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Abstract

In wire arc additive manufacturing (WAAM), the electric arc is an essential part of the welding equipment,
which serves as the heat source and is directed by the current and voltage. The working status of the electric
arc is an important factor in determining the quality of the fabricated components. During the welding process,
the current and voltage may change abruptly due to some abnormalities in the operating conditions, which may
affect the working status and thereby affect the quality of products. Such abnormal changes in the current and
voltage can be treated as outliers. In order to identify outliers in current and voltage to further improve the welding
process, in this paper, a novel deep-transfer-learning-embedded outlier detection approach is developed for WAAM.
A new domain adaptation strategy is designed where the cross-domain discrepancies of the marginal distribution and
conditional distribution are minimized. Specifically, two separate coefficients are introduced to adjust the conditional
domain discrepancies of normal instances and outliers with the purpose of alleviating the data imbalance problem.
The particle swarm optimizer is employed to adjust the hyper-parameters. The developed deep transfer learning
framework is exploited in designing a new outlier detector with application to WAAM. The proposed approach is
exploited in real-world industrial data collected through the WAAM process. Experimental results demonstrate that
the proposed outlier detection approach outperforms the standard deep-learning-based outlier detector approach and
the standard transfer-learning-embedded outlier detection approach in terms of detection accuracy.

Index Terms

Outlier detection, deep transfer learning, particle swarm optimization, industrial data analysis, additive manu-
facturing.

I. INTRODUCTION

By identifying abnormal instances, outlier detection has been widely used in industrial data analysis.
As a promising technique, outlier detection has been successfully exploited in various areas, e.g., medical
engineering, finance, electrical engineering, and manufacturing [1]–[4]. Thanks to its powerful feature
extraction ability, deep learning (DL) has been extensively utilized in outlier detection, which contributes
to the rapid development of DL-based outlier detection methods. Recently, numerous DL algorithms have
been presented for tackling various outlier detection tasks [5], [6].

Owing to the data-hungry nature of DL, a vast amount of training data with high-quality labels are
required to build a reliable DL-based outlier detection model [7]–[10]. By using DL methods, training
data and testing data should be independent and identically distributed (i.i.d.). Nevertheless, it is difficult
to guarantee that the collected data obey the i.i.d. rule in real-world problems. Fortunately, such constraint
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could be relaxed with the assistance of transfer learning (TL) which attempts to fully leverage the
knowledge discovered from the source domain for analyzing the target domain [11], [12]. Among existing
transfer learning techniques, deep TL (DTL) techniques have been widely adopted due mainly to their
strong feature extraction and knowledge transfer abilities.

Serving as a popular class of DTL techniques, domain adaptation (DA) has been developed to reduce
the cross-domain distribution discrepancy [13], [14]. Recently, various DA methods have been introduced,
which mainly include metric learning DA (MLDA) approaches, reconstruction-based DA approaches, and
adversarial learning DA approaches [15], [16]. Among them, the MLDA approaches could quantify the
cross-domain distribution discrepancy with the assistance of statistical approaches. Recognised as a well-
known distance metric, in recent years, the maximum mean discrepancy (MMD) has been extensively
exploited in MLDA due to its computational efficiency and flexibility [17]. In many existing MMD-
based MLDA approaches, the influences of the marginal distribution and conditional distribution are
assumed to be the same, which neglects the difference between source and target data with regards to
data characteristics. In this case, the trained DL model may be biased. To balance the influences of
various distribution discrepancies and inspired by [18], [19], we will introduce weighting factors into the
loss function of MLDA methods.

Data imbalance is a widespread problem in outlier detection, which makes it difficult to build a reliable
detection model [20]–[22]. In most real-world scenarios, the quantity of normal instances is much larger
than that of abnormal instances (i.e., outliers). In this paper, we separately consider the distribution
discrepancies of outliers and normal instances in the proposed deep DA (DDA) strategy by introducing two
independent coefficients (i.e., hyper-parameters). The coefficients are employed to balance the influences
of the normal data and outliers to alleviate the data imbalance problem.

