s+1As + Ci,s)

]

,

Hij,s ,diag{0, H̄ij,s}, Φ̂ij,s , diag{0, Φ̄ij,s},

Bs ,

[

Bs 0 0
Bs 0 0

]

, Di,s ,

[

0 0 0

D(21)
i,s D(22)

i,s D(23)
i,s

]

,

D(21)
i,s ,Ci,s+1Bs + ςi,sCi,s+1Bs, Ψ̂ij,s , diag{0, Ψ̄ij,s},

D(22)
i,s ,Di,s − ςi,sDi,s, D(23)

i,s , Di,s+1 + ςi,sDi,s+1.

Assumption 2:For a nodei ∈ V , the initial value ηi,0
satisfies

1

N

N
∑

i=1

ηTi,0Q
−1
i,0 ηi,0 ≤ 1 (10)
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whereQi,0 > 0 is a given positive definite matrix.
For the given digraphG, consider the linear discrete time-

varying system (1) with BMs (3) and the distributed estimator
(4). In the case of BMs with fixed thresholds, our objectives
are stated as follows:

• for a given positive definite matrix sequence{Qi,s}s∈Z+ ,
design the sequences of estimator gains{Ki,s}s∈Z+ and
{Hij,s}s∈Z+ such that the following constraint holds for
any s ∈ Z

+:

1

N

N
∑

i=1

ηTi,sQ
−1
i,s ηi,s ≤ 1; (11)

• minimize Tr(Qi,s) at each time instant for sensor nodei
(i ∈ V) in a fully distributed manner.

Remark 3: It should be noted that (11) is actually an
average performance constraint on all sensor nodes, which is
different from that of the existing distributed set-membership
estimation in [24]. For example, in [24], the desired perfor-
mance constraint has been given for a sensor nodei as follows:

ηTi,sQ
−1
i,s ηi,s ≤ 1, i ∈ V .

Nevertheless, given the large scale of SNs, a natural idea
would be to set the average performance over all sensor nodes
(rather than on an individual node), and this gives rise to
the motivation for us to propose the distributedaverageset-
membership performance constraint (11).

Remark 4:Note that (11) can be converted into an ellip-
soidal constraint by means of the augmented method. To be
specific, by lettingηs ,

[

ηT1,s ηT2,s · · · ηTN,s

]T
, (11) can

be rewritten as

ηTs Q
−1
s ηs ≤ 1 (12)

whereQ−1
s , 1

N
diag{Q1,s, Q2,s, . . . , QN,s}.

It is worthwhile noting that the introduction of a fixed
threshold would yield a certain conservatism on the desired
performance. First, (11) implies that a constraint is posed
on the system statexs. More specifically, lettingQi,s ,

{Qi1,s, Qi2,s}, it follows from (11) that

1

N

N
∑

i=1

xTs Q
−1
i1,sxs +

1

N

N
∑

i=1

ēTi,sQ
−1
i2,sēi,s ≤ 1, s ≥ 0,

which means that 1
N

∑N
i=1 x

T
s Q

−1
i1,sxs ≤ 1. Next,

the fourth term of the right-hand side in (8) (i.e.,
0.5πi,sςi,sK̄i,s(Ci,s+1As − Ci,s)xs) can be regarded as the
multiplicative uncertainty [14], which could be a source for
undesired estimation performance degradation. In view of
these two observations, in the next subsection, we propose
a time-varyingthreshold strategy regarding the BM with the
hope to mitigate the induced conservatism.

B. Binary Measurement with Time-Varying Threshold

As opposed to its fixed (or time-invariant) counterpart, the
time-varying threshold could increase the crossing times of
the BMs, thereby helping extract more functional information
from the measurement dynamics and improving the estimation
accuracy, see [7], [41], [53] for some representative results.

Let us consider the measurement output of thei-th binary
sensor with a time-varying threshold as follows:

zi,s = hi(yi,s) =

{

1, if yi,s ≥ τi,s,
0, if yi,s < τi,s

(13)

where zi,s ∈ R is the BM andτi,s ∈ R is a time-varying
threshold. Furthermore, letτi,s , τi + ϕi,s with τi being a
fixed constant andϕi,s being a time-varying variable.

Next, design the distributed estimator for sensor nodei with
the following form:

x̂i,s+1 =Asx̂i,s + θi,sKi,s̺i,s +
∑

j∈Ni

Hij,sσi,s(ζij,s), (14)

θi,s =|zi,s+1 − zi,s| (15)

where x̂i,s is the state estimate from sensor nodei, ̺i,s ,

τi,s −Ci,sx̂i,s, ζij,s , x̂i,s − x̂j,s, andKi,s andHij,s are the
desired estimator gains to be determined later.

Clearly, if θi,s = 1, then τi falls in the interval between
yi,s − ϕi,s andyi,s+1 − ϕi,s+1, which can be modelled as

τi,s =0.5((yi,s+1 − ϕi,s+1) + (yi,s − ϕi,s))

+ 0.5δi,s((yi,s+1 − ϕi,s+1)− (yi,s − ϕi,s))
(16)

whereδi,s ∈ [−1, 1] is an uncertain variable, andϕi,s ∈ R

evolves according to the dynamic equation as follows:

ϕi,s+1 = (1− 2hi,s)ϕi,s + (Ci,s+1As − Ci,s)x̂i,s (17)

wherehi,s is a known time-varying real number belonging to
the interval[0, 0.5].

In the following, we begin to discuss the boundedness of
ϕi,s. For the convenience of expression, denote

hi(s) , min
0≤t≤s

hi,t, ~i(s) , 1− 2hi(s),

ϕ̄i(s) , max
0≤t≤s

|ϕ̄i,t| , ϕ̄i,s , (Ci,s+1As − Ci,s)x̂i,s.

