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Abstract: The decline in groundwater level is a key 
factor contributing to cover collapse in karst areas. In 
this study, the model tests and numerical simulations 
are conducted to reveal the breeding process and 
formation mechanism of cover collapse sinkholes 
caused by the decline of groundwater level in karst 
area. Firstly, the model tests confirm that the decline 
of groundwater level generates negative pressure at the 
lower edge of overlying soil. The negative pressure 
experiences four distinct phases during the 
groundwater drawdown process: rapid rise, slow 
decline, rapid decline, and gradual dissipation. The 
maximum negative pressure is influenced by the 
particle size distribution of the overlying soil. Then, the 
numerical simulations are carried out to investigate 
the change process of negative pressure caused by the 
loss of fillers in karst pipe. The simulated results 
indicate that the rate of groundwater decline and the 
thickness and initial void ratio of the overlying soil can 
affect the maximum negative pressure. As 
groundwater level drops, a negative pressure zone 
forms underground, causing tensile failure in the 

surrounding soil and creating an arched soil hole, 
which weakens the support for the overlying soil. This 
phenomenon can also lead to the collapse of the 
overlying soil under its self-weight. Groundwater table 
decline in karst areas can result in both internal and 
surface collapses. When the overlying soil is thin, 
internal and surface collapses occur simultaneously. In 
contrast, for thick overlying soil, internal collapse 
happens first, followed by a layer-by-layer collapse, 
ultimately forming sinkholes. Finally, the breeding 
process and formation mechanism of the Yujiawan 
Reservoir sinkholes are discussed. Geological 
conditions and groundwater level decline significantly 
affect internal collapse in karst areas, requiring careful 
consideration from on-site engineers. 
 
Keywords: Cover collapse sinkhole; Groundwater 
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1    Introduction  

Cover collapse sinkhole in karst areas is a kind of 

Formation process of cover collapse sinkholes related to groundwater level 

decline in karst areas 
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complicated environmental and geological hazards 
(Gutierrez et al. 2014). This type of hazards has been 
reported in many countries around the world 
(Gutierrez et al. 2008; Margiotta et al. 2016; Luu et al. 
2019; Malinowska et al. 2019; Dong et al. 2020; Lago 
et al. 2022; Talib et al. 2022; Brahmi et al. 2023). The 
cover collapse sinkholes can occur in both urban and 
rural areas, endangering not only people's lives but 
also roads, farmlands, and other facilities (Dai and Lei 
2018; di Santolo et al. 2018; Liu et al. 2023; Zhang et 
al. 2023). The influencing factors of the collapse of 
underground voids can be divided into natural factors 
and anthropogenic factors. The natural factors include 
geological conditions (Chen et al. 2022), geomaterial 
parameters (Feng et al. 2024; Gao et al. 2023; Liu et al. 
2024), rainfall (Qin et al. 2023), earthquakes (Pei et al. 
2023) and so on, while the anthropogenic factors 
include over-pumping of groundwater (He et al. 2013; 
Howari et al. 2016; Meng et al. 2020), roadway 
construction (Zhou and Beck 2005), mining 
(Kharisova et al. 2021; Yao et al. 2022), and other 
underground engineering excavations (Zhang et al 
2022; Seol et al. 2022; Xu et al. 2024). Cover collapse 
sinkholes caused by human activities are usually large-
scale and sudden (He et al. 2002; Festa et al. 2012). 
Numerous studies show that groundwater level decline 
caused by human activities is a key factor resulting in 
the cover collapse sinkholes in karst areas (He et al. 
2010; Zhao et al. 2012; He et al. 2012; Xia et al. 2019; 
Zeng and Zhou 2019). So far, the formation of cover 
collapse sinkholes caused by the decline in 
groundwater level can be explained by the potential 
erosion theory (White 2002; Pan et al. 2022) and the 
vacuum absorption erosion theory (Jiang et al. 2018; 
Pan et al. 2018). The potential erosion theory states 
that soil particles are carried away by water over time, 
and a cave gradually forms. While the vacuum 
absorption erosion theory emphasizes that a cave with 
low air pressure forms after water table drops. The low 
air pressure cave has two adverse effects: the stretching 
of the floor of soil and the atmospheric pressure of the 
top of soil. These two adverse effects make the ground 
prone to collapse. 