Hyper-parameters are generally chosen based on experimental experience, which is time-consuming
[23], [24]. A reasonable solution is to apply optimization techniques to select optimal hyper-parameters.
Thanks to its fast convergence rate and low implementation difficulty, particle swarm optimization (PSO)
has been successfully adopted to choose optimal hyper-parameters [25]–[27]. It is therefore reasonable to
employ the PSO algorithm to automatically tune the hyper-parameters.

To sum up, this paper proposes a PSO-embedded DTL framework for outlier detection on industrial
data. The utilized data set is collected by multiple sensors deployed in a wire arc additive manufacturing
(WAAM) pilot line. The contributions of this paper lie in the following threefold:

1) a novel DA strategy is proposed, where the weighting factors are designed to balance i) the marginal
distribution discrepancy loss and ii) the conditional distribution discrepancy loss of both normal
instances and outliers to tackle the data imbalance problem;

2) the PSO algorithm is employed to select the optimal weighting factors automatically; and
3) the developed approach is deployed to detect the outliers on real-world industrial data obtained

through the WAAM process. Experimental results demonstrate the superiority of the developed
PSO-embedded DTL outlier detection approach over two benchmark approaches.

The remaining sections of this paper are organized as follows. Related work of DA is discussed in
Section II. In Section III, the developed DTL-based framework is introduced. Experiment settings, network
configurations, and results are presented in Section IV. Finally, conclusions are presented in Section V.

II. RELATED WORK

The DA strategy aims to align the source and target domains by minimizing the cross-domain distribution
discrepancy based on the conditional distribution P (Y |X). In general, calculating P (Y |X) directly is a
difficult mission. Many existing DA strategies employ the Bayes’ theorem to obtain P (Y |X) [18], [28].



REVISED 3

MMD is a powerful approach to quantify the distribution discrepancy between the source domain and
target domain [17]. The MMD is calculated by mapping the original data into a reproducing kernel Hilbert
space (RKHS). The MMD of P (X) between the source domain and target domain can be calculated by:

D
(
Xs, X t

)
=

∥∥∥∥∥ 1n
n∑

i=1

ϕ (xsi )−
1

m

m∑
i=1

ϕ
(
xti
)∥∥∥∥∥

2

H

(1)

where Xs and X t represent the source and target data, respectively; n and m are the total number of
instances in the source and target domains, respectively; xsi and xti indicate the ith samples in the source
and target domains, respectively; ϕ(·) denotes a mapping from the original space into the RKHS; and
∥·∥2H is the squared norm in the RKHS.

It is worth mentioning that in the DA strategy for the binary classification task, the marginal distributions
P (Y ) of the source and target domains are the same, and the MMD of P (X|Y ) between the source and
target domains (i.e., D (Xs|Y s, X t|Y t)) can be calculated by accumulating the MMDs of the instances
with same classes between the source and target domains. D (Xs|Y s, X t|Y t) can be calculated by:
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where n1 and n2 represent the total numbers of source domain instances in class 1 and class 2, respectively;
m1 and m2 represent the total number of target domain instances in class 1 and class 2, respectively; xsi,1
and xti,2 indicate the ith samples of the first class in the source and target domains, respectively; and xsj,1
and xtj,2 are the jth samples of the second class in the source and target domains, respectively.

III. THE DTL-BASED OUTLIER DETECTION APPROACH

A. Motivation

In some existing DDA-based classification methods, the loss function is designed by considering the
classification loss and the domain loss. Recently, many researchers have focused on balancing the weights
between the classification loss and the domain loss [28]–[30]. Nevertheless, the scale of distribution
discrepancies between the source data and target data should also be considered. Using hyper-parameters
to adjust the weight of each term in the loss function has been proven to be a fast and easy approach.
In [28], the hyper-parameters have been introduced to adjust the weight among the domain loss, the
regularization term, and the training loss. In [29], the hyper-parameters have been utilized to balance not
only the weight among the domain loss, the regularization term, and the training loss, but also the weight
between the different domain losses.

