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Abstract—Object detection is a well-known task in the field
of computer vision, especially the small target detection problem
which has aroused great academic attentions. In order to improve
the detection performance of small objects, in this paper, a
novel enhanced multi-scale feature fusion method is proposed,
namely atrous spatial pyramid pooling-balanced-feature pyramid
network (ABFPN). In particular, the atrous convolution operators
with different dilation rates are employed to make full use of
context information, where the skip connection is applied to
achieve sufficient feature fusions. In addition, there is a balanced
module to integrate and enhance features in different levels.
Performance of the proposed ABFPN is evaluated on three public
benchmark datasets, and experimental results demonstrate that
it is a reliable and efficient feature fusion method. Furthermore,
in order to validate the applicational potential in small objects,
the developed ABFPN is utilized to detect surface tiny defects
of the printed circuit board (PCB), which acts as the neck part
of an improved PCB defect detection (IPDD) framework. While
designing the IPDD, several powerful strategies are also employed
to further improve the overall performance, which are evaluated
via extensive ablation studies. Experiments on a public PCB
defect detection database have demonstrated the superiority of
the designed IPDD framework against other seven state-of-the-art
methods, which further validates the practicality of the proposed
ABFPN.

Index Terms—Object detection, defect detection, feature fu-
sion, atrous spatial pyramid pooling, printed circuit board.

I. INTRODUCTION

Computer vision is a simulation of biological vision using
computers and related equipment. Recently, computer vision
has attracted enormous attention in various fields such as
industrial production, agriculture, and medical health. It is
known that computer vision tasks can be divided into four
categories which are image classification, object detection,
semantic segmentation and instance segmentation [7]. Thanks
to its wide application potential in image processing and
pattern recognition, object detection has received an ever-
increasing research interest from both academic and industrial
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communities during the past few decades. With the rapid
development of deep learning techniques, object detection
algorithms can be divided into two groups, which are the one-
stage object detection algorithms and the two-stage ones. The
one-stage object detection algorithms can directly obtain the
category probability as well as position coordinate values of
objects, e.g., the you only look once (YOLO) models, the
single shot multibox detector (SSD), and the corner network
[1], [271, [37], [40]-[42]. The two-stage ones need to obtain
the region proposals with rough location information, and
then classify the candidate regions into different groups. Some
representative two-stage object detection algorithms are the
region convolutional neural network (RCNN) [13], the fast
RCNN [14], the faster RCNN [43], the mask RCNN [15], and
the spatial pyramid pooling network [16].

Owing to their strong abilities in defect detection and fault
diagnosis, object detection algorithms have been successfully
applied to a wide range of areas such as transportation,
electrical and electronic engineering, biomedical engineering
and so on [2], [12], [22], [23], [51], [58]. It should be pointed
out that the size of the object plays a critical role in object
detection, especially in industrial applications. In fact, the
performance of the conventional object detection algorithms is
poor by using low-level features (e.g., edge information) for
small object detection. Additionally, it is difficult to extract
high-level semantic features of small objects. As such, it is
challenging to accurately position and classify small objects
by using conventional object detection algorithms.

During the past few years, tremendous efforts have been
devoted to small object detection [20], [30], [32], [33], [35],
[36]. To summarize, the recently developed small object detec-
tion methods can be divided into three types: 1) using context
information; 2) applying feature fusion; and 3) generating
enhanced features. For example, a fully end-to-end object
detector has been proposed in [20], where an object relation
module has been designed to integrate the context information
of the features. In [33], a feature pyramid network (FPN) has
been proposed to merge the feature maps at different stages.
Recently, a path aggregation network has been introduced
in [36] by designing a bottom-up path enhancement branch,
which could integrate the information from high-level features
and low-level ones in a sufficient manner. To deal with the in-
consistency among different feature scales, an adaptive spatial
feature fusion method has been proposed in [35] by learning
the weighting parameters. Very recently, a trident network has
been presented in [32] for detecting objects in distinct sizes,
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where the atrous convolution method with multiple dilation
rates has been employed to generate different receptive fields
in parallel.

Unfortunately, the aforementioned small object detection
methods still have some limitations, which do not fully mine
latent information such as more accurate location informa-
tion and stronger semantic features from the feature maps.
For instance, most context information-based object detection
methods only concatenate high-level and low-level features
in a simple manner, however, such fusion stage with rough
stacking may cause the increase of redundant information like
noise information, which may decrease the detection perfor-
mance. In this case, existing small object detection methods
may not be suitable for complex small object detection tasks in
real-world applications such as surface defect detection for the
PCB [9], tiny target detection for remote sensing images [31],
and long-distance motion target detection [6]. A seemingly
natural idea is to develop an advanced small object detection
framework by making full use of context information and
enhanced feature fusion together.

