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Abstract—In this paper, the set-membership state estimation
problem is investigated for a class of nonlinear complex networks
under the FlexRay protocols. In order to address practical
engineering requirements, the multi-rate sampling is taken into
account which allows for different sampling periods of the
system state and the measurement. On the other hand, the
FlexRay protocol is deployed in the communication network from
sensors to estimators in order to alleviate the communication
burden. The underlying nonlinearity studied in this paper is of
a general nature, and an approach based on neural networks
is employed to handle the nonlinearity. By utilizing the convex
optimization technique, sufficient conditions are established in
order to restrain the estimation errors within certain ellipsoidal
constraints. Then, the estimator gains and the tuning scalars of
the neural network are derived by solving several optimization
problems. Finally, a practical simulation is conducted to verify
the validity of the developed set-membership estimation scheme.

Index Terms—Multi-rate systems, FlexRay protocols, complex
networks, neural networks, set-membership state estimation.

Notations

FRP FlexRay protocol
RRP Round-Robin protocol
NNB Neural-network-based
WTP weighted Try-Once-Discard protocol
R

n Then-dimensional Euclidean space
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‖x‖ The Euclidean norm of the vectorx
tr{M} The trace of matrixM
M−1 The inverse of matrixM
‖M‖F The Frobenius norm of matrixM
M > N M−N is positive definite
M ≥ N M−N is positive semi-definite
M ⊗N The Kronecker product of matricesM

andN
col{· · · } A column vector
diag{· · · } A block diagonal matrix
diagn{Ai} A block diagonal matrix

diag{A1, A2, · · · , An}

δ(a, b) The Kronecker delta function
⌊·⌋ The floor function
mod(a, b) The unique nonnegative remainder on

division of a by b

I. I NTRODUCTION

Complex networks have garnered enduring interest from
researchers in the field of systems and control due to their
remarkable capability in characterizing practical systems such
as power grids, traffic networks, and artificial neural networks
[9], [14], [16], [21]. In a general sense, a complex network
comprises numerous nodes, wherein the dynamics of each
node are interconnected through a predefined topology. The
evolution of an individual node’s dynamics depends on its own
past dynamics as well as the dynamics of the interconnected
nodes. Due to this distinct feature, the analysis and synthesis of
complex networks have gained significant attention, resulting
in numerous findings in areas such as synchronization, con-
sensus, and state estimation for complex networks [17], [24],
[41], [46], [47], [56]. Notably, state estimation for complex
networks has attracted considerable research enthusiasm due
to the practical need to acquire information about the network
states in various complex network applications [7], [27].
Thus far, various estimation algorithms have been developed
for complex networks including theH∞ scheme [49], the
Kalman filtering approach [10], [37], and the set-membership
estimation method [8], [32].

Through a literature review, it has been discovered that most
of the results on the state estimation problem for complex
networks are derived based on an assumption on synchronous
sampling of the system state and measurements [19], [25],
[33], [59]. However, in practice, this assumption is often
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violated due to the challenges of unifying the sampling rates
of the state and measurements [35]. In real-world systems such
as aluminium electrolysis cells [42] and power networks [36],
different components of the system employ varying sampling
rates due to their diverse physical characteristics. Additional-
ly, sampling the measurements at each state update instant
is not cost-effective for systems with slow state evolution
[42]. Hence, multi-rate sampling is widely adopted, and the
estimation of states in multi-rate systems holds significant
importance.

In recent times, there has been a growing research focus on
the state estimation of multi-rate systems, resulting in various
research findings across different types of systems [20], [64].
For instance, in [23], the zonotopic set-membership state esti-
mation problem has been studied for networked systems with
varying measurement sampling periods compared to the plant
sampling period. In [58], the emphasis has been on distributed
fusion estimation for systems where the state, measurement,
and estimate are asynchronously sampled. Moreover, in [64],
the consideration has been given to moving horizon estimation
for networked systems that adopt different sampling periods
for two groups of sensors. It is worth noting that, despite
the growing number of results for multi-rate systems, there
is a lack of adequate attention given to multi-rate complex
networks. Therefore, the primary motivation of our ongoing
research is to explore state estimation techniques specifically
tailored for multi-rate complex networks.

Wireless communication networks have become extensively
implemented in modern industrial systems [3]. The adoption
of wireless communication networks brings numerous benefits
including easy installation, high flexibility, and reliability
[50], [51]. However, the limited communication capacity of
wireless networks also introduces undesirable phenomena such
as transmission delays and missing measurements [5]. To
address these challenges, communication protocols are de-
ployed to alleviate the communication burden by scheduling
transmission orders based on certain principles [11], [13],
[38], [45], [54], [55]. In the literature, various communication
protocols have been extensively investigated which include
time-triggered protocols (e.g. Round-Robin protocol (RRP))
and event-triggered protocols (e.g. weighted Try-Once-Discard
protocol (WTP) [60]). Numerous results have been developed
in regard to the estimation problems under communication
protocols, see e.g. [15], [18], [63] and the references cited
therein.

The FlexRay protocol (FRP), serving as a specialized
communication protocol, has received significant interest in
fields such as car manufacturing and automotive electronics.
Distinct from traditional time- or event-triggered protocols,
the FRP is a hybrid protocol that incorporates both time- and
event-triggered selection principles [28]. More specifically, the
communication cycle in FRP is divided into static and dynamic
segments, where time-triggered and event-triggered selection
principles are employed, respectively. Compared to purely
time- or event-triggered protocols, the FRP provides enhanced
flexibility for data communications and has started to stir some
initial research attention. For instance, in [48], the observer
design problem has been addressed for nonlinear networked

control systems under FRPs. Additionally, in [40], the tracking
control problem has been examined for cyber-physical systems
under the FRP. In this paper, our goal is to further expand
the body of knowledge regarding FRP-based estimations by
studying set-membership estimation under FRPs.

