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Abstract—In this paper, the set-membership state estimation ||z|
problem is investigated for a class of nonlinear complex networks tr{ M}
under the FlexRay protocols. In order to address practical 1
engineering requirements, the multi-rate sampling is taken into M
account which allows for different sampling periods of the || M| g
system state and the measurement. On the other hand, the M>N
FlexRay protocol is deployed in the communication network from
sensors to estimators in order to alleviate the communication M = IV
burden. The underlying nonlinearity studied in this paper is of M ® N
a general nature, and an approach based on neural networks
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is employed to handle the nonlinearity. By utilizing the convex I
optimization technique, sufficient conditions are established in

order to restrain the estimation errors within certain ellipsoidal diag{- - }
constraints. Then, the estimator gains and the tuning scalars of diag {A4;}
the neural network are derived by solving several optimization diag{A1, Ao, -+, An}
problems. Finally, a practical simulation is conducted to verify B4, £2, . .
the validity of the developed set-membership estimation scheme. 6(a; b) The Kronecker delta function
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Notations I. INTRODUCTION

Complex networks have garnered enduring interest from
FRP FlexRay prgtocol researchers in the field of systems and control due to their
RRP Round-Robin protocol remarkable capability in characterizing practical systems such
NNB Neural-network-based as power grids, traffic networks, and artificial neural networks
WTP weighted Try-Once-Discard protocol [9], [14], [16], [21]. In a general sense, a complex network
R™ The n-dimensional Euclidean space comprises numerous nodes, wherein the dynamics of each

node are interconnected through a predefined topology. The
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violated due to the challenges of unifying the sampling ratesntrol systems under FRPs. Additionally, in [40], the tracking
of the state and measurements [35]. In real-world systems swcimtrol problem has been examined for cyber-physical systems
as aluminium electrolysis cells [42] and power networks [36linder the FRP. In this paper, our goal is to further expand
different components of the system employ varying samplinige body of knowledge regarding FRP-based estimations by
rates due to their diverse physical characteristics. Additionatudying set-membership estimation under FRPs.
ly, sampling the measurements at each state update instaiNonlinearities are pervasive in practical systems and, in the
is not cost-effective for systems with slow state evolutiopast few decades, the state estimation and control problems for
[42]. Hence, multi-rate sampling is widely adopted, and theonlinear systems have long been prominent research subjects
estimation of states in multi-rate systems holds significafi], [6], [12], [30], [39]. In general, when dealing with nonlin-
importance. ear systems, the most commonly employed methods involve
In recent times, there has been a growing research focusimposing sector-bounded conditions or linearizing the nonlin-
the state estimation of multi-rate systems, resulting in varioear function [34], [43], [44], [53]. However, both of these
research findings across different types of systems [20], [64pproaches require knowledge of the nonlinearities, which
For instance, in [23], the zonotopic set-membership state est#n be challenging to obtain in practice. As an alternative
mation problem has been studied for networked systems wittethod, the neural-network-based (NNB) estimation technique
varying measurement sampling periods compared to the plaas been developed for nonlinear systems, where a neural
sampling period. In [58], the emphasis has been on distributeeitwork is employed to approximate the unknown nonlinear
fusion estimation for systems where the state, measuremelyfhamics [4]. Applications of the NNB method can be found
and estimate are asynchronously sampled. Moreover, in [64],works such as [61] and [31], where it has been utilized
the consideration has been given to moving horizon estimatitay distributed state estimation in networked nonlinear systems
for networked systems that adopt different sampling periodsd Lipschitz nonlinear systems, respectively. Moreover, the
for two groups of sensors. It is worth noting that, despitdNB method has also been used in [52] for observer-based
the growing number of results for multi-rate systems, thesecurity control problem on switched nonlinear systems and
is a lack of adequate attention given to multi-rate compler [62] for output-feedback control problem on uncertain
networks. Therefore, the primary motivation of our ongoingonsmooth nonlinear systems. However, the application of the
research is to explore state estimation techniques specificdlNB estimation method to nonlinear complex networks has
tailored for multi-rate complex networks. been rarely addressed in the literature, which is particularly
Wireless communication networks have become extensivétye in the context of multi-rate sampling under FRP.
implemented in modern industrial systems [3]. The adoption In response to the aforementioned motivations, our research
of wireless communication networks brings numerous benefitins to address the NNB set-membership state estimation
including easy installation, high flexibility, and reliabilityfor multi-rate nonlinear complex networks under FRPs. The
[50], [51]. However, the limited communication capacity okey challenges in designing the estimation scheme are as
wireless networks also introduces undesirable phenomena statlows: 1) how can we accurately describe the scheduling
as transmission delays and missing measurements [5]. dfcthe FRP and incorporate it into the estimator design? and
address these challenges, communication protocols are Zhow can we construct an appropriate neural network tuning
ployed to alleviate the communication burden by schedulidgw that ensures bounded neural network weights and state
transmission orders based on certain principles [11], [13]stimation errors? By effectively addressing these challenges,
[38], [45], [54], [55]. In the literature, various communicatiorour research makes the following contributions:
protocols have been extensively investigated which includd) we propose a novel NNB set-membership estimation
time-triggered protocols (e.g. Round-Robin protocol (RRP)) scheme specifically tailored for nonlinear complex net-
and event-triggered protocols (e.g. weighted Try-Once-Discard works operating under multi-rate sampling and FRPs,
protocol (WTP) [60]). Numerous results have been develope@) we establish a mathematical model that characterizes the
in regard to the estimation problems under communication measurements after the scheduling of FRPs and integrate
protocols, see e.g. [15], [18], [63] and the references cited it into the estimator,
therein. 3) we develop a suitable neural network tuning law that
The FlexRay protocol (FRP), serving as a specialized guarantees desired performance for both state estimation
communication protocol, has received significant interest in error and neural network weight estimation error, and
fields such as car manufacturing and automotive electronicgl) the developed estimation method allows for a more accu-
Distinct from traditional time- or event-triggered protocols, rate approximation of the unknown nonlinear dynamics
the FRP is a hybrid protocol that incorporates both time- and compared to traditional methods.
event-triggered selection principles [28]. More specifically, thiehrough these contributions, our main research objective is to
communication cycle in FRP is divided into static and dynamjgrovide an innovative approach for set-membership estimation
segments, where time-triggered and event-triggered selectiomonlinear complex networks by tackling the complexities of
principles are employed, respectively. Compared to puratyulti-rate sampling and FRPs.
time- or event-triggered protocols, the FRP provides enhanced he subsequent sections are structured as follows. Section |l
flexibility for data communications and has started to stir sonfiecuses on the conversion of the underlying multi-rate complex
initial research attention. For instance, in [48], the observeetwork into a single-rate network. It also introduces the
design problem has been addressed for nonlinear networlkd&P and characterizes its effect on the sensors’ scheduling.
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Additionally, a neural network is employed to approximate The communication cycles of the FRP