In this paper, a novel feature fusion method, an atrous
spatial pyramid pooling (ASPP) balanced FPN (ABFPN), is
put forward for small object detection. The developed ABFPN
makes full use of the advantages of the aforementioned three
types of small object detection methods. Specifically, a skip-
ASPP module is developed to enhance feature fusion and
expand the receptive field, where the ASPP with different
dilation rate D is set in a skip-connection manner [7]. Besides,
a balanced module consisting of three blocks (i.e., the resize &
average block, the space nonlocal block and the residual block)
is applied to learn the semantic and detailed information more
effectively. The features fused by the balanced module can
have balanced information from each feature map with differ-
ent resolution, which can avoid the semantic information in
non-adjacent layers being weakened with lateral connections.
Notice that the FPN is selected as the basis of the proposed
ABFPN due to its capability in dealing with multi-scale
changes through the integration of low-level and high-level
features. It should be emphasized that the proposed ABFPN
method is a competitive feature fusion approach, which can
be embedded in any existing object detection frameworks.

As a typical small object detection task, PCB surface defect
detection is very important in electrical and electronic engi-
neering. Generally speaking, the surface defects in PCB can be
classified into six categories, which are missing holes, mouse
bite, open circuit, short circuit, spur and spurious copper [9].
In the public datasets, it is found that the PCB surface defects
normally lie in a concealed area, and some of them even exist
in the tiny wiring part, which greatly increases the difficulty
of surface defect detection.

Motivated by above discussions, there is a need to develop
an advanced object detection framework for PCB surface
defect detection. In this paper, an improved PCB defect detec-
tion (IPDD) framework is put forward for defect detection,
where the proposed ABFPN is embedded as the feature
fusion method in the IPDD framework. In summary, the main
contributions of this paper are outlined as follows:

1) A novel feature fusion method, the ABFPN, is proposed

for small object detection, where a skip-ASPP module
with diverse dilation rates is designed to enlarge the
receptive field. A balanced module is deployed to extract
latent features for feature fusion. Experimental results
demonstrate the effectiveness of the ABFPN on bench-
mark datasets.

2) An IPDD framework is put forward for PCB surface de-
fect detection, where the developed ABFPN is embedded
as the feature fusion method in the IPDD framework.
Ablation study is conducted to verify the effectiveness
of the IPDD framework.

3) The proposed IPDD framework is successfully applied
to a public PCB tiny defect detection task. Experimental
results demonstrate the superiority of the IPDD frame-
work over seven state-of-the-art methods (including the
improved YOLOv3 (Impro YOLOv3), the improved
faster RCNN (Impro faster RCNN), the fully convo-
lutional one-stage object detection algorithm (FCOS),
the PaddlePaddle-YOLO (PP-Yolo), the tiny defect de-
tection network (TDD-Net), the efficient multi-scale
training method (sniper) and the deformable detection
transformer (deformable DETR)) in terms of detection
precision and recall.

The remainder of this paper is organized as follows. The
proposed enhanced feature fusion method ABFPN and applied
robustness enhancement strategies are elaborated in section II.
Comprehensive benchmark evaluations of the ABFPN are
performed in section III, with in-depth analysis of adopted
strategies. In section IV, the proposed ABFPN is further used
to develop the IPDD framework, which is applied to the PCB
surface tiny defect detection task. Finally, conclusions and an
outlook of future works are presented in section V.

II. METHODOLOGY

In this section, the structure of a typical object detection
framework is first illustrated. Then, the developed ABFPN
is presented where the skip-ASPP module and the balanced
module are analyzed with details, which is a multi-scale
feature fusion approach for small-sized object detection tasks.
Meanwhile, some robustness enhancement strategies are intro-
duced for further improving the overall performance.

A. The structure of a typical object detection framework

In a typical object detection network, there are generally
four basic components which are the input layer, the backbone,
the neck and the detection head [1]. The architecture of the
typical object detection network is shown in Fig. 1.

In general, the input of the object detection framework
requires data augmentation to boost the robustness of the
training model, especially for industrial applications. Some
commonly used data augmentation techniques include spa-
tial transformations (such as random scaling, cropping and
flipping) and color distortions (e.g., changing transparency,
brightness and saturation). The backbone part is set for
extracting features from the input layer. Some widely used
models include the visual geometry group [44], the residual
network (ResNet) [17], and the dark network [42]. The neck
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Fig. 1. A general object detection framework.

part is of vital importance in object detection. To be specific,
feature fusion is carried out in the neck part to reprocess the
extracted features and study the latent features according to
different requirements. For example, the SSD proposed in [37]
is applied for up and down sampling. The FPN can be used
for path aggregation [33]. The last component of the object
detection framework is the detection head which is utilized
for localization and classification. It should be mentioned that
there is always a post-processing module in the detection head,
which usually refers to the non-maximum suppression (NMS)
method [25] and its improved versions like the soft NMS
method [3] and the weighted NMS method [26].