Nonlinearities are pervasive in practical systems and, in the
past few decades, the state estimation and control problems for
nonlinear systems have long been prominent research subjects
[2], [6], [12], [30], [39]. In general, when dealing with nonlin-
ear systems, the most commonly employed methods involve
imposing sector-bounded conditions or linearizing the nonlin-
ear function [34], [43], [44], [53]. However, both of these
approaches require knowledge of the nonlinearities, which
can be challenging to obtain in practice. As an alternative
method, the neural-network-based (NNB) estimation technique
has been developed for nonlinear systems, where a neural
network is employed to approximate the unknown nonlinear
dynamics [4]. Applications of the NNB method can be found
in works such as [61] and [31], where it has been utilized
for distributed state estimation in networked nonlinear systems
and Lipschitz nonlinear systems, respectively. Moreover, the
NNB method has also been used in [52] for observer-based
security control problem on switched nonlinear systems and
in [62] for output-feedback control problem on uncertain
nonsmooth nonlinear systems. However, the application of the
NNB estimation method to nonlinear complex networks has
been rarely addressed in the literature, which is particularly
true in the context of multi-rate sampling under FRP.

In response to the aforementioned motivations, our research
aims to address the NNB set-membership state estimation
for multi-rate nonlinear complex networks under FRPs. The
key challenges in designing the estimation scheme are as
follows: 1) how can we accurately describe the scheduling
of the FRP and incorporate it into the estimator design? and
2) how can we construct an appropriate neural network tuning
law that ensures bounded neural network weights and state
estimation errors? By effectively addressing these challenges,
our research makes the following contributions:

1) we propose a novel NNB set-membership estimation
scheme specifically tailored for nonlinear complex net-
works operating under multi-rate sampling and FRPs,

2) we establish a mathematical model that characterizes the
measurements after the scheduling of FRPs and integrate
it into the estimator,

3) we develop a suitable neural network tuning law that
guarantees desired performance for both state estimation
error and neural network weight estimation error, and

4) the developed estimation method allows for a more accu-
rate approximation of the unknown nonlinear dynamics
compared to traditional methods.

Through these contributions, our main research objective is to
provide an innovative approach for set-membership estimation
in nonlinear complex networks by tackling the complexities of
multi-rate sampling and FRPs.

The subsequent sections are structured as follows. Section II
focuses on the conversion of the underlying multi-rate complex
network into a single-rate network. It also introduces the
FRP and characterizes its effect on the sensors’ scheduling.
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Additionally, a neural network is employed to approximate
the nonlinearity present in the complex network. Moving on
to Section III, the design of the estimator gains and the
neural network tuning parameters is discussed. In Section
IV, a practical simulation is presented to demonstrate the
effectiveness of the proposed approach. Finally, Section V
provides a conclusion to this paper.

II. PROBLEM FORMULATION

Consider the following complex network with unknown
nonlinear dynamics:

xi,l+1 =Ai,lxi,l + f(xi,l)

+

N∑

j=1

ωijΓxj,l +Bi,lwi,l, i = 1, 2, . . . , N (1)

where xi,l ∈ R
nx is the state of thei-th node,f(·) is an

unknown smooth nonlinear function on a compact set, and
wi,l ∈ R

nw is the process noise satisfying

Ψ(0,Wi,l) , {wi,l|w
T
i,lW

−1
i,l wi,l ≤ 1}

whereWi,l is a known positive-definite matrix andΨ(a,X)
is an ellipsoid set with the centera and the shape matrix
X > 0. Ai,l and Bi,l are known matrices with suitable
dimensions.Γ , diag{γ1, γ2, · · · , γN} is the inner coupling
matrix with γi 6= 0 being the linking with thej-th state
variable.Ω ,

[
ωij

]

N×N
is the coupled configuration matrix

of the network withωij ≥ 0 (i 6= j) but not all zeros and
ωii = −

∑N

j=1,j 6=i ωij . The initial condition ofxi,l is xi,0.
For thei-th node, the measurement outputyi,tk ∈ R

ny with
a sampling periodb , tk+1 − tk is modeled by

yi,tk = Ci,tkxi,tk + vi,tk (2)

wherevi,tk ∈ R
nv is the measurement noise belonging to

Ψ(0, Vi,tk) , {vi,tk |v
T
i,tk

V −1
i,tk

vi,tk ≤ 1}

with Vi,tk being a known positive-definite matrix.Ci,tk is a
known matrix with compatible dimensions.

To address the unknown nonlinear functionf(·), a neural
network is employed to approximatef(·) by capitalizing on its
universal approximation property. The specific approximation
of the nonlinear functionf(·) is as follows [26]:

f(xi,l) = Uσ(xi,l) + ̺i,l (3)

where̺i,l is the approximation error,U is the weight matrix,
andσ(·) is the activation function. Moreover, we assume that
U , ̺i,l, andσ(·) satisfy [57]:

‖U‖F ≤ ū, ‖̺i,l‖ ≤ ¯̺i, ‖σ(·)‖ ≤ σ̄

whereū, ¯̺i, and σ̄ are known positive constants.
During data transmissions in communication networks, the

limited network bandwidth can result in data congestion, lead-
ing to issues such as packet dropouts, transmission delays, and
packet disorder. In this paper, the FRP is utilized to manage
the scheduling of transmissions from sensors to estimators.
With the FRP, only one sensor is granted access to transmit

The  communication cycles of the FRP

symbol 

window

network 

idle timedynamic segmentstatic segment

RRP WTP

cycle 1 cycle 3 cycle 4 cycle cycle 2

Fig. 1: The illustration of the FRP

at each time instant, effectively reducing network congestion
and mitigating the aforementioned issues.

Figure 1 illustrates the components of a communication
cycle in the FRP, which includes a static segment, a dynamic
segment, a symbol window, and a network idle time. It is
important to note that the durations of the symbol window
and the network idle time are significantly smaller compared
to those of the static and dynamic segments. As a result, this
paper focuses solely on the static and dynamic segments, while
disregarding the symbol window and the network idle time.