Lemma 1 considers two special cases over the time horizon
0 ≤ t ≤ s: 1) hi,t 6= 0; 2) hi,t ≡ 0, ∀t ≥ 0.

Lemma 1:ϕi,s is confined to the following ellipsoidal set:

Rs , {ϕ2
i,sr̄

−1
i,s ≤ 1}

where

r̄i,s ,







(ϕi(0) +
∑s

t=0 |ϕ̄i,t|)2 , if hi,t ≡ 0;
(

(~i(s))
sϕi(0) +

(1−~i(s))
sϕ̄i(s)

1−~i(s)

)2

, if hi,t 6= 0.

Now, we present a recursive formula ofr̄i,s.
Lemma 2: If there exists a positive real numberr̄i,s such

thatϕ2
i,s ≤ r̄i,s holds, then one has

ϕ2
i,s+1r̄

−1
i,s+1 ≤ 1

where

r̄i,s+1 ,

{

(√
r̄i,s + |ϕ̄i,s|

)2
, if hi,s = 0;

(

(1− 2hi,s)
√
r̄i,s + |ϕ̄i,s|

)2
, if hi,s 6= 0.

The proofs of Lemmas 1 and 2 are derived via (17) and
thus are omitted due to the space-saving.

Remark 5:The time-varying threshold proposed in this
paper has such a structure:τi,s , τi + ϕi,s, whereϕi,s is
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introduced to adjust the fixed thresholdτi for reducing the
conservatism. Actually, according to Lemma 1,ϕi,s could
be seen as a bounded disturbance of the fixed threshold.
In addition, from the dynamic equation (17) ofϕi,s, the
introduction ofhi,s is helpful to increase the design freedom.
Due to the introduction of time-varying threshold, we need to
calculate the thresholdϕi,s and weightr̄i,s according to (17)
and Lemmas 1 and 2, respectively. It should be noted that
the additional burden of nodei at every time instant isO(1)
through the analysis of computational complexity.

The vector saturation functionσi,s(·): R
nx 7→ R

nx is
defined by:

σi,s(ζij,s) ,
[

σ
(1)
i,s (ζ

(1)
ij,s) σ

(2)
i,s (ζ

(2)
ij,s) · · · σ

(nx)
i,s (ζ

(nx)
ij,s )

]T

with

σ
(l)
i,s(ζ

(l)
ij,s) = Φ

(l)
ij,sζ

(l)
ij,s + (1− Φ

(l)
ij,s)(2Ψ

(l)
ij,s − 1)ρ

(l)
i,s

where

Φ
(l)
ij,s ,

{

1, if |ζ(l)ij,s| < ρ
(l)
i,s;

0, otherwise,

Ψ
(l)
ij,s ,

{

1, if ζ
(l)
ij,s > −ρ(l)i,s;

0, otherwise.

By denoting

Φij,s ,diag
{

Φ
(1)
ij,s,Φ

(2)
ij,s, . . . ,Φ

(nx)
ij,s

}

,

Ψij,s ,diag
{

Ψ
(1)
ij,s,Ψ

(2)
ij,s, . . . ,Ψ

(nx)
ij,s

}

,

ρi,s ,
[

ρ
(1)
i,s , . . . , ρ

(nx)
i,s

]T

, ζij,s ,
[

ζ
(1)
ij,s, . . . , ζ

(nx)
ij,s

]T

,

one further has

σi(ζij,s) = Φij,sζij,s + (I − Φij,s)(2Ψij,s − I)ρi,s.

Denotingei,s , xs − x̂i,s, the estimation error dynamics
of sensor nodei under the case of time-varying threshold is
calculated as follows:

ei,s+1 =Asei,s +Bsws −
∑

j∈Ni

Hij,sΦij,s(ej,s − ei,s)

−
∑

j∈Ni

Hij,s(I − Φij,s)(2Ψij,s − I)ρi,s

− 0.5θi,sKi,s(Ci,s+1As + Ci,s)ei,s

− 0.5δi,sθi,sKi,s(Ci,s+1As − Ci,s)ei,s

− 0.5θi,s(1 + δi,s)Ki,sCi,s+1Bsws

− 0.5θi,s(1 − δi,s)Ki,sDi,svi,s

− 0.5θi,s(1 + δi,s)Ki,sDi,s+1vi,s+1

+ θi,s(1 − hi,s − hi,sδi,s)Ki,sϕi,s. (18)

Assumption 3:For a sensor nodei ∈ V , the initial estima-
tion errorei,0 satisfies the following constraint

1

N

N
∑

i=1

eTi,0P
−1
i,0 ei,0 ≤ 1 (19)

wherePi,0 > 0 is a given positive definite matrix.
Consider the linear discrete time-varying system (1) with

BMs (13) and the distributed estimator (14). Let the digraph

G and the positive definite matrix sequence{Pi,s}s∈Z+ be
given. The desired objective of this subsection is twofold:

1) design the sequences of estimator gains{Ki,s}s∈Z+ and
{Hij,s}s∈Z+ such that the following constraint holds for
any s ∈ Z

+:

1

N

N
∑

i=1

eTi,sP
−1
i,s ei,s ≤ 1; (20)

2) minimize{Tr(Pi,s)}s∈Z+ at each time instant.
Inspired by the idea of the ellipsoid fusion in [32], (20)

can be seen as the fusion ofN ellipsoids with the weighted
coefficients 1

N
. After some simple algebraic operations, (20)

can be rewritten as

(xs − x̂∗s)
TP ∗

s (xs − x̂∗s) ≤ 1− ν∗s (21)

where

x̂∗s ,
1

N
(P ∗

s )
−1

N
∑

i=1

P−1
i,s x̂i,s, P ∗

t ,
1

N

N
∑

i=1

P−1
i,s ,

ν∗s ,
1

N

N
∑

i=1

x̂Ti,sP
−1
i,s x̂i,s − (x̂∗s)

TP ∗
s x̂

∗
s.