B. ABFPN: an enhanced feature fusion approach

The diagram of the proposed ABFPN is depicted in the red
dashed box of Fig. 2, where the proposed ABFPN is the neck
part of the object detection framework. In the ABPFN, there
are two designed modules (which are the skip-ASPP module
and the balanced module) for feature fusion.

In Fig. 2, C; denotes the feature map obtained by down-
sampling the input image; C' = {C3, C3, Cy4, C5} denotes the
feature map obtained by the corresponding residual block in
the backbone at each stage. In this context, C5 is the output
feature map of the last residual block at the final stage of the
backbone, which is the input of the skip-ASPP module.

Comparing with the traditional convolution operator, the
atrous convolution operator could obtain a larger receptive
field without increasing the number of kernel parameters. In
this paper, D in the D-ASPP block stands for the dilation
rate. Notice that the larger the dilation rate, the larger the
corresponding receptive field. As a result, 5 different D-ASPP
blocks are employed in the developed ABFPN, which enables
the model to capture multi-scale context information. In the
simulation, the values of D in five D-ASPP blocks are set to
be 3, 6, 12, 18 and 24, respectively, which are the same as
DenseASPP [50]. It should be pointed out that [50] adopts
dense connection, which works well in networks with deeper
layers. While in the proposed skip-ASPP module as a part of
the ABFPN, skip connection has been employed, which could
also reduce the computational complexity so as to speed up

the convergence and inference.

The skip-connection is applied in the skip-ASPP module
to enhance the interaction of the pre-output as well as post
output features of each D-ASPP block and enhance the feature
fusion. The work principle of the whole skip-ASPP module is
formulated as follows:

C5€BSZ'(C5), if i=1
out; = < out;_1 ®S; (O’U,tifl) , if 1=2,3,4 (D)
SZ' <Outi_1) s if 1=5

where S; (+) (i = 1,2, 3,4, 5) stands for the operation of corre-
sponding D-ASPP blocks; each D-ASPP block contains 1x1
and 3x3 atrous convolution operator with dilation_rate =
3,6,12,18, 24 respectively; @ is the concatenate operation;
and out; (i = 1,2,3,4,5) is the obtained result in each D-
ASPP as marked in Fig. 2.

The final output of the skip-ASPP module is calculated by:

Out = Sl (05)@52 (Outl)@S:g (Outg)@54 (O’U,tg)@S5 (O’U,t4) .
2)

As shown in Fig. 2, the final output of the skip-ASPP
module is then added with C5 in the element-wise manner
after the 1x1 convolution operator to obtain the feature map
Ps. Similar to the conventional FPN, P = {P,, P3, Py, Ps}
shares a concatenated path from Ps, which is combined
with C' = {Cs,C5,Cy,Cs} through lateral connection. In
particular, the upsampled Ps, P4 and Ps are merged with the
corresponding feature maps C4, C3 and Cs in the element-
wise manner. Note that the 1x1 convolution operation is
performed on {Cs, C3,Cy} to reduce the channel dimension
before merging with feature maps. After that, the obtained
feature maps P (including P», Ps, P4 and Ps) are fed into the
balanced module. In order to balance detailed and semantic
information on small target detection tasks and improve the
overall detection performance, the utilized balanced module
contains three blocks, which are the resize & average block,
the space nonlocal block and the residual block [39], [48].
In work [39] proposed Libra RCNN solves the problem of
imbalance image sampling and feature selection, especially
the balanced operation of different layers. Inspired by this,
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Fig. 2. Diagram of the enhanced feature fusion method ASPP-Balanced-FPN (ABFPN).
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fusion and obtain more sufficient image context and receptive
field information. To be specific, the resize & average block By
is designed for gathering multi-level features in P by resizing
and averaging P», P; and P; to the same size as Pj. The
output of By is:

_ > [pool (Py, 4) , pool (Ps,2) ,intp (Ps,2)]
3

where pool (Py,4) and pool (P, 2) represent the max pooling
operation with stride equaling to 4 and 2 for P, and Ps, respec-
tively; intp (Ps,2) denotes the nearest neighbor interpolation
for P; with multiplier factors of height and width equaling to
2.

xT

3)

In general, once the scale of convolutional kernels is deter-
mined, the generated receptive field will be restricted to some
local regions of the feature map. To overcome the limitation of
local information, the space nonlocal module B is employed
to gather global information of the feature map. Based on the
output of By, the non-local output y; is obtained by:

v f (@i, @) e (x;)
Yi =
>y f (@i, x5)
where x; € x indicates the information of the current focused
location; z; represents the global information of the output

of By; c(+) is the 1x1 convolution operator; and f (-) is the
Embedded Gaussian function used to calculate the similarity

“4)

where 6 (-) and ¢ (-) both stand for 1x1 convolution operator.
According to [48], the output of block By is:

zi = c(yi) +x; (6)

where ¢ (+) is the 1x1 convolution operator.