the nonlinearity present in the complex network. Moving or

to Section lll, the design of the estimator gains and th | ' evele evele3 evele evelen

neural network tuning parameters is discussed. In Sectit
IV, a practical simulation is presented to demonstrate tt
effectiveness of the proposed approach. Finally, Section static scgment dynamic segment 2100 [0
provides a conclusion to this paper.

(S
Il. PROBLEM FORMULATION Fig. 1: The illustration of the FRP
Consider the following complex network with unknown

nonlinear dynamics: o . ) .
at each time instant, effectively reducing network congestion

Tig+1 =Aizin + f(@ig) and mitigating the aforementioned issues.
N Figure 1 illustrates the components of a communication
+ ZwijFIj,l + B wi;, i=1,2,...,N (1) cycle in the FRP, which includes a static segment, a dynamic
j=1 segment, a symbol window, and a network idle time. It is

wherez;; € R™ is the state of the-th node, f(-) is an important to note_ that_ the duration_s of the symbol window

’ ﬁ'ﬂ'd the network idle time are significantly smaller compared
to those of the static and dynamic segments. As a result, this
paper focuses solely on the static and dynamic segments, while
(0, Wia) 2 {wsw) W, wiy < 1} disregarding the symbol window and the network idle time.
) . . ) In order to facilitate the analysis, we define the time lengths
whereW;, is a known positive-definite matrix andl(a, X) of the communication cycle, the static segment, and the

is an ellipsoid set with the center and _the shgpe rr_1atrix dynamic segment of the FRP @$ (L < N), L1b, and Lab
X > 0. 4;; and B;, are known matrices with suitable 7 = ) “respectively. It is obvious that = L + Lo.
dimensionsI" = diag{1,72,--, 7} is the inner coupling paqeq on ‘the principles of the FRP, the RRP is active during
ma_trlx W'thﬂi # 0 be|_ng the linking W'th_ thej'_th state_ the static segment, while the WTP is executed during the
variable.Q £ [w;;] IS the coupled configuration matrix 4 namic segment. Considering the varying real-time require-
of the net]vxork withw;; > 0 (i # j) but not all zeros and \yants of different sensors, we designate the firstsensors
Wi = =iy j Wij- The initial condition ofz;; iS zi0. a5 the setS; 2 {1,2,...,L;} and schedule them using
For thei-th n(_)de,Athe measurement output, € R™ with e RRP. The remaining’ — L, sensors belong to the set
a sampling period = tj+1 — t), is modeled by Sy 2 {Li+1,L; +2,...,N} and are scheduled using the
WTP.
Now, let us illustrate the scheduling of the FRP on the
wherev;;, € R" is the measurement noise belonging to sensors. It is known that the RRP and the WTP are active
N _ during specific time intervalsY ; £ [{Lb,iLb + L.b) and
(0, Vi) = {oiaa |0l Vi vie < 13 Yo 2 [iLb+ Lb, (i + 1)Lb) (i = 0, 1[,2, ), respec)tively.
with V; ;. being a known positive-definite matrix; ;, is a We denotes;, as the sensor granted transmission access at
known matrix with compatible dimensions. time instantt;, under the RRP, ane, as the sensor granted
To address the unknown nonlinear functig), a neural transmission access at time instapt under the WTP. By
network is emp|oyed to approximafé.) by Capitanzing on its utilizing the knOWIedge about the RRP and the WTP, we can
universal approximation property. The specific approximatigieduce the following relationships:

