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Secure State Estimation for Artificial Neural
Networks With Unknown-But-Bounded Noises: A

Homomorphic Encryption Scheme
Kaiqun Zhu, Zidong Wang, Derui Ding, Hongli Dong, and Cheng-Zhong Xu

Abstract—This paper is concerned with the secure state es-
timation problem for artificial neural networks (ANNs) subject
to unknown-but-bounded noises, where sensors and the remote
estimator are connected via open and bandwidth-limited com-
munication networks. Using the encoding-decoding mechanism
and the Paillier encryption technique, a novel homomorphic
encryption scheme (HES) is introduced, which aims to ensure
the secure transmission of measurement information within com-
munication networks that are constrained by bandwidth. Under
this encoding-decoding-based HES, the data being transmitted
can be encrypted into ciphertexts comprising finite bits. The
emphasis of this research is placed on the development of a
secure set-membership state estimation algorithm, which allows
for the computation of estimates using encrypted data without the
need for decryption, thereby ensuring data security throughout
the entire estimation process. Taking into account the unknown-
but-bounded noises, the underlying ANN and the adopted HES,
sufficient conditions are determined for the existence of the
desired ellipsoidal set. The related secure state estimator gains
are then derived by addressing optimization problems using the
Lagrange multiplier method. Lastly, an example is presented to
verify the effectiveness of the proposed secure state estimation
approach.

Index Terms—Artificial neural networks, secure state estima-
tion, homomorphic encryption scheme, bandwidth constraints,
set-membership state estimation.
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ANN Artificial neural network
EDM Encoding-decoding mechanism
HES Homomorphic encryption scheme
R

m×n The set of allm× n real matrices
R

n Then-dimensional Euclidean space
Z The set of prime numbers
| ∗ | The absolute value of “∗”
JxK The encryption function for an integerx
lcm(p, q) The least common multiple ofp andq
gcd(p, q) The greatest common divisor ofp andq
⊕ The Minkowski sum of two sets
λmax(A) The maximum eigenvalue of A
Tr(P ) The trace of a matrixP
Q > 0 Q is a positive-definite matrix

I. I NTRODUCTION

The structure and functionality of biological neural network-
s, especially the brain, are emulated by an artificial neural
network (ANN). Characterized by its ability to approximate
functions, the ANN showcases essential features such as self-
learning and nonlinear mapping [6], [14], [16], [31], [32], [52],
[55]. Structurally, the ANN consists of three layers: the input
layer, hidden layer, and output layer. Each of these layers hous-
es multiple neurons, and the connection weights among these
neurons can be adjusted through learning from input data.
Due to its unique advantages and architectural design, ANNs
have been widely utilized across various sectors, encompassing
signal processing, optimal control, pattern recognition, and
expert systems, to name a few. In the past two decades,
significant research efforts have been channeled towards the
analysis and synthesis challenges (such as synchronization and
state estimation) associated with ANNs, see e.g. [5], [8]–[10],
[13], [22], [29], [35], [37], [39], [53].

In applications like industrial system modeling and optimal
control, it is often necessary to acquire state information from
each neuron so as to harness the full performance potential of
neural networks [19], [40], [43]. Regrettably, due to limited
sensing capabilities and the intricate internal coupling within
neural networks, obtaining comprehensive and accurate state
information becomes a challenging endeavor [1], [24], [26],
[45], and this underscores the importance of devising suitable
state estimators for ANNs to predict the actual states of the
neurons [27], [46]. For instance, a state estimator has been
crafted in [30] for neural networks influenced by stochastic
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system parameters. Subsequently, in the context of neural
networks exposed to energy-bounded noises, both theℓ2-
ℓ∞ state estimator and theH∞ state estimator have been
developed with the assistance of the linear matrix inequality
technique in [18] and [41], respectively. It is crucial to
recognize that, when ANNs experience unknown-but-bounded
noises, the above-mentioned estimation algorithms might not
produce satisfactory results, and this gives rise to the need for
an alternative estimation algorithm tailored to such conditions.
As such, the primary objective of this paper is to introduce a
recursivestate estimator for ANNs within the set-membership
estimation paradigm and tooptimizethe relevant parameters.

For the realization of remote estimation and control tasks,
network communication technology has become an integral
component of automation control systems [4], [12], [25], [34],
[38], [47]. In these networked configurations, measurement
data is relayed to the remote estimator through an open
communication channel that is constrained by bandwidth [17],
[20], [51], [54]. It is important to highlight that transmitting
system data across open network communication channels ex-
poses it to potential eavesdropping threats. Such vulnerabilities
can jeopardize the integrity of the conveyed data, which could
consequently undermine the system’s estimation or control
performance [7], [28], [48], [56]. Given this scenario, there
emerges a critical need to investigate data transmission mecha-
nisms and state estimation algorithms that incorporate security
features [49]. Presently, two predominant security protection
mechanisms are employed in networked systems. One revolves
around data-perturbation strategies such as differential privacy
method, while the other centers on encryption techniques
exemplified by the Paillier encryption method [11], [23].

In the data-perturbation-based strategy, security is achieved
by introducing random noises to the data prior to transmission,
thus obscuring the original data [21], [50]. However, the inte-
gration of these random noises might compromise the system’s
desired performance. On the other hand, the encryption-based
approach ensures data transmission security through intricate
algebraic operations. Notably, leveraging the homomorphic at-
tributes of the encryption algorithm also secures the parameter-
solving process [36], [42]. It should be pointed out that studies
centered on encryption-based estimation remain nascent. As
such, we aim to develop anencryptedset-membership state
estimation algorithm that safeguards both the data transmis-
sion and parameter computation phases. Furthermore, given
the bandwidth constraints on networked ANNs, it becomes
imperative to introduce a novel framework dedicated to the
co-design of data encoding and encryption mechanisms, which
further drives our research motivation.