In order to facilitate the analysis, we define the time lengths
of the communication cycle, the static segment, and the
dynamic segment of the FRP asLb (L < N), L1b, andL2b
(L2 < L1), respectively. It is obvious thatL = L1 + L2.
Based on the principles of the FRP, the RRP is active during
the static segment, while the WTP is executed during the
dynamic segment. Considering the varying real-time require-
ments of different sensors, we designate the firstL1 sensors
as the setS1 , {1, 2, . . . , L1} and schedule them using
the RRP. The remainingN − L1 sensors belong to the set
S2 , {L1 + 1, L1 + 2, . . . , N} and are scheduled using the
WTP.

Now, let us illustrate the scheduling of the FRP on the
sensors. It is known that the RRP and the WTP are active
during specific time intervals:Υ1,i , [iLb, iLb + L1b) and
Υ2,i , [iLb + L1b, (i + 1)Lb) (i = 0, 1, 2, . . .), respectively.
We denoteεtk as the sensor granted transmission access at
time instanttk under the RRP, andǫtk as the sensor granted
transmission access at time instanttk under the WTP. By
utilizing the knowledge about the RRP and the WTP, we can
deduce the following relationships:

εtk =

{
mod

(
k −

⌊
k
L

⌋
, L− 1

)
+ 1, for tk ∈ Υ1,i;

0, otherwise
(4)

ǫtk =

{
argmaxj∈S2

ỹTj,tkΠj ỹj,tk , for tk ∈ Υ2,i;
0, otherwise

(5)

whereΠj are given positive definite matrices and

ỹj,tk , yj,tk − y∗j,tk

with y∗j,tk being the latest transmitted measurement of sensor
j.

After the scheduling of the FRP, the measurement arrived
at thei-th estimator is written as

ȳi,tk =

{
δ(εtk , i)yi,tk , for i ∈ S1;
δ(ǫtk , i)yi,tk , for i ∈ S2

(6)
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whereδ(·, ·) is the Kronecker delta function. Sinceεtk = i and
ǫtk = i cannot be satisfied simultaneously, we further have

ȳi,tk = δ(εtk , i)yi,tk + δ(ǫtk , i)yi,tk , for 1 ≤ i ≤ N. (7)

Note that the complex network (1)-(2) is actually a multi-
rate system. In order to simplify the subsequent analysis,
we will unify the sampling rates of both the state and the
measurement. By introducing

ζl ,

{
1, if l/b ∈ N;
0, otherwise

and settingεl = 0, ǫl = 0 for l/b /∈ N, the original
measurementyi,tk is reconstructed as

yi,l = ζlCi,lxi,l + ζlvi,l (8)

and the measurementȳi,tk received by the estimator is recon-
structed as

ȳi,l = δ̄i,lyi,l, for 1 ≤ i ≤ N (9)

where

δ̄i,l , δ(εl, i) + δ(ǫl, i).

Remark 1:For the considered multi-rate system (1)-(2), due
to the existence of the nonlinear function, the conventional
lifting technique is no longer applicable. In order to convert
the multi-rate system into single-rate one, we introduce an
indicator variableζl that equals1 when l/b ∈ N and equals
0 otherwise. With the help ofζl, the measurement output (2)
is rewritten as (8) whose sampling period is the same as the
state update period.

In this paper, thei-th estimator is designed as the following
form:

x̂i,l+1 =Ai,lx̂i,l + Ûi,lσ(x̂i,l) +

N∑

j=1

ωijΓx̂j,l

+Ki,l(ȳi,l − δ̃i,lCi,lx̂i,l) (10)

wherex̂i,l andÛi,l are the estimates ofxi,l andU , respectively.
Ki,l is the gain matrix to be determined andδ̃i,l , δ̄i,lζl.

Define the cost function as

Ji,l ,
1

2
(ȳi,l − δ̃i,lCi,lx̂i,l)

T

× (ȳi,l − δ̃i,lCi,lx̂i,l).

Taking the partial derivative ofJi,l+1 with respect toÛi,l,
we have

∂Ji,l+1

∂Ûi,l

=− δ̃i,l+1C
T
i,l+1

× (ȳi,l+1 − Ci,l+1x̂i,l+1)σ
T (x̂i,l).

Accordingly, the tuning law for̂Ui,l is chosen as

Ûi,l+1 =φi,lÛi,l + ϕi,lδ̃i,l+1C
T
i,l+1

× (ȳi,l+1 − Ci,l+1x̂i,l+1)σ
T (x̂i,l) (11)

where φi,l and ϕi,l are the positive tuning scalars to be
determined.

Denoting the estimation error asei,l , xi,l − x̂i,l and the
weight estimation error as̃Ui,l , U − Ûi,l, we have

Ũi,l+1 =(1− φi,l)U + φi,lŨi,l

− ϕi,lδ̃i,l+1C
T
i,l+1λi,l+1σ

T (x̂i,l) (12)

where

λi,l , ȳi,l − Ci,lx̂i,l.

Remark 2:The tuning law (11) is developed by using the
gradient descent method. In Section III, the tuning parameters
φi,l andϕi,l will be designed along with the estimator gains.
With the characterized tuning parametersφi,l and ϕi,l, the
estimateÛi,l+1 is updated according to (11).

Assumption 1:The initial conditionsei,0 and Ũi,0 satisfy

tr
[

ŨT
i,0R

−1
i1,0Ũi,0

]

≤ 1,

eTi,0R
−1
i2,0ei,0 ≤ 1

with Ri1,0 andRi2,0 being positive definite matrices of suit-
able dimensions.

Our purpose is to choose appropriate tuning parametersφi,l,
ϕi,l and estimator gainKi,l such that

tr
[

ŨT
i,lR

−1
i1,lŨi,l

]

≤ 1 (13)

and

xi,l ∈ Ψ(x̂i,l, Ri2,l) , {xi,l|e
T
i,lR

−1
i2,lei,l ≤ 1} (14)

hold with Ri1,l andRi2,l being positive definite matrices of
suitable dimensions. Moreover, we are going to minimizeRi2,l

in the matrix trace sense to obtain the optimal performance.