unknown smooth nonlinear function on a compact set, al
w;,; € R™ is the process noise satisfying

Yitr = City Tirty + ity 2

of the nonlinear functiory(-) is as follows [26]: k .
() [26] o, fmod(k—[£].L—1)+1, fort, ey 4
N = _ _ F 0, otherwise
f(Iz,l) = Ug(xz-,l) + 04, (3
whereyp; ; is the approximation errof/ is the weight matrix, argmax;cg, ngtkngj_’tk, for t), € Yo
ando(-) is the activation function. Moreover, we assume that “» = \ ¢ ’ otherwise ®)

U, 0i1, ando(-) satisfy [57]: . " . .
Ol o() v 571 wherell; are given positive definite matrices and

UFS'[L, 0i,l S@a o\ <0 ~ *
e lowll < i o)l Gioe & Ui — v
where_u, 0, ando are_kn_own _posmve COF‘Sta_”ts- with y*, being the latest transmitted measurement of sensor
During data transmissions in communication networks, the =~ “7:**

limited network bandwidth can result in data congestion, leadl- f
ing to issues such as packet dropouts, transmission delays, an
packet disorder. In this paper, the FRP is utilized to manage

H P H _ 5(525 ,Z)yz trs for ¢ e Sl,
the scheduling of transmissions from sensors to estimators. ity = ko Y)Yt _ (6)
With the FRP, only one sensor is granted access to transmit ’ 6(€ty,1)Yity, forie Sy

ter the scheduling of the FRP, the measurement arrived
ei-th estimator is written as
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whered(-, -) is the Kronecker delta function. Sineg, = i and Denoting the estimatiorj error ag,lAé x;; — &;,; and the
e:, =4 cannot be satisfied simultaneously, we further have weight estimation error ag; ; LU - Ui, we have

gi,tk = 6(€tk7i)yi,tk + 5(6tkai)yi,tk7 for 1 <i < N. (7) Ui7[+1 :(1 — (bi,l)U + ¢i7lUi7l

Note that the complex network (1)-(2) is actually a multi- — 0i0i 10T 1 Aiasr0” (00) (12)
rate system. In order to simplify the subsequent analys\iﬁhere
we will unify the sampling rates of both the state and the
measurement. By introducing Xt 2 iy — Ciaiy.

G& { (1)’ 'fté/b € N; Remark 2:The tuning law (11) is developed by using the
» otherwise gradient descent method. In Section Ill, the tuning parameters

and settinge; = 0, ¢ = 0 for I/b ¢ N, the original ¢i; andy;; will be designed along with the estimator gains.
measuremeny; ;, is reconstructed as With the characterized tuning parameters, and ¢, ;, the

estimateUiylH is updated according to (11).

Yig = QCi 121 + Quiy Assumption 1The initial conditionse; o andU;  satisfy

and the measuremefy,, received by the estimator is recon-

-
structed as tr Ui,ORil,oUi,O} <1,
_ T p—1 .
Yig = 0iayi, for 1<i<N 9) ¢ioflizocio <1

where with R;1,0 and R;2 ¢ being positive definite matrices of suit-

- able dimensions.

il = 0(er,t €1,1). ur purpose is to choose appropriate tuning parameters

i1 = 8(er,d) + (e, 1) 0 to ch tet e

Remark 1:For the considered multi-rate system (1)-(2), dué™! and estimator gairk;,; such that

t_o.the exist_ence.of the nonIinear.function, the conventional tr [UiTzREllUi z} <1 (13)
lifting technique is no longer applicable. In order to convert whiee

the multi-rate system into single-rate one, we introduce amd

indicator variable(; that equalsl when!/b € N and equals

0 otherwise. With the help of;, the measurement output (2) wi1 € W&y, Riot) £ {wiple] Rphein <1} (14)

is rewritten as (8) whose sampling period is the same as th . . . . .
state update period. thc(?ld with R;1; and R;2; being positive definite matrices of