Note that data imbalance is a frequent problem in data analysis, which could lead to a biased model
with unsatisfactory results. Recently, a number of strategies have been proposed in order to tackle the data
imbalance challenge [19], [31]. In [31], a weighted MMD has been proposed to alleviate the data imbalance
problem. In [19], the data imbalance problem has been tackled by adaptively changing the weights of
samples from different classes. Specifically, the marginal distributions are assumed to be unchanged when
calculating the MMD of P (Y |X), which may affect the classification accuracy when dealing with other
data sets. Motivated by the above discussions, the weights of different domain losses and the weights to
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Fig. 1. The proposed PSO-embedded DTL outlier detection approach

tackle the imbalance problem are considered at the same time so as to design a proper loss function in
this paper.

The selection of hyper-parameters is usually manual and based on experimental experience, which is
time-consuming and inefficient [32]. In fact, selecting the optimal hyper-parameters is an optimization
problem. As a popular optimization algorithm, the PSO algorithm (which is a famous evolutionary
computation technique) has been widely exploited in various optimization tasks because of its high
efficiency and easy implementation, which seems to be an appropriate solution to select the optimum
hyper-parameters automatically.

In this paper, a novel PSO-embedded DTL framework is developed, where a new DA strategy is
put forward to reduce the cross-domain discrepancy by adjusting the weight of marginal distribution
discrepancy loss and the conditional distribution discrepancy loss. In addition, two separate coefficients
are introduced to balance the conditional domain discrepancies of normal instances and outliers with the
hope to alleviate the data imbalance problem. The hyper-parameters are tuned by the PSO algorithm
automatically.

B. The PSO-Embedded DTL Framework

The developed framework is displayed in Fig. 1. The convolutional neural network (CNN) is utilized
for feature extraction, which comprises five convolutional modules and three fully connected (FC) layers.
In each convolutional module, there is one convolutional layer followed by the Gaussian error linear unit
(GELU) mapping and batch normalization. In the first and the second FC layers, the activation function
is GELU. As a popular activation function, GELU shows better robustness and generalization ability than
some existing activation functions (e.g., ReLU and Leakly-ReLU) in some sense [33]. As such, GELU is
selected as the activation function. In the third FC layer, the softmax activation function is adopted.

C. Loss Function

1) Classification Loss: The binary cross-entropy is applied to calculate the classification loss. In this
paper, the classification loss includes the classification loss of the source data Ls

c and the target data Lt
c.
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where n and m are the source and target sample numbers, respectively; psi and pti represent the probabilities
when the predicted label is the same as the real label of the ith sample in the source and target domains,
respectively; ysi and yti are the real labels of the ith sample in the source and target domains, respectively.

2) Domain Loss: The domain loss between source and target domains contains two parts (i.e., marginal
distribution discrepancy LP (X)

MMD and conditional distribution discrepancy LP (X|Y )
MMD ), which can be calculated

by:
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where L
P (X|Y=Normal)
MMD (LP (X|Y=Outlier)

MMD ) denotes the domain discrepancy loss of normal data (outliers)
between source and target domains; µ1 and µ2 are two coefficients; nN and nO represent the normal
data and outliers in the source domain, respectively; mN and mO are the normal data and outliers in the
target domain, respectively; xsk, xtk represent the kth sample of the data in source and target domains,
respectively; xsi and xti are the ith sample of the normal data in source and target domains, respectively;
xsj and xtj are the jth sample of outliers in source and target domains, respectively; and ψ(·) represents
the distributions of deep features of P (·). ψ(·) is learned by five convolutional modules and the first two
fully connected modules in the designed CNN model. In this paper, the Gaussian kernel is employed [34],
which is given as follows:

k(a, b) = exp

(
−∥a− b∥2

2σ2

)
(7)

where a and b are two random samples; ∥·∥ is the Euclidean distance; and σ represents the kernel’s width.
3) Overall Loss Function: The entire loss function of the proposed outlier detection approach is given

as follows:

L = Ls
c + δLt

c + εL
P (X)
MMD + µ1L

P (X|Y=Normal)
MMD

+ µ2L
P (X|Y=Outlier)
MMD + λ ∥ω∥2 (8)

where ∥·∥2 is the L2 norm to avoid the overfitting problem; ω denotes the weights of the CNN; δ and ε
are weighting factors to balance the domain discrepancy loss of normal instances and outliers; and λ is
the penalty factor.

Remark 1: During the WAAM process, the working status is normal most of the time. The current
and voltage will be abnormal only when some unexpected changes occur (e.g., arc instability and surface
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Fig. 2. The training procedure of the developed framework

contaminations). In this case, the WAAM data set seriously suffers from class imbalance problem, where
the number of normal instances is much more than that of outliers. To alleviate the impact of class imbal-
ance, in this paper, two coefficients (i.e., µ1 and µ2) are introduced. The weight between LP (X|Y=Normal)

MMD

and L
P (X|Y=Outlier)
MMD is balanced by adjusting µ1 and µ2, which improves the performance of the model

on WAAM outlier detection.

D. Parameter Optimization

1) Basic PSO: In the basic PSO algorithm, each particle in the swarm is a candidate solution, which
is directed by its personal best location and the global best location (i.e., pbl and gbl) found by the entire
swarm in a D-dimensional problem space. The updating equations of the velocity and position of the αth
particle at the βth iteration and the dth dimension (i.e., vdα,β and xdα,β) are given as follows:

vdα,β+1 = wvdα,β + c1r1
(
pbldα,β − xdα,β

)
+ c2r2

(
gbldβ − xdα,β

)
xdα,β+1 = xdα,β + vdα,β+1

(9)

where w denotes the inertia weight; c1 and c2 represent two acceleration coefficients; r1 and r2 are two
random numbers selected from [0, 1]; pbldα,β denotes the pbl found by the αth particle itself; gbldβ is the
gbl of all particles.

2) Optimization Strategy: The basic PSO algorithm is used for selecting proper hyper-parameters (σ, δ,
ε, µ1, and µ2) in this paper. The CNN weights ω are optimized by the Adam algorithm. During the training
process, the hyper-parameters and net parameters are updated automatically. The training procedure of
the method is depicted in Fig. 2.
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Fig. 3. The optimization process of the developed framework when Data 1 is the source data

Fig. 4. The optimization process of the developed framework when Data 3 is the source data
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Fig. 5. The optimization process of the developed framework when Data 5 is the source data

IV. WAAM OUTLIER DETECTION

Additive manufacturing (AM) has become a big breakthrough in industrial manufacturing, which has
great advantages in building 3-D components and rapid prototyping [35]–[37]. In recent years, AM
technology has been employed in a lot of fields (e.g., aerospace engineering, electrical engineering and
biomedical engineering) [38]–[41]. As one of the most popular AM methods, WAAM is a wire-based
direct energy deposition method, which has significant merits including high deposition and low cost [42].
It is worth mentioning that the electric arc is an important part of WAAM, which serves as the heat source
and mainly directed by the total current and arc voltage. The working status of the electric arc is a key
factor in deciding the quality of the fabricated components [43]. A common way to track the working
status of the electric arc is to monitor the current and voltage because they reflect important information
and are easy to be measured. Unfortunately, during the WAAM process, current/voltage may change
irregularly and rapidly owing to abnormalities in the operating conditions (e.g., geometrical deviations
and unstable metal transfer), which may have bad impacts on the working status, and affect the quality of
products eventually. Recently, detecting current/voltage outliers and taking follow-up automatic corrective
actions has become a useful way to ensure the WAAM working status [2].