III. M AIN RESULTS

In this section, the main results on the design of state
estimators for multi-rate nonlinear complex networks under
FRP are presented. First, the tuning scalarsφi,l, ϕi,l of (11)
are designed. Then, the characterization of the desired state
estimators is provided. Subsequently, optimal problems are
solved to minimize the ellipsoidal constraints on the state
estimation errors. Finally, the discussion revolves around the
boundedness of the weight estimation errorŨi,l.

The following lemma is introduced which is required for
later analysis.

Lemma 1:[1] Let χi(µ) , µTYiµ be given whereµ is
a known vector andY T

i = Yi. If there exist scalarsθ1 ≥
0, . . . , θn ≥ 0 such thatY0 −

∑n

i=1 θiYi ≤ 0, then

χ1(·) ≤ 0, . . . , χn(·) ≤ 0 ⇒ χ0(·) ≤ 0.

A. The tuning parameter design

In this subsection, a theorem is presented, which provides
a sufficient condition for the existence of the tuning scalars
φi,l, ϕi,l.

Theorem 1:Let the positive definite matrixRi1,l be given.
For complex networks (1)-(2) with the tuning law (11) under
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the FRP, the requirement (13) is satisfied if there are positive
scalarsβi,1l, βi,2l and tuning scalarsφi,l, ϕi,l such that

[
−R̄i1,l+1 Ξi,l

ΞT
i,l Σi,l

]

≤ 0 (15)

where

Σi,l ,diag{βi,1lū
2 + βi,2l − 1,−βi,2lI,−βi,1lI},

Ξi,l ,

[

−ϕi,lδ̃i,l+1(σ(x̂i,l)⊗ CT
i,l+1)λi,l+1 Ξ̄i,l

]

,

Ξ̄i,l ,
[
φi,lQ̄i1,l (1 − φi,l)I

]
,

R̄i1,l ,Ri1,l ⊗ Inx

and Q̄i1,l is a factorization ofR̄i1,l.
Proof: See Appendix A.

Under Theorem 1, the weight estimation errorŨi,l is
constrained by a predefined ellipsoidal constraint. Moreover,
the tuning scalarsφi,l, ϕi,l are calculated by solving the matrix
inequality (15).

B. The set-membership estimator design

In this subsection, the characterization of the state estimator
gain Ki,l is achieved by utilizing Theorem 1. A sufficient
condition is established that ensures the state estimation error
to satisfy (14).

Theorem 2:Let the positive definite matrixRi2,l and the
estimator gainKi,l be given. For complex networks (1)-(2)
with the tuning law (11) under the FRP, the objective (14) is
satisfied if there are positive scalarsαi,jl (j = 1, 2, 3, 4, 5, 6)
such that

[
−Ri2,l+1 Θi,l

ΘT
i,l −Σ̄i,l

]

≤ 0 (16)

where

Σ̄i,l ,diag{Σ̄
(1)
i,l , Σ̄

(2)
i,l , Σ̄

(3)
i,l },

~σ(x̂i,l) ,diagnx
{σT (x̂i,l)},

Σ̄
(1)
i,l ,1− αi,1l − 2αi,2lNūσ̄2 − αi,3l

− αi,4l − αi,5l − αi,6l ¯̺i,

Σ̄
(2)
i,l ,diag{αi,1lI i, αi,2lI, αi,3lI},

Σ̄
(3)
i,l ,diag{αi,4lW

−1
i,l , αi,5lV

−1
i,l , αi,6lI},

Θi,l ,
[

0 ∆i,l I ~σ(x̂i,l)Q̄i1,l Bi,l −δ̃i,lKi,l I
]
,

Γ̄ij,l ,ωijΓQj2,l, K̄i,l , Ai,lQi2,l − δ̃i,lKi,lCi,lQi2,l,

∆i,l,
[
Γ̄i1,l · · · Γ̄ii−1,l K̄i,l + Γ̄ii,l Γ̄ii+1,l · · · Γ̄iN,l

]
,

I i ,diag{0, · · · , 0
︸ ︷︷ ︸

i−1

, I, 0, · · · , 0}

andQi2,l is a factorization ofRi2,l.
Proof: See Appendix B.

Next, leveraging Theorems 1-2, we present a sufficient
condition for the solvability of the state estimator design
problem for multi-rate nonlinear complex networks under
FRP. By employing the following theorem, the desired tuning
scalarsφi,l, ϕi,l and estimator gainKi,l can be designed.

Theorem 3:Let the positive definite matricesRi1,l and
Ri2,l be given. For complex networks (1)-(2) with the tuning

law (11) under the FRP, if there exist positive scalarsβi,1l,
βi,2l, αi,jl (j = 1, 2, 3, 4, 5, 6), tuning scalarsφi,l, ϕi,l, and
estimator gain matrixKi,l such that (15) and (16) hold, then
(13) and (14) are satisfied simultaneously.

Proof: The proof can be readily obtained by employing
Theorems 1-2, and is therefore omitted here.

C. Optimization of the ellipsoid

In Subsection III-B, the characterization of the tuning
scalarsφi,l, ϕi,l and estimator gainKi,l is accomplished.
However, it should be noted that the estimator gain obtained
by solving the matrix inequality (16) may constitute a set.
Therefore, in the subsequent discussion, an optimization prob-
lem is introduced to determine the optimal estimator gain,
which ensures the minimal ellipsoidal constraint on the state
estimation error.