In this paper, thé-th estimator is designed as the followin suitable dimensions. Moreaver, we are going to mininiteg,
Paper, g 9n the matrix trace sense to obtain the optimal performance.

form:
N
Biapr =Aigdig + Uiio(2i0) + Y wiTi . MAIN RESULTS
R J=1 In this section, the main results on the design of state
+ K i(Gig — 90i,:Ciii) (10) estimators for multi-rate nonlinear complex networks under

FRP are presented. First, the tuning scatars ¢, ; of (11)

are designed. Then, the characterization of the desired state
estimators is provided. Subsequently, optimal problems are
solved to minimize the ellipsoidal constraints on the state

wherez; ; andUiyl are the estimates of; ; and[], regpectively.
K, is the gain matrix to be determined ang S 9i.1G-
Define the cost function as

7. él(,} —5Ciad)” estimation errors. Finally, the discussion revolves around the
wl T Wit = i Z’ZN ol boundedness of the weight estimation eri®y.
X (Gig — 0i,0Ci,1T4,1). The following lemma is introduced which is required for

later analysis.

Taking the partial derivative qff; ;1 with respect tof]“, Lemma 1:[1] Let v:(x) 2 uTY;u be given whereu is

we have a known vector andv;” = Y;. If there exist scalarg, >
0Ji,1+1 < T 0,...,6, >0 such thatty — >, 6,Y; <0, then
i, OwnCin =
,l
’ ~ X . X1() <0, xn() £0= xo() 0.
X (Gigr1 — Ciap1Zige1)or (&),
Accordingly, the tuning law foﬁi_,l is chosen as A. The tuning parameter design
Uiiy1 =hi Uig + @i 101141081 In this subsection, a theorem is presented, which provides
_ L . a sufficient condition for the existence of the tuning scalars
X (Gigr1 — Cia1Zige1)o” (&) (11) it Gi 9
where ¢, ; and ¢, ; are the positive tuning scalars to be Theorem 1:Let the positive definite matriR;; ; be given.
determined. For complex networks (1)-(2) with the tuning law (11) under
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the FRP, the requirement (13) is satisfied if there are positileev (11) under the FRP, if there exist positive scalgys;,

scalarsg; 1;, fi,21 and tuning scalars; ;, ¢;; such that Biat, i (5 =1,2,3,4,5,6), tuning scalarsp; ;, ¢;;, and
_R = estimator gain matrix<; ; such that (15) and (16) hold, then
[ e 5”} <0 (15) (13) and (14) are satisfied simultaneously.
Tl ol Proof: The proof can be readily obtained by employing
where Theorems 1-2, and is therefore omitted here. ]

Y1 2diag{Biua* + Bior — 1, —Bial, —Biul},

—_

. - . _ C. Optimization of the ellipsoid
Bl = [_Wi,ldi,lJrl(U(Ii,l) ® C; l+1))\i,l+1 Eit

In Subsection 1lI-B, the characterization of the tuning

St £ [00Qia0 (1 — )], scalars¢;;, ¢;; and estimator gaink;; is accomplished.

5 Ap However, it should be noted that the estimator gain obtained

Rzl l —Rzl,l ® Inm . .. . .

- ~ by solving the matrix inequality (16) may constitute a set.
and ;1 is a factorization ofR;; ;. Therefore, in the subsequent discussion, an optimization prob-

Proof: See Appendix A. B |em is introduced to determine the optimal estimator gain,

Under Theorem 1, the weight estimation errdt,; is which ensures the minimal ellipsoidal constraint on the state
constrained by a predefined ellipsoidal constraint. Moreovestimation error.

the tuning scalarg; ;, y;,; are calculated by solving the matrix Theorem 41 et the positive definite matrices;; ; andR;2,¢

inequality (15). be given. For complex networks (1)-(2) with the tuning law
(11) under the FRP, the system statg is constrained within
B. The set-membership estimator design the optimal ellipsoid¥ (Z; ;, Ri2,1) With R;2; minimized in the

?tI’IX trace sense if there are positive scalgrs, £, i ji
= 1,2,3,4,5,6), tuning scalarsp;;, ;;, and estimator
p1 matnxKLl such that

In this subsection, the characterization of the state estimaEB
gain K, ; is achieved by utilizing Theorem 1. A sufficient'’
cond|t|on is established that ensures the state estimation e#8

to satisfy (14). min tr(Rio,141) 17)
Theorem 2:Let the positive definite matriz;»; and the K
estimator gaink;; be given. For complex networks (1)-(2) subject to (15) and (16)

with the tuning law (11) under the FRP, the objective (14) ii§ feasible.

