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Abstract—This paper is concerned with the secure state es- ANN
timation problem for artificial neural networks (ANNs) subject EDM
to unknown-but-bounded noises, where sensors and the remote HES
estimator are connected via open and bandwidth-limited com- Rmxn
munication networks. Using the encoding-decoding mechanism
and the Paillier encryption technique, a novel homomorphic
encryption scheme (HES) is introduced, which aims to ensure 7Z
the secure transmission of measurement information within com- | *
munication networks that are constrained by bandwidth. Under [#]
this encoding-decoding-based HES, the data being transmitted
can be encrypted into ciphertexts comprising finite bits. The lem(p, q)
emphasis of this research is placed on the development of agcd(p, )
secure set-membership state estimation algorithm, which allows &
for the computation of estimates using encrypted data without the Amax(A)
need for decryption, thereby ensuring data security throughout Tr(P)
the entire estimation process. Taking into account the unknown-
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Q is a positive-definite matrix

but-bounded noises, the underlying ANN and the adopted HES, Q>0
sufficient conditions are determined for the existence of the
desired ellipsoidal set. The related secure state estimator gains

are then derived by addressing optimization problems using the
Lagrange multiplier method. Lastly, an example is presented to |. INTRODUCTION

;Eg%;?ﬁ effectiveness of the proposed secure state estimation The structure and functionality of biological neural network-
s, especially the brain, are emulated by an artificial neural
_ Index Terms—Aurtificial neural networks, secure state estima- petwork (ANN). Characterized by its ability to approximate
tion, homomorphic encryption scheme, bandwidth constraints, ¢,hqtions; the ANN showcases essential features such as self-
set-membership state estimation. learning and nonlinear mapping [6], [14], [16], [31], [32], [52],
[55]. Structurally, the ANN consists of three layers: the input
layer, hidden layer, and output layer. Each of these layers hous-
es multiple neurons, and the connection weights among these
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system parameters. Subsequently, in the context of neural bounded noises?

networks exposed to energy-bounded noises, both/the  3) In the midst of ensuring security, how can the estima-
!~ State estimator and thé/,, state estimator have been tor parameters be optimized during the state estimate
developed with the assistance of the linear matrix inequality ~ calculation process?

technique in [18] and [41], respectively. It is crucial to |n light of the aforementioned challenges, the primary
recognize that, when ANNs experience unknown-but-boundgghtributionsof this paper are articulated as follows.
noises, the above-mentioned estimation algorithms might nof) Leveraging the encoding-decoding mechanism (EDM)

produce sa}tisfactpry r.esults, apd this_gives rise to the nggd for in tandem with the Paillier encryption technique, an
an alternative estimation algorithm tailored to such conditions. j,novative HES is introduced. This approach, for the first

As such, the primary objective of this paper is to introduce & ime concurrently lightens the communication load and
recursivestate estimator for ANNs within the set-membership o cres information security.

estimation paradigm and wptimizethe relevant parameters. 5y ap encrypted set-membership state estimator tailored
For the realization of remote estimation and control tasks, for ANNs under bandwidth constraints is developed

network communication technology has become an integral 54 the associated estimator parameters are subsequently
component of automation control systems [4], [12], [25], [34], optimized.
[38], [47]. In these networked configurations, measuremengy gy capitalizing on the additive homomorphic attribute of

data is relayed to the remote estimator through an open” o Epm-based encryption strategy, the security of the
communication channel that is constrained by bandwidth [17], state estimation computation process is affirmed

[20], [51], [54]. It is important to highlight that transmitting ., -« e of this paper unfolds as follows. In Section

o2es 0 potental shuesarapping hroats, Such vulnerabille® INfoduce both the EOM-based HES and the encrypted
P P bpIng | th te estimator. Moving to Section Ill, utilizing the EDM-

can jeopardize the integrity of the conveyed data, which COLEGa

. , - qsed encryption mechanism, a secure set-membership state
consequently undermine the system’s estimation or contro

performance [7], [28], [48], [56]. Given this scenario, ther%‘stlma'uon scheme tailored for ANNs facing unknown-but-

o . ; o ounded noises is delineated, and the optimization of estimator
emerges a critical need to investigate data transmission mecha . . . .