In this paper, our primary focus is the secure set-
membership state estimation for ANNs using the homomor-
phic encryption scheme (HES). The centralchallengesare
delineated as follows:

1) How can an efficient data security protection mechanism
be designed that seamlessly integrates encoding and
encrypting capabilities for transmitted data?

2) How can an apt encrypted state estimation scheme be
crafted that addresses the intricacies posed by bandwidth
limitations, the HES, and the presence of unknown-but-

bounded noises?
3) In the midst of ensuring security, how can the estima-

tor parameters be optimized during the state estimate
calculation process?

In light of the aforementioned challenges, the primary
contributionsof this paper are articulated as follows.

1) Leveraging the encoding-decoding mechanism (EDM)
in tandem with the Paillier encryption technique, an
innovative HES is introduced. This approach, for the first
time, concurrently lightens the communication load and
ensures information security.

2) An encrypted set-membership state estimator tailored
for ANNs under bandwidth constraints is developed,
and the associated estimator parameters are subsequently
optimized.

3) By capitalizing on the additive homomorphic attribute of
the EDM-based encryption strategy, the security of the
state estimation computation process is affirmed.

The structure of this paper unfolds as follows. In Section
II, we introduce both the EDM-based HES and the encrypted
state estimator. Moving to Section III, utilizing the EDM-
based encryption mechanism, a secure set-membership state
estimation scheme tailored for ANNs facing unknown-but-
bounded noises is delineated, and the optimization of estimator
parameters is explored. Section IV offers a simulation example
to corroborate the effectiveness of our findings. The paper
culminates with conclusions in Section V.

II. SYSTEM DESCRIPTION ANDPRELIMINARIES

A. Description of Artificial Neural Networks

For the purpose of problem formulation, we first give the
following definitions.

Definition 1: [2] An ellipsoidal set is defined as

S (c, πP ) , {x|(x− c)TP−1(x− c) ≤ π} (1)

wherec is the center of the ellipsoidal set,P is the positive
definite matrix that determines the shape of the set, andπ is
the positive scalar.

Definition 2: [44] The functionσ : Rm 7→ R
m is said to

satisfy the offset sector-bounded condition aroundx∗ if

(σ(x) − σ(x∗)− τ(x − x∗))
T(σ(x) − σ(x∗)) ≤ 0 (2)

whereτ is the positive scalar, andx ∈ R
m andx∗ ∈ R

m are
vectors.

Now, consider a time-varying ANN of the following form:

xt+1 = Φtxt +Wtσ(xt) + wt (3)

where xt ,
[

x1,t x2,t · · · xm,t

]T ∈ R
m is the state

vector; σ(xt) ,
[

σ1(x1,t) σ2(x2,t) · · · σm(xm,t)
]T

is
the neuron activation function which satisfies the offset sector-
bounded condition;Φt andWt are known time-varying matri-
ces with appropriate dimensions; andwt ∈ R

m represents the
unknown-but-bounded noise with

wt ∈ S (0, Qt) , {wt|wT
t Q

−1
t wt ≤ 1}. (4)

Here,Qt is the positive definite matrix.
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The measurement output of ANN system (3) is character-
ized as follows:

yt = Ctxt + vt (5)

whereyt ,
[

y1,t y2,t · · · yl,t
]T ∈ R

l is the measurement
output,Ct is the known time-varying matrix with appropriate
dimension, andvt ∈ R

l is the unknown-but-bounded noise
with

vt ∈ S (0, Rt) , {vt|vTt R−1
t vt ≤ 1}. (6)

Here,Rt is the positive definite matrix.

B. EDM-based Homomorphic Encryption Scheme

When system data traverses the sensor-to-estimator commu-
nication channel, the data transmission rate might be curtailed
due to communication bandwidth limitations. Concurrently,
given the open nature of the communication network, the
transmitted data remains susceptible to eavesdropping attack-
s, potentially compromising data security. To address these
concerns, this section introduces a novel EDM-based HES
through leveraging the dynamic EDM so as to fortify both
data transmission and computation processes, see Algorithm 1
for more details.

Fig. 1. Architecture of the secure state estimation for ANNs under the HES.

Encoding: First, for converting the continuous-amplitude
system signal into the discrete-amplitude data, the dynamic
encoding rule is given as follows:

{

zι,t = αtzι,t−1 + βtŷι,t

ŷι,t = Q
(

1
βt
(yι,t − αtzι,t−1)

) (7)

for ι = 1, 2, . . . , l, whereŷι,t ∈ R is the encoded data,zι,t ∈ R

is the internal variable,αt andβt are known scalars, andQ(·)
is the quantization function. Here, forr > 0, the quantization
rule is given as

Q(y) ,
⌈2b−1y

r

⌉ r

2b−1
(8)

with b being the length of binary bits fory and⌈·⌉ being the
function rounding upward to the nearest integer.

Encryption : Next, the Paillier encryption technique is u-
tilized to convert the plaintext into the ciphertext, which
includes three steps, namely, key generation, encryption and
decryption [33]. In the key generation step, the public key
(n, g) and the secrete key(λ, µ) are generated. Then, the
encryption process is given as follows:

Jy̌ι,tK , Enc
[2b−1

r
ŷι,t

]

= g
2b−1

r
ŷι,tγn mod n2 (9)

whereEnc[·] is the encryption function,γ is a random integer
and

y̌ι,t ,
2b−1

r
ŷι,t.