satisfied if there are positive scalars;; (j = 1,2,3,4,5,6) The following algorithm outlines the procedure for char-

such that acterizing the set-membership state estimator for multi-rate
{—%%zﬂ @é,z } <0 (16) nonlinear complex networks under FRP.
il gl _ _ _ )
where ' Algorithm 1 NNB set-membership state estimator design
algorithm for multi-rate nonlinear complex networks under
S0 2diag{=}), 20, 29, FRP
(1) :dlagn,{ff (#:0)}, Step 1.Calculate the vgrmblestk and¢;, based on (4) and
) 4 L (5), _re_s_pecuvel)_/,_ R N
Zi,l =l —aiu —20;1Nu6” — a3 Step 2.Set initial conditionsr; o, 2,0, U;,o and positive def-
— Qa4 — Q51 — 6l 0is inite matricesR;;,; and R;2 . Choose the activation

functiono(-) and the maximum time step;

$(2) A . S s )
Biy =diag{oiuli, il cizl}, Step 3.At time instant/, obtain the estimator gaif;; and

253}) =diag{a;,uW, il L 5le cag el ), the tuning scalars); ;, ¢;; according to Theorem 4.
0120 Ay T F(@:)Quy By —0uKi I, Then, calculate the state estimatg, based on (10);
L _ . - Step 4.Calculate the innovation; ;1. Update the estimate
Lija :wi_jFsz,la Ky = f_lz‘,lQiz,_l - 6i_,lKi,lCi,lQi_2,la Us.141 of the neural network weight according to (11);
Aig=Tig -+ Tiicig Kig+Tiig Tiigag --- Ding], Step 5.1f I < T, then go to Step 3, else go to Step 6;
I; £diag{0,---,0,1,0,---,0} Step 6.Stop.
T

and Qo is a factorization ofR;s ;. .
Proof: See Appendix B. ’ s D Boundedness analysis

Next, leveraging Theorems 1-2, we present a sufficientIn this subsection, we will discuss the ultimate boundedness
condition for the solvability of the state estimator desigff Ui .
problem for multi-rate nonlinear complex networks under Assumption 2There are positive scalars 7, andv such
FRP. By employing the following theorem, the desired tuniniat
scalarsg; ;, v;; and estimator gaid; ; can be designed. T <l

Theorem 3:Let the positive definite matrice®;;; and A1 =
Ri2,; be given. For complex networks (1)-(2) with the tuning tr{Riz 111} <7, tr{Vip } <o
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In the sequel, a sufficient condition is developed such thed
U, , is ultimately bounded. Ry O

Theorem 5:Under Assumption 2, the weight estimation { (o} ')T _é’, J
error U; ; is ultimately bounded if &t "

<0

hold where
467, -1 <0.

=l A S =
Ei = |—idii1(o(@ig) @ C; il Zill,
Proof: See Appendix C. ] ! [ +(o(En) Hl) i ]

Remark 3:By now, the NNB set-membership state esti-eivl =0 Aj I_ F#:)Qia By =ik 1]
mation problem for multi-rate nonlinear complex networksk,; £A; Q2 — 61K 1Ci Qi1
under FRPs has been addressed. Theorems 1 and 2 estab@h [Fil,l oo Tyiay KY 4Ty Tigay - f‘iN,l]
sufficient conditions for the existence of the desired tuning ol ’
scalarsp; ; and; ;, as well as for constraining the state estithen the objectives (13) and (14) are satisfied simultaneously.
mation errors within specified ellipsoids. Based on the results Proof: The proof is easily accomplished from Theorem
of Theorems 1-2, the state estimator gains and tuning scaldrgnd is omitted here. n
are characterized through the optimization problems presente@Remark 4:In this paper, we have addressed the NNB set-
in Theorem 4. Additionally, Theorem 5 analyzes the ultimat@embership state estimation problem for multi-rate nonlinear
boundedness of the weight estimation error. It is importag@mplex networks under FRPs. Our results have several dis-
to note that the considered system in this paper accoutitguishing features when compared to existing literature:

for p_ractical engi_neering complexities including nonlinear_ities,l) Novelty The estimation problem considered in this paper
multi-rate sampling and FRPs, making the results applicable s new as it takes into account engineering-oriented com-

to real-world scenarios. Moreover, the parameters of these plexities such as multi-rate sampling and FRPs. These
complexities are all reflected in Theorem 4 and have influence complexities are often present in practical systems but

)

on the estimation performance. have not been extensively studied in the literature.
2) Characterization of FRP schedulingVe have properly
E. A corollary characterized and reflected the scheduling effect of the

FRP in the developed estimation algorithm, which en-

sures that the estimation scheme is tailored to the specific

communication protocol used in the network.