Lemma 3:For given a set of estimateŝxi,s (i ∈ V and
s ≥ 0), there always exists a set of positive definite matrices
Pi,s > 0 such thatν∗s < 1.

Proof: See Appendix VII-A.
By means of Lemma 2, one knows that (21) corresponds

to an ellipsoid constraint, wherêx∗s can be regarded as a
fusion estimate of̂xi,s with weighted matrix 1

N
(P ∗

s )
−1P−1

i,s .
In addition, (20) implies that the ellipsoid constraint(xs −
x̂i,s)

TP−1
i,s (xs − x̂i,s) ≤ 1 holds for any sensor nodei ∈ V .

The intersection of these ellipsoid constraints is characterized
by (21) since it is equivalent to (20).

Remark 6: It is noted that the uncertain term involvingδi,s
would yield a certain conservatism for the design of distributed
estimation scheme. In this context, it makes sense to reduce
the adverse effect of such an uncertain term. According to
(16), if

ϕi,s+1 − yi,s+1 = ϕi,s − yi,s, (22)

then the uncertainties can be completely eliminated but, un-
fortunately, (22) cannot be true due to the existence of noises.
Under the time-varying threshold proposed in this paper, one
knows from (18) thatδi,s is not related to the system state,
which implies that the negative effect of the uncertainty can
be mitigated to some extent.

III. M AIN RESULTS REGARDING FIXED THRESHOLDS

In this section, by means of the local performance analysis
(LPA) method on the basis of the vector dissipativity theory,
local sufficient conditions (with respect to any sensor node
i ∈ V) are first established to ensure the error dynamics (9)
to satisfy the desired performance criterion (11). Next, the
matricesQi,s (i ∈ V) are minimized in a fully distributed
manner to obtain the estimator gains. Here, a fully distributed
manner implies that a nodei can minimize its ownQi,s subject
to the constraints associated with its neighboring nodes to
calculate the estimator gains.
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The vector dissipation is defined as follows to facilitate the
subsequent analysis.

Definition 1: The system dynamics (9) is vector dissi-
pative regarding the vector supply rate functionSs ,
[

S1,s · · · SN,s

]T
if there exist a vector of nonnegative

definite storage functionsVs ,
[

V1,s · · · VN,s

]T
(with

V0 = 0) and a sequence of nonsingular column sub-stochastic
dissipation matricesWs ∈ R

N×N such that the following
vector dissipation inequality is satisfied for alls ∈ Z

+:

Vs+1 ≤≤WsVs + Ss. (23)

Here, for any two vectorsc =
[

c1 c2 · · · cN
]T

andd =
[

d1 d2 · · · dN
]T ∈ R

N , c ≤≤ d means thatci ≤ di
(∀i = 1, 2, . . . , N).

Before conducting the performance analysis, an interval-
valued function of the out-degreeqi is defined by:

Iqi ,

{ (

0, 1+qi
2qi

)

, if qi 6= 0;

(0, 1], if qi = 0,
(24)

and the supply rate function is chosen as follows:

Si,s ,
Nαi,s

1 + qi
.

For the fixed threshold case, by means of the LPA method,
a sufficient criterion is provided in the subsequent theorem to
guarantee the vector dissipation of system (9) regarding the
supply rate functionSi,s, which further deduces the desired
performance criterion (11) for the system dynamics (9).

Theorem 1:Consider a sensor nodei ∈ V with its neigh-
boring sensor nodej ∈ Ni. Let a sequence of positive definite
matrices{Qi,s}s∈Z+ and a sequence of scalars{αi,s}s∈Z+ ∈
Iqi be given. Then, the system dynamics (9) satisfies the
Qi,s-dependent constraint condition (11) if there exist real-
valued matrix sequences{Ki,s}s∈Z+ , {Hij,s}s∈Z+ , and scalar
sequence{φi1,s}s∈Z+ satisfying the followingπi,s-dependent
matrix inequality:

ΩT
i1,sQ

−1
i,s+1Ωi1,s +Ωi0,s ≤ 0 (25)

where

Ωi0,s ,diag
{

Ω
(1)
i0,s,Ω

(2)
i0,s,Ω

(3)
i0,s,Ω

(4)
i0,s

}

,

Ω
(1)
i0,s ,φi1,s −

Nαi,s

1 + qi
, Ω

(2)
i0,s , −(1− αi,s)Q

−1
i,s ,

Ω
(3)
i0,s ,− diagpi

{

αj,s

1 + qj
Q−1

j,s

}

,

Ω
(4)
i0,s ,− 1

3
diag

{

T−1
s , R−1

i,s , R
−1
i,s+1

}

,

Ωi1,s ,

[

Ω
(1)
i1,s Ω

(2)
i1,s Ω

(3)
i1,s Ω

(4)
i1,s

]

,

Ω
(1)
i1,s ,−

∑

j∈Ni

Hij,s(I − Φ̂ij,s)(2Ψ̂ij,s − I) ˆ̟ i,s,

Ω
(2)
i1,s ,As − 0.5πi,sKi,sCi,s +

∑

j∈Ni

H̄ij,sΦ̂ij,s,

Ω
(3)
i1,s ,

[

Hij1,sΦ̂ij1,s . . . Hijpi ,s
Φ̂ijpi ,s

]

,

Ω
(4)
i1,s ,Bs − 0.5πi,sKi,sDi,s.