Decryption: In the decryptor side, the ciphertextJy̌ι,tK is
decrypted by the following rule:

Dec
[

Jy̌ι,tK
]

=
(Jy̌ι,tK

λ mod n2 − 1)µ

n
mod n (10)

whereDec[·] is the decryption function.
Decoding: The ŷι,t is decoded according to

ýι,t , ~(ŷι,t) = αtýι,t−1 + βtŷι,t (11)

where ~(·) is the decoding function and́yι,t ∈ R is the
decoded data with the initial conditiońyι,0 = zι,0.

Algorithm 1 EDM-based Paillier Encryption
1: procedure KEY GENERATION

2: Randomly select two large prime numbersp and q
such thatgcd(pq, (p− 1)(q − 1)) = 1.

3: Computen = pq.
4: Computeλ = lcm(p− 1, q − 1).
5: Randomly select a valueg such thatg ∈ Z

∗

n2 and
ensure the existence ofµ = (L(gλ mod n2))−1 mod n,
whereL(α) , α−1

n
and Z

∗

n2 , {β|β ∈ Z, 0 ≤ β <
n2, gcd(β, n2) = 1}.

6: Public key:(n, g).
7: Secret key:(λ, µ).
8: end procedure
9: procedure ENCRYPTION

10: Select a randomγ from Z
∗

n2 .

11: Compute ciphertextJy̌ι,tK = g
2b−1

r
ŷι,tγn mod n2.

12: Return Jy̌ι,tK as the encrypted message.
13: end procedure
14: procedure DECRYPTION

15: ComputeµL(Jy̌ι,tKλ mod n2) mod n.
16: Return the result as the decrypted plaintext message.
17: end procedure

Letting δι,t , ýι,t − yι,t be the decoding error, one has

δι,t , ýι,t − yι,t

= βt

(

Q
( 1

βt
(yι,t − αtzι,t−1)

)

− 1

βt
(yι,t − αtýι,t−1)

)

. (12)

Then, with the aid of the mathematical induction method, one
haszι,t = ýι,t, which further indicates that

|δι,t| ≤
r

2b−1
|βt|. (13)

Note that the EDM-based homomorphic encryption tech-
nique operates on integers. Consequently, within the estimator,
any operations involving encrypted data must be executed in
integer form. In this paper, the form of the encrypted set-
membership state estimator is delineated as follows:

~xt+1 = Φtx̂t +Wtσ(x̂t) (14)

x̂t+1 = Gt+1~xt+1 + ~Ft+1~

( r

2b−1
Dec

[

Jy̌t+1K
]

)

(15)
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where

Gt , I − ~FtCt,

~xt ∈ R
m is the one-step prediction,̂xt ∈ R

m is the estimate
of xt, and ~Ft is the quantized state estimator gain to be
determined with

~Ft , Q(Ft) = Ft +∆t.

Here,Ft is the state estimator gain before being quantized and
∆t is the quantization error.

Remark 1:This paper proposes a novel HES that draws
upon the EDM and the Paillier encryption technique, thereby
marking significant strides in the realm of secure estima-
tion. The bespoke EDM-based encryption mechanism proffers
several benefits including: 1) mitigating the communication
overhead, 2) fortifying the security of data transmission, and
3) upholding the integrity of the homomorphic encryption
computation process. Furthermore, it is imperative to highlight
that, under this HES, operations pertaining to ciphertextsJy̌ι,tK
must be conducted on integers. As a result, the state estimator
gain requires quantization, and this complicates the tasks of
parameter determination for the estimator and the analysis of
its performance.

The main objectives of this paper are outlined as follows.

1) Determine state estimator gains for ANNs such that,
under the influence of bandwidth constraints and HES,
the system statext is confined to the following ellipsoidal
set over a finite-horizont ∈ [0, T ]:

xt ∈ S (x̂t, πtPt) (16)

whereT is the time horzion,πt is the positive scalar, and
Pt > 0 is the shape-defining matrix for the ellipsoidal set.

2) Develop a secure state estimation scheme for ANNs
utilizing the EDM-based homomorphic encryption tech-
nique in order to ensure both a data transmission process
fortified with security and a protected parameter compu-
tation procedure.

III. M AIN RESULTS

The following lemmas are necessary for deriving our main
results.

Lemma 1: [15] For k = 1, 2, . . . ,K, let S (ck, Pk) be
given ellipsoidal sets. The Minkowski sum of the given
ellipsoidal sets are bounded by the ellipsoidal setS (c, P ),
that is:

S (c1, P1)⊕ S (c2, P2)⊕ · · · ⊕ S (cK , PK) ⊆ S (c, P )

where the centerc and the shape-defining matrixP > 0 of
the ellipsoidal set satisfy

c =

K
∑

k=1

ck, P =

K
∑

k=1

̺−1
k Pk,

K
∑

k=1

̺k = 1, ̺k > 0.

A. Design of the Encrypted State Estimator

In the following theorem, a sufficient condition is derived,
which guarantees the existence of the ellipsoidal set (16).

