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Abstract

In this paper, the recursive quadratic filtering problem is investigated for a class of linear non-Gaussian systems with dynamical
bias and amplify-and-forward relays. The stochastic bias, characterized by a dynamical process with certain non-Gaussian
noises, is incorporated into the system state equation. An amplify-and-forward relay is utilized in the sensor-to-filter network
channel to enhance signal transmission performance. The transmission powers of the sensor and relay are governed by two sets
of random variables. Particular attention is given to the design of a quadratic filter in the presence of the dynamical bias, the
amplify-and-forward relay, and non-Gaussian noises. For this purpose, an augmented system is constructed by aggregating the
augmented state (comprising the original state and the associated bias) and its second-order Kronecker power. Consequently,
the addressed quadratic issue for the underlying non-Gaussian system is reformulated as a linear filtering problem for the
augmented system. Using difference equations, the filtering error covariance is derived and subsequently minimized through
the design of an appropriate gain matrix. Moreover, sufficient conditions are established to ascertain the existence of the lower
and upper bounds on the filtering error covariance. Finally, the effectiveness of the designed quadratic filtering algorithm is
demonstrated through a numerical example.

Key words: Quadratic filtering; Amplify-and-forward relays; Dynamical bias; Non-Gaussian systems; Boundedness analysis.

⋆ This work was supported in part by the National Nat-
ural Science Foundation of China under Grants 61933007,
U21A2019, 62222312 and 62273005, the National Key Re-
search and Development Program of China under Grant
YS2022YFB4500205, the Natural Science Foundation of
Shandong Province of China under Grant ZR2021MF088,
the Hainan Province Science and Technology Special Fund
of China under Grant ZDYF2022SHFZ105, the Fundamen-
tal Research Funds for the Central Universities of China, the
Royal Society of the UK, and the Alexander von Humboldt
Foundation of Germany.
∗ Corresponding author.

Email addresses: shaoying2004@163.com (Shaoying
Wang), Zidong.Wang@brunel.ac.uk (Zidong Wang),
liuqy@tongji.edu.cn (Qinyuan Liu),
shiningdhl@vip.126.com (Hongli Dong),
hjliu1980@gmail.com (Hongjian Liu).

1 Introduction

State estimation or filtering, which is a fundamental
topic in signal processing and control theory, has re-
cently attracted increasing research attention due to its
promising applications in areas like target tracking [3],
aerospace [14], environmental monitoring [43, 44], and
vehicle control [42], among others. At its core, state es-
timation/filtering endeavors to reconstruct the system
state from available measurements, which may be com-
promised by noise. To address various system require-
ments and achieve desired performance, a myriad of so-
phisticated filters have been introduced in the literature,
and notable examples include the Kalman filter [8, 35],
the extendedKalman filter [7], the unscented Kalman fil-
ter [48], the H∞ filter [11,17,25,37,40], set-membership
filter [22, 23], and the particle filter [26, 45].

While many existing algorithms make the assumption of
Gaussian noises due to its simplicity and the ease of al-
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gorithmic derivation, this assumption often falls short in
practical engineering scenarios. As such, there has been
significant effort dedicated to developing filtering meth-
ods suitable for non-Gaussian noises [1,9,32,41,46]. No-
tably, the quadratic filtering approach has emerged as a
rather popular method whose aim is to deduce system
states by harnessing more comprehensive information
from state/measurement vectors and leveraging higher-
order statistics of non-Gaussian noises. For instance, a
feedback quadratic filter tailored for a non-Gaussian and
unstable system has been introduced in [4]. Similarly, a
suboptimal quadratic filter has been proposed in [24] for
linear uncertain systems equipped with uniform quanti-
zation and non-Gaussian noises. When juxtaposed with
the recursive linear filtering technique, the quadratic fil-
tering approach showcases a superior ability to enhance
filtering accuracy while maintaining ease of implemen-
tation [2, 3, 5, 6, 47].

In practical scenarios, inevitable perturbations in system
dynamics can arise from various factors including un-
modeled dynamics and unforeseen external excitations.
These factors can complicate system modeling and anal-
ysis [10, 18, 19]. Stochastic bias, a specific type of un-
known perturbation, is commonly represented by a dy-
namic equation with a particular white noise. The asso-
ciated filtering challenges posed by this bias have gar-
nered significant interest in recent research [13, 15, 33].
For instance, for multi-rate systems affected by dynam-
ical bias, a recursive filter has been introduced in [33] to
estimate both the system state and any faults concur-
rently. More recently, a novel distributed filter has been
crafted for complex networks in [13]. This filter, rooted
in the delay-prediction-compensation method, has ad-
dressed dynamics marred by bias, communication de-
lays, and fading observations, where an upper bound
has been derived for the filtering error covariance, and
the monotonicity relationship between fading probabili-
ty and filtering accuracy has also been elucidated. How-
ever, to date, scant research has been undertaken on the
quadratic filtering problem in the presence of dynamical
bias, and such a gap serves as the primary impetus for
our current research endeavors.

A foundational presumption in the previously discussed
filtering algorithms is that sensors can transmit sig-
nals across vast distances without hindrance. Unfor-
tunately, this assumption often proves unrealistic in
communication systems, especially when considering
the limited transmission capabilities of sensors. These
limitations can arise from technical or physical con-
straints, particularly with budget-friendly sensors. To
address these transmission challenges, the integration of
relays has recently seen burgeoning interest with aim to
enhance the performance of long-range signal transmis-
sions. Common relay models encompass amplify-and-
forward relays, compute-and-forward relays, compress-
and-forward relays, and filter-and-forward relays,
see [12, 28, 30, 31, 34, 38] for more details. Recent ex-
plorations have ventured into filter design within the
context of amplify-and-forward relays [12, 36, 39]. For

instance, the study in [20] tackled the Kalman filtering
problem for linear time-varying systems operating un-
der the assumption of deterministic transmission power
in the amplify-and-forward relay.

As energy harvesting technology gains traction, a chal-
lenge that emerges is the inherent unpredictability of
transmission power in energy-harvested sensors or re-
lays, which is because power sourced from the envi-
ronment tends to exhibit natural variability [29]. To
model this phenomenon, stochastic variables, which ad-
here to specific probability distributions, have been em-
ployed, see some recent literature illuminating insight-
s into scenarios involving random transmission power-
s [16,26,27,36]. For example, the centralized/distributed
auxiliary particle filter has been introduced in [26] for
multi-sensor systems, which accounts for both amplify-
and-forward and decode-and-forward relay mechanisms
in transmission links. Concurrently, innovative filtering
techniques have been proposed, such as a recursive fil-
ter for complex networks [16] and a distributed H∞ fu-
sion filter for nonlinear systems [27]. However, it is note-
worthy that research on the quadratic filtering challenge
remains fragmented, especially when incorporating con-
cerns related to amplify-and-forward relays.