Proof: See Appendix VII-B.
Up to now, the performance analysis is carried out via the

LPA method in Theorem 1. Next, we begin to deal with the
uncertain terms in (25) and design the desired estimator gains.

Theorem 2:Consider a sensor nodei ∈ V with its neigh-
boring sensor nodej ∈ Ni. Let a positive definite matrix
sequence{Qi,s}s∈Z+ and a scalar sequence{αi,s}s∈Z+ ∈ Iqi

be given. The system dynamics (9) satisfies theQi,s-dependent
constraint condition (11) if there exist real-valued matrix
sequences{Ki,s}s∈Z+ , {Hij,s}s∈Z+ , and scalar sequences
{φit,s}s∈Z+ (t = 1, 2) satisfying the followingπi,s-dependent
recursive linear matrix inequality (RLMI):





Ω̄i0,s ∗ ∗
Ω̄i1,s −Qi,s+1 ∗
0 MT

i,s −φi2,s



 ≤ 0 (26)

where

Ω̄i0,s ,











Ω̄
(1)
i0,s ∗ ∗ ∗
0 Ω̄

(2)
i0,s ∗ ∗

0 0 Ω̄
(3)
i0,s ∗

0 D̃T
i,sC̃i,s 0 Ω̄

(4)
i0,s











,

Ω̄
(1)
i0,s ,φi1,s −

Nαi,s

1 + qi
, Ω̄

(3)
i0,s , −diagpi

{ αj,s

1 + qj
Q−1

j,s},

Ω̄
(2)
i0,s ,− (1 − αi,s)Q

−1
i,s + 0.25φi2,sC̃T

i,sC̃i,s,

Ω̄
(4)
i0,s ,− φi1,s

3
diag{T−1

t , R−1
i,s , R

−1
i,s+1}+ 0.25φi2,sD̃T

i,sD̃i,s,

Ω̄i1,s ,

[

Ω̄
(1)
i1,s Ω̄

(2)
i1,s Ω̄

(3)
i1,s Ω̄

(4)
i1,s

]

,

Ω̄
(1)
i1,s ,−

∑

j∈Ni

Hij,s(I − Φ̂ij,s)(2Ψ̂ij,s − I) ˆ̟ i,s,

Ω̄
(2)
i1,s ,As − 0.5πi,sKi,sC̄i,s +

∑

j∈Ni

H̄ij,sΦ̂ij,s,

Ω̄
(3)
i1,s ,

[

Hij1,sΦ̂ij1,s . . . Hijpi ,s
Φ̂ijpi ,s

]

,

Ω̄
(4)
i1,s ,Bs − 0.5θ̂i,sKi,sD̄i,s, Mi,s , πi,sKi,s,

C̄i,s ,diag{0, Ci,s+1As + Ci,s},

C̃i,s ,
[

0 0
Ci,s+1As − Ci,s 0

]

,

D̄i,s ,

[

0 0 0
Ci,s+1Bs Di,s Di,s+1

]

,

D̃i,s ,

[

0 0 0
Ci,s+1Bs −Di,s Di,s+1

]

.

The proof of Theorem 2 is achieved by Schur complement
lemma, and is thus omitted.

In Theorem 2, conditions are given to guarantee the exis-
tence of the ellipsoidal set containing all possible state values.
In the following, such an ellipsoid is optimized by exerting
the convex optimization approach. Specifically, the optimal
matrix Qi,s+1 can be obtained by minimizing the sequences
of matrices{Qi,s+1}s∈Z+ (i ∈ V) to guarantee the locally
optimal estimation performance.

Corollary 1: Consider a sensor nodei ∈ V with it-
s neighboring sensor nodej ∈ Ni. Let a scalar se-
quence{αi,s}s∈Z+ ∈ Iqi be given. The scalar sequence
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{Tr(Qi,s+1)}s∈Z+ is minimized if there exist real-valued ma-
trix sequences{Ki,s}s∈Z+ , {Hij,s}t∈Z+ , and positive scalar
sequences{φit,s}s∈Z+ (t = 1, 2) that can solve the following
optimization problem

min
{Qi,s+1,Ki,s,Hij,s,φit,s}

Tr(Qi,s+1) (27)

subject to (26).

IV. M AIN RESULTS UNDERTIME-VARYING THRESHOLDS

First, we choose the supply rate function as follows:

Si,s ,
Nαi,s

1 + qi
.

Following the similar line in Section III, the local sufficient
criterion is established for each sensor node to 1) guarantee the
vector dissipativity of the system (18) regarding the supply rate
function Si,s, and 2) further deduce the desired performance
constraint (20) for the system dynamics (18).

Theorem 3:Consider a sensor nodei ∈ V with its neigh-
boring sensor nodej ∈ Ni. Let a positive definite matrix
sequence{Pi,s}s∈Z+ and a scalar sequence{αi,s}s∈Z+ ∈ Iqi

be given. Then, the system dynamics (18) satisfies thePi,s-
dependent constraint condition (20) if there exist real-valued
matrix sequences{Ki,s}s∈Z+ , {Hij,s}s∈Z+ , and scalar se-
quences{µit,s}s∈Z+ (t = 1, 2, 3, 4) such that the following
θi,s-dependent matrix inequality holds:

ΠT
i1,sP

−1
i,s+1Πi1,s +Πi0,s ≤ 0 (28)

where

Πi0,s ,diag
{

Π
(1)
i0,s,Π

(2)
i0,s,Π

(3)
i0,s,Π

(4)
i0,s,Π

(5)
i0,s,Π

(6)
i0,s,Π

(7)
i0,s

}

,

Π
(1)
i0,s ,

4
∑

s=1

µis,s −
Nαi,s

1 + qi
, Π

(2)
i0,s , −(1− αi,s)P

−1
i,s ,

Π
(3)
i0,s ,− diagpi

{

αj,s

1 + qj
P−1
j,s

}

, Π
(4)
i0,s , −µi1,sT

−1
s ,

Π
(5)
i0,s ,− µi2,sR

−1
i,s ,Π

(6)
i0,s , −µi3,sR

−1
i,s+1,Π

(7)
i0,s , −µi4,sr̄

−1
i,s ,

Πi1,s ,

[

Π
(1)
i1,s Π

(2)
i1,s Π

(3)
i1,s Π

(4)
i1,s Π

(5)
i1,s Π

(6)
i1,s Π

(7)
i1,s

]

,

Π
(1)
i1,s ,−

∑

j∈Ni

Hij,s(I − Φij,s)(2Ψij,s − I)ρi,s,

Π
(2)
i1,s ,

∑

j∈Ni

Hij,sΦij,s − 0.5θi,sKi,s(Ci,s+1As + Ci,s),

+As − 0.5δi,sθi,sKi,s(Ci,s+1As − Ci,s),

Π
(3)
i1,s ,−

[

Hij1,sΦij1,s · · · Hijpi ,s
Φijpi ,s

]

,

Π
(4)
i1,s ,Bs − 0.5θi,s(1 + δi,s)Ki,sCi,s+1Bs,

Π
(5)
i1,s ,− 0.5θi,s(1− δi,s)Ki,sDi,s,

Π
(6)
i1,s ,− 0.5θi,s(1 + δi,s)Ki,sDi,s+1,

Π
(7)
i1,s ,θi,s(1 − hi,s − hi,sδi,s)Ki,s.

Theorem 4:Consider a sensor nodei ∈ V with its neigh-
boring sensor nodej ∈ Ni. Let a positive definite matrix
sequence{Pi,s}s∈Z+ and a scalar sequence{αi,s}s∈Z+ ∈ Iqi

be given. Then, the system dynamics (18) satisfies thePi,s-
dependent constraint condition (20) if there exist real-valued

matrix sequences{Ki,s}s∈Z+ , {Hij,s}s∈Z+ , and scalar se-
quences{µit,s}s∈Z+ (t = 1, 2, 3, 4, 5) such that the following
θi,s-dependent RLMI holds:





Π̄i0,s ∗ ∗
Π̄i1,s −Pi,s+1 ∗
0 MT

i,s −µi5,s



 ≤ 0 (29)

where

Π̄i0,s ,diag
{

Π̄
(1)
i0,s, Π̄

(2)
i0,s, Π̄

(3)
i0,s, Π̄

(4)
i0,s, Π̄

(5)
i0,s, Π̄

(6)
i0,s, Π̄

(7)
i0,s

}

,

Π̄
(1)
i0,s ,

4
∑

s=1

µis,s −
Nαi,s

1 + qi
, Π̄

(3)
i0,s , −diagpi

{

αj,s

1 + qj
P−1
j,s

}

,

Π̄
(2)
i0,s ,µi5,s(Ci,s+1As − Ci,s)

T (Ci,s+1As − Ci,s)

− (1− αi,s)P
−1
i,s , Π̄

(7)
i0,s , −µi4,sr̄

−1
i,s + µi5,sh

2
i,s,

Π̄
(4)
i0,s ,− µi1,sT

−1
s + µi5,s(Ci,s+1Bs)

T (Ci,s+1Bs),

Π̄
(5)
i0,s ,− µi2,sR

−1
i,s + µi5,sD

T
i,sDi,s,

Π̄
(6)
i0,s ,− µi3,sR

−1
i,s+1 + µi5,sD

T
i,s+1Di,s+1,

Π̄i1,s ,

[

Π̄
(1)
i1,s Π̄

(2)
i1,s Π̄

(3)
i1,s Π̄

(4)
i1,s Π̄

(5)
i1,s Π̄

(6)
i1,s Π̄

(7)
i1,s

]

,

Π̄
(1)
i1,s ,−

∑

j∈Ni

Hij,s(I − Φij,s)(2Ψij,s − I)ρi,s,

Π̄
(2)
i1,s ,As − 0.5θi,sKi,s(Ci,s+1As + Ci,s) +

∑

j∈Ni

Hij,sΦij,s,

Π̄
(3)
i1,s ,−

[

Hij1,sΦij1,s · · · Hijpi ,s
Φijpi ,s

]

,

Π̄
(4)
i1,s ,Bs − 0.5θi,sKi,sCi,s+1Bs, Π̄

(5)
i1,s , −0.5θi,sKi,sDi,s

Π̄
(6)
i1,s ,− 0.5θi,sKi,sDi,s+1, Π̄

(7)
i1,s , θi,s(1− hi,s)Ki,s,

Mi,s ,− 0.5θi,s
[

0 Ki,s 0 Ki,s −Ki,s Ki,s 2Ki,s

]

.

The proofs of Theorems 3 and 4 are similar to those of
Theorems 1 and 2, respectively, and are thus omitted.

Finally, the optimal matrixPi,s+1 can be obtained by mini-
mizing the matrix sequence{Pi,s+1}s≥0 for every sensor node
i (i ∈ V) to guarantee the optimal estimation performance.