The residual block Bj scatters refined features from the
output of By in a multi-level manner through a residual path.
To be specific, the operation of block B3 can be expressed by
the following formula:

Fy = Py, +intp (2, 0.5574) (k=2,3,4,5) (1)

where intp (-) resizes the output of the space nonlocal block zj,
to be identical with the corresponding feature maps Py(k =
2,3,4,5). Finally, via a skip-connection, the output feature
maps F = {Fy, F3, Fy, F5} of the entirc ABFPN approach
are obtained.

C. Robustness enhancement strategies for object detection

It is worth pointing out that the proposed ABFPN serves as
the neck part in an object detection framework. The developed
ABFPN aims to sufficiently merge abundant context infor-
mation with hope to achieve satisfactory detection accuracy
for small-size objects. To further improve the generalization
ability and detection accuracy of the framework, some exist-
ing robustness enhancement strategies are employed in other
components of the object detection framework.
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In this paper, two well-known data augmentation techniques,
the AutoAugmetImage method [8] and the Mixup method
[52], are applied in the input part of the model training
process. Both of them can enhance the model performance,
and to be specific, AutoAugmetlmage can automatically select
the optimal combination of enhancement strategies for differ-
ent datasets, which customizes a data-specific augmentation
scheme. Whereas Mixup method can enrich the database via
randomly mixing two samples, including their labels. By this
way, influence of samples with wrong label can be greatly
reduced so that the model robustness is improved.

In the backbone part, the ResNet proposed in [17] has be-
come a popular network structure. In this paper, the ResNeXt
structure [49] is adopted as the backbone, which includes
stacked bottleneck paths with the same topology and one short-
cut pooling path. It should be highlighted that each bottleneck
path contains a squeeze-and-excitation (SE) attention mecha-
nism, which is denoted as the attention bottleneck path in this
paper. Unimportant channel features are suppressed via an SE
operator in each path, and the SE operator essentially consists
of one global average pooling layer and two fully connected
layers with sigmoid function [21]. Moreover, the deformable
convolution operator [54] is employed as a substitution of
the traditional convolution operator so that the receptive field
can be adaptively adjusted according to size, posture and
other geometric changes of the objects. Furthermore, a stride
equaling to 2 is shifted from the first 1x 1 convolution operator
to the 3x3 one in each attention bottleneck path. In addition,
a stride equaling to 2 is shifted from the 1x1 convolution
operator to the 2x2 average pooling operator in the shortcut
pooling path. The operation of shifting the position with a
stride size of 2 could prevent the loss of a large amount of
feature information. The diagram of the enhanced ResNeXt
block is displayed in Fig. 3.
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Fig. 3. [Illustration of the enhanced ResNeXt block.

The cascade RCNN introduced in [4] is selected as the
detection head in this paper, which is denoted by cascade
RCNN* in Fig. 2. Specifically, the complete intersection over

union (CIoU) loss proposed in [57] is applied to evaluate
the predicted bounding box. The DIoU-NMS serves as the
post-processing method [57]. The CIoU loss and DIoU-NMS
are utilized in the post-processing stage of the head part
in the object detection framework. It is remarkable that the
employment of CloU loss and DIoU-NMS considers 1) the
overlap areas between the predicted box and ground truth; 2)
the distance between the center points of the predicted box
and ground truth; and 3) the aspect ratio of the bounding box,
which would lead to a more reliable prediction result than
traditional methods.

III. EVALUATIONS OF THE PROPOSED
ASPP-BALANCED-FPN ON BENCHMARK DATASETS

In this section, sufficient ablation studies are conducted on
three public benchmark datasets for verifying the performance
of the proposed ABFPN, which are the COCO [34], the
VOC [11] and the VisDrone detetction dataset [56]. A brief
introduction of adopted datasets and experimental settings
are presented. Meanwhile, the faster RCNN with ResNet50
[43] is selected as the baseline of detection method to verify
the effectiveness and generalization ability of the proposed
ABFPN along with the utilized robustness enhancement strate-
gies. A series of ablation studies are performed under the same
condition for evaluation.

A. Experiment settings and datasets

In this work, three well-known benchmark datasets in object
detection, the MS COCO2017, the Pascal VOCO07+12 and
the VisDrone2019 detection dataset, are applied for perfor-
mance evaluation. The COCO2017 dataset is a large-scale
image dataset consisting of 330,000 images of which more
than 200,000 are labeled. In COCO2017, there are 1.5 mil-
lion object instances belonging to 80 categories. The Pascal
VOCO07+12 dataset contains two mutually exclusive image
datasets (i.e., VOC2007 and VOC2012), which covers 20 kinds
of objects, and the number of instances in Pascal VOC07+12
is over 20, 000. The VisDrone2019 dataset contains 10 classes
and 54,200 instances of remotely sensed objects collected by
drones, which covers complex scenes under different weather
and lighting conditions, and the detected targets are relatively
small in size, which makes the detection more challenging.