Theorem 1:Let positive scalarsρ1,t, ρ2,t, ρ3,t, ̺t be given
and x0 ∈ S (x̂0, π0P0). For t ∈ [0, T ], consider the ANN
(3), the EDM-based HES (7)–(11), and the encrypted set-
membership state estimator (14), (15). Suppose that

xt ∈ S (x̂t, πtPt). (17)

Compute shape-defining matrices~Pt+1 andPt+1 as per

~Pt+1 = ρ1,tπtΦtPtΦ
T
t + ρ2,tWtΞtW

T
t + ρ3,tQt (18)

Pt+1 = (1− ̺t+1)
−1(I − Ft+1Ct+1)~Pt+1. (19)

Then, we have

xt+1 ∈ S (x̂t+1, πt+1Pt+1) (20)

and the estimator parameter is calculated by

Ft+1 = (1− ̺t+1)
−1 ~Pt+1C

T
t+1O

−1
t+1 (21)

where

Ot+1 = ̺−1
t+1

~Rt+1 + (1− ̺t+1)
−1Ct+1

~Pt+1C
T
t+1 (22)

πt+1 =
1

1−̟t+1
+

mlr2β2
t+1θt+1

22b−2̟t+1
Tr(P−1

t+1)

− ̺t+1(1− ̺t+1)θt+1Tr(~R
−1
t+1)

(1−̟t+1)
(

1− ̺t+1 + ̺t+1λmax(Ψt+1)
) (23)

3
∑

i=1

ρ−1
i,t = 1, ρi,t > 0, i = 1, 2, 3

Ξt , τ2πtPt, 0 ≤ ̺t < 1, γ−1
1,t + γ−1

2,t = 1

γ1,t > 0, γ2,t > 0, ~Rt , γ1,tRt + γ2,tΛt

Λt ,
lr2β2

t

22b−2
I, θt , 2Tr(CT

t Ct
~Pt +Rt) +

lr2β2
t

22b−3

Ψt , ŔtCt
~PtC

T
t Ŕ

T
t ,

~R−1
t = ŔT

t Ŕt, 0 < ̟t < 1.

Moreover, the quantized set-membership state estimator gain
is determined by

~Ft =













⌈F11,t

♭
⌉♭ ⌈F12,t

♭
⌉♭ · · · ⌈F1l,t

♭
⌉♭

⌈F21,t

♭
⌉♭ ⌈F22,t

♭
⌉♭ · · · ⌈F2l,t

♭
⌉♭

...
...

...
...

⌈Fm1,t

♭
⌉♭ ⌈Fm2,t

♭
⌉♭ · · · ⌈Fml,t

♭
⌉♭













(24)

with ♭ , 21−br and ⌈·⌉ being the function rounding upward
to the nearest integer.

Proof: First, let’s handle the neuron activation function
in (3). According to Definition 2, we have

(ξt − τ(xt − x̂t))
Tξt ≤ 0 (25)

where
ξt , σ(xt)− σ(x̂t).

Utilizing the elementary inequality, it follows from (25) that

ξTt ξt ≤ τ(xt − x̂t)
Tξt

≤ τε

2
ξTt ξt +

τ

2ε
(xt − x̂t)

T(xt − x̂t) (26)
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which further indicates

ξTt ξt ≤
τε−1

2− τε
(xt − x̂t)

T(xt − x̂t). (27)

It is obvious thatτε
−1

2−τε is minimized if ε = τ−1. Then, it
follows from (17) and (27) that

ξtξ
T
t ≤ τ2πtPt (28)

which results in
ξt ∈ S (0,Ξt) (29)

with Ξt , τ2πtPt.
Next, according to the definition of Minkowski sum [15],

it follows from (3), (4) and (17) that the system statext+1 is
confined to the following set:

xt+1 = Φtxt +Wtσ(xt) + wt

= Φtxt +Wtσ(x̂t) +Wtξt + wt

∈ ΦtS (x̂t, πtPt)⊕Wtσ(x̂t)

⊕WtS (0,Ξt)⊕ S (0, Qt). (30)

Then, with the aid of the (14), (18) and by applying Lemma 1
to (30), the Minkowski sum of the above-mentioned sets can
be bounded by an ellipsoidal set of the following form:

ΦtS (x̂t, πtPt)⊕Wtσ(x̂t)

⊕WtS (0,Ξt)⊕ S (0, Qt)

⊆ S (~xt+1, ~Pt+1) (31)

which implies that the system state is confined to the following
ellipsoidal set:

xt+1 ∈ S (~xt+1, ~Pt+1). (32)

In next steps, with the aim of further improving the estima-
tion performance, the measurement informationýt is used to
correct the shape of the ellipsoidal set (32). According to (5)
and (12), one has

ýt+1 − Ct+1xt+1 = δt+1 + vt+1

∈ S (0,Λt+1)⊕ S (0, Rt+1) (33)

where

Λt ,
lr2β2

t

22b−2
I.

By leveraging Lemma 1, one obtains an ellipsoidal set that
covers the set (33):

S (0,Λt+1)⊕ S (0, Rt+1) ⊆ S (0, ~Rt+1) (34)

where ~Rt , γ1,tRt + γ2,tΛt. Obviously, it follows from (33)
and (34) that

xt+1 ∈ Sýt+t
, {xt+1|(ýt+t − Ct+1xt+1)

T ~R−1
t+1

× (ýt+t − Ct+1xt+1) ≤ 1}. (35)

From (32) and (35), it is known that the system statext+1 is
confined in the intersection of ellipsoidal setS (~xt+1, ~Pt+1)
and ellipsoidal setSýt+t

:

xt+1 ∈ S (~xt+1, ~Pt+1) ∩ Sýt+t
.