Theorem 4:Let the positive definite matricesRi1,l andRi2,0

be given. For complex networks (1)-(2) with the tuning law
(11) under the FRP, the system statexi,l is constrained within
the optimal ellipsoidΨ(x̂i,l, Ri2,l) with Ri2,l minimized in the
matrix trace sense if there are positive scalarsβi,1l, βi,2l, αi,jl

(j = 1, 2, 3, 4, 5, 6), tuning scalarsφi,l, ϕi,l, and estimator
gain matrixKi,l such that

min
Ki,l

tr(Ri2,l+1) (17)

subject to (15) and (16)

is feasible.
The following algorithm outlines the procedure for char-

acterizing the set-membership state estimator for multi-rate
nonlinear complex networks under FRP.

Algorithm 1 NNB set-membership state estimator design
algorithm for multi-rate nonlinear complex networks under
FRP

Step 1.Calculate the variablesεtk and ǫtk based on (4) and
(5), respectively;

Step 2.Set initial conditionsxi,0, x̂i,0, Ûi,0 and positive def-
inite matricesRi1,l and Ri2,0. Choose the activation
functionσ(·) and the maximum time stepT ;

Step 3.At time instantl, obtain the estimator gainKi,l and
the tuning scalarsφi,l, ϕi,l according to Theorem 4.
Then, calculate the state estimatex̂i,l+1 based on (10);

Step 4.Calculate the innovationλi,l+1. Update the estimate
Ûi,l+1 of the neural network weight according to (11);

Step 5.If l < T , then go to Step 3, else go to Step 6;
Step 6.Stop.

D. Boundedness analysis

In this subsection, we will discuss the ultimate boundedness
of Ũi,l.

Assumption 2:There are positive scalars̄c, r̄, and v̄ such
that

CT
i,l+1Ci,l+1 ≤ c̄I,

tr{Ri2,l+1} ≤ r̄, tr{Vi,tk} ≤ v̄.
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In the sequel, a sufficient condition is developed such that
Ũi,l is ultimately bounded.

Theorem 5:Under Assumption 2, the weight estimation
error Ũi,l is ultimately bounded if

4φ2
i,l − 1 < 0. (18)

Proof: See Appendix C.
Remark 3:By now, the NNB set-membership state esti-

mation problem for multi-rate nonlinear complex networks
under FRPs has been addressed. Theorems 1 and 2 establish
sufficient conditions for the existence of the desired tuning
scalarsφi,l andϕi,l, as well as for constraining the state esti-
mation errors within specified ellipsoids. Based on the results
of Theorems 1-2, the state estimator gains and tuning scalars
are characterized through the optimization problems presented
in Theorem 4. Additionally, Theorem 5 analyzes the ultimate
boundedness of the weight estimation error. It is important
to note that the considered system in this paper accounts
for practical engineering complexities including nonlinearities,
multi-rate sampling and FRPs, making the results applicable
to real-world scenarios. Moreover, the parameters of these
complexities are all reflected in Theorem 4 and have influence
on the estimation performance.

E. A corollary

In this subsection, we consider the NNB set-membership es-
timator design for single-rate systems under the FRP. Consider
the complex networks (1) with

yi,l = Ci,lxi,l + vi,l, i = 1, 2, . . . , N. (19)

Obviously, (19) is a single-rate system. With the neural
network designed as (3) and considering the FRP, the state
estimator is constructed as

x̂i,l+1 =Ai,lx̂i,l + Ûi,lσ(x̂i,l) +

N∑

j=1

ωijΓx̂j,l

+Ki,l(y̌i,l − δ̄i,lCi,lx̂i,l)

where

y̌i,l = δ̄i,lCi,lxi,l + δ̄i,lvi,l.

The tuning law of neural network weight is designed as

Ûi,l+1 = φi,lÛi,l + ϕi,lδ̄i,l+1C
T
i,l+1

× (y̌i,l+1 − Ci,l+1x̂i,l+1)σ
T (x̂i,l).

The following corollary presents the result of NNB set-
membership estimator design for single-rate systems (1) and
(19).

Corollary 1: Let the positive definite matricesRi1,l and
Ri2,l be given. For complex networks (1) with the measure-
ment output (19), if there exist positive scalarsβi,1l, βi,2l, αi,jl

(j = 1, 2, 3, 4, 5, 6), tuning scalarsφi,l, ϕi,l, and estimator
gain matrixKi,l such that

[
−R̄i1,l+1 Ξ1

i,l

(Ξ1
i,l)

T Σi,l

]

≤ 0

and
[
−Ri2,l+1 Θ1

i,l

(Θ1
i,l)

T −Σ̄i,l

]

≤ 0

hold where

Ξ1
i,l ,

[
−ϕi,lδ̄i,l+1(σ(x̂i,l)⊗ CT

i,l+1)λi,l+1 Ξ̄i,l

]
,

Θ1
i,l ,

[
0 ∆1

i,l I ~σ(x̂i,l)Q̄i1,l Bi,l −δ̄i,lKi,l I
]
,

K̄1
i,l ,Ai,lQi2,l − δ̄i,lKi,lCi,lQi2,l,

∆1
i,l,

[
Γ̄i1,l · · · Γ̄ii−1,l K̄1

i,l + Γ̄ii,l Γ̄ii+1,l · · · Γ̄iN,l

]
,

then the objectives (13) and (14) are satisfied simultaneously.
Proof: The proof is easily accomplished from Theorem

3 and is omitted here.
Remark 4:In this paper, we have addressed the NNB set-

membership state estimation problem for multi-rate nonlinear
complex networks under FRPs. Our results have several dis-
tinguishing features when compared to existing literature:

1) Novelty: The estimation problem considered in this paper
is new as it takes into account engineering-oriented com-
plexities such as multi-rate sampling and FRPs. These
complexities are often present in practical systems but
have not been extensively studied in the literature.

2) Characterization of FRP scheduling: We have properly
characterized and reflected the scheduling effect of the
FRP in the developed estimation algorithm, which en-
sures that the estimation scheme is tailored to the specific
communication protocol used in the network.

3) Utilization of the NNB method: We have employed the
NNB method to handle the nonlinearities present in the
system. This approach has significant practical signifi-
cance, as it allows for a more accurate approximation of
the unknown nonlinear dynamics compared to traditional
methods.