A. Data Sets

1) Data Sets Description: The data used in this experiment is collected from the WAAM process,
which is deployed in Sweden. The collected data are classic time-series data which are divided into 5
data sets based on different welding strategies. Each data set represents an individual manufacturing task
and contains 98000 instances and 5 attributes including the time stamp, the welding current, the welding
voltage, and the operating time of the entire welding process. The manual labels of the data are annotated
based on the expert knowledge, which contains two classes, namely “Normal” and “Outlier”.
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2) Data Pre-Processing: In the experiment, the abnormal data points (e.g., missing or null) are removed
to obtain clean data. To enhance the difference between the instances, the values of current and voltage
are transformed to their cubed. Each data set is divided into several consecutive segments with the purpose
of extracting and analyzing the features of time, where each segment (contains 56 instances) corresponds
to a label (i.e., “Normal” and “Outlier”). The label of each segment depends on the label of each instance
in the segment. Specifically, the label of the segment will be “Normal” if the labels of all the instances
in this segment are “Normal”, otherwise, the label of this segment will be “Outlier”. In the experiment,
the labels are transformed to one-hot formats for ease of classification.

TABLE I
THE OUTLIER DETECTION RESULTS USING SELECTED APPROACHES

Evaluation Metrics Approach T1 (Data1, Data2) T2 (Data2, Data4) T3 (Data3, Data1) T4 (Data4, Data5) T5 (Data5, Data3)

Accuracy (%)
CNN 78.85 92.46 99.00 96.38 95.23

CNN+DDA 97.62 99.08 99.11 98.15 98.38
Developed Approach without Regularization 97.04 98.18 97.69 98.17 97.25

Developed Approach 97.69 99.15 99.46 98.62 99.08

Precision (%)
CNN 45.12 70.18 96.14 95.46 93.34

CNN+DDA 94.65 98.52 96.15 97.55 96.15
Developed Approach without Regularization 96.34 95.23 95.94 97.48 95.33

Developed Approach 96.67 98.86 96.87 98.33 97.20

Sensitivity (%)
CNN 38.19 92.34 98.25 95.34 75.11

CNN+DDA 90.94 95.69 98.68 96.82 94.94
Developed Approach without Regularization 89.18 94.35 96.72 96.14 94.05

Developed Approach 91.34 96.55 98.71 97.23 95.57

B. Model Training

1) Parameters Setting and Model Configuration: The system of the experiment is Ubuntu 20.04.5.
The GPU is NVIDIA RTX A6000 with 49 GB memory. The experiment conducted is based on Python
3.10.9, CUDA 11.7. The configurations of 5 convolutional modules and 3 FC layers are displayed in
Fig. 1. In the experiment, the developed approach is compared with the CNN-based approach and the
basic DTL-based approach with the purpose of verifying the performance of the developed approach.
The ablation experiment is also conducted to verify the effectiveness of the regularization term in the
developed approach. Note that the same network architecture and configurations of the CNN are employed
for comparison.

In the experiment, the hyper-parameters (σ, δ, ε, µ1, and µ2) are selected automatically by the standard
PSO algorithm. The constraint intervals of hyper-parameters are set to be [0, 100], [1, 5], [0, 3], [0, 3], and
[1, 10], respectively. In order to put more consideration to the target data, the minimum of δ is set to be
1. The maximum of µ2 is set to be 12, which aims to tackle the data imbalance problem. Based on the
experimental experience, the parameter λ of the L2 regularization term is set as 0.00001. In the standard
PSO algorithm, the particle number is 25. The control parameters (e.g., w, c1, and c2) are set to be 0.6,
1.5, and 1.5, respectively.