That is
{

(xt+1 − ~xt+1)
T ~P−1

t+1(xt+1 − ~xt+1) ≤ 1

(ýt+1 − Ct+1xt+1)
T ~R−1

t+1(ýt+1 − Ct+1xt+1) ≤ 1

which yields

(1− ̺t+1)~ζ
T
t+1

~P−1
t+1

~ζt+1 + ̺t+1η
T
t
~R−1
t+1ηt ≤ 1 (36)

with ~ζt , xt − ~xt, ηt , ýt − Ctxt and0 ≤ ̺t < 1.
By substitutingýt − Ctxt = ýt − Ct~xt − Ct

~ζt into (36), it
is easy to derive that

~ζTt+1

(

(1− ̺t+1)~P
−1
t+1 + ̺t+1C

T
t+1

~R−1
t+1Ct+1

)

~ζt+1

− 2̺t+1
~ζTt+1C

T
t+1

~R−1
t+1~ηt+1 + ̺t+1~η

T
t+1

~R−1
t+1~ηt+1 ≤ 1 (37)

where~ηt , ýt − Ct~xt.
Further applying the matrix inverse lemma [3] to (37), it

follows from (19) that

~ζTt+1P
−1
t+1

~ζt+1 − 2̺t+1
~ζTt+1C

T
t+1

~R−1
t+1~ηt+1

+ ̺t+1~η
T
t+1

~R−1
t+1~ηt+1 ≤ 1. (38)

Next, according to (15), one has

~ζt+1 = ζ̂t+1 + ~Ft+1~ηt+1

= ζ̂t+1 + Ft+1~ηt+1 + νt+1 (39)

whereζ̂t , xt − x̂t andνt , ∆t~ηt. Then, it is easy to verify
that

νTt νt ≤ β̃t~η
T
t ~ηt (40)

where

β̃t ,
mlr2β2

t

22b−2
.

By substituting (39) into (38), we obtain that

ζ̂Tt+1P
−1
t+1ζ̂t+1 + ~ηTt+1F

T
t+1P

−1
t+1Ft+1~ηt+1 + νTt+1P

−1
t+1νt+1

+ 2ζ̂Tt+1P
−1
t+1Ft+1~ηt+1 + 2ζ̂Tt+1P

−1
t+1νt+1 + 2~ηTt+1F

T
t+1

× P−1
t+1νt+1 − 2̺t+1ζ̂

T
t+1C

T
t+1

~R−1
t+1~ηt+1 − 2̺t+1~η

T
t+1F

T
t+1

× CT
t+1

~R−1
t+1~ηt+1 − 2̺t+1ν

T
t+1C

T
t+1

~R−1
t+1~ηt+1

+ ̺t+1~η
T
t+1

~R−1
t+1~ηt+1 ≤ 1. (41)

It follows from (21), (22) and (41) that

ζ̂Tt+1P
−1
t+1ζ̂t+1

≤ ̺2t+1~η
T
t+1

~R−1
t+1Ct+1Pt+1C

T
t+1

~R−1
t+1~ηt+1

− ̺t+1~η
T
t+1

~R−1
t+1~ηt+1 − νTt+1P

−1
t+1νt+1

− 2ζ̂Tt+1P
−1
t+1νt+1 + 1

≤ 1− ~ηTt+1O
−1
t+1~ηt+1 + (̟−1

t+1 − 1)νTt+1P
−1
t+1νt+1

+̟t+1ζ̂
T
t+1P

−1
t+1ζ̂t+1 (42)

which, together with (40), results in

ζ̂Tt+1P
−1
t+1ζ̂t+1

≤ 1

1−̟t+1
(1− ~ηTt+1O

−1
t+1~ηt+1 + β̃t+1 ~̟ t+1~η

T
t+1P

−1
t+1~ηt+1)

=
1

1−̟t+1
(1 + Tr(β̃t+1 ~̟ t+1P

−1
t+1 −O−1

t+1)~η
T
t+1~ηt+1)
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≤ 1

1−̟t+1
(1 + θt+1Tr(β̃t+1 ~̟ t+1P

−1
t+1 −O−1

t+1)) (43)

where

~̟ t , ̟−1
t − 1, 0 < ̟t < 1

θt , 2Tr(CT
t Ct

~Pt) + 2Tr(Rt) +
lr2β2

t

22b−3
.

According to (22), one has

O−1
t+1

= (̺−1
t+1

~Rt+1 + (1− ̺t+1)
−1Ct+1

~Pt+1C
T
t+1)

−1

= ̺t+1(1 − ̺t+1)((1 − ̺t+1)~Rt+1 + ̺t+1Ct+1
~Pt+1C

T
t+1)

−1

= ̺t+1(1 − ̺t+1)Ŕ
T
t+1((1− ̺t+1)I + ̺t+1Ŕt+1Ct+1

~Pt+1

× CT
t+1Ŕ

T
t+1)

−1Ŕt+1

≥ ̺t+1(1 − ̺t+1)~R
−1
t+1

1− ̺t+1 + ̺t+1λmax(Ψt+1)
(44)

where
Ψt , ŔtCt

~PtC
T
t Ŕ

T
t

with Ŕt being the factorization of~R−1
t , i.e.,

~R−1
t = ŔT

t Ŕt.