Given the aforementioned analysis, our objective is to
tackle the recursive quadratic filtering problem for a
class of linear non-Gaussian systems that incorporate
dynamical bias and amplify-and-forward relays. Unlike
the constant and undetermined bias, we introduce a dy-
namical equation with non-Gaussian noises to depict the
stochastic dynamical bias. An amplify-and-forward re-
lay, equipped with random transmission power, is uti-
lized in the sensor-to-filter network channel so as to en-
sure the quality of signal transmission. We propose a u-
nique yet easy-to-implement quadratic filter for an aug-
mented system, which leverages second-order Kronecker
products of the augmented state, and encompasses both
the original state and the dynamical bias, as well as its
measurements. Then, the filtering error covariance is as-
certained and subsequently minimized by choosing the
appropriate gain matrix. We also provide sufficient con-
ditions to guarantee the boundedness of the filtering er-
ror covariance. The challenges we foresee include: 1) ana-
lyzing the statistical properties of the random variables,
which are influenced by transmission powers and the en-
hanced process/measurement noises; 2) constructing a
recursive quadratic filter in the context of the dynamical
bias, the amplify-and-forward relay, and non-Gaussian
noises; and 3) examining the boundedness of the filtering
error covariance. Given these challenges, we perceive the
quadratic filter design problem to be notably intricate.

The core contributions of this paper can be encapsu-
lated as follows: 1) the statistical properties of random
variables (induced by transmission powers) and the ex-
panded process/measurement noises are examined; 2)
a novel recursive quadratic filtering paradigm is devel-
oped for linear non-Gaussian systems in the presence
of the amplify-and-forward relay with random transmis-
sion powers, which is coupled with a thorough analysis

2



of the filtering error covariance; and 3) sufficient con-
ditions, grounded in system parameter information, are
provisioned to ensure the boundedness of the filtering
error covariance.

The structure of this paper is organized as follows. Sec-
tion 2 delves into the quadratic filtering problem for lin-
ear systems by taking into account the dynamical bias,
the amplify-and-forward relay, and non-Gaussian nois-
es. In Section 3, we explore the stochastic properties of
the augmented noises and discuss the quadratic filter de-
sign problem. Section 4 presents a simulation example
to demonstrate the efficacy of the proposed quadratic
filter. Section 5 concludes the paper with key findings
and insights. Lastly, the Appendix provides a proof con-
cerning the stochastic properties of augmented noises.

Notation.Rl is the l-dimensional Euclidean space.P{⋆}
stands for the occurring probability of the event ⋆. E{⋆}
denotes the expectation of random variable ⋆. Sym{⋆}
means ⋆+ ⋆T . diag{⋆} is the block diagonal matrix. ℜT

is the transpose of the matrix ℜ. vec(ℜ) represents the
vectorization of the matrix ℜ. st(ℜ) denotes the opera-
tion that transfers vec(ℜ) to ℜ.⊗ is the Kronecker prod-

uct. φ
(m)
z means the mth-order moment of z. S̃r(u ⊗ v)

denotes u⊗ v + v ⊗ u with u ∈ R
r and v ∈ R

r.

2 Problem Formulation

Consider the following discrete linear time-varying sys-
tems with the dynamical bias and non-Gaussian noises:

xt+1 = Atxt +Btwt + Etεt (1)

where xt ∈ R
n is the system state, wt ∈ R

nw is the
non-Gaussian process noise, and εt ∈ R

nε represents the
random bias which satisfies the following dynamics:

εt+1 = Ftεt + ξt. (2)

Here, ε0 ∈ R
nε and ξt ∈ R

nε denote non-Gaussian ran-
dom sequences, and At, Bt, Et, and Ft are given time-
varying matrices with compatible dimensions.

The measurement model is described as

yt = Ctxt +Dtvt (3)

where yt ∈ R
s is the measurement vector, vt ∈ R

nv is
the non-Gaussian measurement noise, and Ct and Dt

denote known matrices of suitable dimensions.

In this paper, the measurement yt is sent to the remote
filter via an amplify-and-forward relay, and the corre-
sponding measurement obtained by this relay can be
given by

ỹt =
√

ltΦtyt +̟t (4)

where Φt , diag{Φ1,t,Φ2,t, · · · ,Φs,t} with Φi,t being
the ith channel coefficient, ̟t is the non-Gaussian noise
in the sensor-to-relay channel, and lt denotes the trans-
mission power of the sensor obeying certain probability
distribution

P{lt = li,t} = l̄i,t, i = 1, 2, · · · , p (5)

where li,t ≥ 0, 0 ≤ l̄i,t ≤ 1 and
p
∑

i=1

l̄i,t = 1.

Considering that the amplify-and-forward relay can am-
plify the received ỹt and further forward it to the remote
filter, the real measurement acquired by the filter is de-
scribed by

zt = θt
√
mtΨtỹt + ςt (6)

where θt means the amplification factor,mt is the trans-
mission power, Ψt , diag{Ψ1,t,Ψ2,t, · · · ,Ψs,t} with Ψi,t

being the ith relay-to-filter channel coefficient, and ςt de-
notes the non-Gaussian noise in the relay-to-filter chan-
nel. Moreover, the probability distribution ofmt satisfies

P{mt = mi,t} = m̄i,t, i = 1, 2, · · · , q (7)

where mi,t ≥ 0, and m̄i,t are known scalars with 0 ≤
m̄i,t ≤ 1 and

q
∑

i=1

m̄i,t = 1.

Before proceeding further, the following assumption is
made in this paper.

Assumption 1 1) The random sequences x0, wt, εt, ξt,
vt, ̟t, ςt, lt and mt are mutually independent. 2) x0,
wt, εt, ξt, vt, ̟t and ςt are zero-mean white sequences,
and their second-, third- and fourth-order moments are
known.

For ease of notation, we introduce

l̄
(1)
t ,E{l

1
2

t }, m̄
(1)
t , E{m

1
2

t },
l̄
(2)
t ,E{lt}, m̄

(2)
t , E{mt},

l̄
(3)
t ,E{l

3
2

t }, m̄
(3)
t , E{m

3
2

t },
l̄
(4)
t ,E{l2t }, m̄

(4)
t , E{m2

t}, (8)

and, accordingly, zt in (6) can be rewritten as

zt =θtm̄
(1)
t l̄

(1)
t ΨtΦtCtxt + ~vt (9)

where

~vt ,θt(
√
mt

√

lt − m̄
(1)
t l̄

(1)
t )ΨtΦtCtxt

+ θt
√
mt

√
ltΨtΦtDtvt + θt

√
mtΨt̟t + ςt.

Remark 1 The randomness of the dynamical bias, at-
tributed to factors such as random frictions, wind resis-
tance, and/or electromagnetic interferences, is deemed
worthy of consideration in the model. In comparison to
the dynamical bias influenced by Gaussian white noise,
non-Gaussian random sequences ε0 and ξt are introduced
in (2) to characterize the dynamics of the random bias.

Remark 2 Contrary to the deterministic transmission
power model, in this paper, an amplify-and-forward re-
lay influenced by the random transmission powers of the
sensor and relay is introduced in (4) and (6). The ran-
domness of these transmission powers arises primarily
because the energy harvested from the environment is in-
herently random. As a result, the random variables lt and
mt, which follow specific probability distributions, are
employed to characterize these random power levels. The
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stochastic properties of these variables will be elaborated
in a subsequent lemma. Furthermore, in (6), the param-
eter θt is used to represent the amplification factor, and
ςt is introduced to denote the non-Gaussian transmission
noise.

Defining

~xt ,

[

xt

εt

]

, ~wt ,

[

wt

ξt

]

,

the system (1) and (9) can be reformulated as
{

~xt+1 = ~At~xt + ~Bt ~wt

zt = ~Ct~xt + ~vt
(10)

where

~At ,

[

At Et

0 Ft

]

, ~Bt ,

[

Bt 0

0 I

]

,

~Ct ,

[

θtm̄
(1)
t l̄

(1)
t ΨtΦtCt 0

]

.