The reduced air pressure caused by the 
groundwater level decline creates tensile stresses on 
the bedrock surface, which may lead to the sinkhole 
formation. In view of this situation, many scientists use 
mechanical models to study cover collapse sinkholes 
(Galve et al. 2011; Wei and Sun 2018; Jia et al. 2018). 
With the development of numerical calculation 

technology, the methods of finite element method (Gong 
et al. 2022; Yu et al. 2022; Wang et al. 2023; Yu et al. 
2024), finite difference method (Yacine et al. 2014), 
discrete element method (Al-Halbouni et al. 2019; Zhang 
et al. 2024; Zhu 2024) and coupled continuum-
discontinuum methods (Gong et al. 2024; Wang et al. 
2024) are used to study the failure of geological 
structures, e.g., the cover collapse sinkholes caused by 
groundwater decline. In addition to theoretical analysis 
and numerical calculation methods, field monitoring 
(Jiang et al. 2017; Jiang et al. 2019; Jia et al. 2021), in-situ 
tests (Zumpano et al. 2019; Liang et al. 2020) and 
laboratory model tests (Guo et al. 2014; Xiao et al. 2018; 
Guo et al. 2023; Peng et al. 2023) are also commonly used 
research methods to determine the mechanism and main 
influencing factors of cover collapse sinkholes caused by 
groundwater level decline. 

The previous studies mainly aim to reveal the 
inducing factors of cover collapse sinkholes, such as water 
erosion and changes in air pressure, and pay little 
attention to the formation process and influencing factors 
of cover collapse sinkholes (Jiang et al. 2018; Pan et al. 
2018; Pan et al. 2022). However, the cover collapse 
sinkholes caused by groundwater level decline do not 
always happen suddenly. For example, from October 20, 
2010 to September 13, 2015, six sinkholes occurred 
successively at the east of the Yujiawan Reservoir in 
China. Therefore, the progressive formation process and 
breeding conditions of cover collapse sinkholes caused by 
groundwater level decline in karst areas still need to be 
comprehensively investigated. In this study, the presence 
of negative pressure after groundwater decline was 
confirmed using the model experiments. Then, the 
numerical simulations were performed to clarify the 
variation law of negative pressure as the groundwater 
level decreased and to analyze the influencing factors of 
negative pressure. Based on the results of model tests and 
numerical simulations, the formation process of cover 
collapse sinkholes in karst areas was explained. Finally, 
the breeding process and formation mechanism of the 
Yujiawan Reservoir sinkholes were revealed by numerical 
simulation. 

2    Model Tests of Groundwater Level Decline 

As groundwater levels decline, negative pressure 
zones may form beneath the relatively impermeable 
overlying soil. However, the overlying soil is in reality 
not completely impermeable. In the overlying soil that 
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are not completely sealed, the inner air pressure is 
basically a balance between pressure replenishment and 
consumption. The decline in groundwater level leads to 
a reduction in air pressure beneath the overlying soil, 
while air pressure is continuously replenished from the 
pores and fissures of the soil. Therefore, the pores and 
cracks of the overlying soil may be key factors affecting 
the magnitude of the negative pressure beneath the 
overlying soil. In this section, the model tests are used to 
investigate the negative pressure caused by the decline 
in groundwater level. 