. S ; : rameters is explored. Section IV offers a simulation example
nisms and state estimation algorithms that incorporate secufity

features [49]. Presently, two predominant security protecti(%cr)w corroborate the effectiveness of our findings. The paper

. . culminates with conclusions in Section V.
mechanisms are employed in networked systems. One revolves
around data-perturbation strategies such as differential privacy
method, while the other centers on encryption techniques
exemplified by the Paillier encryption method [11], [23].  A. Description of Artificial Neural Networks

In the data-perturbation-based strategy, security is achievegtor the purpose of problem formulation, we first give the
by introducing random noises to the data prior to transmissigg|lowing definitions.
thus obscuring the original data [21], [50]. However, the inte- pefinition 1: [2] An ellipsoidal set is defined as
gration of these random noises might compromise the system’s

desired performance. On the other hand, the encryption-based - (¢,7P) = {z[(z —¢)" P~ (z —¢) < 71} 1)

approach ensures data transmission security through intricgi€.re - is the center of the ellipsoidal seP, is the positive
algebraic operations. Notably, leveraging the homomorphiC &sfinite matrix that determines the shape of the set, il
tributes of the encryption algorithm also secures the parametgfs positive scalar.
solving process [36], [42]. It should be pointed out that studies yqfinition 2 [44] The functions : R™ — R™ is said to
centered on encryption-based estimation remain nascent. é%ﬁsfy the offset sector-bounded condition aroundf
such, we aim to develop aencryptedset-membership state

estimation algorithm that safeguards both the data transmis- (o(z) — o(2.) — 7(z — 2.)) " (0(2) — o(2:)) <0 (2)
sion and parameter computation phases. Furthermore, gi\\gv Der is the positive scalar, and € R™ andz, € R™ are

the bandwidth constraints on networked ANNSs, it becomes
Vectors.

imperative to introduce a novel framework dedicated to the : . . . )
. . : . .~ Now, consider a time-varying ANN of the following form:
co-design of data encoding and encryption mechanisms, which

further drives our research motivation. pp1 = Pexy + Wio(24) + we 3
In this paper, our primary focus is the secure set- N T )
membership state estimation for ANNs using the homomdtherez: = [z1¢ @2 -+ @m: € R™ is the state
phic encryption scheme (HES). The centcilallengesare vector; o(z;) £ [o1(z14) o2(224) -+ crm(xm,t)]T is
delineated as follows: the neuron activation function which satisfies the offset sector-
1) How can an efficient data security protection mechanisg®unded condition$, andW; are known time-varying matri-
be designed that seamlessly integrates encoding &®$ with appropriate dimensions; amg € R™ represents the
encrypting capabilities for transmitted data? unknown-but-bounded noise with
2) How can an apt encrypted state estimation scheme be A T -1
: crafted that addpressesytﬁe intricacies posed by bandwidth wi € 71(0,Q0) = {wilwy @ wr < 1} “)
limitations, the HES, and the presence of unknown-buttere, @, is the positive definite matrix.

IIl. SYSTEM DESCRIPTION ANDPRELIMINARIES
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The measurement output of ANN system (3) is charactewvhereEnc|-| is the encryption functiony is a random integer
ized as follows: and -
Yy = CtIt —+ UVt (5) gbjt é 2 - QL7t_
wherey; 2 [y1: ya2r -+ wii] € Risthe measurement

output, C; is the known time-varying matrix with appropriate Decryption: In the decryptor side, the ciphertefd, ] is

dimension, andy; € R is the unknown-but-bounded noisedecrypted by the following rule:

with B B ([9..¢]* mod n? —1)u
v € .70, Ry) 2 {ve ol Ry Mo, < 1), (6) Dec[[g..]] = - modn  (10)
Here, R; is the positive definite matrix. whereDec|-] is the decryption function.
Decoding They, ; is decoded according to

B. EDM-based Homomorphic Encryption Scheme

/ A ~ 2 ~

When system data traverses the sensor-to-estimator commu- ot = RGut) = @ttt + Befle 1)
nication channel, the data transmission rate might be curtaibere i(-) is the decoding function ang,; € R is the
due to communication bandwidth limitations. Concurrentlglecoded data with the initial conditiaf o = z, 0.
given the open nature of the communication network, the
transmitted data remains susceptible to eavesdropping attaslgorithm 1 EDM-based Paillier Encryption
s, potentially compromising data security. To address these procedure KEY GENERATION
concerns, this section introduces a novel EDM-based HES: Randomly select two large prime numbersand ¢
through leveraging the dynamic EDM so as to fortify both  such thatged(pg, (p — 1)(¢ — 1)) = 1.
data transmission and computation processes, see Algorithmzl  Computen = pq.