Based on the definition of ~x
[2]
t = ~xt⊗~xt, we immediately

have

~x
[2]
t+1 = ~A

[2]
t ~x

[2]
t + ~B

[2]
t φ

(2)
~wt

+ w̃t (11)

where

w̃t , S̃n+nε
( ~At~xt ⊗ ~Bt ~wt) + ~B

[2]
t (~w

[2]
t − φ

(2)
~wt
).

Similarly, the sequence z
[2]
t is given by

z
[2]
t = ~C

[2]
t ~x

[2]
t + φ

(2)
~vt

+ ṽt (12)

where ṽt , S̃s(~Ct~xt ⊗ ~vt) + ~v
[2]
t − φ

(2)
~vt

.

In light of (10)-(12), we construct the augmented state
and measurement vectors as follows:

Xt ,

[

~xt

~x
[2]
t

]

, Zt ,

[

zt

z
[2]
t

]

,

and the system (10) can further be converted into
{Xt+1 =AtXt +Mt +Wt

Zt =CtXt +Nt + Vt
(13)

where

At ,

[

~At 0

0 ~A
[2]
t

]

,Mt ,

[

0

~B
[2]
t φ

(2)
~wt

]

,Wt ,

[

~Bt ~wt

w̃t

]

,

Ct ,
[

~Ct 0

0 ~C
[2]
t

]

,Nt ,

[

0

φ
(2)
~vt

]

, Vt ,

[

~vt

ṽt

]

.

In this paper, a recursive quadratic filter is designed for
the augmented system (13) as follows:
{

X̂t+1|t =AtX̂t|t +Mt

X̂t+1|t+1 =X̂t+1|t + Jt+1(Zt+1 − Ct+1X̂t+1|t −Nt+1)

(14)

where X̂t+1|t denotes the one-step prediction, X̂t+1|t+1 is
the filtered state, and Jt+1 serves as the gain parameter.

From (13) and (14), the prediction error

ℵt+1|t , Xt+1 − X̂t+1|t

and the filtering error

ℵt+1|t+1 , Xt+1 − X̂t+1|t+1

are, respectively, expressed by

ℵt+1|t =Atℵt|t +Wt (15)

and

ℵt+1|t+1 =(I − Jt+1Ct+1)ℵt+1|t − Jt+1Vt+1. (16)

Furthermore, the associated error covariance matrices
are defined as

ℜt+1 ,E{ℵt+1|tℵT
t+1|t} (17)

and

ℜt+1|t+1 ,E{ℵt+1|t+1ℵT
t+1|t+1}. (18)

Our goal is to devise a recursive quadratic filter with the
structure (14) such that, in the presence of the dynamical
bias, the amplify-and-forward relay as well as the non-
Gaussian noises, the filtering error covariance ℜt+1|t+1

exists and is subsequently minimized by designing the
appropriate gain Jt+1.

Remark 3 It should be noted that the proposal of the
quadratic filtering algorithm for such a comprehensive
system is made for the first time in this study, distinguish-
ing it considerably from existing filtering schemes under
amplify-and-forward relays. The distinctive features of
the constructed filter in (14) include: 1) the simultaneous
incorporation of information from the dynamical bias, the
amplify-and-forward relay, and the non-Gaussian nois-
es (e.g., high-order moments of random variables) with-
in a unified framework; 2) the expression of the designed
quadratic filter in a recursive form that is both compu-
tationally feasible and easy to implement; and 3) the si-
multaneous estimation of the involved dynamical bias, as
part of the augmented state vector, alongside the system
state.

3 Main Results

In this section, we aim to investigate the recursive
quadratic filtering problem under the dynamical bias,
the amplify-and-forward relay, and non-Gaussian noises.
More specifically, the filtering error covariance ℜt+1|t+1

is obtained recursively and, furthermore, the bounded-
ness of ℜt+1|t+1 is analyzed.

3.1 Preliminary Lemmas

For convenience of subsequent analysis, some lemmas
are first introduced for the quadratic filter design.
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Lemma 1 ( [21]) Let L, U ,N and V be known matrices
with L and N being invertible. Then, one has

(L+ UNV)−1 =L−1 − L−1U
× (N−1 + VL−1U)−1VL−1. (19)

Lemma 2 l̄
(i)
t and m̄

(i)
t (i = 1, 2, 3, 4) appearing in (8)

are computed by

l̄
(1)
t =

p
∑

i=1

l
1
2

i,t l̄i,t, m̄
(1)
t =

q
∑

i=1

m
1
2

i,tm̄i,t,

l̄
(2)
t =

p
∑

i=1

li,t l̄i,t, m̄
(2)
t =

q
∑

i=1

mi,tm̄i,t,

l̄
(3)
t =

p
∑

i=1

l
3
2

i,t l̄i,t, m̄
(3)
t =

q
∑

i=1

m
3
2

i,tm̄i,t,

l̄
(4)
t =

p
∑

i=1

l2i,t l̄i,t, m̄
(4)
t =

q
∑

i=1

m2
i,tm̄i,t. (20)

Proof: The proof, readily derived from the definition of
mathematical expectation, is omitted for brevity. �

Lemma 3 The recursion of the state covariance matrix
Υt+1 , E{Xt+1X T

t+1} for system (13) satisfies

Υt+1 =AtΥtAT
t +MtMT

t +RWt

+AtX̄tMT
t +MtX̄ T

t AT
t (21)

where RWt
is to be given in Lemma 4 and

X̄t , E{Xt} =

[

0

φ
(2)
~xt

]

.

Proof: From (13), it is easy to obtain that

Υt+1 =AtΥtAT
t +MtMT

t + E{WtW
T
t }

+ Sym
{

E{AtXtMT
t }+ E{AtXtW

T
t }

+ E{MtW
T
t }

}

. (22)

Bearing in mind that x0, wt, εt and ξt are zero-mean
random sequences, we know E{~xt} = 0. Taking the def-

inition of ~x
[2]
t into account, we further have

E{AtXtMT
t } = AtX̄tMT

t . (23)

In light of Assumption 1, we can verify that

E{AtXtW
T
t } = 0, E{MtW

T
t } = 0 (24)

which yields (21), and the proof is complete. �

On the other hand, recalling the definition of Υt+1, we
know that

Υt+1 =

[

E{~xt+1~x
T
t+1} E{~xt+1(~x

[2]
t+1)

T }
E{~x[2]

t+1~x
T
t+1} E{~x[2]

t+1(~x
[2]
t+1)

T }

]

=

[

st(φ
(2)
~xt+1

) st(φ
(3)
~xt+1

)

(st(φ
(3)
~xt+1

))T st(φ
(4)
~xt+1

)

]

, (25)

that is, Υ11,t+1 = st(φ
(2)
~xt+1

), Υ12,t+1 = st(φ
(3)
~xt+1

) and

Υ22,t+1 = st(φ
(4)
~xt+1

).

Let ~L , [In, 0n×nε
], then we have xt+1 = ~L~xt+1, which

further implies that

st(φ(2)
xt+1

) = ~Lst(φ(2)
~xt+1

) ~LT ,

st(φ(3)
xt+1

) = ~Lst(φ(3)
~xt+1

)( ~L[2])T , (26)

st(φ(4)
xt+1

) = ~L[2]st(φ
(4)
~xt+1

)( ~L[2])T .