In the experiment on the COCO2017 dataset, the number
of training and testing samples are 118,287 and 5,000,
respectively. For the VOCO07+12 dataset, 16,551 images are
used for training, and 4,952 images are utilized for testing.
The training and validation sets of the VisDrone2019 detection
dataset have 7018 and 1609 images, respectively. All models
are trained on the PaddlePaddle 1.8.4 framework with a single
GPU TeslaV100 (16 GB memory). Detailed information of
experimental settings on three datasets is presented in Table I.

B. Experimental results

As aforementioned, evaluations of the proposed ABFPN and
several designed strategies are performed mainly in the form
of ablation study on three benchmarks, where the two-stage
network faster RCNN is selected as the baseline method.
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TABLE 1
EXPERIMENTAL SETTINGS

CoCo vocC VisDrone
Iterations 709716 270000 120000
Batch size 2 2 2
Initial learning rate 0.0025 0.02 0.02
Learning rate decay iters [473144, 650573]  [180000, 240000] [90000, 110000]
Learning rate decay factor 0.1 0.1 0.1
Optimizer SGD+Momentum  SGD+Momentum  SGD+Momentum

Regularization method

L2 weight decay

L2 weight decay L2 weight decay

1) Validation on COCO2017: Table II presents the experi-
mental results of the ablation study on the COCO2017 dataset,
where the evaluation metrics include average precision and its
extensions. To be specific, AP is average precision over IoU
at [0.5:0.95:0.05] (from 0.5 to 0.95 with the interval of 0.05).
AP@50 is AP over IoU at 0.5. AP,, AP,, and AP, refer to
average detection precision on small, medium-scale and large-
scale objects, respectively. As shown in Table II, the AP of the
proposed ABFPN is 0.9% larger than that of the FPN. On the
AP, and AP, metrics, the results of the ABFPN are 3.7% and
0.7% larger than that of the FPN, respectively. While the AP,
result of the ABFPN is slightly smaller than that of the FPN,
and the AP@50 of both methods are the same. Furthermore,
experimental results of the model (that combines the ABFPN
with the robustness enhancement strategies) are better than
that of the faster RCNN with the neck of the FPN on all
metrics. Specifically, the AP, APQ50, AP;, AP,, and AP,
of the faster RCNN with the ABFPN and strategies is larger
than that with the FPN by 4.7%, 4.4%, 6.6%, 4.3% and 4.1%
respectively.

According to the experimental results, the proposed ABFPN
is a reliable feature fusion method, which greatly increases the
detection precision of small-size objects. Though the proposed
ABFPN performs not well on the indicator AP;, which may
be caused by over-fitting because the ABFPN concentrates on
the latent context information. By introducing a series of ro-
bustness enhancement strategies, the deficiency of the ABFPN
on the indicator AP, is overcome. Other indicators have been
significantly increased as well, indicating an improved overall
performance. As such, the combination of the ABFPN and
robustness enhancement strategies performs better than the
ABFPN-based faster RCNN and the traditional faster RCNN
based on experimental results on the COCO2017 dataset.

2) Validation on VOC07+12: Experimental results on the
VOCO07+12 testing set are displayed in Table III. The popular
metric mAP (0.50, 11point) is employed on the VOC07+12
dataset, where mAP (0.50, 11point) stands for the mean
average precision values of 11 points with IoU greater than
0.5 and recall in the range of [0 : 1 : 0.1] (from 0 to 1 with
the interval of 0.1).

In Table III, it can be clearly observed that the m AP of the
ABFPN is 84.06%, which is nearly 1% larger than that of the
standard FPN. After introducing the robustness enhancement
strategies, the m AP value of the modified ABFPN-based ob-
ject detection framework is further increased to 85.59%, which
indicates that the applied robustness enhancement strategies

indeed improve the overall performance of the framework.

Furthermore, the performance comparison of the faster
RCNN [43], the hierarchical shot detector (HSD) [5], the
Perona Malik [24], the intertwiner network (InterNet) [28],
the refinement detector (RefineDet) [53], the Blitz Network
(BlitzNet) [10], the early exit evolutionary architecture net-
work (EEEA-Net) [46] and our method on the VOCO07+12
dataset is shown in Table IV. Notice that the data of the
utilized methods are directly obtained from the corresponding
literature, which is marked in Table IV. Experimental results
demonstrate the effectiveness of the proposed ABFPN for
small-size objects detection comparing with some state-of-the-
art algorithms. It is noteworthy that the comparison algorithms
used are architecturally designed to be suitable for application
to small target detection tasks, hence the results are totally
comparable. Specifically, the proposed method achieves the
best result in terms of mAP.