In the following section, we will provide a practical simu-
lation to verify the effectiveness of the developed estimation
algorithm.

IV. A PRACTICAL SIMULATION

In this section, we provide a practical example to validate
the effectiveness of Algorithm 1.

Let’s consider a complex network consisting of five coupled
RLC circuits. The dynamics of thei-th RLC circuit can be
described as follows [22]:

ẋi2 =
1

Li

xi1,

ẋi1 = −
1

Ci

xi2 −
Ri

Li

xi1 + ui

wherexi2 is the charge in the capacitor andxi1 is the flux in
the inductance.ui is the voltage input.Li, Ci, andRi are the
inductance, the capacitor, and the resistance, respectively.

Denotingxi , col{xi1, xi2} and discretizing the obtained
state-space model with sampling periodh = 0.5s, we have
[22]

xi,l+1 = Aixi,l + Fiui,l
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whereAi = eĀih andFi =
∫ h

0
eĀisdsF̄ with

Āi =

[
−Ri

Li
− 1

Ci
1
Li

0

]

, F̄ =

[
I
0

]

.

As in [22], designing the voltage inputui,l as ui,l =
∑5

j=1 ωijxj1,l and considering the external noise as well as the
environment- or modeling-induced nonlinearities, the dynamic
of the i-th RLC circuit is obtained as

xi,l+1 =Aixi,l +

5∑

j=1

ωijF̃ixj,l

+ f(xi,l) +Bi,lwi,l

where

f(xi,l) = col{cos(xi1,l), 0.1 sin(xi2,l)},

B1,l =
[
0.45 0.5 + 0.1 sin(l)

]T
,

B2,l =
[
0.49 0.5 + 0.2 cos(l)

]T
,

B3,l =
[
0.81 0.5 + 0.1 cos(l)

]T
,

B4,l =
[
0.73 0.5 + 0.2 sin(l)

]T
,

B5,l =
[
0.50 0.5 + 0.1 sin(l)

]T
,

F̃i , Fi

[
I 0

]
, w1,l = 0.1 cos(0.5l),

w2,l = 0.1 cos(l), w3,l = 0.1 cos(0.8l),

w4,l = 0.1 sin(0.2l), w5,l = 0.1 cos(0.5l).

It is easily known that the ellipsoidal constraints on the
process noises are satisfied withW1,l = 0.2, W2,l = 0.2,
W3,l = 0.2, W4,l = 0.2, and W5,l = 0.2. Choose the
parameters asLi = 0.5H , Ci = 0.5F , andRi = 1Ω. The
coupling strength is set asωij = 0.1 for i 6= j andωij = −0.4
for i = j.

For thei-th RLC circuit, the measurement outputyi,tk with
b = 2h is modeled as

yi,tk = Ci,tkxi,tk + vi,tk

where

C1,tk =
[
0.5 0.5 + 0.1 sin(k)

]
,

C2,tk =
[
0.6 0.3 + 0.1 sin(k)

]
,

C3,tk =
[
0.6 0.4 + 0.1 cos(k)

]
,

C4,tk =
[
0.4 0.5 + 0.1 sin(k)

]
,

C5,tk =
[
0.5 0.5 + 0.1 cos(k)

]
,

v1,tk = 0.1 cos(0.5k), v2,tk = 0.1 sin(0.2k),

v3,tk = 0.1 sin(0.5k), v4,tk = 0.1 cos(0.4k),

v5,tk = 0.1 cos(0.5k),

Similarly, the ellipsoidal constraints on the measurement nois-
es are satisfied withV1,tk = 0.2, V2,tk = 0.2, V3,tk = 0.2,
V4,tk = 0.2, andV5,tk = 0.2.

The activation functionσ(·) is designed as

σ(xi,l) = col{tanh(xi1,l), tanh(xi2,l)}.

Moreover, the initial conditions are chosen asxi,0 = x̂i,0 =
[
0.5 −0.3

]T
, Ûi,0 = 2I, andRi2,0 = 10I.
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Fig. 2: x11,l and its estimate
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Fig. 3: x21,l and its estimate
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state x31,l

estimate x̂31,l

Fig. 4: x31,l and its estimate

By solving the optimization problem (17), the gain matrix
Ki,l and the tuning scalarsφi,l, ϕi,l are characterized. The
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Fig. 5: x41,l and its estimate
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Fig. 6: x51,l and its estimate
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Fig. 7: The estimation errors

simulation results are displayed in Figs. 2-8. The states and
the estimates are plotted in Figs. 2-6. In Fig. 7, the estimation

0 5 10 15 20 25 30 35 40 45 50
Time step h

0
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2

3

4

5

6

Transmission order of the sensors

Fig. 8: The transmission access for sensors

errors are shown. The transmission orders of the sensors are
given in Fig. 8 where the ordinate represents the sensor number
and the abscissa represents the time. From Fig. 8, we can see
that the transmission load of the communication network is
greatly lightened. From the simulation results, it is seen that,
despite the significantly reduction of the available measure-
ment information, the developed NNB set-membership esti-
mation scheme can still effectively estimate the target system
state. Therefore, the usefulness of the proposed estimation
method is confirmed.

V. CONCLUSIONS

This paper has addressed the NNB set-membership state
estimation problem for a specific class of multi-rate non-
linear complex networks under FRPs. The considerations of
both multi-rate sampling and FRPs are significant as they
are commonly employed in engineering practice. To handle
the asynchronous sampling rates, an indicator variable has
been introduced to unify the sampling rates. Additionally, the
scheduling effect of FRPs on the sensors has been charac-
terized based on the FRP mechanism. To handle the general
nonlinearity present in the system, the NNB approach has been
utilized to approximate the nonlinear dynamics. Sufficient
conditions have been derived to ensure that the estimation
errors satisfy specific ellipsoidal constraints. Furthermore, the
design of both the estimator gains and the neural network
tuning parameters has been addressed. Finally, a practical
example has been provided to demonstrate the effectiveness
of the proposed estimation scheme. In our future research, we
plan to apply the NNB approach to other networked systems
such as sensor networks [29].