Similarly, defining

L̃ , [In, 0n×(nε+(n+nε)2)]

and

ℜ11,t+1|t+1 , E{(xt+1 − x̂t+1|t+1)(xt+1 − x̂t+1|t+1)
T },

we obtain

x̂t+1|t+1 =L̃X̂t+1|t+1,

ℜ11,t+1|t+1 =L̃ℜt+1|t+1L̃T . (27)

In what follows, we will concentrate on the stochastic
properties of the augmented noises Wt and Vt. In oth-
er words, we need to calculate RWt

, E{WtW
T
t } and

RVt
, E{VtV

T
t }.

Lemma 4 The variances of the augmented noises Wt

and Vt satisfy

RWt
=

[

~Btst(φ
(2)
~wt
) ~BT

t
~Btst(φ

(3)
~wt
)( ~B

[2]
t )T

~B
[2]
t (st(φ

(3)
~wt
))T ~BT

t RW22,t

]

(28)

RVt
=

[

RV11,t
RV12,t

RT
V12,t

RV22,t

]

(29)

where

RW22,t
,S̃n+nε

(

~Atst(φ
(2)
~xt

) ~AT
t ⊗ ~Btst(φ

(2)
~wt
) ~BT

t

)

S̃T
n+nε

+ ~B
[2]
t

(

st(φ
(4)
~wt
)− φ

(2)
~wt
(φ

(2)
~wt
)T

)

( ~B
[2]
t )T ,

RV 11,t ,θ2tχ1,tΨtΦtCtst(φ
(2)
xt

)CT
t Φ

T
t Ψ

T
t

+ θ2t m̄
(2)
t l̄

(2)
t ΨtΦtDtst(φ

(2)
vt

)DT
t Φ

T
t Ψ

T
t

+ θ2t m̄
(2)
t Ψtst(φ

(2)
̟t

)ΨT
t + st(φ(2)

ςt
),

RV 12,t ,θ3t m̄
(1)
t l̄

(1)
t χ1,tΨtΦtCtst(φ

(3)
xt

)(Ψ
[2]
t Φ

[2]
t C

[2]
t )T S̃T

s

+ θ3tχ2,tΨtΦtCtst(φ
(3)
xt

)(Ψ
[2]
t Φ

[2]
t C

[2]
t )T

+ θ3t m̄
(3)
t l̄

(3)
t ΨtΦtDtst(φ

(3)
vt

)(Ψ
[2]
t Φ

[2]
t D

[2]
t )T

+ θ3t m̄
(3)
t Ψtst(φ

(3)
̟t

)(Ψ
[2]
t )T + st(φ(3)

ςt
),

RV 22,t ,S̃s

[

θ4tχ1,t(m̄
(1)
t l̄

(1)
t )2Ψ

[2]
t Φ

[2]
t C

[2]
t st(φ(4)

xt
)(Ψ

[2]
t Φ

[2]
t

× C
[2]
t )T + θ2t (m̄

(1)
t l̄

(1)
t )2(ΨtΦtCtst(φ

(2)
xt

)CT
t
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× ΦT
t Ψ

T
t )⊗

(

θ2t m̄
(2)
t l̄

(2)
t ΨtΦtDtst(φ

(2)
vt

)DT
t Φ

T
t Ψ

T
t

+ θ2t m̄
(2)
t Ψtst(φ

(2)
̟t

)ΨT
t + st(φ(2)

ςt
)
)

]

S̃T
s

+ θ4tχ3,tΨ
[2]
t Φ

[2]
t C

[2]
t st(φ(4)

xt
)(C

[2]
t )T (Φ

[2]
t )T (Ψ

[2]
t )T

+ st(φ(4)
ςt

) + θ4t m̄
(4)
t Ψ

[2]
t st(φ(4)

̟t
)(Ψ

[2]
t )T − φ

(2)
~vt

(φ
(2)
~vt

)T

+ θ4t m̄
(4)
t l̄

(4)
t Ψ

[2]
t Φ

[2]
t D

[2]
t st(φ(4)

vt
)(Ψ

[2]
t Φ

[2]
t D

[2]
t )T

+ S̃s

{

(θ4tχ4,tΨtΦtCtst(φ
(2)
xt

)CT
t Φ

T
t Ψ

T
t )

⊗ (ΨtΦtDtst(φ
(2)
vt

)DT
t Φ

T
t Ψ

T
t ) + (θ2tχ1,tΨt

× ΦtCtst(φ
(2)
xt

)CT
t Φ

T
t Ψ

T
t )⊗ st(φ(2)

ςt
)

+ (θ2t m̄
(2)
t Ψtst(φ

(2)
̟t

)ΨT
t )⊗ st(φ(2)

ςt
)

+ (θ4tχ5,tΨtΦtCtst(φ
(2)
xt

)CT
t Φ

T
t Ψ

T
t )

⊗ (Ψtst(φ
(2)
̟t

)ΨT
t ) + θ2t m̄

(2)
t l̄

(2)
t Ψt

× ΦtDtst(φ
(2)
vt

)DT
t Φ

T
t Ψ

T
t ⊗ st(φ(2)

ςt
)

+ (θ4t m̄
(4)
t l̄

(2)
t ΨtΦtDtst(φ

(2)
vt

)DT
t Φ

T
t Ψ

T
t )

⊗ (Ψtst(φ
(2)
̟t

)ΨT
t )

}

S̃T
s + Sym

{

θ2tχ1,tΨ
[2]
t

× Φ
[2]
t C

[2]
t φ(2)

xt
(φ(2)

ςt
)T + θ2t m̄

(2)
t Ψ

[2]
t φ(2)

̟t
(φ(2)

ςt
)T

+ θ4tχ4,tΨ
[2]
t Φ

[2]
t C

[2]
t φ(2)

xt
(φ(2)

vt
)T (Ψ

[2]
t Φ

[2]
t D

[2]
t )T

+ θ4tχ5,tΨ
[2]
t Φ

[2]
t C

[2]
t φ(2)

xt
(φ(2)

̟t
)T (Ψ

[2]
t )T

+ θ4t m̄
(4)
t l̄

(2)
t Ψ

[2]
t Φ

[2]
t D

[2]
t φ(2)

vt
(φ(2)

̟t
)T (Ψ

[2]
t )T

+ θ2t m̄
(2)
t l̄

(2)
t Ψ

[2]
t Φ

[2]
t D

[2]
t φ(2)

vt
(φ(2)

ςt
)T

+ S̃s

[

θ4tχ2,tm̄
(1)
t l̄

(1)
t Ψ

[2]
t Φ

[2]
t C

[2]
t st(φ(4)

xt
)

× (Ψ
[2]
t Φ

[2]
t C

[2]
t )T + θ4tχ6,tΨ

[2]
t Φ

[2]
t C

[2]
t φ(2)

xt
(φ(2)

vt
)T

× (Ψ
[2]
t Φ

[2]
t D

[2]
t )T + θ4tχ7,tΨ

[2]
t Φ

[2]
t C

[2]
t φ(2)

xt
(φ(2)

̟t
)T

× (Ψ
[2]
t )T + θ4tχ6,t

[

(ΨtΦtCtst(φ
(2)
xt

)CT
t Φ

T
t Ψ

T
t )

⊗ (ΨtΦtDtst(φ
(2)
vt

)DT
t Φ

T
t Ψ

T
t )S̃

T
s

]