Then, it follows from (43) and (44) that

ζ̂Tt+1P
−1
t+1ζ̂t+1

≤ 1

1−̟t+1
+

β̃t+1θt+1

̟t+1
Tr(P−1

t+1)

− ̺t+1(1 − ̺t+1)θt+1Tr(~R
−1
t+1)

(1 −̟t+1)
(

1− ̺t+1 + ̺t+1λmax(Ψt+1)
) (45)

which means that (20) is ensured. Based on mathematical
induction method, it is obvious that the (20) is always ensured
over a finite-horizont ∈ [0, T ], and the proof is now complete.

B. Optimization of the Parameters

From Theorem 1, it becomes clear that the state estimation
performance is contingent upon the parameters~Pt, ~Rt and
πt. These parameters signify the volume of the ellipsoidal set.
Subsequent theorems furnish methodologies to minimize this
ellipsoidal set’s volume in terms of the matrix trace.

Theorem 2:The traceTr(~Pt) is minimized when

ρi,t =

∑3
i=1

√

Tr(Pi,t)
√

Tr(Pi,t)
(46)

where

P1,t , πtΦtPtΦ
T
t , P2,t , WtΞtW

T
t , P3,t , Qt.

Proof: The minimum ofTr(~Pt) is computed by solving
the following constrained optimization problem:

min
ρi,t

Tr(~Pt)

s.t.
3

∑

i=1

ρ−1
i,t = 1 andρi,t > 0 (47)

where

Tr(~Pt) , ρ1,tTr(πtΦtPtΦ
T
t ) + ρ2,tTr(WtΞtW

T
t )

+ ρ3,tTr(Qt).

First, we define a Lagrangian function of the following
form:

L (ρi,t, λt) = Tr(~Pt) + λt

(

1−
3

∑

i=1

ρ−1
i,t

)

(48)

whereλt is a variable called the Lagrange multiplier.
Next, by resorting to the Lagrange multiplier approach, one

obtains the minimal value ofTr(~Pt) by solving:
{

∂L (ρi,t,λt)
∂ρi,t

= 0
∂L (ρi,t,λt)

∂λt
= 0.

(49)

Then, solving equations in (49), it is easy to calculate that










ρi,t =
∑

3
i=1

√
Tr(Pi,t)√

Tr(Pi,t)

λt =
(

∑3
i=1

√

Tr(πtΦtPtΦT
t )

)2

.
(50)

Moreover, by substituting (50) into (18), one has

~Pt =

3
∑

i=1

√

Tr(Pi,t)

3
∑

i=1

Pi,t
√

Tr(Pi,t)
(51)

which completes the proof.
Theorem 3:The traceTr(~Rt) is minimized when

γ1,t =

√

Tr(Rt) +
√

Tr(Λt)
√

Tr(Rt)
(52)

γ2,t =

√

Tr(Rt) +
√

Tr(Λt)
√

Tr(Λt)
. (53)

Proof: The proof of this theorem is similar to that of
Theorem 2 and is thus omitted here.

Theorem 4:The variableπt is minimized when

̺t =
1

1 +
√

λmax(Ψt)
. (54)

Proof: First, computing the first- and second-order deriva-
tives of the variable̺ t in the functionπt:

dπt

d̺t
=

̺2tλmax(Ψt)− (1− ̺t)
2

(1− ̺t + ̺tλmax(Ψt))2
~θt (55)

d2πt

d̺2t
=

2λmax(Ψt)

(1− ̺t + ̺tλmax(Ψt))3
~θt (56)

where
~θt ,

θtTr(~R
−1
t )

1−̟t
.

It follows from (55)–(56) that, for any0 ≤ ̺t < 1,

d2πt

d̺2t
≥ 0 (57)

which means that the first-order derivative of the functionπt

is non-decreasing as̺t increases. Then, by further utilizing
(55)–(56), one acquires that







dπt

d̺t

∣

∣

∣

̺t=0
= −~θt < 0

dπt

d̺t

∣

∣

∣

̺t=1
= ~θt > 0.

(58)
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Thus, it is easy to see thatπt is minimized when

dπt

d̺t
= 0,

which means

̺t =
1

1 +
√

λmax(Ψt)
.

Therefore, the proof is complete.
Remark 2: In Theorem 1, within the set-membership esti-

mation framework, the sufficient condition for the validity of
the secure state estimation problem has been derived through
successfully navigating the challenges posed by the HES and
the nonlinear activation function. Leveraging contemporary
techniques such as the Minkowski sum technique, the outer-
bounding ellipsoid method, and the recursive equation ap-
proach, the procedure to compute the recursive solution for the
corresponding estimator gains has been deduced. Furthermore,
in Theorems 2–4, the parameters have been optimized utilizing
the Lagrange multiplier method.

C. Design of the Secure State Estimation Scheme

In this subsection, a secure state estimation scheme is pro-
posed with the aid of the EDM-based homomorphic encryption
approach.

Before proceeding further, the following properties (i.e.,
additive homomorphic properties) of the Paillier encryption
technique are necessary for deriving the secure state estimation
scheme:

JxK ⊙ JyK = Jx+ yK (59)

JxKk = JkxK (60)

where⊙ represents multiplication between ciphertexts andx,
y, k are integers.

We strive to design a secure state estimation algorithm
that allows the computing device to perform operations on
encrypted data. This strategy ensures information security
by preserving the data in its encrypted state throughout the
computation. Specifically, the sought-after estimated informa-
tion can be derived from theencryptedoutput Jy̌tK, thereby
mitigating potential system information leaks.

Encrypted Estimator: According to Theorems 1–4, the
quantized state estimator gain~Ft+1 is calculated in the en-
crypted estimator. Before performing homomorphic operations
(with the help of the EDM-based encryption mechanism), it is
necessary to convert the estimator gain~Ft+1 into the integer
matrix:

F̌t+1 =
2b−1

r
~Ft+1.