Corollary 2: Consider a sensor nodei ∈ V with it-
s neighboring sensor nodej ∈ Ni. Let a scalar se-
quence{αi,s}s∈Z+ ∈ Iqi be given. The scalar sequence
{Tr(Pi,s+1)}s∈Z+ is minimized if there exist real-valued ma-
trix sequences{Ki,s}s∈Z+ and {Hij,s}s∈Z+ , and positive
scalar sequences{µit,s}s∈Z+ (t = 1, 2, 3, 4, 5) solving the
optimization problem as follows:

min
{Pi,s+1,Ki,s,Hij,s,µit,s}

Tr(Pi,s+1) (30)

subject to (29).
Remark 7: It can be observed that Theorems 1-4 are depen-

dent on two indicator variablesπi,s andθi,s, respectively. Such
a formulation is helpful to reflect the impact of the information
extraction of the BMs on the main results and cover different
cases for the convenience of expressing the main results.

Remark 8:The distributed filtering algorithms under the
fixed threshold and time-varying threshold are compared
in terms of the time complexities. In this paper, the pro-
posed schemes are presented for every node in terms of
a set of RLMIs from Corollaries 1 and 2. The standard
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LMI system has a polynomial time complexity bounded by
O(MN 3 log(V/ε)), whereM is the total row size of the LMI
system,N is the total number of scalar decision variables,
V is a data-dependent scaling factor, andε is the relative
accuracy set for the algorithm. Here, we assume thatV and
ε are fixed, which are neglected in the following analysis.
As for the case of fixed threshold, it can be calculated from
Corollary 1 thatMf

i = 2(pi + 2)nx + nw + 2nv + 2 and
N f

i = (pi + 2)n2
x + 2nx + 2, which implies that the time

complexity for nodei at every time instant is represented as
O((pi+2)4n7

x+(pi+2)3(nw+2nv+2)n6
x). Also, it can be cal-

culated from Corollary 2 thatMt
i = (2+pi)nx+nw+2nv+3

andN t
i = (pi +

1
2 )n

2
x + 3

2nx + 5, which shows that the time
complexity of the algorithm for nodei at every time instant
under the case of time-varying threshold can be represented
asO((pi + 1

2 )
3(pi + 2)n7

x + (pi +
1
2 )

3(nw + 2nv + 3)n6
x). It

can be concluded that there exist no significant difference in
the time complexities of distributed filtering schemes between
the time-varying threshold and the fixed threshold.

Remark 9: In comparison with the case of the fixed thresh-
old, the introduction of the time-varying threshold developed
in this paper would help reduce conservatism. First, the multi-
plicative uncertainties can be eliminated to improve the desired
estimation performance. Next, the estimation error system can
be directly analyzed without imposing any requirements on
the system. Nevertheless, the utilization of the time-varying
threshold would lead to a slightly increased computational
burden as the estimate at the current instant is needed to
calculate the time-varying threshold at the next time instant.

Remark 10:This paper investigates the distributed set-
membership estimation problem under BMs with fixed and
time-varying thresholds, respectively. Compared with the ex-
isting results, this paper exhibits the following characteris-
tics: 1) the addressed problem is new in that the BMs are,
for the first time, considered in a framework of distributed
set-membership estimation via the LPA method; 2) based
on the analysis on the fixed threshold case, a novel time-
varying threshold strategy is proposed to further improve the
estimation accuracy; 3) a distributed average set-membership
performance index is proposed over all sensor nodes, which
is more reasonable than the existing performance indices on
individual sensor node; and 4) for each sensor node, local
sufficient conditions are established via the LPA method
and the estimator gains are derived by recursively solving
the optimization problems on each sensor node in a fully
distributed manner.

V. I LLUSTRATIVE NUMERICAL EXAMPLES

This section provides two illustrative numerical examples to
demonstrate the effectiveness and applicability of distributed
set-membership estimate schemes with BMs under the fixed
and time-varying thresholds developed in this paper.

The communication topology of SN is described by
the digraph G = (V , E ,A) with the set of sensor n-
odes V = {1, 2, 3, 4, 5, 6}, the set of edgesE =
{(1, 3), (2, 4), (3, 5), (4, 6), (5, 1), (1, 2)} and the adjacency

matrix is given as

A =

















0 0 0 0 1 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

















.

Next, consider an industrial nonisothermal continuous
stirred tank reactor (CSTR), which is used to investigate
distributedH∞ consensus filtering problems over sensor net-
works (not BSNs) in [12]. In the following, the state matrix of
the discretized and linearized state-space model of the CSTR
is borrowed from [12]. Meanwhile, we take into account the
time-varying effect. As such, the parameters of the system (1)
is set as follows:

As =

[

0.9719 −0.0013− 0.01 sin(s)
−0.0340 0.8628

]

, Bt =

[

0.1
0.1

]

,

Ci,s =
[

−0.2 0.1 + 0.01 sin(s)
]

, Di,s = 0.1.

The matricesTs and Ri,s are chosen asTs = 0.25I and
Ri,s = 0.25, respectively. The bounded noises are selected
as ws = 0.3 sin(3s) and vi,s = 0.5 sin(3s), respectively.
Whenx̂4,s is transmitted to Node 6, the outliers occur at time
instantss = 10, 20, 25 with the abnormal amplitude10x̂4,s.
The parameters of the LPA method are set asαi,s = 0.5.
The initial system statex0 and estimator values̄xi,0 are set
to be x0 =

[

2.0 −1.0
]T

, x̄1,0 =
[

1.2 1.2
]T

, x̄2,0 =
[

0.9 1.1
]T

, x̄3,0 =
[

0.8 1.1
]T

, x̄4,0 =
[

1.1 0.9
]T

,

x̄5,0 =
[

0.8 1.1
]T

, and x̄6,0 =
[

1.0 1.0
]T

, respectively.
Example 1: For the case of fixed threshold, the threshold

parameters of binary sensor nodes are set asτi = −0.3 (i =
1, 2, . . . , 6). The initial values ofQi,s are given asQi,0 = 10I.
This simulation example considers two cases, i.e., Case I: no
outlier-resistant design (i.e., the saturation levels are given as
̟i,s =