3) Utilization of the NNB methaodWe have employed the

yis = Cigzig +vig, i=1,2,...,N. (19) NNB metho_d to handle the no_nlir_1_earities present i_n t_h_e
system. This approach has significant practical signifi-

Obviously, (19) is a single-rate system. With the neural cance, as it allows for a more accurate approximation of

network designed as (3) and considering the FRP, the state the unknown nonlinear dynamics compared to traditional

In this subsection, we consider the NNB set-membership es-
timator design for single-rate systems under the FRP. Consider
the complex networks (1) with

estimator is constructed as methods.
X R R X N R In the following section, we will provide a practical simu-
Tigpr =Aia@ig + Uigo (i) + Zwijl“arj,z lation to verify the effectiveness of the developed estimation
- J=1 algorithm.
+ Kii(ig — 00,:Ciadig)
where IV. A PRACTICAL SIMULATION

In this section, we provide a practical example to validate
the effectiveness of Algorithm 1.

The tuning law of neural network weight is designed as  Let’s consider a complex network consisting of five coupled
RLC circuits. The dynamics of théth RLC circuit can be

Pig = 05,1Ci1%41 + 04,1041

U1 = ¢iaUis + @ia8i141CF described as follows [22]:
X (i1 — Ciaprigsr)o” (Big). . 1
Ti2 = L_xila
The following corollary presents the result of NNB set- 1'1
membership estimator design for single-rate systems (1) and i = — 5Tz - L_iI“ + u;
(19). i i

Corollary 1: Let the positive definite matrice®;;; and wherex;s is the charge in the capacitor amg, is the flux in
Ri2,; be given. For complex networks (1) with the measurehe inductancew; is the voltage inputL;, C;, andR; are the
ment output (19), if there exist positive scal@s;, 5;,21, «; ;1  inductance, the capacitor, and the resistance, respectively.
(j = 1,2,3,4,5,6), tuning scalarsp; ;, ¢;;, and estimator  Denotingx; = col{z;,z;2} and discretizing the obtained
gain matrixK; ; such that state-space model with sampling peribd= 0.5s, we have

— 22
~Ragn Bl [22]
E)T B © Tigr1 = Aixig + Fiugy
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where A; = et and F; = fh eAisdsF with

_ _Ri 1 _ T
| T L C; _
Sl Ea TRl
As in [22], designing the voltage inpui;; as u;; =
2?21 wi; 51, and considering the external noise as well as th

environment- or modeling-induced nonlinearities, the dynam
of the i-th RLC circuit is obtained as

Tign =Aimig+ Y wiiFag,

i=1 Vi
+ f(xi1) + Bijwiy af |
where i
f(zi;) = col{cos(z;1,),0.1sin(xi2 )}, Time sep 1
Biy=[045 05+0.1sin(0)] Fig. 2: 211, and its estimate

(1
By = [0 49 0.5+ 0.2cos({
[0.81 0.5+ 0.1cos(l
[0.73 0.5+0.2 sm(Z)]T
Bw — [0.50 0.5+0.1sin(l)] ",
F2F [I 0} , wi,; = 0.1cos(0.57),
wa; = 0.1cos(l), ws; =0.1cos(0.81),
wq, = 0.18in(0.21), ws; = 0.1 cos(0.51).

I
I

It is easily known that the ellipsoidal constraints on the
process noises are satisfied withi; ; = 0.2, Wy; = 0.2,
Ws; = 02, Wy = 0.2, and W5; = 0.2. Choose the Al
parameters ag; = 0.5H, C; = 0.5F, and R; = 1Q. The
coupling strength is set ag; = 0.1 for ¢ # j andw;; = —0.4 ‘ L ‘

for /L — ] 0 5 10 15 20 ,2‘5, , 30 35 40 45 50
For thei-th RLC circuit, the measurement outpyt,, with
b = 2h is modeled as Fig. 3: z21,; and its estimate

Yiste = Citn Titn + Vity

where
Cr, = [0.5 0.5+0.1sin(k)],
Cos, = [0.6 0.3+ 0.1sin(k)]
Cs4, = [0.6 0.4+0.1cos(k)],
Cap, = (0.4 0.5+0.1sin(k)],

Cs, = [0.5 0.5+0.1cos(k)],

v1,t, = 0.1c0s(0.5k), vey, = 0.1sin(0.2k),
vs,1, = 0.1sin(0.5k), va, = 0.1cos(0.4k),
vs.¢, = 0.1cos(0.5k),

Similarly, the ellipsoidal constraints on the measurement noi

15 L L L L L L L L L

es are satisfied with; ;, = 0.2, Vo, = 0.2, V3, = 0.2, o 5w » @ xm W B w0 & w0
Vi, =02, and Vs, = 0.2
The activation functiorr(-) is designed as Fig. 4: 251, and its estimate

o(x;;) = col{tanh(x;1 ), tanh(x0,)}.