3) Validation on VisDrone2019: In this part, the results
of the ABFPN-based object detection framework with the
robustness enhancement strategies on the VisDrone2019 de-
tection dataset are with the ablation studies in Table V. It is
worth mentioning that the detection on VisDrone2019 dataset
is a difficult small-sized target detection task, and the chosen
evaluation metrics are the same as used on COCO2017 dataset.
As can be seen from Table V, the ABFPN can also guarantee
a 1% improvement in average precision on complex detection
tasks compared to the FPN, and the better performance is
especially noticeable on smaller size targets. When related
strategies are further introduced, the improvement in the five
metrics AP, APQ50, AP,, AP,, and AP, is 2.5%, 3.2%,
2.3%, 3.5% and 2.7%, respectively, compared to the original
FPN.

The validation of the ablation experiments on the above
three public challenging datasets demonstrates the effective-
ness of the proposed ABFPN and related strategies, which
are particularly suitable for small-sized detection tasks; mean-
while, generalization ability of the ABFPN is also proven on
multiple databases. To further validate the practicality of the
ABFPN, in next section, it is applied to detect tiny surface
defects of PCB.

IV. APPLICATION IN PCB DEFECT DETECTION

In this section, an IPDD framework is designed to detect
tiny surface defects in PCB, where the proposed ABFPN is
incorporated with the aforementioned robustness enhancement
strategies. To verify its effectiveness and practicality, the
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TABLE II
ABLATION STUDY ON THE MS COCO2017 DATASET

Algorithms AP(%) | APQ50(%) | APs(%) | APm(%) | AP(%)
Faster RCNN with the FPN 33.9 56.9 17.8 37.7 45.8
Faster RCNN with the ABFPN 34.8 56.9 21.5 384 44.1
Faster RCNN with the ABFPN and strategies 38.6 61.3 24.4 42.0 49.9

TABLE III
ABLATION STUDY ON THE PASCAL VOCO07+12 TESTING DATASET

TABLE IV
DETECTION EVALUATION RESULTS OF DIFFERENT ALGORITHMS
ON THE PASCAL VOCO07+12 TESTING DATASET

developed IPDD framework is tested on the public PCB defect
dataset.

A. The improved PCB defect detection framework

The proposed IPDD framework consists of the input layer,
the backbone, the neck, and the detection head. The diagram of
the IPDD framework is displayed in Fig. 4. The enhancement
strategies used in each part of the IPDD framework are
described in Section II-C. It is worth emphasizing that the
enhanced ResNeXt structure (including 152 layers with 50
blocks) is selected as the backbone, which is denoted as
Enhanced-ResNeXt-152. Meanwhile, the proposed ABFPN is
chosen as the neck part, and the cascade RCNN* is selected
as the detection head.

In object detection, localization and classification are the
most significant tasks, by which the object bounding box
and the corresponding category are determined correctly. In
Fig. 4, the localization and classification are highlighted within
a blue box. In the proposed IPDD framework, the head part
employs a region proposal network (RPN) to obtain regions of
interest (Rol). In addition, the RPN is applied to distinguish the
foreground (i.e., the PCB surface defects) and the background.

As stated previously, the feature maps F' = {Fy, F5, Fy, F5}
are the final output of the neck part and are also the input
of the detection head. Then, multiple proposals with different

sizes and aspect ratios are generated at each position of the
feature map. Each proposal is matched with a corresponding
ground truth and performed by the IoU threshold filtering

Algorithms mAP(0.50, 11point)(%) . . N . . .
Faster RCNN with the FPN 307 operation, which cquld thus dlstlngm'sh positive aqd negative
Faster RCNN with the ABFPN 34,06 §amples. The bounding box loss function L, py,_ppos in the RPN
Faster RCNN with the 18 €Xp ressed by:
ABFPN and strategies 85.59

M [0.5 * (loc, — loct)ﬂ , if dif <o
M [0 x |loc, — loc,| — 0.5 % 2], otherwise
®)
where M is the average operation; loc, and loc; represent the
location of bbox (short for bounding box) predicted by the

Lrpn_bboa: =

Algorithms mAP(0.50, 11point)(%) RPN and the target bbox, respectively; dif = |loc, — loc,] is
Faster RCNN [43] 73.2 the absolute value of the difference between loc, and loc;; o
HSD [5] 83.0 is the threshold parameter, which is set to 3 in this simulation.
Perona Malik [24] 74.37 Besides, the classification loss function of the RPN is:
BlitzNet [10] 81.5 K
EEEA-Net [46] 81.8 B j i
InterNet [28] 82.7 Lrpn_ets = M § =85, - 1 +log z% exp (seis) | ¢
i—
RefineDet [53] 83.8
Ours 85.59 (] =12.., K) ©)

where s.;s denotes the prediction score, [ is the real label and
K represents the total number of categories.