2) Model Training and Testing: In this paper, two different data sets are selected as the source and
target data sets which both contain all segments and labels of the pre-processed data sets. The training
data consists of two parts, which are the source and target training data. To be specific, the source training
data is the same as the source data. The target training data is the first 450 segments of the target data.
Through the training process, the source and target training data are fed to the CNN at the same time. The
classification loss is calculated based on the source and target training data. The domain loss is calculated
based on the deep features of the source and target training data. The numbers of training epoch and PSO
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iteration are set to be 40 and 100, respectively. The weights updating stamp is set to be 50. The testing
data is the rest of the target data excluding the target training data. The testing data is input to the trained
model after the training process. The output of the testing process is the predicted labels of the testing
data.

C. Results and Discussion

1) Experimental Results: In the experiment, one data set is selected as the source data set, and other
different data sets are selected as the target data sets. In this paper, we select three data sets (Data1, Data3
and Data5) as the source data sets in turn. The optimization process of the developed approach is shown
in Figs. 3-5, where columns 1-5 represent δ, ε, µ1, µ2, and σ, respectively, and rows 1-4 represent 4 target
data sets.

In this paper, 5 outlier detection tasks (i.e., T1, T2, T3, T4 and T5) are explored by utilizing the
designed approach. In each task, two different data sets are selected randomly. In the experiment, three
evaluation metrics (i.e., accuracy, precision, and sensitivity) are employed for performance evaluation [44].
The accuracy, precision, and sensitivity of three approaches on 5 outlier detection tasks are summarized in
Table I. As mentioned previously, in each outlier detection task, the source and target data sets are randomly
selected from 5 data sets. In the table, the selected source and target data in each task are described as
“(source data, target data)”. According to Table I, the developed framework obtains the highest values in
accuracy, precision, and sensitivity in all 5 tasks. The results also demonstrate the effectiveness of the
regularization term of the developed approach.

The optimal values of 5 hyper-parameters selected by the PSO algorithm in each outlier task are listed
in Table II. We can see in Tables I-II that the discovered hyper-parameters are different in each outlier
detection task, which indicates that the solution space of each task is quite different. Thereby, there is a
need to apply such kind of hyper-parameter optimization strategy for analyzing the sensor data collected
in various working status. Comparing with two benchmark methods, the proposed PSO-embedded DTL
outlier detection approach has better detection accuracy and exhibits satisfactory generalization ability.

TABLE II
THE OPTIMAL VALUES OF HYPER-PARAMETERS IN EACH OUTLIER TASK

Task δ ε µ1 µ2 σ

T1 2.30 1.38 1.56 1.06 63.90
T2 1.07 1.14 1.50 4.84 57.51
T3 1.73 1.53 0.81 5.39 74.81
T4 1.54 1.01 1.17 5.08 72.06
T5 1.28 1.47 0.72 5.18 69.45

V. CONCLUSION

In this paper, a novel PSO-embedded DTL framework for outlier detection has been developed. A new
DA strategy has been put forward to minimize the cross-domain discrepancies of both the marginal
distribution and the conditional distribution. To be specific, in order to alleviate the data imbalance
problem, the conditional domain discrepancies of normal instances and outliers have been adjusted by
two separate coefficients. The PSO algorithm has been adopted to adjust the hyper-parameters of the
proposed method. The developed DTL framework has been applied in the outlier detection tasks on
WAAM data sets. Experimental results have shown satisfactory performance in the detection accuracy of
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the proposed approach. The developed framework has shown promising performance of outlier detection on
the WAAM data sets collected from real-world manufacturing processes. Future work can be summarized
into following five aspects: 1) applying the developed framework to the real-world outlier detection tasks
in WAAM; 2) developing advanced optimization algorithms for hyper-parameters selection [45]–[47]; 3)
adjusting the model structure [48], [49]; 4) designing appropriate regularization terms for the model [50],
[51]; and 5) deploying the proposed framework to some other outlier detection tasks [52], [53].
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