+ θ4tχ7,t

[

(ΨtΦt

× Ctst(φ
(2)
xt

)CT
t Φ

T
t Ψ

T
t )⊗ (Ψtst(φ

(2)
̟t

)ΨT
t )S̃

T
s

]

]}

with

χ1,t ,m̄
(2)
t l̄

(2)
t − (m̄

(1)
t l̄

(1)
t )2,

χ2,t ,m̄
(3)
t l̄

(3)
t − 3m̄

(1)
t l̄

(1)
t m̄

(2)
t l̄

(2)
t + 2(m̄

(1)
t l̄

(1)
t )3,

χ3,t ,m̄
(4)
t l̄

(4)
t − 4m̄

(1)
t l̄

(1)
t m̄

(3)
t l̄

(3)
t

+ 6(m̄
(1)
t l̄

(1)
t )2m̄

(2)
t l̄

(2)
t − 3(m̄

(1)
t l̄

(1)
t )4,

χ4,t ,m̄
(4)
t l̄

(4)
t − 2m̄

(1)
t l̄

(1)
t m̄

(3)
t l̄

(3)
t + m̄

(2)
t l̄

(2)
t (m̄

(1)
t l̄

(1)
t )2,

χ5,t ,m̄
(4)
t l̄

(2)
t − 2m̄

(1)
t (l̄

(1)
t )2m̄

(3)
t + m̄

(2)
t (m̄

(1)
t l̄

(1)
t )2,

χ6,t =m̄
(1)
t l̄

(1)
t (m̄

(3)
t l̄

(3)
t − m̄

(1)
t l̄

(1)
t m̄

(2)
t l̄

(2)
t ),

χ7,t =m̄
(1)
t l̄

(1)
t (m̄

(3)
t l̄

(1)
t − m̄

(1)
t l̄

(1)
t m̄

(2)
t ).

Proof: See Appendix. �

Next, we focus our attention on the derivation of the
filtering error covariance ℜt+1|t+1 and the gain matrix
Jt+1.

3.2 Design of Quadratic Filter

In this subsection, we aim to give the one-step prediction
error covariance and filtering error covariance in Theo-
rem 1, which is subsequently followed by selecting a gain
parameter Jt+1 in Theorem 2.

Theorem 1 The one-step prediction error covariance
ℜt+1|t and the filtering error covariance ℜt+1|t+1 satisfy
the following difference equations

ℜt+1|t =Atℜt|tAT
t +RWt

(30)

ℜt+1|t+1 =(I − Jt+1Ct+1)ℜt+1|t(I − Jt+1Ct+1)
T

+ Jt+1RVt+1
J T
t+1 (31)

Proof: Substituting (15) into ℜt+1|t, we have

ℜt+1|t =E{Atℵt|tℵT
t|tAT

t }+AtE{ℵt|tW
T
t }

E{WtℵT
t|t}AT

t + E{WtW
T
t }. (32)

Noticing E{XtW
T
t } = 0 and E{X̂t|tW

T
t } = 0, it is easy

to verify that E{ℵt|tW
T
t } = 0. Therefore, the dynamics

of the one-step prediction error covariance satisfies (30).

In view of the expression of ℵt+1|t+1 and the definition
of ℜt+1|t+1, we obtain

ℜt+1|t+1 =(I − Jt+1Ct+1)E{ℵt+1|tℵT
t+1|t}(I − Jt+1Ct+1)

T

− E{(I − Jt+1Ct+1)ℵt+1|tV
T
t+1}J T

t+1

− Jt+1E{Vt+1ℵT
t+1|t(I − Jt+1Ct+1)}T

+ Jt+1E{Vt+1V
T
t+1}J T

t+1. (33)

Since the noises εt+1, ̟t+1 and ςt+1 are indepen-
dent of ℵt+1|t, we derive E{ℵt+1|t~v

T
t+1} = 0 and

E{ℵt+1|tṽ
T
t+1} = 0, from which we further obtain

E{ℵt+1|tV
T
t+1} = 0. Accordingly, the evolution of the

filtering error covariance’s dynamics is given as

ℜt+1|t+1 =(I − Jt+1Ct+1)E{ℵt+1|tℵT
t+1|t}(I − Jt+1Ct+1)

T

+ Jt+1E{Vt+1V
T
t+1}J T

t+1 (34)

which yields (31). This proof is complete. �

Theorem 2 The filtering error covariance ℜt+1|t+1 in
(31) is minimized by designing the gain matrix as follows:

Jt+1 = ℜt+1|tCT
t+1(Ct+1ℜt+1|tCT

t+1 +RVt+1
)−1 (35)

and the corresponding minimal filtering error covariance
ℜt+1|t+1 is computed recursively as

ℜt+1|t+1 =ℜt+1|t − Jt+1(Ct+1ℜt+1|tCT
t+1 +RVt+1

)J T
t+1.

(36)

Proof: By means of the completing-the-square method,
ℜt+1|t+1 in (31) can be calculated as follows:

ℜt+1|t+1 =ℜt+1|t +
[

Jt+1 −ℜt+1|tCT
t+1(Ct+1ℜt+1|tCT

t+1

+RVt+1
)−1

]

(Ct+1ℜt+1|tCT
t+1 +RVt+1

)
[

Jt+1
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−ℜt+1|tCT
t+1(Ct+1ℜt+1|tCT

t+1 +RVt+1
)−1

]T

−ℜt+1|tCT
t+1(Ct+1ℜt+1|tCT

t+1 +RVt+1
)−1

× Ct+1ℜt+1|t. (37)

Consequently, it is straightforward to see that ℜt+1|t+1

is minimized by choosing the following gain matrix

Jt+1 = ℜt+1|tCT
t+1(Ct+1ℜt+1|tCT

t+1 +RVt+1
)−1

which, together with (37), leads to (36). The proof is
now complete. �

Remark 4 The one-step prediction error covariance
and filtering error covariance have been established in
(30) and (31), and the gain matrix Jt+1 has been ob-
tained in (35). It is observed that the filtering error
covariance relies on At, Ct, RWt

and RVt
, which in-

dicate that the influences from the dynamical bias, the
amplify-and-forward relay, and the non-Gaussian nois-
es have all been reflected in the design of the quadratic

filter. To be specific, Ft in ~At accounts for the effect from
the dynamical bias, θt and χi,t(i = 1, 2, · · · , 7) reflect

the influence of the amplify-and-forward relay, and φ
(j)
~wt
,

φ
(j)
vt , φ

(j)
̟t and φ

(j)
ςt (j = 2, 3, 4) in RWt

and RVt
cater

for the impact of high-order moments of non-Gaussian
noises on ℜt+1|t+1.

3.3 Boundedness Analysis

In this subsection, we examine the boundedness of the
filtering error covariance ℜt+1|t+1.

Assumption 2 There exist positive scalars q̄a, qa, q̄c,
q
v
, q

w
and q̄w satisfying

AtAT
t ≤ q̄aI,AT

t At ≥ q
a
I,

CT
t Ct ≤ q̄cI,RVt

≥ q
v
I,

q
w
I ≤ RWt

≤ q̄wI.

Theorem 3 Under Assumption 2, there exists a positive
scalar β such that

ℜt+1|t+1 ≥ βI (38)

for every t > 0, where

β , (q−1
w

+ q̄cq
−1
v

)−1.