Moreover, tf;e initial conditions are chosen&s) = ;0 = By solving the optimization problem (17), the gain matrix
[0.5 —0.3] , Uio =21, and Rz o = 101. K;,; and the tuning scalarg;;, ¢;; are characterized. The
Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/lbecome-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TNNLS.2024.3377537, IEEE Transactions on Neural Networks and Learning Systems

FINAL

. . . . .
0 5 10 15 20 25 30 35 40 45 50
Time step h

15 L L L L

Fig. 5: z41; and its estimate

15 L L L L L L L L L

Time step h

Fig. 6: x51,; and its estimate

Time step h

Fig. 7: The estimation errors

6 T T T
5F o o o o 4
4+ o o 4
3 o o o o o o Bl
2F 0O [¢] o o o [¢] q
1¢ o o o o o o A
0 I I I I I I I I I

0 5 10 15 20 25 30 35 40 45 50

Time step h

Fig. 8: The transmission access for sensors

errors are shown. The transmission orders of the sensors are
given in Fig. 8 where the ordinate represents the sensor number
and the abscissa represents the time. From Fig. 8, we can see
that the transmission load of the communication network is
greatly lightened. From the simulation results, it is seen that,
despite the significantly reduction of the available measure-
ment information, the developed NNB set-membership esti-
mation scheme can still effectively estimate the target system
state. Therefore, the usefulness of the proposed estimation
method is confirmed.

V. CONCLUSIONS

This paper has addressed the NNB set-membership state
estimation problem for a specific class of multi-rate non-
linear complex networks under FRPs. The considerations of
both multi-rate sampling and FRPs are significant as they
are commonly employed in engineering practice. To handle
the asynchronous sampling rates, an indicator variable has
been introduced to unify the sampling rates. Additionally, the
scheduling effect of FRPs on the sensors has been charac-
terized based on the FRP mechanism. To handle the general
nonlinearity present in the system, the NNB approach has been
utilized to approximate the nonlinear dynamics. Sufficient
conditions have been derived to ensure that the estimation
errors satisfy specific ellipsoidal constraints. Furthermore, the
design of both the estimator gains and the neural network
tuning parameters has been addressed. Finally, a practical
example has been provided to demonstrate the effectiveness
of the proposed estimation scheme. In our future research, we
plan to apply the NNB approach to other networked systems
such as sensor networks [29].

APPENDIXA
THE PROOF OFTHEOREM 1

The proof is conducted using the mathematical induc-

smulation results are displayed in Figs. 2-8. The states af@n method. We know from Assumption 1 that the ini-
the estimates are plotted in Figs. 2-6. In Fig. 7, the estimatitinl condition tr {UEOR;}OULO} < 1 holds. Supposing that
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tr |U5,R;;,Uiy| < 1 holds, we need to find the condition APPENDIXB

under whichtr UZ.TZHRZ._lllHUZ—JH] < 1 holds. _ THE PROOF OFTHE_OREMZ o
R o1 The proof is also conducted using the mathematical induc-
Note that the conditiorr [Ui,lRil,lUivl} < 1holds. Let  tion method. It is derived from Assumption 1 that the initial
condition e;fOR;Q,loei,O <1 is true.

vec(Us,) £ [Uﬁ) Uﬁ) Ui(fllx)r Assuming thate, R;;'e;; < 1 holds true, our objective
" " " is to establish the conditioZlHRi},lHleuH < 1. Not-
with U being thei-th row of 7; ;. Then, one has ing e] Rjyheir < 1, there exists a vectoto;; satisfying
' . B . w;{lwi,l < 1 such that
(Vec(Um))TR;lvec(Ui,l) <1. (20)
14 el = Qi2,1 @i . (24)
TFrom (20), it is known that there is a vectdr,; fulfilling It follows from (1), (3) and (10) that
¥;9i, < 1 such that v
vee(Ui 1) = Qir19i1 eii+1 =Aipein + Zwiﬂ'reﬂ?l
j=1
holds. +Uaq;; + Ui,la(ji,l)

Based on the weight estimation error dynamics (12), it is
derived that

vee(Us 1) =(1 — ¢i)U + ¢i1Qin 10y
— itbir1(0(&i1) ® CFyy1)Xiis

+ Bijwi 1 + 0i

— 631 K;1C5 €50 — 03,1 K,1v3 (25)
where

0i,l £ o(xiy) — o(Ziy).

where By utilizing matrix operations, it becomes evident that
7 A ne)1 L ~ -
U4 [U(l) U@ ...yl )} Ui (ia) = (30 vee(Tiy).
with U being thei-th row of U. Then, (25) is rewritten as
By introducing a vector; ; = col{1,v;;,U}, we have N
5 id+1 =Ai1Qiz, i, i1 Qj2,100;
vec(Uiiy1) = Ziimi1- cut (@it ;W Q2

+ UG+ 3(2:1)Qi11Vi4

Note thattr |07, Ry}, U4t | < 1 holds if
' ’ + B w1 + 0i4

(Vec(ﬁ““))TRi_l,llJrlvec(UiJH) <1 (21) — 010 Ki1Ci1Qizyiy — 011K vy
holds, which is equivalent to =A@+ UG + 5(551‘,1)6_21'1,1191‘,1
nLZT RN Zimig — nhdiag{1,0,0}n;, < 0.  (22)  Buwng + it = 0K vy (26)
pT LT R where
Now, it remains to prove that (22) is true. It is obvious that &1 Leol{mr i, o oni).