Then, the encrypted estimator performs the following com-
putation regarding the integer matrix̌Ft+1 and the encrypted
dataJy̌t+1K:

Jh(y̌,t+1)K

, Jy̌1,t+1K
F̌1,t+1 ⊙ Jy̌2,t+1K

F̌2,t+1 ⊙ · · · ⊙ Jy̌l,t+1K
F̌l,t+1

(61)

for  = 1, 2, · · · ,m, where F̌ι,t+1 is the (, ι)-element
of the matrix F̌t+1. Next, the ciphertextsJh(y̌,t+1)K ( =
1, 2, · · · ,m) are transmitted to the decryptor in the user side.

Local Decryptor: By utilizing the additive homomorphic
properties (59) and (60), one has

Dec
[

Jh(y̌,t+1)K
]

= Dec
[

Jy̌1,t+1K
F̌1,t+1 ⊙ Jy̌2,t+1K

F̌2,t+1 ⊙ · · ·
⊙ Jy̌l,t+1K

F̌l,t+1
]

= Dec
[

JF̌1,t+1y̌1,t+1 + F̌2,t+1y̌2,t+1 + . . .

+ F̌l,t+1y̌l,t+1K
]

= F̌1,t+1y̌1,t+1 + F̌2,t+1y̌2,t+1 + · · ·+ F̌l,t+1y̌l,t+1. (62)

Then, by applying the decoding technique (11), we have

~

( r2

22b−2
Dec

[

Jh(y̌,t+1)K
]

)

= ~

( r2

22b−2
(F̌1,t+1y̌1,t+1 + F̌2,t+1y̌2,t+1 + . . .

+ F̌l,t+1y̌l,t+1)
)

= ~(~F1,t+1ŷ1,t+1 + ~F2,t+1ŷ2,t+1 + · · ·+ ~Fl,t+1ŷl,t+1)

= αt+1(~F1,t+1ý1,t + ~F2,t+1ý2,t + · · ·+ ~Fl,t+1ýl,t)

+ βt+1(~F1,t+1ŷ1,t+1 + ~F2,t+1ŷ2,t+1 + . . .

+ ~Fl,t+1ŷl,t+1)

= ~F1,t+1ý1,t+1 + ~F2,t+1ý2,t+1 + · · ·+ ~Fl,t+1ýl,t+1

= [~Ft+1ýt+1] (63)

for  = 1, 2, · · · ,m, where[~Ft+1ýt+1] is the th-element of
~Ft+1ýt+1. Thus, the information~Ft+1ýt+1 can be obtained
from the decryptor.

Based on (61)–(63), the estimated statex̂t+1 can be obtained
by using the encrypted output, that is,

~xt+1 = Φtx̂t +Wtσ(x̂t) (64)

x̂t+1 = Gt+1~xt+1 +













~
(

r2

22b−2Dec
[

Jh(y̌1,t+1)K
])

~
(

r2

22b−2Dec
[

Jh(y̌2,t+1)K
])

...
~
(

r2

22b−2Dec
[

Jh(y̌m,t+1)K
])













= Gt+1~xt+1 + ~Ft+1ýt+1. (65)

The detailed encrypted state estimation algorithm (i.e.,
Algorithm 2) is given as follows.

Remark 3: In Theorems 1–4, we have mainly delved into
the secure set-membership state estimation for ANNs by
leveraging the HES. Specifically, we have devised a robust
data security strategy that effortlessly combines both encoding
and encrypting functions for data in transit. Then, we have
developed an encrypted state estimation method that over-
comes the hurdles presented by bandwidth restrictions, the
intricacies of the HES, and the influence of unknown-but-
bounded disturbances. Finally, we have designed the optimal
estimator parameters while ensuring robust security during the
state estimation computation.

Remark 4: In this paper, we have embarked on a com-
prehensive exploration of secure state estimation for ANNs
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Algorithm 2 Encrypted State Estimation Algorithm
1: procedure ENCRYPTEDESTIMATOR

2: Compute the quantized state estimator gain~Ft+1 ac-
cording to Theorems 1–4 and convert it into the integer
matrix F̌t+1.

3: Compute Jh(y̌,t+1)K , Jy̌1,t+1K
F̌1,t+1 ⊙

Jy̌2,t+1K
F̌2,t+1 ⊙ · · · ⊙ Jy̌l,t+1K

F̌l,t+1 ( = 1, 2, · · · ,m).
4: Return Jh(y̌,t+1)K as the encrypted message, and

transmit this message to the local decryptor.
5: end procedure
6: procedure LOCAL DECRYPTOR

7: Compute~Ft+1ýt+1 according to (63).
8: Computex̂t+1 according to (64) and (65).
9: Return the result as the decrypted state estimate.

10: end procedure

influenced by open and bandwidth-limited communication
networks. The distinct aspects of our findings can be sum-
marized as follows: 1) the tackled secure set-membership
state estimation issue is novel, incorporating the HES; 2)
the developed EDM-based HES is new, which effectively
addresses the challenges posed by bandwidth limitations;
and 3) the introduced homomorphic-encryption-based state
estimation algorithm is innovative, which ensures both secure
data transmission and secure estimate computation.

IV. I LLUSTRATIVE EXAMPLE

In this section, simulation examples are provided to illus-
trate the efficacy of the proposed encrypted state estimation
algorithm for ANNs.