2.1 Experimental equipment 

In this experiment, a device was developed to 
simulate ground subsidence caused by the decline in 
groundwater level. The device mainly consists of an 
iron experimental chamber and pressure measuring 

devices (Fig. 1). The iron experimental chamber has the 
dimensions of 0.6 m in length, width and height and is 
divided into two parts by a layer of geotechnical fabric 
covered iron gauze. The upper part is filled with clay to 
simulate the overlying soil, while the lower part is filled 
with water to simulate groundwater. The pressure 
transmitters have a response pressure of -100 kPa to 100 
kPa, which are placed at the bottom of the clay layer and 
can convert the pressure at the bottom of the clay layer 
into a digital signal that is transmitted to the computer. 

2.2 Materials 

The large clods in the original clay are broken up, 
and the crushed stone in the clay is removed by 
screening to obtain an artificial silty clay without 
crushed stone (Fig. 2). Four types of gravel with 
different particle sizes (0.15 mm~5 mm, 5 mm~10 mm, 

 
(a) Actual experimental chamber                        (b) Diagram of the experimental chamber 

Fig. 1 Schematic illustration of the experimental chamber used for the water-level decline model test. 
 

 
Fig. 2 Materials used for the water-level decline model test. 
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10 mm~15 mm and 15 mm~20 mm) shown in Fig. 2 
are selected and mixed in different ratios to obtain 
three kinds of gravel samples with different particle 
size distributions, numbered as JP1, JP2 and JP3, 
respectively. The particle size distribution curves of the 
gravel samples are shown in Fig. 3. The gravel samples 
and artificial clay are mixed to simulate the soil in real-
world scenarios. The parameter rock-soil ratio is 
defined as the ratio of the volume of gravel to the 
volume of clay in the sample, symbolized by R/S. In 
this study, the rock-soil ratios are set to 0.4, 0.2, and 
0.1, respectively. The samples are prepared according 
to the experimental requirements and then poured into 
the upper part of the iron experimental chamber in 
batches, stirring during pouring to achieve the most 
even distribution of the crushed stones in the soil. After 
compacting the samples, water is added and allowed to 
sit for 12 hours for natural consolidation and 
stabilization. 

2.3 Experimental results 

The negative pressure appears at the bottom of the 
clay layer when water level declines. Under different 
working conditions, the variation of negative pressure 
in the sample follows a similar pattern. Taking the 
condition of using JP3 gravel with the R/S of 0.1 as an 
example, the curve of negative pressure variation over 
time is shown in Fig. 4. The negative pressure in the 
sample can be divided into four stages over time during 
the groundwater drawdown process: rapid increase, 
slow decrease, rapid decrease, and gradual dissipation. 
At the beginning of the experiment, the air pressure 
inside the chamber is essentially the same as the 
atmospheric pressure outside. At this point, the valve 
at the bottom of the exhalent siphon is opened, 
allowing water to flow out of the pipe. Due to the sealed 
nature of the chamber and the saturation of the soil, a 
negative pressure zone is created at the bottom of the 
clay. When the water level drops rapidly, the negative 
pressure quickly increases to its maximum value, 
which is called the stage of rapid increase of negative 
pressure. During the increase in negative pressure, 
tensile cracks develop in the overlying soil layer, 
allowing external atmosphere to pass through the 
cracks into the negative pressure zone. Since the 
formation of cracks in the soil takes a certain time, the 
negative pressure in the sample slowly decreases and 
the water linkage from the pipe slows down, which 
marks the stage of slow decrease of negative pressure. 

Due to the development of cracks in the soil, a large 
amount of air can enter the negative pressure zone 
through the soil cracks, the negative pressure rapidly 
releases through the soil cracks, resulting in a rapid 
decrease of negative pressure. This stage is called rapid 
decrease of negative pressure. The soil sinks under the 
action of negative pressure, and when the soil regains 
stability, the number of cracks in the soil decreases, 
thereby reducing the penetration of external gas into 
the soil and gradually releasing the negative pressure 
in the sample. 

In order to analyze the influencing factors of 
negative pressure, the maximum negative pressure 
values obtained under different working conditions are 
counted in Fig. 5. From the experimental data, it is easy 
to see that the maximum negative pressure is 
influenced by the gravel particle size distribution and 
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Fig. 3 Particle size distribution curves of the gravel 
samples. 
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Fig. 4 Negative pressure curve with time (JP3, R/S=0.1) 
(R/S, the ratio of the volume of gravel to the volume of 
clay in the sample). 