for more details. 4: ComputeX = lem(p — 1,9 — 1).
5: Randomly select a valug such thatg € Z*, and
[ anns -] sensor |-—{ @ Encryption |-—— ensure the existence of = (L(g* mod n?))~! mod n,
where L(a) £ =L and Z7, £ {B|B € Z,0 < B <
Secure Transmission —=, > COI%mh;nxil(;?ﬁOD TLQ, ng(/B, n2) — 1}.
6: Public key:(n, g).
Secure Computation <> ﬁ (]:E:;rgszt;dg 7: Secret key'()\ﬁ lu‘)'
8: end procedure
; 9: procedure ENCRYPTION
[ User [« 2 Decryption Je——— 10:  Select a randomy from Z ,.
i ncrypted Estimator . b—1
' Enerypted Estimator 11:  Compute ciphertexfy, ] = ¢“+ 7-t4" mod n2.
12: Return [g,.] as the encrypted message.

Fig. 1. Architecture of the secure state estimation for ANNdar the HES. 13: end procedure

N . ) ) 14: procedure DECRYPTION
Encoding: First, for converting the contlnuous-amplltudew ComputeuL([[yb,t]}’\ mod n2) mod n.

system signal into the discrete-amplitude data, the dynamig.  Retyrn the result as the decrypted plaintext message.
encoding rule is given as follows: 17: end procedure

2ot =02 -1+ Bilut

Yot = ‘Q(i(%,t - O[tZL.,tfl))
for. =1,2,...,1, wherej, , € Ris the encoded data, ; € R Gut 2 ot — Yot
is the internal variabley; andj; are known scalars, ang(-) 1 1 )
is the quantization function. Here, for> 0, the quantization = 7t (Q(E(%,t —z-1)) — E(yu,t — Oétyb.,t—l))- (12)
rule is given as

()

Letting 9, + £ 9.+ — y..+ be the decoding error, one has

Then, with the aid of the mathematical induction method, one

2b—1 r . . . .
D(y) 2 [ - yw e 8) hasz, ; = .+, which further indicates that
T
with b being the length of binary bits fay and [-] being the 100t < o=z 16el- (13)

function rqunglng upward tq t_he nearest. Integer. . . Note that the EDM-based homomaorphic encryption tech-
Encryption: Next, the Paillier encryption technique is u-

- . . . .~ nigue operates on integers. Consequently, within the estimator,
tilized to convert the plaintext into the ciphertext, which q pere : -9 q y ;
) . : any operations involving encrypted data must be executed in
includes three steps, namely, key generation, encryption an@/

decryption [33]. In the key generation step, the public ke:)?]:ger form. In this paper, the form of the encrypted set-
(n,g) and the secrete key\, u) are generated. Then, the

encryption process is given as follows: Zip1 = Oy + Wio(2y) (14)
2b—1
[§..] 2 Enc|
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where A. Design of the Encrypted State Estimator

Gy 21— FC, In the following theorem, a sufficient condition is derived,
which guarantees the existence of the ellipsoidal set (16).
7, € R™ is the one-step predictior;, € R™ is the estimate ~ Theorem 1:Let positive scalarg ¢, p2.¢, p3.¢, 0: be given
of z;, and F, is the quantized state estimator gain to bandzy € .% (3o, m0 ). Fort € [0, T], consider the ANN
determined with (3), the EDM-based HES (7)-(11), and the encrypted set-
membership state estimator (14), (15). Suppose that
Tt € y(j?t, tht)- (17)

Here, I} is the state estimator gain before being quantized agdmpute shape-defining matric@SH and P, ,, as per
A, is the quantization error. R T R

Remark 1:This paper proposes a novel HES that draws i1 = PLem®eli® 4 po WiZ Wy i p3.iQr  (18)
upon the EDM and the Paillier encryption technique, thereby Piy1 = (1 — 0t41) (I — Fi41Ct41) Prgr. (19)
marking significant strides in the realm of secure estima;
tion. The bespoke EDM-based encryption mechanism proffj;rs]en’ we have
several benefits including: 1) mitigating the communication i1 € L (Zpp1, 41 Pryr) (20)
overhead, 2) fortifying the security of data transmission, and . .
3) upholding the integrity of the homomorphic encryptior"flnd the estimator parameter is calculated by
computation process. Furthermore, it is imperative to highlight Fipq = (1- gtﬂ)—lﬁtHCﬁlO;fl (21)
that, under this HES, operations pertaining to ciphertpxts]
must be conducted on integers. As a result, the state estim?ﬁ’gﬁre