It should be highlighted that the RPN only accomplishes
the rough proposals, which need further refinements. In fact, a
single PCB image may probably contain more than one defect.
As such, it is of vital significance to further identify each type
precisely from the proposals. Both the feature map F' and the
generated Rol are performed a series of cascade operations,
denoted by the Rol align and the Bbox head blocks as shown
in Fig. 4.

Three cascade levels are re-sampled to increase the IoU
value of the proposals stage by stage. The “Rol align” blocks
adjust features of the candidate areas to a fixed size through
the pooling operation. The “Bbox head” blocks obtain the
prediction bounding box B,,. and classification score Sgs.
Each cascade stage is trained by using the positive and negative
samples with different IoUs, and the output of previous stage
serves as the input of next stage. If the IoU of the generated
Rol increases, the next cascade stage will focus on a certain
area in the updated proposal so as to improve the detection
accuracy.

For loss functions of the detection head, the classification
loss function Lpeqq_c1s adopts the cross entropy loss function
as shown in Eq. 9, and the CloU loss mentioned in Section
II-C is used for the bounding box loss Lpead pboz- The
bounding box 10SS Lpeqd_vbor Of the head is calculated by:

Lhead_bbox =M {1 — IoU + dist (bp, bt) + CU/} (10)
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TABLE V
ABLATION STUDY ON THE VISDRONE2019 DETECTION DATASET

Algorithms AP(%) | APQ50(%) | APs(%) | APm(%) | AP(%)
Faster RCNN with the FPN 14.6 26.5 7.8 22.5 27.5
Faster RCNN with the ABFPN 15.6 27.4 8.6 23.8 26.8
Faster RCNN with the ABFPN and strategies 17.1 29.7 10.1 26.0 30.2
Backbone: _ E
Enhanced-ResNeXt-152 hree missing /I” H
/ Head: E
RPN Cascade RCNN* i

feature
map

AutoAugment
Mixup

Neck: ABFPN

Bbox Head
Bbox Head |

DIOU-NMS —

Input: PCB Image

Fig. 4. The diagram of the proposed IPDD framework.

where b, and b; represent the predicted box and the real
bounding box, respectively; o and v are two influence factors
with respect to the aspect ratio of b, and b,. dist (-) calculates
the distance between b, and b;, which is defined by:

p2 (bp; bt)

dist (by, by) = ©—2
C

Y

where c is the diagonal distance of the smallest bounding
rectangle, which can cover both b, and b;; p(-) stands for
the Euclidean distance.

The total loss function of the cascade RCNN* is given by:

If the score is set to be 0, the corresponding box will be
redundant for a certain defect, which will be filtered out.
Otherwise, a small value of |IoU — dist (bys, b;) | implies that
the obtained box may belong to another defect, which should
not be eliminated arbitrarily.

The pseudocode of the proposed IPDD framework is pro-
vided in Algorithm 1.

B. Evaluation results and discussions of the IPDD framework

To evaluate the performance of the proposed IPDD frame-

3 } 4 work, the PKU public PCB defect detection dataset has been
Liotat = Lrpn_cts + Lrpn_bbor + Z (Liead_cts + Lhead pboz)  adopted [9]. Some existing defect detection algorithms have
i=1 (12) been utilized for performance evaluation, including the Impro
. . YOLOV3 [29], the FCOS [47], the PP-Yolo [38], the Impro
where Lpcad_cis 1 the cross entropy loss function as shown

in Eq. 9.

The DIoU-NMS method is applied for further refining
the prediction results to preserve the best bounding box, as
there may be other redundant PCB tiny defects. It is worth
mentioning that the DIoU-NMS method considers not only
the IoU value but also the distance between center points of
two bounding boxes. The DIoU-NMS method provides a score
as reference and the process of the method is:

score;, if |ToU — dist (bpr,b;) | < €

score; = }
0, otherwise

(13)
where € is the threshold of the DIoU-NMS method, which
is set to be 0.5 in this work; by, is the bounding box with
the highest confidence value, and b; stands for nearby boxes.

faster RCNN [19], the TDD-Net [9], the deformable DETR
[55] and the sniper [45]. Among the utilized methods, the
Impro faster RCNN, the TDD-Net, the deformable DETR and
the sniper are two-stage methods, which are similar to our
IPDD framework.