J. Mt. Sci. (2024) 21(11): 3832-3846   

3836 

the R/S of the sample. When the R/S of the sample is 
relatively high, indicating a higher proportion of gravel 
in the sample, the influence of the gravel particle size 
distribution on the negative pressure is not significant. 
However, if the sample contains a lower proportion of 
gravel and the added gravel particles are larger, it will 
result in a noticeable decrease in negative pressure. 
This is because coarse gravel with a lower proportion 
in the sample causes the gravel to become isolated and 
suspended in the clay particles, allowing it to move 
more easily as the clay particles move, thereby creating 
larger voids in the sample. This facilitates the entry of 
outside air into the soil and does not favor the 
accumulation of negative pressure, resulting in a 
smaller maximum negative pressure value. For soil 
samples with a large uniformity coefficient (Cu), fine 
particles are more likely to fill the skeleton formed by 
coarse particles, so the void ratio of the soil is relatively 
small (Maroof et al. 2022). Fig. 5 shows that when the 
gravel proportion is low, the maximum negative 
pressure decreases as the uniformity coefficient 
increases. However, when the proportion of gravel is 
large, the maximum negative pressure increases as the 
uniformity coefficient increases. Therefore, the 
maximum negative pressure is affected by the void 
ratio of the soil and the specific law needs to be further 
investigated. 

3    Filler Loss Caused by Groundwater Level 
Decline 

Vertical solution pipes filled with materials are 
common in karst areas. The decline of groundwater 
can lead to the loss of fillers in practical engineering. In 
order to study the change process of negative pressure 
caused by the decline of groundwater level in practical 
engineering and its influencing factors, this section 
uses the numerical technology to simulate the loss 
process of karst pipe fillers. 

3.1 Numerical model 

The three-dimensional Fast Lagrange Analysis of 
Continua (FLAC3D) is used to establish the numerical 
models. The karst pipe with the diameter of 2 m is set 
in the limestone rock mass with the dimensions of 14 
m in length, 14 m in width and 10 m in height. The pipe 
is covered by the 2 m thick clay. The middle cross 
section is displayed to illustrate the model structure in 

Fig. 6. The overlying soil layer is calculated as an 
elastoplastic material, while the limestone and fillers 
are treated as elastic materials. The loss of karst 
pipeline fillers caused by the decline of groundwater 
level in practical engineering leads to the disturbance 
of overlying soil. Therefore, a vertical downward 
displacement of 5×10-3 m/step is applied at the top of 
the fillers to simulate its subsidence resulted from the 
groundwater decline. The physical and mechanical 
parameters of the materials employed in the numerical 
simulation are listed in Table 1. 

3.2 Change law of negative pressure 

The change curve of the negative pressure in the 
negative pressure zone with vertical displacement of 
the fillers is shown in Fig. 7. As the fillers settle, the 
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Fig. 5 Maximum negative pressure curve under 
different working conditions. 
 

 
Fig. 6 Numerical model for simulating the loss of karst 
pipe fillers. 
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negative pressure in the negative pressure zone passes 
through three stages, namely the rapid increase stage, 
the rapid decrease stage and the gradual dissipation 
stage. Since the settlement rate of the fillers is set to be 
constant in the numerical simulation, no slow decrease 
stage of the negative pressure is observed when the 
groundwater decline is slowed down, as in the model 
tests. When the vertical settlement of the fillers reaches 
4.5 cm, the negative pressure reaches the maximum of 
44.86 kPa. During the rapid increase stage of negative 
pressure, tensile failure elements appear in the 
negative pressure zone. Due to the failure of this part 
of the soil, the negative pressure is reduced, and then 
the negative pressure begins to decrease rapidly. When 
the settlement of the fillers exceeds 8.5 cm, the pore 
pressure in the soil is positive, and the pore pressure 
fluctuates greatly for a period before it gradually 
becomes stable. This indicates that the negative 
pressure at this stage gradually decreases until it 
disappears. 