F, 2 9(F) = F,+ Ay

gain requires quantization, and this complicates the tasks 0p, ,, = Q,;_llét-i—l +(1— QtH)—1Ct+115t+10tTJr1 (22)
parameter determination for the estimator and the analysis of 1 mir? B2, ,0pi1
its performance. Tl = T 22b_2t+ Tr(Ph)
The main objectives of this paper are outlined as follows. s It _—
1) Determine state estimator gains for ANNs such that, - 0re1(1 = or1 o TR, ) (23)
under the influence of bandwidth constraints and HES, (1= @e41) (1 = @1 + 01 Amax (Pes1)

the system state, is confined to the following ellipsoidal . .
ZP‘,t =1, pit>0, i=1,2,3

set over a finite-horizon € [0, T1:
v € (&0, mP) 16) EE2TmP, 0<o <1, v+, =1
. ) ) ) " Y16 >0, Y20 >0, Ry 23R+ yo.0As
whereT is the time horziong, is the positive scalar, and 1232 B 17232
P; > 0 is the shape-defining matrix for the ellipsoidal set. A; = 2T_t2], 0, 2 2Tr(CLCL P, + Ry) + 2T_t3
2) Develop a secure state estimation scheme for ANNs _ , ~, e ‘T A
utilizing the EDM-based homomorphic encryption tech- Ve = RGRCE Ry, Ry =Ri Ry, 0<w <l
nique in order to ensure both a data transmission proceggreover, the quantized set-membership state estimator gain
fortified with security and a protected parameter compis determined by
tation procedure.

[T [T o [T
e [y o B
l1l. MAIN RESULTS Fy = : . : (24)
The following lemmas are necessary for deriving our main [%Wb [Fm2eqp .. [%]b

results. . A o1—b . . :
Lemma 1: [15] For k = 1,2,. .., K, let .#(cx, P) be W|thhb =2 r_and [-] being the function rounding upward
i lipsoidal sets. The Minkowski sum of the giver%Ot © nearegt Integer. L :
given e : Proof: First, let's handle the neuron activation function

ellipsoidal sets are bounded by the ellipsoidal séfc, P), in (3). According to Definition 2, we have

that is:
(& — 1@ —2))T& <0 (25)
.. C
S(e1, P) & S (c2, ) & ® S (ck, Px) € F(c, P) where
A N
where the center and the shape-defining matrik > 0 of & = o(we) — o(de).
the ellipsoidal set satisfy Utilizing the elementary inequality, it follows from (25) that
K Ko K & & <m(wy — )76
c= c,, P= P, =1, > 0. TE T . .
; k ;Qk k ;Qk Ok < 7 ?€t+%(xt—xt)T(It—xt) (26)
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which further indicates That is
—1 . T3-1 N
e < ;i (= 20) " (21 — 21). (27) (%t“ — Tt41) PHTl (iC:rl B Tirr) S
e (U1 — Cor1®ig1)” By (41 — Crraeg) <1

It is obvious that;ilE is minimized ife = 7. Then, it

follows from (17) and (27) that

which yields
6T < 72m, P, (28) (1 = 0e41)¢ 1 PR Gt + ot Bhme <1 (36)
with Et L gy — &, 21y — Coxy and0 < gy < 1.
By substitutingy; — Cray = 1 — C: @ — Cy(; into (36), it
is easy to derive that
with =y £ T27TtPt.

=T p—1 T p-1 =
. - . . 1- P, Cr 1R C
Next, according to the definition of Minkowski sum [15], CHl(( ﬁrgtﬂi ttl_ijl e thl tj_ll)%ﬂ
it follows from (3), (4) and (17) that the system state; is  — 20t+1G41Crp1 Ry e + 0e17le 1 By g ey < 1 (37)
confined to the following set:

which results in
& € 7(0,5) (29)

Whereﬁt £ y,t — Ci%4.

Tip1 = Py + Wio () +wy Further applying the matrix inverse lemma [3] to (37), it
= By + Wio (i) + Wiks + w; follows from (19) that
€ &7 (&4, mPy) ® Wio(24) P Gt — 20001 G R Rl
O Wi (0,5) .7(0,Q1). (30) + o1 Rl < 1. (38)

Then, with the aid of the (14), (18) and by applying Lemma 1 Next, according to (15), one has
to (30), the Minkowski sum of the above-mentioned sets can

be bounded by an ellipsoidal set of the following form: Git1 = ft+1 + Fip1mi41
O (&1, m Py) & Wior (i) = Gt Foaflees + v (39)
SW.7(0,Z) @ (0, Q) where(, £ z, — 2, andvy £ Af.. Then, it is easy to verify
- 5 that
C S (Tey1, Piy) (31) > .
o vive < Bl (40)
which implies that the system state is confined to the following
ellipsoidal set: Where 9 12
= a mirsp;
Tip1 € L (Tigr, Pryr). (32) b T