Proof: By means of Lemma 1, ℜt+1|t+1 can be reorga-
nized as

ℜt+1|t+1 =
(

ℜ−1
t+1|t + CT

t+1R−1
Vt+1

Ct+1

)−1
. (39)

Noting

ℜt+1|t ≥ RWt
≥ q

w
I (40)

we have

ℜ−1
t+1|t+1 =ℜ−1

t+1|t + CT
t+1R−1

Vt+1
Ct+1

≤(q−1
w

+ q̄cq
−1
v

)I (41)

which implies that

ℜt+1|t+1 ≥ (q−1
w

+ q̄cq
−1
v

)−1I , βI (42)

for every t > 0. �

Theorem 4 Under Assumption 2, there exists a positive
scalar βt+1 such that

ℜt+1|t+1 ≤ βt+1I (43)

where

β0 , λmax(ℜ0|0), βt+1 , β0q̄
t+1
a + q̄w

t
∑

i=0

q̄ia.

Proof: This theorem is proved by the mathematical in-
duction method. It is obvious that ℜ0|0 ≤ λmax(ℜ0|0)I.
Suppose that ℜt|t ≤ βtI holds, we need to prove
ℜt+1|t+1 ≤ βt+1I.

It follows from (36) that

ℜt+1|t+1 ≤ℜt+1|t = Atℜt|tAT
t +RWt

≤βtq̄aI + q̄wI

≤(β0q̄
t+1
a + q̄w

t
∑

i=0

q̄ia)I

,βt+1I (44)

which ends the proof. �

We notice from Theorem 4 that, if q̄a < 1, then the
matrix ℜt+1|t+1 also satisfies

ℜt+1|t+1 ≤ (β0q̄a +
q̄w

1− q̄a
)I.

Furthermore, if q̄a > 1, we are interested in establish-
ing the corresponding sufficient condition on the upper
bound of ℜt+1|t+1.

Theorem 5 Under Assumption 2, if there exist positive
scalars q

a
, q̄w, β, β̄ and r such that the following inequal-

ities

t+1
∑

i=t−r+1

ζi−t−1ΩT (i, t+ 1)CT
i R−1

Vi
CiΩ(i, t+ 1) ≥ β̄−1I, t ≥ r

(45)

βt+1 ≤ β̄, 0 ≤ t < r − 1 (46)

hold for all t ≥ 0, then the filtering error covariance
ℜt+1|t+1 satisfies

ℜt+1|t+1 ≤ β̄I (47)

where

ζ , 1 + q̄wq
−1
a

β−1, Ω(t+ 1, t+ 1) , I,

Ω(i, t+ 1) , A−1
i A−1

i+1 · · ·A−1
t (i < t). (48)
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Proof: For 0 ≤ t < r − 1, we can conclude that
ℜt+1|t+1 ≤ βt+1I ≤ β̄I.

Based on Assumption 2 and (30), we obtain that

ℜt+1|t =At[ℜt|t +A−1
t RWt

(A−1
t )T ]AT

t

≤At[ℜt|t + q̄wq
−1
a

β−1ℜt|t]AT
t

=(1 + q̄wq
−1
a

β−1)Atℜt|tAT
t . (49)

Substituting (49) into ℜ−1
t+1|t leads to

ℜ−1
t+1|t+1 =ℜ−1

t+1|t + CT
t+1R−1

Vt+1
Ct+1

≥ζ−1A−T
t ℜ−1

t|t A−1
t + CT

t+1R−1
Vt+1

Ct+1

≥ζ−2A−T
t A−T

t−1ℜ−1
t−1|t−1A−1

t−1A−1
t

+ ζ−1A−T
t CT

t R−1
Vt

CtA−1
t + CT

t+1R−1
Vt+1

Ct+1

≥
t+1
∑

i=t−r+1

ζi−t−1ΩT (i, t+ 1)CT
i R

−1
Vi

CiΩ(i, t+ 1)

≥β̄−1I. (50)

Therefore, we can derive that ℜt+1|t+1 ≤ β̄I when (45)-
(46) hold. The proof is complete. �

Remark 5 The uniform lower bound βI and the upper

bound β̄I of the filtering error covariance ℜt+1|t+1 have
been given, respectively, in Theorems 3-4, from which we
can observe that the scalars β and β̄ are closely related to
the augmented systemmatrices and the augmented noises
covariance matrices.

Remark 6 Thus far, the quadratic filtering issue has
been addressed for linear non-Gaussian systems equipped
with an amplify-and-forward relay possessing random
transmission powers. Given the dynamical bias and the
amplify-and-forward relay, both a recursive quadratic
filter and its filtering error covariance have been derived.
Moreover, the influence of system coefficients on the
filtering performance has been elucidated. Contrasting
with extant filtering outcomes related to the amplify-and-
forward relay/dynamical bias, the filtering methodology
presented in this study boasts several unique attributes: 1)
the quadratic filtering challenge explored is pioneering,
especially given the simultaneous presence of dynamical
bias, non-Gaussian noises, and an amplify-and-forward
relay influenced by random transmission powers; 2) the
devised quadratic filtering method is innovative, delv-
ing into the stochastic nuances of the non-Gaussian
noises/transmission powers while shedding light on the
interplay between the filtering error covariance and the
aforementioned determinants; and 3) the analysis result
of boundedness is new that offers both the lower and
upper boundaries for the filtering error covariance.

4 An Illustrative Example

In this section, some experiment results are provided
to demonstrate the validity of the presented quadratic
filtering algorithm.

Table 1
The 2nd, 3rd and 4th-order moments of random variables

E{(·)2} E{(·)3} E{(·)4}

wt 1 0 1

vt 0.9100 −0.5460 1.1557

ε1,t 0.9600 0.3840 1.0752

ε2,t 0.1875 −0.0938 0.0820

ξ1,t 0.7500 −0.7500 1.3125

ξ2,t 0.3750 −0.0938 0.1641

̟t 0.3600 −0.5760 1.0512

ςt 0.2100 −0.0840 0.0777

Consider a linear discrete system with the following pa-
rameters:

At =

[

0.6 0.5

−0.1sin(0.2t) 0.8

]

, Et =

[

0.1 0

0.03cos(0.2t) 0.15

]

,

Bt =

[

0.05

0.1

]

, Ct =
[

0.2 0.18
]

, Ft =

[

0.1 0

0.1 0.2

]

.

Other parameters are set as Dt = 0.01, Φt = 1, Ψt = 1
and θt = 3. The probability distributions of the trans-
mission power are given as follows:

P{lt = 1} = 0.1, P{lt = 1.5} = 0.3, P{lt = 2} = 0.6,

P{mt = 1} = 0.2, P{mt = 1.1} = 0.4, P{lt = 1.2} = 0.4.

The initial state x0 is supposed to satisfy the Gaussian
distribution with zero mean and covariance 0.01I2. The
non-Gaussian random sequences, i.e.,wt, vt, εi,t, ξi,t (i =
1, 2), ̟t and ςt, are adopted as follows:

wt = −ρwt
+ (1− ρwt

),

vt = 0.7ρvt − 1.3(1− ρvt),

ε1,t = −0.8ρε1,t + 1.2(1− ρε1,t),

ε2,t = −0.75ρε2,t + 0.25(1− ρε2,t),

ξ1,t = −1.5ρξ1,t + 0.5(1− ρξ1,t),

ξ2,t = −0.75ρξ2,t + 0.5(1− ρξ2,t),

̟t = −1.8ρ̟t
+ 0.2(1− ρ̟t

),

ςt = −0.7ρςt + 0.3(1− ρςt),

where the random variables ρwt
, ρvt , ρεi,t , ρξi,t , ρ̟t

and
ρςt obey Bernoulli distributions

P{ρwt
= 1} = 0.5, P{ρvt = 1} = 0.65,

P{ρε1,t = 1} = 0.6, P{ρε2,t = 1} = 0.25,

P{ρξ1,t = 1} = 0.25, P{ρξ2,t = 1} = 0.4,

P{ρ̟t
= 1} = 0.1, P{ρςt = 1} = 0.3.