3.3 Influencing factors of negative pressure 

As shown in Fig. 7, under the constant simulated 
conditions, there is a maximum negative pressure in 
the negative pressure zone. Fig. 8 shows the 
relationship between the maximum negative pressure 
and the thickness of the overlying soil under the 
condition of a saturated and dry overlying soil layer. As 
the clay thickness increases, the initial pore water 
pressure and the gas pressure in the soil increase, 
thereby eliminating the created negative pressure. 
Therefore, the maximum negative pressure of 
saturated and dry clay decreases as the thickness of the 
overlying clay increases. Since the pore water pressure 
increases rapidly with depth, its offset effect on the 
negative pressure is more obvious. Therefore, the 
maximum negative pressure in saturated clay 
decreases more significantly as the thickness of the 
overlying clay increases. 

The influence curve of the initial void ratio of the 
overlying soil on the maximum negative pressure is 
shown in Fig. 9. The maximum negative pressure in the 
soil sample initially increases and then decreases as the 

initial void ratio increases. The initial void ratio of the 
soil sample is too small, indicating that the soil sample 
is relatively dense, and the movement of the soil easily 
leads to a large positive pore pressure in the soil, which 
balances the negative pressure generated, resulting in 
a small maximum negative pressure. The initial void 
ratio of the soil sample is too large, the soil sample is 
relatively loose, and more air is trapped in it, which 
reduces the negative pressure caused by the decline of 
the groundwater table. Therefore, an initial condition 
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Fig. 7 Negative pressure curve with the settlement of the 
fillers. 
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Fig. 8 Relationship between the thickness of overlying 
clay and the maximum negative pressure. 

Table 1 Physical-mechanical parameters used in the numerical simulation of the loss process of karst pipe fillers 

Material Density 
(g/cm3) 

Bulk modulus 
(GPa) 

Shear modulus 
(GPa) 

Cohesion 
(MPa) 

Tensile strength 
(MPa) 

Internal friction 
angle (°) 

Clay 1850 0.0017 0.0013 0.024 0.02 21 
Limestone 2700 41 19 / / / 
Fillers 1700 0.0033 0.0011 / / / 
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that is too dense and too loose is not conducive to the 
accumulation of negative pressure in soil samples. 

In addition to the thickness of the overlying soil 
layer and the initial void ratio, the settlement rate of 
the fillers also has a significant effect on the negative 
pressure. Fig. 10 indicates that the greater the 

settlement rate of the fillers, the greater the maximum 
negative pressure created in the overlying soil layer. In 
practical engineering, if the sinking rate of 
groundwater or fillers increases, the negative pressure 
in the soil increases, which has an unfavorable effect 
on the stability of the overlying soil layer. 
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Fig. 9 Relationship between the void ratio and the 
maximum negative pressure. 
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Fig. 10 Relationship between the settlement rate of the 
fillers and the maximum negative pressure. 

  

  
Fig. 11 Variation laws of the pore pressure during the loss process of the karst pipe fillers when the vertical displacement 
of the fillers is: (a) 0.004 mm, (b) 0.389 mm, (c) 6.081 mm, and (d) 31.985 mm. 
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3.4 Formation of sinkholes 