A. Example 1

The parameters for system (3) are specified as follows:

Φt = diag{0.65, 0.5, 0.3+ 0.15 sin(0.1t)}

Wt =





0.2 0.3 0.3
0.1 + 0.1e−t 0.15 0.2

0.3 0.25 0.1



 ,

Ct =

[

1 4 0
5 0.1 cos(0.2t) 2

]

and the neuron activation function is

σ(xt) =
[

tanh(x1,t) tanh(x2,t) tanh(x3,t)
]T

.

Moreover, the process noisewt and the measurement noisevt
are selected as

wt =
[

φ(0.2) sin(0.2t) φ(0.3) sin(0.3t) 0.2 cos(0.2t)
]

vt =
[

φ(0.1) cos(0.25t) φ(0.1) cos(0.1t)
]

whereφ(a) obeys the uniform distributionU (−a, a) with a
being a positive scalar. The positive matricesQt andRt are
selected as

Qt = diag{0.16 sin2(0.2t), 0.28 sin2(0.3t), 0.15}
Rt = diag{0.1 cos2(0.25t), 0.1}.

TABLE I
PARAMETER SELECTION

Parameter Value Parameter Value
αt 1 + 0.6e−0.5t βt 1.2 + e−0.3t

r 15 b 8
p 41 q 13
x0 [0.5 1 0.2]T x̂0 [0.7 0.8 0.3]T

The other parameters used in the simulation are specified
in Table I. Then, by utilizing the parameters in Table I and
the Algorithm 1, the public key and the secret key of the
EDM-based HES are, respectively, generated as(533, 5291)
and (120, 0.0022).

Figs. 2 and 3, respectively, show the amplitude changes
of the measured outputyt, decoded datáyt, and encoded
data ŷt. It is clear that the amplitude of the encoded data is
smaller than the measurement output, which indicates that the
proposed EDM is capable of compressing the data effectively.
In addition, the decoding error is shown in Fig. 4, from which
we can see that the decoding errors are all smaller than the
decoding error upper bound 0.1406. Accordingly, it means that
the measurement output can be recoverable from the encoded
data, which shows the effective of the proposed method.

Fig. 5 illustrates the variation of the encrypted outputJy̌ι,tK.
It can be seen that the encrypted output is totally different
from the measurement output, which means that it is difficult
to obtain system information from encrypted data. Then, the
dynamic trajectories of system states and their estimates are
depicted in Figs. 6–8. It is obvious that the designed recursive
state estimation algorithm achieves a satisfactory level of per-
formance under the encryption mechanism. Fig. 9 illustrates
the estimation error from the eavesdropper. We can see that
the eavesdropper obtains an estimation error on the order of
104 magnitudes, making it unable to effectively compute the
state estimate, which shows that the proposed secure state
estimation algorithm can present a desired performance.

0 10 20 30 40 50 60 70
Time instank (t)

-1

0

1

2

3

4

5

6

7

8

Fig. 2. Measurement output, decoded data and encoded data.

B. Example 2

To validate that the estimation algorithm proposed in this
paper is also applicable to unstable systems, we present an
example with system parameters having eigenvalues greater
than 1. The system parameter is

Φt = diag{1.1, 0.3 + 0.75 cos(0.3t), 0.35 + 0.2 sin(0.2t)}

and the other parameters are the same as in Example 1.
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Fig. 3. Measurement output, decoded data and encoded data.
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Fig. 4. Decoding error of the EDM.
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Fig. 5. Encrypted output data under the EDM-based HES.

Fig. 6. System statex, estimatex̂ and estimation errorx− x̂.

Fig. 7. System statex, estimatex̂ and estimation errorx− x̂.

Fig. 8. System statex, estimatex̂ and estimation errorx− x̂.
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Fig. 9. Estimation error from eavesdropper.

Figs. 10–12 shows the dynamic trajectories of system states
and their estimates. In particular, Fig. 10 illustrates the esti-
mation of unstable system states, showing that the designed
estimation algorithm still achieves the expected estimation
performance. Fig. 13 shows the dynamic trajectory of the
estimation error, which indicates that the designed estimation
algorithm is effective for unstable systems. The decoding error
is shown in Fig. 14, from which we can see that the decoding
errors are all smaller than the decoding error upper bound
0.1406. Accordingly, it means that the measurement output
can be recoverable from the encoded data, which shows the
effective of the proposed method for unstable systems. In
summary, Fig. 10–14 shows the effectiveness of the proposed
secure state estimation algorithm.

Fig. 10. System statex and estimatêx.

V. CONCLUSION

In this investigation, the secure set-membership state esti-
mation issue has been addressed for a certain class of ANNs
influenced by unknown-but-bounded noises and bandwidth-
limited communication networks. A novel EDM-based HES
has been introduced, which ensures the security of both data
transmission and estimate computation processes. Leveraging
this encryption mechanism, a secure state estimation algorithm
for ANNs has been devised to confine the estimation error
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Fig. 11. System statex and estimatêx.

Fig. 12. System statex and estimatêx.
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Fig. 14. Decoding error of the EDM.

within an optimal ellipsoidal set and assure the estimation
performance. The pertinent parameters have been determined
through optimization problems, and the sought-after state
estimator gains have been derived from recursive equations.
A simulation example has been showcased to validate the
efficacy of the proposed secure state estimation approach.

In practical engineering, there remain several complex and
significant challenges, such as distributed sensor networks,
that have yet to be explored within a unified framework of
ANNs. Furthermore, additional estimation approaches, such
as the proportional-integral-observer technique, warrant further
investigation.
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