Moreover, the 2nd, 3rd and 4th-order moments of the
involved random sequences are given in Table 1.

Based on the aforementioned parameters, (30)-(31) and
(35), the quadratic filtering algorithm is employed to es-
timate xt, and the associated simulation results are de-
picted in Figs. 1-6. Specifically, Figs. 1-2 illustrate the
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trajectories of x1,t and x2,t, along with their estimates
x̂1,t|t and x̂2,t|t. From these figures, it can be observed
that the proposed filter aligns closely with the actual s-
tates, from which we notice that the proposed filter can
follow the actual states closely. To underscore the supe-
riority of the devised quadratic filtering approach, com-
parisons of the filtering error covariances between the
quadratic and linear filters (the latter utilizing only zt)
are presented in Figs. 3-4. Moreover, Figs. 5-6 showcase
the Mean Squared Error (MSE) trajectories of both the
quadratic and linear filters. It is clear from the graphs
that the covariance/MSE trajectories of the linear filter
consistently exceed those of the quadratic filter, further
attesting to the enhanced filtering accuracy of the pro-
posed quadratic method.
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Fig. 1. x1,t and its estimation x̂1,t|t
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Fig. 2. x2,t and its estimation x̂2,t|t

5 Conclusions

This paper has tackled the quadratic filtering chal-
lenge for linear stochastic systems influenced by the
dynamical bias, an amplify-and-forward relay, and non-
Gaussian noises. Random transmission powers of the
amplify-and-forward relay have been represented us-
ing two series of random variables. Utilizing the state
augmentation method, an augmented system has been
constructed, encapsulating high-order moments of the
implicated random variables. From this foundation, a
recursive quadratic filter has been established, and the
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Fig. 3. Comparisons of filtering error covariances between
the quadratic filter and the linear filter for x1,t
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0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
S

E
s

Quadratic filter
Linear filter

Fig. 5. Comparisons of MSEs between the quadratic filter
and the linear filter for x1,t

filtering error covariance has been derived and then
minimized through designing the optimal gain matrix.
In the subsequent sections, the filtering error covari-
ance’s lower and upper bounds have been computed.
Concluding the study, numerical simulations have been
presented to validate the efficacy of the formulated
quadratic filtering approach. For upcoming research,
the developed quadratic filtering results would be ex-
tended to more general systems, such as multi-sensor
systems and complex networks.
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6 Appendix

6.1 Proof of Lemma 4

Proof: Utilizing the expression ofWt, we compute RWt

as follows:

RWt
=

[

E{ ~Bt ~wt ~w
T
t
~BT
t } E{ ~Bt ~wt(w̃t)

T }
E{w̃t ~w

T
t
~BT
t } E{w̃tw̃

T
t }

]

. (51)

For the first term E{ ~Bt ~wt ~w
T
t
~BT
t }, we have

E{ ~Bt ~wt ~w
T
t
~BT
t } = ~Bt

[

st(φ
(2)
wt

) 0

0 st(φ
(2)
ξt

)

]

~BT
t . (52)

For the second term E{ ~Bt ~wtw̃
T
t }, we derive

E{ ~Bt ~wtw̃
T
t } =E

{

~Bt ~wt

[

S̃n+nε
( ~At~xt ⊗ ~Bt ~wt)

+ ~B
[2]
t (~w

[2]
t − φ

(2)
~wt
)
]T}

= ~BtE{~wt(~w
[2]
t )T }( ~B[2]

t )T (53)

where the conclusion that ~xt is uncorrelated with ~wt has
been utilized.

Recalling the definition of w̃t, we can easily see that

E{w̃tw̃
T
t }

=E

{

S̃n+nε
( ~At~xt~x

T
t
~AT
t ⊗ ~Bt ~wt ~w

T
t
~BT
t )S̃

T
n+nε

+ ~B
[2]
t ~w

[2]
t (~w

[2]
t )T ( ~B

[2]
t )T − ~B

[2]
t φ

(2)
~wt
(φ

(2)
~wt
)T ( ~B

[2]
t )T

+ Sym
{

S̃n+nε
( ~At~xt ⊗ ~Bt ~wt)(~w

[2]
t )T ( ~B

[2]
t )T

− S̃n+nε
( ~At~xt ⊗ ~Bt ~wt)(φ

(2)
~wt
)T ( ~B

[2]
t )T

}}

(54)

which, together with the properties of ~xt and ~wt, leads
to RW22,t

.

Similarly, we have

RVt
=

[

E{~vt~vTt } E{~vtṽTt }
E{ṽt~vTt } E{ṽtṽTt }

]

. (55)

For the sake of simplicity, we denote

γt ,
√
mt

√

lt − m̄
(1)
t l̄

(1)
t .

In light of ~vt and (8), it is not difficult to derive that

E{~vt~vTt } =θ2tE{γ2
tΨtΦtCtxtx

T
t C

T
t Φ

T
t Ψ

T
t }

+ θ2t m̄
(2)
t l̄

(2)
t ΨtΦtDtE{vtvTt }DT

t Φ
T
t Ψ

T
t

+ θ2tE{mtΨt̟t̟
T
t Ψ

T
t }+ E{ςtςTt }. (56)

A tedious algebraic manipulation of (56) yields RV 11,t.

Taking ~vt and ṽt into account, the term E{~vtṽTt } can be
expressed as

E{~vtṽTt } =E

{

~vt

[

S̃s(~Ct~xt ⊗ ~vt) + ~v
[2]
t − φ

(2)
~vt

]T}

=E{~vt(~Ct~xt ⊗ ~vt)
T S̃T

s }+ E{~vt(~v[2]t )T }
− E{~vt(φ(2)

~vt
)T }. (57)

Since ~xt is uncorrelated with ~vt and E{~vt} = 0, (57)
reduces to

E{~vtṽTt } =θ3t m̄
(1)
t l̄

(1)
t E{γ2ΨtΦtCtxt(x

[2]
t )T

× (Ψ
[2]
t Φ

[2]
t C

[2]
t )T }S̃T

s + E{~vt(~v[2]t )T }. (58)

A combination of ~v
[2]
t = ~vt ⊗ ~vt and the properties of

Kronecker algebra leads to

~v
[2]
t ,θ2t γ

2
tΨ

[2]
t Φ

[2]
t C

[2]
t x

[2]
t + θ2tmtltΨ

[2]
t Φ

[2]
t D

[2]
t v

[2]
t

+ θ2tmtΨ
[2]
t ̟

[2]
t + ς

[2]
t + S̃s

{

(θtγtΨtΦtCtxt)

⊗ (θt
√
mt

√
ltΨtΦtDtvt) + θt

√
mtΨt̟t ⊗ ςt

+ (θtγtΨtΦtCtxt)⊗ (θt
√
mtΨt̟t)

+ (θt
√
mt

√
ltΨtΦtDtvt)⊗ (θt

√
mtΨt̟t)

+ (θt
√
mt

√
ltΨtΦtDtvt)⊗ ςt

+ (θtγtΨtΦtCtxt)⊗ ςt

}

. (59)

Therefore, we have

E{~vt(~v[2]t )T } =E{θ3t γ3
tΨtΦtCtxt(x

[2]
t )T (Ψ

[2]
t Φ

[2]
t C

[2]
t )T }

+ E{θ3tm
3
2

t l
3
2

t ΨtΦtDtvt(v
[2]
t )T (Ψ

[2]
t Φ

[2]
t D

[2]
t )T }

+ E{θ3tm
3
2

t Ψt̟t(̟
[2]
t )T (Ψ

[2]
t )T }

+ E{ςt(ς [2]t )T } (60)

and reorganizing the above formula results in RV 12,t.