Fig. 11 and Fig. 12 show the variation laws of the 
pore pressure and the plastic zones, respectively. When 
fillers begin to sink, a negative pore pressure is created 
at the interface between the overlying clay and the 
fillers, as shown in Fig. 11a. Under the influence of 
negative pressure, the clay in this area shows a state of 
tensile failure, while shear failure elements appear on 
both sides of the tensile failure elements (Fig. 12a). The 
negative pressure in the negative pressure region 
gradually increases, causing the plastic zones to 
gradually increase, as illustrated by Fig. 12b and Fig. 
12c. As the fillers settle, the negative pressure zone and 
surrounding soil collapse and fail, resulting in the 
dissipation and transfer of negative pressure. The 
previous negative pressure zone disappears, the new 
negative pressure zones arise on both sides of the fillers 
and the negative pressure in this area continues to 
increase, as shown in Fig. 11b, Fig. 11c and Fig. 11d. 
Since the limestone is stable and supports the 
overlying clay well, the increasing negative pressure in 

the new negative pressure zone does not damage the 
clay in this area. Fig. 12d indicates that the negative 
pressure caused by the loss of fillers creates an arched 
soil hole in the clay layer. The soil hole loses its support 
to the layer above it, and the upper clay layer settles 
under its self-weight and fails. 

Based on the numerical simulations and model 
tests, the formation mechanism of sinkholes caused by 
groundwater level decline in karst areas can be 
explained. Clearly, the decline in the groundwater level 
or the settlement of water-containing fillers creates a 
negative pressure zone underground. Under the tensile 
stress of negative pressure, tensile failure occurs in the 
soil around the negative pressure zone, creating an 
arched soil hole that reduces its supporting effect on 
the soil above. Therefore, the soil above the negative 
pressure zone collapses under its self-weight. Cover 
collapse caused by groundwater level decline in karst 
areas includes internal collapse and surface collapse. 

The previous research shows that the negative 
pressure caused by the decline in the groundwater level 
is not infinite. Hence, the arched soil hole created by 

  

  
Fig. 12 Variation laws of the plastic zones during the loss process of the karst pipe fillers when the vertical displacement 
of the fillers is: (a) 0.004 mm, (b) 0.389 mm, (c) 6.081 mm, and (d) 31.985 mm. 
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the negative pressure lies in a certain area. The 
engineering geological conditions influence the 
negative pressure, which in turn influences the size of 
the arched soil hole. According to the Protodyakonov's 
equilibrium arch theory (PEAT), the tunnel excavation 
will disturb the overlying strata and form an arch-like 
disturbed zone in the strata. In a karst collapse, the 
karst pipe lies in the bedrock, and the bedrock is 
relatively stable. It can approximately assume that the 
width of the arch-like disturbed zone corresponds to 
the width of the karst pipe. Based on the PEAT, a 
simplified pressure arch model can be constructed to 
illustrate the mechanical conditions of the arch-like 
disturbed zone (Fig. 13). Point O is subjected to 
horizontal tangential force T, the arch foot (point A) 
bears the horizontal force H and the vertical force N. 
The uniform load q, including the overlying soil weight, 
the vacuum negative pressure and the vertical 
permeability, is distributed on the arch. The pressure 
arch is in equilibrium, so it can be obtained that 

0H T− =                                           (1) 

0N q R− × =                                   (2) 

2

max 0
2

q RT h ×× − =                          (3) 

where hmax denotes the maximum height of the 
pressure arch; R is the radius of the karst pipe. The 
maximum height of the pressure arch can be expressed 
by Eq. (4): 

max 2
RNh
H

=                                  (4) 

According to PEAT and assuming that the safety 
factor of against sliding is 2, Eq. (5) can be decuded: 

2 fH N k= ×                           (5) 

where kf represents the firmness coefficient of the 
overlying strata. The firmness coefficient kf is an 
empirical index defined as the ability of a material 
against damage and reflects the mechanical resistance 
of the overlying strata in this study. By substituting Eq. 
(5) into Eq. (4), hmax can be expressed as follows: 

max
f

Rh
k

=                                    (6) 

Considering that the karst pipe is three-
dimensional, Eq. (6) should be corrected to 

max 0.828
f

Rh
k

=                              (7) 

The firmness coefficient kf is influenced by the 
mechanical properties of the overlying strata. When 

the overlying strata are thin and less than the 
maximum height of the pressure arch, internal collapse 
and surface collapse happen simultaneously. 
Otherwise, internal collapse happens first, the 
overlying soil collapses layer by layer, and then surface 
collapse happens. 