In next steps, with the aim of further improving the estima- By substituting (39) into (38), we obtain that
tion performance, the measurement informatipns used to éalptjrllgtﬂ + ﬁ’tTHFtElptjrllFtHﬁtH + VEklPt:rlthJrl
correct the shape of the ellipsoidal set (32). Accordingto (5) .t -1 . AT o1 I, S
and (12), one has + 2<t+1pt+1Ft+177t+} + 2<t+1f)t+lyt+1 + 20, Fiy
X Pt:rll’/t+1 - 29t+1§tT+1CtT+1Rze_+1177t+1 — 29t+177tT+1FtT+1

Yi+1 — Crp1Ti41 = 01 + Vi1 T 3.1 - T AT B-1 =
X Cpp By 1 Me+1 — 20641441 Crpr By e

€ (0, A1) ® (0, Ryy1) (33) T A1 -
+ o417 Ry < 1 (41)
where
a 17232 It follows from (21), (22) and (41) that
A = 232 I. A,
. . L Cr1 PG
By leveraging Lemma 1, one obtains an ellipsoidal set that o T 8.1 T B-1 4
covers the set (33): < 011 B Conn P Oy Ry e
T p-1 > T —1
_, — R — P,
S0, A1) ® F(0, Riys) € 70, Frpr)  (34) o ey telient = H T e

= oa . . - 26;1;1Pt:_11Vt+1 +1
where Ry = 71 + Ry 4+ v2,+A¢. Obviously, it follows from (33)

T oA—1 = -1 T p-1
and (34) that <1- 77t+1?rt+177i41r1A+ (thrl - 1)Vt+1Pt+1Vt+1
+ @i4+1G41 Py Gt (42)

Tei1 € Sy 2 {zepa|(Grre — Conmen) R
X (Ge4++ — Cry17e41) < 1}, (35)

v
From (32) and (35), it is known that the system state; is Ct“ft“é}*l

which, together with (40), results in

confine_d in_ the intersection of ellipsoidal set(Z; 11, P+1) < - (1 — 775 O g + Bt"'lﬁtﬂ-lﬁgrlpt:-llﬁt-l—l)
and ellipsoidal set”y, . ,: - ?1ﬂt+1
. R -1 _ -1\ =
Tip1 € L (g1, Pry1) NSy, T 1w (L+ Tr(Bes1@e1 Py — Oy )y Tiet)
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1

= m(l + 011 Tr (B @ Py — OL)) (43)
where
2wl -1, 0<w <1
N T~ 3 17’252
0; £ 2Tr(CL Oy Py) + 2Tr(Ry) + —5—

9263
According to (22), one has
Oiy
= (op Beyr + (1= 0141) ' Cop1 Poa CL ) !
= 011(1 — 0041)((1 — 0041) Reg1 + Qt-l—lCt-l—lﬁt-ﬁ-lCzaﬂ_l
= 0r41(1 = 004 1) Ry (1 = 0041)] + 0041 Re1Coq1 Prsa
X Ca1R?+1)71Rt+1
or+1(1 — 0e+1) Ry
T 1= 0t41 + 0t+1 Amax(Vit1)
where

(44)

v, 2 RCPCIRT
with R, being the factorization oﬁ;l, ie.,
Rt =RIR,.
Then, it follows from (43) and (44) that
CttT+1 Pt111ét+1 ~
STz zlvt+1 * ﬁtHetHTr(Pt:rll)

W41
B ori1(1 = 0011)00 1 Tr(R) (45)
(1 — 1) (1 = 0141 + 041 Amax(Pes1))

where
Te(P,) 2 py Tr(my® PO + po Tr(W,E,W,5)
+ p3.:Tr(Qy).

First, we define a Lagrangian function of the following

form:
3

L(pi, M) = Te(Py) + (11— Zpi}l)
i=1
where )\, is a variable called the Lagrange multiplier.
Next, by resorting to the Lagrange multiplier approach, one
obtains the minimal value ofr(P;) by solving:

0L (pi e \e) 0
api,t -
83(Pi,t,>\t> _ 0

Ot -

(48)

(49)

Then, solving equations in (49), it is easy to calculate that

?:1 VTr (P ¢)

Pit = -
v Tr(P;.¢) ) (50)
A= (L VIime o))
Moreover, by substituting (50) into (18), one has
3 3
5 ot o Pir
Pt = Tr(@iyt) —— (51)
; ; VIr(Zig)

which completes the proof._ |
Theorem 3:The traceTr(R;) is minimized when
)

- \/TI‘(Rt + \/TI‘(At)

Tt = Tr(Rt) (52)
- \/TI‘(Rt) + \/TI‘(At)
V2,6 = To (AL . (53)

which means that (20) is ensured. Based on mathematical pyoof: The proof of this theorem is similar to that of
induction method, it is obvious that the (20) is always ensurggheorem 2 and is thus omitted here. -

over a finite-horizont € [0, 7], and the proofis now complete.