[

50 50
]T

); Case II: outlier-resistant design (i.e., the

saturation levels are set as̟i,s =
[

0.25 0.25
]T

). Then, all
the estimator parameters can be obtained in terms of Corollary
1 with Theorem 2 by means of MATLAB software with the
YALMIP toolbox. Under such two cases, all the simulation
results are displayed in Figs. 1-5, where Fig. 1 describes the
time instants of extracting BMs for every sensor node, Figs. 2
and 3 plot‖xs − x̄i,s‖2 to measure the estimation errors of
every sensor node, and Figs. 4-5 draw

∑

j∈Ni
‖x̄i,s − x̄j,s‖2

to measure the consensus errors between every sensor node
and its neighboring nodes, respectively.

It is worth noting that in two cases, the time instants of
extracting BMs are the same due to the fixed threshold. By
comparing Fig. 2 with Fig. 3, and Fig. 4 with Fig. 5, it follows
that the adverse impact of the outliers would be significantly
reduced due to the introduction of saturation function.

Example 2: With the same parameters in Example 1, we
will verify the advantage of the time-varying threshold over
the fixed threshold. ChoosePi,0 = 10I, hi,s ≡ 0.4, and
ϕi,0 = 0. As for the time-varying thresholds, this simulation
example considers two cases with outlier-resistant design (i.e.,
the saturation levels are given asρi,s =

[

0.25 0.25
]T

), i.e.,
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Fig. 1: The information extraction instants under Cases I andII.
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Fig. 2: ‖xs − x̄i,s‖
2 under Case I.
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Fig. 3: ‖xs − x̄i,s‖
2 under Case II.
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Fig. 4:
∑

j∈Ni
‖x̄i,s − x̄j,s‖

2 under Case I.

Case III: τi = −0.3, and Case IV:τi = −0.36. Under Cases
III and IV, all the estimator parameters can be obtained in
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Fig. 5:
∑

j∈Ni
‖x̄i,s − x̄j,s‖

2 under Case II.

terms of Corollary 2 with Theorem 4 by means of MATLAB
software with the YALMIP toolbox. The simulation results
under these two cases are displayed in Figs. 6-11, where
Figs. 6 and 7 plot the time instants of extracting BMs for
every sensor node, Figs. 8 and 9 describe‖xs − x̂i,s‖2 to
measure the estimation errors of every sensor node, Figs. 10
and 11 plot

∑

j∈Ni
‖x̂i,s − x̂j,s‖2 to measure the consensus

errors between every sensor node and its neighboring nodes,
and Figs. 12 and 13 draw the time-varying thresholdτ1,s of
sensor node1, respectively.

It can be seen from the comparison of Figs. 1 and 6
that the time instants of extracting BMs become less due to
the introduction of the time-varying threshold. Even then, by
comparing Fig. 3 with Fig. 8, and Fig. 5 with Fig. 10, it can
be observed that the performance of distributed filtering would
be significantly improved, which demonstrates the advantage
of time-varying threshold design developed in this paper.

In addition, it follows from Figs. 6 and 7 that the time
instants under case III are more than that under Case IV. Next,
by comparing Fig. 8 with Fig. 9, and Fig. 10 with Fig. 11,
it can be observed that the advantage of the time-varying
threshold would be more prominent if choosing a suitable
fixed thresholdτi due toτi,s = τi + ϕi,s. Therefore, all the
presented simulation results demonstrate that the distributed
set-membership estimation algorithms under BMs with the
fixed and time-varying thresholds developed in this paper are
indeed effective.
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Fig. 6: The information extraction time instants under Case III.
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Fig. 7: The information extraction time instants under Case IV.
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Fig. 8: ‖xs − x̂i,s‖
2 under Case III.
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Fig. 9: ‖xs − x̂i,s‖
2 under Case IV.
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Fig. 10:
∑

j∈Ni
‖x̂i,s − x̂j,s‖

2 under Case III.

VI. CONCLUSIONS

The distributed set-membership estimation problem has
been investigated for a class of linear discrete time-varying
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Fig. 11:
∑

j∈Ni
‖x̂i,s − x̂j,s‖

2 under Case IV.
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Fig. 12: τ1,s under Case III.
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Fig. 13: τ1,s under Case IV.

systems under BMs with fixed and time-varying thresholds,
respectively. The useful information has been extracted at the
crossing instants of BMs. The time-varying threshold strategy
has been proposed to reduce conservatism in the case of fixed
thresholds. The distributed estimator with BMs under two
cases has been proposed based on the extracted information
from BMs as well as from the plant and its neighboring
sensor nodes. Then, the distributed average set-membership
performances over all sensor nodes have been proposed, which
has less conservative than the existing performance indices.
Subsequently, the local sufficient criteria have been established
for each sensor node via the LPA method, and the estima-
tor gains have been calculated by solving an optimization
problem on each sensor node in a fully distributed manner.
Finally, two illustrative simulation examples have been given
to demonstrate the applicability and effectiveness of distributed
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set-membership estimation schemes proposed in this paper.
For further improving the estimation accuracy under BMs,

first research direction is to seek some efficient strategies to
derive more nonzero measurements. Another is to reduce the
uncertainties in the extracted information as far as possible by
means of some methods, such as machine learning. In the
end, the potential research interests would be to study the
distributed set-membership estimation for more complicated
systems (e.g., the switching system [27], hybrid model [18],
and the complicated relationship [17]) and topology (e.g., the
sequentially connected topology [8]).