4    Case Study 

The Yujiawan Reservoir is located in the Jingang 
Village, Geleshan Town, Chongqing City in China. The 
groundwater depth is 1.5 m below the ground surface. 
The predominant bedrock is limestone, and there are 
developed landforms such as karst caves, underground 
streams and ponors. There is an aquifer with an 
inclination of approximately 40° underground. Below 
the Yujiawan Reservoir, the Zhongliangshan Tunnel of 
the Chongqing Light Rail Line 1 enters the aquifer (Fig. 
14). The reservoir was in good condition before the 
tunnel was excavated. According to the field tests, 
surface water entered the Zhongliangshan Tunnel 
through cracks in the limestone. On October 11, 2010, 
the tunnel was excavated to reach the limestone 
aquifer, the hydraulic discharge increased from 549.89 
m3/day to 1591.64 m3/day. Between October 20, 2010 
and September 13, 2015, six successive sinkholes 
occurred at the east of the reservoir. The six sinkholes 
were named P1, P2, P3, P4, P5 and P6, respectively. 
Actually, the formation of sinkholes is a gradual 
development process, which can be demonstrated by 
the six successive sinkholes at the Yujiawan Reservoir. 
Therefore, by taking the Yujiawan Reservoir as an 
example, this section focuses on revealing the 
progressive formation process and mechanism of cover 
collapse sinkholes related to groundwater level decline 
in karst areas. 

The geometric parameters of collapse pits are 
listed in Table 2. According to the geological data of 
Yujiawan Reservoir, the firmness coefficient is 

 
Fig. 13 Mechanical model of the pressure arch. 
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determined to be 3.27, and thus the theoretical height 
of the arched soil hole in the clay layer before the 
formation of sinkholes can be determined as listed in 
Table 2. Since the six sinkholes in the Yujiawan 
Reservoir are independently distributed in space, it is 
assumed that there is no mutual influence between 
each sinkhole. Therefore, the numerical models are 
constructed separately to study the formation process 
of each sinkhole. Fig. 15 is the numerical result of the 
arched soil hole formed in the clay layer after the filler 
loss. The calculated height of the arched soil hole is 
close to the theoretical value, and the larger theoretical 
value is a conservative design basis for the actual 
project, which is reasonable for safety reasons. 
Therefore, Eq. (7) can be used to estimate the height of 
pressure arch in practical engineering. If the thickness 
of the overlying strata is small, the decline in the water 
table can directly lead to the cover collapse. Therefore, 
the exploration of the thickness of overlying strata 
should be strengthened in karst areas. 

The formation process of the six sinkholes is 
shown in Fig. 16. The excavation of the Zhongliangshan 
Tunnel resulted in a nearly threefold increase in 
hydraulic discharge. According to the research results 
shown in Fig. 10, the negative pressure generated 
between the clay layer and the karst pipe increased 
almost three times, which led to the formation of 
arched soil hole in the clay layer. The arched soil hole 
loses its support to the upper layer. The layers above 
collapse layer by layer under their self-weight. Tensile 
failures occur in the upper part of the arched soil hole, 
while shear failure occurs at the side of the arched soil 
hole. The angle between the shear failure plane and the 
horizontal plane is approximately 45+φ/2 (where φ is 
the internal friction angle of the clay), which is 
consistent with the integration of the limit equilibrium 
theory and the Mohr-Coulomb yield criterion.  

5    Conclusions 

In this study, the presence of negative pressure 

 

 

 
Fig. 14 (a) Location of the Yujiawan Reservoir in the 
Chongqing Municipality; (b) Geological cross section of 
the study area; (c) On-site observation of Sinkhole P3. 