B. Optimization of the Parameters

Theorem 4:The variabler; is minimized when
1

0= ———F—.
! 1 + \V )\max(\ljt)

Proof: First, computing the first- and second-order deriva-

(54)

From Theorem 1, it becomes clear that the stateaestimatiﬁ\,rbs of the variabley; in the functionr,:

performance is contingent upon the parametég,th and
;. These parameters signify the volume of the ellipsoidal set. L g,
Subsequent theorems furnish methodologies to minimize this

ellipsoidal set's volume in terms of the matrix trace.
Theorem 2:The traceTr(F;) is minimized when

YL VBT

Pit =
! To(Pyy)

where

A T A = T -y
P =M@ PPy, Doy =W EW,, P3:= Q.

Proof: The minimum of”ﬁ(ﬁt) is computed by solving

the following constrained optimization problem:
min Tr(P,)
Pi,t
3
s.t. Zp;t1 =1landp;; >0
i=1

(46)

(47)

d7Tt Q%/\max(\llt) - (1 - Qt)Q
5 (55)
th (1 — Ot + Qt)\max(\ljt))
d27Tt 2)\max(\Ijt) —
dQ% (1 =0t + 0t Amax(V¢))? ' (56)
where g
9" A 6‘tTI'(R; )
t 1-— ¢ '
It follows from (55)—(56) that, for ang < g; < 1,
d27Tt
> 57
dof ~ ’ 7)

which means that the first-order derivative of the functign
is non-decreasing ag; increases. Then, by further utilizing
(55)—(56), one acquires that

dmy _ 0
oy~ <0 (58)
dme _
dme| g, > 0.
Ot 0r=1
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Thus, it is easy to see that is minimized when for y = 1,2,---,m, where FJL_,tH is the (y,¢)-element
drm, of the matrix F;, ;. Next, the ciphertextgh(y,.+1)] () =
— =0, 1,2,---,m) are transmitted to the decryptor in the user side.
do: Local Decryptor: By utilizing the additive homomorphic
which means properties (59) and (60), one has

1
SR} Pl

) = Dec |4 Fy1 e o g Fy2 41 @---

Therefore, the proof is complete. [ | U[yl’““;]] L2611

Remark 2:In Theorem 1, within the set-membership esti-  © [F.641]"7+]
mation framework, the sufficient condition for the validity of = Dec[[[FJLtHthH + Fyo 1,41 + - -
the secure state estimation problem has been derived through | -

R + gl,t+1yl,t+1]ﬂ

successfully navigating the challenges posed by the HES and . 5 g B . B 62
the nonlinear activation function. Leveraging contemporary */Lt+1¥Lt41 + Epafeers + o+ e (62)
techniques such as the Minkowski sum technique, the out&hen, by applying the decoding technique (11), we have
bounding ellipsoid method, and the recursive equation ap- 2
proach, the procedure to compute the recursive solution for the ﬁ(ﬁDeC[[{h@th)M)
corresponding estimator gains has been deduced. Furthermore, 5
in Theorems 2—4, the parameters have been optimized utilizing= ﬁ(%(ﬁﬂ,tﬂm,tﬂ + EFyo 141 + - -
the Lagrange multiplier method. g
+ Fgl,t+1§l,t+1))
C. Design of the Secure State Estimation Scheme = W(Ep 10,641 + Frosrfoer1 + o+ Fyprifies)

In this subsection, a secure state estimation scheme is pro= at+1(ﬁgl,t+1g1,t + 13;2,t+12i2,t +oe 13;1,t+1.1}z,t)

posed with the aid of the EDM-based homomorphic encryption ﬁt+1(ﬁ71 101041 + ﬁﬂ 102041 + -

approach. — )
Before proceeding further, the following properties (i.e., i’Fﬂvt“y““)a B
additive homomorphic properties) of the Paillier encryption = Fj1 1191641 + F2er192,041 + -+ + Fo 1941
technique are necessary for deriving the secure state estimation [Foprtiesnl, (63)
scheme: .
fory=1,2,---,m, where[Fi19:11], is the sth-element of
[z] © [y] = [z + ] (59)  F,,14;11. Thus, the informationf,, 4,1 can be obtained
[z]* = [kx] (60) from the decryptor.