APPENDIX A
THE PROOF OFTHEOREM 1

The proof is conducted using the mathematical induc-
tion method. We know from Assumption 1 that the ini-
tial condition tr

[

ŨT
i,0R

−1
i1,0Ũi,0

]

≤ 1 holds. Supposing that
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tr
[

ŨT
i,lR

−1
i1,lŨi,l

]

≤ 1 holds, we need to find the condition

under whichtr
[

ŨT
i,l+1R

−1
i1,l+1Ũi,l+1

]

≤ 1 holds.

Note that the conditiontr
[

ŨT
i,lR

−1
i1,lŨi,l

]

≤ 1 holds. Let

vec(Ũi,l) ,
[

Ũ
(1)
i,l Ũ

(2)
i,l · · · Ũ

(nx)
i,l

]T

with Ũ
(i)
i,l being thei-th row of Ũi,l. Then, one has

(vec(Ũi,l))
T R̄−1

i1,lvec(Ũi,l) ≤ 1. (20)

From (20), it is known that there is a vectorϑi,l fulfilling
ϑT
i,lϑi,l ≤ 1 such that

vec(Ũi,l) = Q̄i1,lϑi,l

holds.
Based on the weight estimation error dynamics (12), it is

derived that

vec(Ũi,l+1) =(1 − φi,l)Ū + φi,lQ̄i1,lϑi,l

− ϕi,lδ̃i,l+1(σ(x̂i,l)⊗ CT
i,l+1)λi,l+1

where

Ū ,
[
U (1) U (2) · · · U (nx)

]T

with U (i) being thei-th row of U .
By introducing a vectorηi,l , col{1, ϑi,l, Ū}, we have

vec(Ũi,l+1) = Ξi,lηi,l.

Note thattr
[

ŨT
i,l+1R

−1
i1,l+1Ũi,l+1

]

≤ 1 holds if

(vec(Ũi,l+1))
T R̄−1

i1,l+1vec(Ũi,l+1) ≤ 1 (21)

holds, which is equivalent to

ηTi,lΞ
T
i,lR̄

−1
i1,l+1Ξi,lηi,l − ηTi,ldiag{1, 0, 0}ηi,l ≤ 0. (22)

Now, it remains to prove that (22) is true. It is obvious that
ϑT
i,lϑi,l ≤ 1 can be rewritten as

ηTi,ldiag{0, I, 0}ηi,l − ηTi,ldiag{1, 0, 0}ηi,l ≤ 0.

Moreover, it is known from‖U‖F ≤ ū that

ηTi,ldiag{−ū2, 0, I}ηi,l ≤ 0.

Therefore, according to Lemma 1, (22) holds (i.e., (21) holds)
if there are positive scalarsβi,1l andβi,2l such that

ΞT
i,lR̄

−1
i1,l+1Ξi,l − diag{1, 0, 0}

− βi,1ldiag{−ū2, 0, I}

− βi,2ldiag{−1, I, 0} ≤ 0 (23)

holds.
By employing the Schur Complement Lemma, it can be

concluded that (23) holds if and only if (15) holds. Thus, the
proof is complete.

APPENDIX B
THE PROOF OFTHEOREM 2

The proof is also conducted using the mathematical induc-
tion method. It is derived from Assumption 1 that the initial
conditioneTi,0R

−1
i2,0ei,0 ≤ 1 is true.

Assuming thateTi,lR
−1
i2,lei,l ≤ 1 holds true, our objective

is to establish the conditioneTi,l+1R
−1
i2,l+1ei,l+1 ≤ 1. Not-

ing eTi,lR
−1
i2,lei,l ≤ 1, there exists a vector̟ i,l satisfying

̟T
i,l̟i,l ≤ 1 such that

ei,l = Qi2,l̟i,l. (24)

It follows from (1), (3) and (10) that

ei,l+1 =Ai,lei,l +
N∑

j=1

ωijΓej,l

+ Uσ̄i,l + Ũi,lσ(x̂i,l)

+Bi,lwi,l + ̺i,l

− δ̃i,lKi,lCi,lei,l − δ̃i,lKi,lvi,l (25)

where

σ̄i,l , σ(xi,l)− σ(x̂i,l).

By utilizing matrix operations, it becomes evident that

Ũi,lσ(x̂i,l) = ~σ(x̂i,l)vec(Ũi,l).

Then, (25) is rewritten as

ei,l+1 =Ai,lQi2,l̟i,l +

N∑

j=1

ωijΓQj2,l̟j,l

+ Uσ̄i,l + ~σ(x̂i,l)Q̄i1,lϑi,l

+Bi,lwi,l + ̺i,l

− δ̃i,lKi,lCi,lQi2,l̟i,l − δ̃i,lKi,lvi,l

=∆i,l ¯̟ l + Uσ̄i,l + ~σ(x̂i,l)Q̄i1,lϑi,l

+Bi,lwi,l + ̺i,l − δ̃i,lKi,lvi,l (26)

where

¯̟ l ,col{̟1,l, ̟2,l, · · · , ̟N,l}.

By denotingςi,l , col{1, ¯̟ l, Uσ̄i,l, ϑi,l, wi,l, vi,l, ̺i,l}, one
has

ei,l+1 = Θi,lςi,l. (27)

From̟T
i,l̟i,l ≤ 1 andϑT

i,lϑi,l ≤ 1, we have

ςTi,ldiag{−1, I i, 0, 0, 0, 0, 0}ςi,l ≤ 0,

ςTi,ldiag{−1, 0, 0, I, 0, 0, 0}ςi,l ≤ 0.

Similarly, it is obtained from the constrains on the noises that

ςTi,ldiag{−1, 0, 0, 0,W−1
i,l , 0, 0}ςi,l ≤ 0,

ςTi,ldiag{−1, 0, 0, 0, 0, V−1
i,l , 0}ςi,l ≤ 0.