191.Tl19i71 < 1 can be rewritten as
E . A — —
By denotings; ; = col{1, @, Ud; 1, ¥ 1, Wi, Vi, 0i}, ONE

ni,diag{0, 1,0} — ;) diag{1,0,0}nis < 0. has
Moreover, it is known from|U||» < @ that i1 = 04161 (27)
0 diag{—a*,0, I}n;; < 0. Fromw/ @, ; <1 and¥] ¥;; <1, we have
T ] . .
Therefore, according to Lemma 1, (22) holds (i.e., (21) holds) giydiag{—1,1;,0,0,0,0,0}s;,; <0,
if there are positive scalars; ;; and 3; o; such that giT’ldiag{—l, 0,0,1,0,0,0}s;; < 0.
Ei,zéﬁ,lHlEi,l — diag{1,0,0} Similarly, it is obtained from the constrains on the noises that

— Biudiag{—a?0,1} o diag{—1,0,0,0,W;;',0,0}s;; <0,

— Bizdiag{—1,1,0} <0 (23) o1 idiag{—1,0,0,0,0,V;;", 0}s;; < 0.
holds. It is known that||Us,,|| < 2Nua?. Then, we have

By employing the Schu_r Complem_ent Lemma, it can be I diag{—2Naa2,0,1,0,0,0,0}; < 0,
concluded that (23) holds if and only if (15) holds. Thus, the T ~ T
proof is complete. Siydiag{—0;,0,0,0,0,0, I'}s, <0.
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With the help of Lemma 1, we know that x Cl1Ciigr€insro” (£0)}
eZlHR[Q}ZHe“H < 1 is true if there are positive scalars

=tr C;T Cl €; O’T fi
aii (7 =1,2,3,4,5,6) such that (Gl Cunesrnot (2a)

. T T
X U(xi,l)ei,lﬂCi,l+10i,l+1}
_2 T T T
SO’ tr{ei’l+1ci’l+1ci,l+1Ci,l+107;7l+167;7l+1}
_2_ T T
<o CtI‘{€i’l+1ci’l+1ci,l+1ei,l+l}

=22 T
<o“c tr{€i7l+1€i,l+l}

0! Ry 4101 — a; udiag{—1,1;,0,0,0,0,0}
— a; gdiag{—2Nu5?,0,1,0,0,0,0}
— a; 33diag{—1,0,0,1,0,0,0}

— oy ydiag{—1,0,0,0, W', 0,0} <57
— oy mdiag{—1,0,0,0,0,V;;",0} and
- aiy6ldiag{—@¢, 0,0,0,0,0, I}
— diag{1,0,0,0,0,0,0} < 0 (28) tr{o(i,1)v} 111 Cia1Cl vig10” (£00)}
Holds. =tr{C]} 1viir10” (&i0)o(2i0)v] 11 Ciasgr }
By resorting to the Schur Complement Lemma, the inequal- §52tr{CiT,z+1vi,l+1viT,z+1Cz‘,l+1}
ity (28) is true if and only if (16) is true, which completes the :6’2tr{Ugl+10i7l+1cgl+1vi7l+1}
proof. <o?etr{v], 1 vii1}
APPENDIXC <50,
THE PROOF OFTHEOREMS Then, we have

Defining a function as AViy <A(1— 620 {UTUY + (4@2’[ B 1)tr{UflUi,l}

Vi = te{U5 Ui}, + 428 sate{o(Bi)eT )1 CTy o
we have from (12) that x Cl1 1 Ciagreinsro” (£i0)}
Uiisr =1 — ¢i)U + ¢i1Usy + 492 i1 tr{o(@i0)vf 1 Cin
- %,l&,lHCiT,lﬂCi,z+1€i,l+1UT(i’i,l) X Clip1vigt10” (#i0)}
— 010111 Oy vi 107 (24). (29) <(4¢7;, — Dtr{UL U} +4(1 — ¢iy)*u?

2 5 _2_2_
Calculating the difference o¥;; along the trajectory of gLl o

2 5 2
(29), one has + 45 0i1+107C0.
AV Vi1 — Viy Noting (18), we know thaf]l-,l is ultimately bounded, and
T - the proof is complete.
=t { (1 = 6.0U” + 6307, P P
— wirbigio(Ei)el, Ch L O
$i,194,1+1 0,1)€ 141V 0,141 V5041 REFERENCES
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