Based on (61)—(63), the estimated state; can be obtained
where® represents multiplication between ciphertexts and py using the encrypted output, that is,

y, k are integers.

We strive to design a secure state estimation algorithm Trp1 = Podty + Wio (i) (64)
that allows the computing device to perform operations on h(2;{,—2,2Dec[[[h(g1,t+1)ﬂ])
encrypted data. This strategy ensures information security h(QJZ,—Z,zDec[[[h(yz,tH)ﬂ])

by preserving the data in its encrypted state throughout the #;41 = Giy1T41 +

computation. Specifically, the sought-after estimated informa- ) .

tion can be derived from thencryptedoutput [i;], thereby h(gz==Dec|[A(m,+1)]])

mitigating potential system information leaks. = Gri1Zs1 + Foprfern. (65)
Encrypted Estimator: According to Theorems 1-4, the ] o ] )

quantized state estimator gaifi,; is calculated in the en- Thg detaﬂgd gncrypted state estimation algorithm (i.e.,

crypted estimator. Before performing homomorphic operatioAddorithm 2) is given as follows. . _

(with the help of the EDM-based encryption mechanism), it is Rémark 3:In Theorems 1-4, we have mainly delved into

necessary to convert the estimator ggml into the integer the secure set-membership state estimation for ANNs by

matrix: leveraging the HES. Specifically, we have devised a robust
5 ob—1 data security strategy that effortlessly combines both encoding
Fiq = Fiq

and encrypting functions for data in transit. Then, we have
developed an encrypted state estimation method that over-
Momes the hurdles presented by bandwidth restrictions, the

putation regarding the integer matrf.., and the encrypted intricacies of the HES, and the influence of unknown-but-

data[ge+]: bounded disturbances. Finally, we have designed the optimal
[7(3.e1)] estimator par_ameters Whilg ensuring robust security during the
. Py 5 Foaury 3 Boees state estimation computation.
= [l O[22 © - © [0 Remark 4:In this paper, we have embarked on a com-

(61) prehensive exploration of secure state estimation for ANNs
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TABLE |

Algorithm 2 Encrypted State Estimation Algorithm PARAMETER SELECTION

1: procedure ENCRYPTED ESTIMATOR

22 Compute the quantized state estimator ghijn, ac- Parameter Value | Parameter Value
. . . o 1+0.6e7° Bt 1.2 +e -

cording to Theorems 1-4 and convert it into the integer ” 15 b ]

matrix F . ) p 1 q 13
3: Compute  [h(3,,¢41)] E [1.e01]00 0 © xo [0.510.2)7 &0 [0.7 0.8 0.3]T

[g2.e01]F2 41 @ - © [Gnpsa ]+t (9 =1,2,--- ,m).
4: Return [h(g,.4+1)] as the encrypted message, and

transmit this message to the local decryptor. The other parameters used in the simulation are specified
5: end procedure in Table I. Then, by utilizing the parameters in Table | and
6: procedure LOCAL DECRYPTOR the Algorithm 1, the public key and the secret key of the
7: ComputeF; 17,1 according to (63). EDM-based HES are, respectively, generated 8, 5291)
8.  Computei;,; according to (64) and (65). and (120,0.0022).
9: Return the result as the decrypted state estimate. Figs. 2 and 3, respectively, show the amplitude changes
10: end procedure of the measured outpuj;, decoded dataj;, and encoded

datag;,. It is clear that the amplitude of the encoded data is
smaller than the measurement output, which indicates that the

influenced by open and bandwidth-limited communicatidffoPosed EDM is capable of compressing the data effectively.
networks. The distinct aspects of our findings can be surff @ddition, the decoding error is shown in Fig. 4, from which

marized as follows: 1) the tackled secure set-membersij§ c&n see that the decoding errors are all smaller than the
state estimation issue is novel, incorporating the HES; 9§coding error upper bound 0.1406. Accordingly, it means that

the developed EDM-based HES is new, which effective e measurement output can be recoverable from the encoded
addresses the challenges posed by bandwidth limitatiofét@ Which shows the effective of the proposed method.

and 3) the introduced homomorphic-encryption-based state 19- 5 illustrates the variation of the encrypted outpyt;].