Table 2 Geometry parameters of collapse pits in the Yujiawan Reservoir 

Number Major semi axis (m) Minor semi axis (m) Thickness of overlying layer 
(m) 

Theoretical height of 
arched soil hole (m) 

P1 5.0 3.7 2.4 0.94 - 1.27 
P2 3.0 1.5 1.1 0.38 - 0.76 
P3 5.6 4.1 2.2 1.04 - 1.42 
P4 3.2 2.1 1.8 0.53 - 0.81 
P5 3.6 1.9 1.2 0.48 - 0.91 
P6 2.8 1.6 0.9 0.41 - 0.71 
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following groundwater decline was confirmed through 
the designed model experiment. Subsequently, the 
further simulations were carried out to investigate the 
changing law of negative pressure as groundwater level 
decreases and to analyze the main factors influencing 

negative pressure. The conclusions can be drawn as 
follows: 

(1) Cover collapse in karst areas is a complex 
environmental and geological hazard, with 
groundwater level decline being one of its main 

 

 

 

 

 

 
Fig. 15 Numerical results of the arched soil holes formed in the clay layer after the decline of the groundwater level. 
(a) Sinkhole P1, (b) Sinkhole P2, (c) Sinkhole P3, (d) Sinkhole P4, (e) Sinkhole P5, and (f) Sinkhole P6. 
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Fig. 16 Formation process of the six sinkholes in the Yujiawan Reservoir. (a) Sinkhole P1, (b) Sinkhole P2, (c) Sinkhole 
P3, (d) Sinkhole P4, (e) Sinkhole P5, and (f) Sinkhole P6 
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triggers. The model tests have confirmed that this 
decline can induce negative pressure in the overlying 
soil. With the groundwater level dropping, the negative 
pressure in the overlying soil progresses through four 
main stages: rapid increase, slow decrease, rapid 
decrease, and gradual dissipation. The process reaches 
a maximum negative pressure, which is influenced by 
the void ratio of the overlying soil. 

(2) The simulated results regarding the filler loss 
because of groundwater level decline revealed that 
negative pressure initially increases and then 
decreases. The maximum negative pressure is 
influenced by the rate of filler decline and the thickness 
and initial void ratio of the overlying strata. For both 
saturated and dry clay, the maximum negative 
pressure decreases with the thickness of the overlying 
layers increasing. Extremely dense or loose initial 
conditions of the overlying soil do not favor the 
accumulation of negative pressure in soil samples. An 
increased decline rate of fillers will lead to a rise in 
maximum negative pressure. 

(3) The formation mechanism of cover collapse 
sinkholes in karst areas can be explained using the 
results of numerical simulations and model tests. The 
decline in the groundwater level or the settlement of 
water-containing fillers can create a negative pressure 
zone underground. Under the tensile stress of negative 
pressure, tensile failures occur in the soil around the 
negative pressure zone, creating an arched soil hole 
which will reduce its supporting effect on the soil 
above. Therefore, the soil above the negative pressure 
zone collapses under its self-weight. 

(4) Cover collapse sinkholes caused by 
groundwater table decline in karst areas includes 
internal collapse and surface collapse. If the overlying 
strata is thin and less than the height of the pressure 
arch, internal collapse and surface collapse occur 
simultaneously. When the thickness of the overlying 
strata is greater than the thickness of the pressure arch, 
internal collapse occurs first, then the overlying soil 
collapses layer by layer, and finally surface collapse 
occurs. The geological conditions and the decline in 
groundwater level will influence the occurrence of 
internal collapse in karst areas, which should be paid 
more attention by engineers. The geophysical 
technology, borehole, drilling and groundwater level 
monitoring can be used by on-site engineers to detect 
the location and scale of karst pipelines and determine 
the physical and mechanical parameters of overlying 
soils. Limited by the geological survey technologies, 

the detailed real-time monitoring data is not available 
for predicting the occurrence of the cover collapse 
sinkholes related to groundwater level decline in this 
study. The follow-up research can be conducted to 
investigate the precursor signal and early-warning 
strategy of cover collapse sinkholes to avoid human 
injuries and economic losses. 
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