It is known that‖Uσ̄i,l‖ ≤ 2Nūσ̄2. Then, we have

ςTi,ldiag{−2Nūσ̄2, 0, I, 0, 0, 0, 0}ςi,l ≤ 0,

ςTi,ldiag{− ¯̺i, 0, 0, 0, 0, 0, I}ςi,l ≤ 0.
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With the help of Lemma 1, we know that
eTi,l+1R

−1
i2,l+1ei,l+1 ≤ 1 is true if there are positive scalars

αi,jl (j = 1, 2, 3, 4, 5, 6) such that

ΘT
i,lR

−1
i2,l+1Θi,l − αi,1ldiag{−1, I i, 0, 0, 0, 0, 0}

− αi,2ldiag{−2Nūσ̄2, 0, I, 0, 0, 0, 0}

− αi,3ldiag{−1, 0, 0, I, 0, 0, 0}

− αi,4ldiag{−1, 0, 0, 0,W−1
i,l , 0, 0}

− αi,5ldiag{−1, 0, 0, 0, 0, V−1
i,l , 0}

− αi,6ldiag{− ¯̺i, 0, 0, 0, 0, 0, I}

− diag{1, 0, 0, 0, 0, 0, 0} ≤ 0 (28)

holds.
By resorting to the Schur Complement Lemma, the inequal-

ity (28) is true if and only if (16) is true, which completes the
proof.

APPENDIX C
THE PROOF OFTHEOREM 5

Defining a function as

Vi,l , tr{ŨT
i,lŨi,l},

we have from (12) that

Ũi,l+1 =(1− φi,l)U + φi,lŨi,l

− ϕi,lδ̃i,l+1C
T
i,l+1Ci,l+1ei,l+1σ

T (x̂i,l)

− ϕi,lδ̃i,l+1C
T
i,l+1vi,l+1σ

T (x̂i,l). (29)

Calculating the difference ofVi,l along the trajectory of
(29), one has

∆Vi,l ,Vi,l+1 − Vi,l

=tr
{(

(1− φi,l)U
T + φi,lŨ

T
i,l

− ϕi,lδ̃i,l+1σ(x̂i,l)e
T
i,l+1C

T
i,l+1Ci,l+1

− ϕi,lδ̃i,l+1σ(x̂i,l)v
T
i,l+1Ci,l+1

)

×
(
(1− φi,l)U + φi,lŨi,l

− ϕi,lδ̃i,l+1C
T
i,l+1Ci,l+1ei,l+1σ

T (x̂i,l)

− ϕi,lδ̃i,l+1C
T
i,l+1vi,l+1σ

T (x̂i,l)
)}

− tr{ŨT
i,lŨi,l}

≤tr
{

4(1− φi,l)
2UTU + (4φ2

i,l − 1)ŨT
i,lŨi,l

+ 4ϕ2
i,lδ̃i,l+1σ(x̂i,l)e

T
i,l+1C

T
i,l+1Ci,l+1

× CT
i,l+1Ci,l+1ei,l+1σ

T (x̂i,l)

+ 4ϕ2
i,lδ̃i,l+1σ(x̂i,l)v

T
i,l+1Ci,l+1

× CT
i,l+1vi,l+1σ

T (x̂i,l)
}

.

It is known from‖U‖F ≤ ū that

tr{UTU} ≤ ū2.

Moreover, it is derived from‖σ(·)‖ ≤ σ̄ and Assumption 2
that

tr
{
σ(x̂i,l)e

T
i,l+1C

T
i,l+1Ci,l+1

× CT
i,l+1Ci,l+1ei,l+1σ

T (x̂i,l)
}

=tr
{
CT

i,l+1Ci,l+1ei,l+1σ
T (x̂i,l)

× σ(x̂i,l)e
T
i,l+1C

T
i,l+1Ci,l+1

}

≤σ̄2tr
{
eTi,l+1C

T
i,l+1Ci,l+1C

T
i,l+1Ci,l+1ei,l+1

}

≤σ̄2c̄tr
{
eTi,l+1C

T
i,l+1Ci,l+1ei,l+1

}

≤σ̄2c̄2tr
{
eTi,l+1ei,l+1

}

≤σ̄2c̄2r̄

and

tr
{
σ(x̂i,l)v

T
i,l+1Ci,l+1C

T
i,l+1vi,l+1σ

T (x̂i,l)}

=tr
{
CT

i,l+1vi,l+1σ
T (x̂i,l)σ(x̂i,l)v

T
i,l+1Ci,l+1}

≤σ̄2tr
{
CT

i,l+1vi,l+1v
T
i,l+1Ci,l+1}

=σ̄2tr
{
vTi,l+1Ci,l+1C

T
i,l+1vi,l+1}

≤σ̄2c̄tr
{
vTi,l+1vi,l+1}

≤σ̄2c̄v̄.

Then, we have

∆Vi,l ≤4(1− φi,l)
2tr{UTU}+ (4φ2

i,l − 1)tr{ŨT
i,lŨi,l}

+ 4ϕ2
i,lδ̃i,l+1tr

{
σ(x̂i,l)e

T
i,l+1C

T
i,l+1Ci,l+1

× CT
i,l+1Ci,l+1ei,l+1σ

T (x̂i,l)
}

+ 4ϕ2
i,lδ̃i,l+1tr

{
σ(x̂i,l)v

T
i,l+1Ci,l+1

× CT
i,l+1vi,l+1σ

T (x̂i,l)
}

≤(4φ2
i,l − 1)tr{ŨT

i,lŨi,l}+ 4(1− φi,l)
2ū2

+ 4ϕ2
i,lδ̃i,l+1σ̄

2c̄2r̄

+ 4ϕ2
i,lδ̃i,l+1σ̄

2c̄v̄.

Noting (18), we know that̃Ui,l is ultimately bounded, and
the proof is complete.
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