estimation algorithm is innovative, which ensures both secufec@n be seen that the encrypted output is totally different
data transmission and secure estimate computation. from the measurement output, which means that it is difficult

to obtain system information from encrypted data. Then, the
dynamic trajectories of system states and their estimates are
depicted in Figs. 6-8. It is obvious that the designed recursive
In this section, simulation examples are provided to illusstate estimation algorithm achieves a satisfactory level of per-
trate the efficacy of the proposed encrypted state estimatf@imance under the encryption mechanism. Fig. 9 illustrates

IV. | LLUSTRATIVE EXAMPLE

algorithm for ANNs. the estimation error from the eavesdropper. We can see that
the eavesdropper obtains an estimation error on the order of
A. Example 1 10* magnitudes, making it unable to effectively compute the

state estimate, which shows that the proposed secure state

The parameters for system (3) are specified as follows: estimation algorithm can present a desired performance.

&, = diag{0.65,0.5,0.3 + 0.15sin(0.1¢)}

0.2 0.3 03
W, = 101+0.1e"t 0.15 0.2],
0.3 0.25 0.1
1 4 0

Ci=15 0.1cos(0.2t) 2

and the neuron activation function is

] 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 70
T Time instank (t)

o(xy) = [tanh(xu) tanh(z2,.) tanh(x37t)]

. . Fig. 2. Measurement output, decoded data and encoded data.

Moreover, the process noisg and the measurement noisg

are selected as
wy = [¢(0.2) sin(0.2t)  ¢(0.3) sin(0.3t) 0.2 cos(0.2t)} B. Example 2

ve = [$(0.1) cos(0.25t)  $(0.1) cos(0.1t)] To validate that the estimation algorithm proposed in this

where ¢(a) obeys the uniform distributior# (—a, a) with o  Paper is also applicable to unstable systems, we present an
being a positive scalar. The positive matric@s and R, are €xample with system parameters having eigenvalues greater

selected as than 1. The system parameter is
Q; = diag{0.16 sin?(0.2t), 0.28 sin(0.3¢),0.15} @, = diag{1.1,0.3 + 0.75 cos(0.3t), 0.35 + 0.2sin(0.2¢) }
I H 2 )
Ry = diag{0.1 cos”(0.25¢),0.1}. and the other parameters are the same as in Example 1.
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0 10 20 30 40 50 60 70
Time instank (t)

Fig. 3. Measurement output, decoded data and encoded data.

0 40 50 60 7
Time instank (1)

Fig. 4. Decoding error of the EDM.

—— Encrypted output Enc[2" " gy/r]
—+— Encrypted output Enc[2" 14, /r]

Time instank (t)

Fig. 5. Encrypted output data under the EDM-based HES.

0s —State
—— Estimation error —o— Estimate

30
Time instank (1)

Fig. 6. System state, estimatez and estimation errox — 2.

—Statex

25 — Estimation emor| |~ Estimate &

o
2
15 o 50 10 20 30 40 50 60 70
1
o 5W
0
0 10 20 30 40 50 60 70

Time instank (t)

Fig. 7. System state, estimatez and estimation errox — 2.

Time instank (t)
Fig. 8. System state, estimatez and estimation errox — z.

s x10*

0 10 20 30 40 50 60 70
Time instank (t)

Fig. 9. Estimation error from eavesdropper.

Figs. 10-12 shows the dynamic trajectories of system states
and their estimates. In particular, Fig. 10 illustrates the esti-
mation of unstable system states, showing that the designed
estimation algorithm still achieves the expected estimation
performance. Fig. 13 shows the dynamic trajectory of the
estimation error, which indicates that the designed estimation
algorithm is effective for unstable systems. The decoding error
is shown in Fig. 14, from which we can see that the decoding
errors are all smaller than the decoding error upper bound
0.1406. Accordingly, it means that the measurement output
can be recoverable from the encoded data, which shows the
effective of the proposed method for unstable systems. In
summary, Fig. 10-14 shows the effectiveness of the proposed
secure state estimation algorithm.

— State z

o~ Estimate [
1128
1127

1126

2500 1125
AN
2000 1124 \

54.9995 55 55.0005

0 10 20 30 40 50 60 70
Time instank (t)

Fig. 10. System state and estimatez.

V. CONCLUSION

In this investigation, the secure set-membership state esti-
mation issue has been addressed for a certain class of ANNs
influenced by unknown-but-bounded noises and bandwidth-
limited communication networks. A novel EDM-based HES
has been introduced, which ensures the security of both data
transmission and estimate computation processes. Leveraging
this encryption mechanism, a secure state estimation algorithm
for ANNs has been devised to confine the estimation error
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