On the other hand, E{ṽtṽTt } is calculated as

E{ṽtṽTt } =S̃sE

{

(~Ct~xt ⊗ ~vt)(~Ct~xt ⊗ ~vt)
T
}

S̃T
s

+ E{~v[2]t (~v
[2]
t )T } − φ

(2)
~vt

(φ
(2)
~vt

)T

+ Sym
{

E{S̃s(~Ct~xt ⊗ ~vt)(~v
[2]
t )T }

− E{S̃s(~Ct~xt ⊗ ~vt)(φ
(2)
~vt

)T }
}
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=S̃sE

{

(~Ct~xt~x
T
t
~CT
t )⊗ (~vt~v

T
t )

}

S̃T
s

+ E{~v[2]t (~v
[2]
t )T } − φ

(2)
~vt

(φ
(2)
~vt

)T

+ Sym
{

E{S̃s(~Ct~xt ⊗ ~vt)(~v
[2]
t )T }

}

. (61)

Furthermore, it is straightforward to derive that

E

{

(~Ct~xt~x
T
t
~CT
t )⊗ (~vt~v

T
t )

}

=θ4tχ1,t(m̄
(1)
t l̄

(1)
t )2Ψ

[2]
t Φ

[2]
t C

[2]
t st(φ(4)

xt
)(Ψ

[2]
t Φ

[2]
t C

[2]
t )T

+ θ2t (m̄
(1)
t l̄

(1)
t )2(ΨtΦtCtst(φ

(2)
xt

)CT
t Φ

T
t Ψ

T
t )

⊗
(

θ2t m̄
(2)
t l̄

(2)
t ΨtΦtDtst(φ

(2)
vt

)DT
t Φ

T
t Ψ

T
t

+ θ2t m̄
(2)
t Ψtst(φ

(2)
̟t

)ΨT
t + st(φ(2)

ςt
)
)

, (62)

φ
(2)
~vt

= θ2tχ1,tΨ
[2]
t Φ

[2]
t C

[2]
t φ(2)

xt
+ θ2t m̄

(2)
t Ψ

[2]
t φ(2)

̟t

+ θ2t m̄
(2)
t l̄

(2)
t Ψ

[2]
t Φ

[2]
t D

[2]
t φ(2)

vt
+ φ(2)

ςt
, (63)

and

E{(~Ct~xt ⊗ ~vt)(~v
[2]
t )T }

=θ4tχ2,tm̄
(1)
t l̄

(1)
t Ψ

[2]
t Φ

[2]
t C

[2]
t st(φ(4)

xt
)(Ψ

[2]
t Φ

[2]
t C

[2]
t )T

+ θ4tχ6,tΨ
[2]
t Φ

[2]
t C

[2]
t φ(2)

xt
(φ(2)

vt
)T (Ψ

[2]
t Φ

[2]
t D

[2]
t )T

+ θ4tχ7,tΨ
[2]
t Φ

[2]
t C

[2]
t φ(2)

xt
(φ(2)

̟t
)T (Ψ

[2]
t )T

+ θ4tχ6,t

[

(ΨtΦtCtst(φ
(2)
xt

)CT
t Φ

T
t Ψ

T
t )⊗ (ΨtΦtDtst(φ

(2)
vt

)

×DT
t Φ

T
t Ψ

T
t )S̃

T
s

]

+ θ4tχ7,t

[

(ΨtΦtCtst(φ
(2)
xt

)CT
t Φ

T
t Ψ

T
t )

⊗ (Ψtst(φ
(2)
̟t

)ΨT
t )S̃

T
s

]

. (64)

For the term E{~v[2]t (~v
[2]
t )T }, we have

E{~v[2]t (~v
[2]
t )T }

=E

{

θ4t γ
4
tΨ

[2]
t Φ

[2]
t C

[2]
t x

[2]
t (x

[2]
t )T (C

[2]
t )T (Φ

[2]
t )T (Ψ

[2]
t )T

+ θ4tm
2
t l

2
tΨ

[2]
t Φ

[2]
t D

[2]
t v

[2]
t (v

[2]
t )T (D

[2]
t )T (Φ

[2]
t )T (Ψ

[2]
t )T

+ θ4tm
2
tΨ

[2]
t ̟

[2]
t (̟

[2]
t )T (Ψ

[2]
t )T + ς

[2]
t (ς

[2]
t )T

+ S̃s

(

(

θ2t γ
2
tΨtΦtCtxtx

T
t C

T
t Φ

T
t Ψ

T
t

)

⊗ (θ2tmtltΨtΦtDt

× vtv
T
t D

T
t Φ

T
t Ψ

T
t ) +

(

θ2t γ
2
tΨtΦtCtxtx

T
t C

T
t Φ

T
t Ψ

T
t

)

⊗ (θ2tmtΨt̟t(̟t)
TΨT

t ) +
(

θ2t γ
2
tΨtΦtCtxtx

T
t C

T
t Φ

T
t Ψ

T
t

)

⊗ (ςtς
T
t ) + (θ2tmtltΨtΦtDtvtv

T
t D

T
t Φ

T
t Ψ

T
t )⊗ (ςtς

T
t )

+ (θ2tmtltΨtΦtDtvtv
T
t D

T
t Φ

T
t Ψ

T
t )⊗ (θ2tmtΨt̟t̟

T
t Ψ

T
t )

+ (θ2tmtΨt̟t̟
T
t Ψ

T
t )⊗ (ςtς

T
t )

)

S̃T
s

+ Sym
{

θ2t γ
2
tΨ

[2]
t Φ

[2]
t C

[2]
t x

[2]
t (θ2tmtltΨ

[2]
t Φ

[2]
t D

[2]
t v

[2]
t )T

+ θ2tmtΨ
[2]
t ̟

[2]
t (ς

[2]
t )T + θ2t γ

2
tΨ

[2]
t Φ

[2]
t C

[2]
t x

[2]
t (ς

[2]
t )T

+ θ4tmtγ
2
tΨ

[2]
t Φ

[2]
t C

[2]
t x

[2]
t (̟

[2]
t )T (Ψ

[2]
t )T

+ θ4tm
2
t ltΨ

[2]
t Φ

[2]
t D

[2]
t v

[2]
t (̟

[2]
t )T (Ψ

[2]
t )T

+ θ2tmtltΨ
[2]
t Φ

[2]
t D

[2]
t v

[2]
t (ς

[2]
t )T

}}

. (65)

Substituting (62)-(65) into (61) yields RV 22,t, and this
ends the proof. �
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