VII. A PPENDIX

A. Proof of Lemma 3

Proof: It is easily verified that Lemma 3 always holds
for the case ofN = 1, and the rest is to prove that Lemma
3 is true whenN ≥ 2. Next, assume that‖x̂1,s‖ ≤ ‖x̂2,s‖ ≤
· · · ≤ ‖x̂N,s‖ for a given time instants ∈ Z

+. According to
(21), one immediately has

(x̂∗s)
TP ∗

s x̂
∗
s ≥ 1

N

N
∑

i=1

x̂T1,sP
−1
i,s x̂1,s. (31)

From (31), it follows that

1

N

N
∑

i=1

x̂Ti,sP
−1
i,s x̂i,s − (x̂∗s)

TP ∗
s x̂

∗
s

≤ 1

N

N
∑

i=2

(

(x̂1,s + λs)
TP−1

i,s (x̂1,s + λs)− x̂T1,sP
−1
i,s x̂1,s

)

=
1

N

N
∑

i=2

(

Tr(P−1
i,s Λs) + 2Tr(P−1

i,s λsx̂
T
1,s)

)

(32)

where

ιs , arg max
2≤i≤N

‖x̂i,s − x̂1,s‖,

λs ,x̂ιs,s − x̂1,s, Λs , λsλ
T
s .

For given a set of estimateŝxi,s (i = 2, . . . , N), one always
finds a positive definite matrixPi,s > 0 such that the following
inequalities simultaneously hold

P−1
i,s Λs <

1

3(N − 1)
I, P−1

i,s λsx̂
T
1,s <

1

3(N − 1)
I. (33)

The proof is complete by substituting (33) into (32).

B. Proof of Theorem 1

Proof: The mathematical induction method is employed
to perform the proof. First, from Assumption 2, it is s-
traightforward to have 1

N

∑N
i=1 η

T
i,0Q

−1
i,0 ηi,0 ≤ 1. Next, at

time instants, assume 1
N

∑N

i=1 η
T
i,sQ

−1
i,s ηi,s ≤ 1. Then, we

shall prove 1
N

∑N

i=1 η
T
i,s+1Q

−1
i,s+1ηi,s+1 ≤ 1 holds. For this

purpose, according to Definition 1, we choose the scalar
storage function as follows:

V i,s , ηTi,sQ
−1
i,s ηi,s,

and then calculate the scalar storage function along the system
dynamics (9) as follows:

V i,s+1 =ηTi,s+1Q
−1
i,s+1ηi,s+1

,χT
i,sΩ

T
i1,sQ

−1
i,s+1Ωi1,sχi,s (34)

where

χi,s ,
[

1 ηTi,s ηTNi,s
ξTi,s

]T
,

ηNi,s ,

[

ηTji1 ,s
ηTji2 ,s

· · · ηTjipi ,s
]T

.

Noticing the following inequality from Assumption 1:

1

3
ξTi,sdiag{T−1

s , R−1
i,s , R

−1
i,s+1}ξi,s ≤ 1, (35)

one further has

V i,s+1 − (1 − αi,s)V i,s −
∑

j∈Ni

αj,s

1 + qj
V j,s − Si,s

≤χT
i,sΩ

T
i1,sQ

−1
i,s+1Ωi1,sχi,s − (1− αi,s)η

T
i,sQ

−1
i,s ηi,s

−
∑

j∈Ni

αj,s

1 + qj
ηTj,sQ

−1
j,sηj,s − Si,s

− φi1,s

(

1

3
ξTi,sdiag{T−1

s , R−1
i,s , R

−1
i,s+1}ξi,s − 1

)

,χT
i,sΩ

T
i1,sQ

−1
i,s+1Ωi1,sχi,s + χT

i,sΩi0,sχi,s. (36)

Substituting (25) into (36) yields

V i,s+1 ≤ (1− αi,s)V i,s +
∑

j∈Ni

αj,s

1 + qj
V j,s + Si,s,

which, by introducing some notations, can be updated as

V i,s+1 ≤ [WsVs]i + Si,s (37)

where

Vs ,
[

V 1,s V 2,s · · · V N,s

]T
,

Ws ,











(1− α1,s) a12
α2,s

1+q2
· · · a1N

αN,s

1+qN

a21
α1,s

1+q1
(1− α2,s) · · · a2N

αN,s

1+qN
...

...
. . .

...
aN1

α1,s

1+q1
aN2

α2,s

1+q2
· · · (1 − αN,s)











.

Since (37) holds for any sensor nodei ∈ V , a compact form
of all sensor nodes is derived as

Vs+1 ≤≤WsVs + Ss (38)

whereSs ,

[

Nα1,s

1+q1
· · · NαN,s

1+qN

]T

.
According to Definition 1, the system dynamics (9) is vector

dissipative regarding the vector supply rate functionSs.
Next, left-multiplying1T on both sides of (38) yields

1
T
Vs+1 ≤ 1

TWsVs + 1
T
Ss, (39)

which further means

N
∑

i=1

V i,s+1 ≤
N
∑

i=1

(

1− αi,s

1 + qi

)

V i,s +

N
∑

i=1

Nαi,s

1 + qi
. (40)
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Since1− αi,s

1+qi
≥ 0 and V i,s ≥ 0, one immediately has

N
∑

i=1

(

1− αi,s

1 + qi

)

V i,s ≤N
N
∑

j=1

(

1− αj,s

1 + qj

)

. (41)

Substituting (41) into (40), one obtains

N
∑

i=1

ηTi,s+1Q
−1
i,s+1ηi,s+1 ≤ N. (42)

Consequently, the induction is accomplished. Therefore, the
proof of this theorem is completed.
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