The utilized dataset contains 693 images with 6 different
types of defects (including missing hole, mouse bite, open
circuit, short, spur and spurious copper). The dataset is vi-
sualized in Fig. 5, where the number of each defect type is
plotted in Fig. 5 (a). area_ratios is the proportion of ground
truth bounding box to entire image, which also reflects the
relative size of objects for detection. In Fig. 5 (b), it is clear
that almost all defects only occupy a tiny area in an image,
which makes it challenging to achieve accurate positioning
and classification results.
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Algorithm 1 Pseudocode of the proposed IPDD framework.
Require:
RGB images with PCB surface defects
Ensure:
The predicted bounding boxes and corresponding classifi-
cation results of PCB defects
1: Use the AutoAugmetImage and mixup techniques for data
augmentation;
2: the Backbone part Enhanced-ResNeXt-152 returns feature
maps C= {02, Cg, 04, 05};
3: the Neck part ABFPN outputs feature maps F =
{F3, F3, Fy, F5} based on Eq. 1 - Eq. 7,
4: Enter the region proposal network (RPN) in the head part
to generate regions of interest (Rol);
5: Calculate the loss of the RPN, including L, phos by
Eq. 8 and L,p,_qs by Eq. 9;
6: For ¢ from 1 to 3:
Perform Rol align feature extraction;
Obtain the updated bounding box B,,. and classifica-
tion score S,
Calculate Lpeqd_tbor and Lpeqq_cis referring to Eq. 10
and Eq. 11;
Endfor
7: Calculate total loss Lt of the head part according to
Eq. 12;
8: Apply the DIoU-NMS method for further refinement;
9: Get the final prediction bounding boxes and corresponding
classification scores.

In the simulation, the proposed IPDD framework is trained
with 50,000 iterations, and the initial learning rate is
0.00125. The decay factor is 0.1 in the iteration interval of
[42000, 48000]. 593 PCB images are randomly selected as the
training samples whereas the rest 100 pictures are used for
testing. Other experimental settings and environment remain
the same as presented in Section III.

1) Algorithm verification and comparison: The change
curves of five loss functions (i.e., Lypn_ciss Lrpn_bbox:
Lhead_ciss Lhead_bbor and Lot ) are shown in Fig. 6, where
each loss value is calculated every 50 iterations. It is observed
that when iteration passes nearly 880 x 50 = 44000, the
oscillation of Ly, is restricted in a small range, which can be
deemed to reach the stable state. Besides, Fig. 6 (f) presents
the change of AP, where APQ50 and APQ75 denote AP
over IoU at 0.5 and 0.75, respectively. The precision value is
sampled every 2000 iteration, and when evaluation times reach
22, i.e., the number of iterations is 22 x 2000 = 44000, the
curves tend to be converged when AP, APQ50 and APQT75
are 56.4%, 98.8%, and 57.8%, respectively.

Table VI displays the comparison results of the proposed
IPDD framework and the other seven state-of-the-art detection
methods. It is noteworthy that Impro YOLOv3, FCOS, de-
formable DETR and sniper are all the detection methods with
excellent performance in small-sized object detection tasks,
and TDD-Net is a specific method proposed for PCB small
defect detection. Evaluation metrics are the same as presented
in Table II with two extra ones which are APQT75 and average

missing
hole

mouse
bite

open

circuit

short

spur

spurious
copper

380 390 400 410 420 430 440 450 460
numbers

(a) The number of each PCB defect type

frequency

il 5 | N ]
0.002 0.003 0.004
area_ratios
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0.001

(b) The frequency of various area_ratios

Fig. 5. Partial visualization information of the PCB defect detection dataset.

recall (AR) rate. The larger AR rate, the more positive samples
are classified correctly. As shown in Table VI, the proposed
IPDD framework achieves the best results on all performance
indicators, which demonstrates the effectiveness of the IPDD
framework for PCB defect detection. In particular, the IPDD
framework outperforms the sub-optimal method sniper on all
evaluation metrics of AP, APQ50, APQ75, AP,, AP,,, AP,
and AR. Compared with Impro YOLOv3 (which ranks second
on AP;), the indicator AP; is improved by 1.7% when using
the IPDD framework, which indicates the superiority of the
proposed IPDD framework on detecting small defects.

In addition, TDD-Net, a dedicated algorithm proposed for
PCB tiny defect detection, is selected in this paper as a
comparison method for visualization and subsequent error
analysis. For an intuitive view, experimental results of the
proposed IPDD framework and the TDD-Net are visualized in
Fig. 7. The first two columns are results obtained by the IPDD
framework, where images are enlarged for a clear view. Sim-
ilarly, the last two columns are results obtained by the TDD-
Net. It should be highlighted that for the mouse_bite defect
shown in line 3, the TDD-Net outputs a redundant prediction
bounding box. By using the proposed IPDD framework, the
positioning is more accurate than that of the TDD-Net with
a higher confidence value that equals to 0.99, which shows
that the proposed IPDD framework demonstrates better overall
performance than TDD-Net in terms of both localization and
classification of small objects.

Furthermore, to comprehensively evaluate the detection per-
formance of the proposed IPDD framework on each type of
defect, the precision-recall (PR) and score-recall (SR) curves
are employed for evaluation. Experimental results are shown
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Fig. 6. Iteration curves of loss functions and precision.
TABLE VI
COMPARISONS OF DIFFERENT METHODS FOR PCB DEFECT DETECTION
Algorithms AP(%) | APQ50(%) | APQT5(%) | APs(%) | APm(%) | AP(%) | AR(%)
Impro YOLOvV3 [29] 43.6 94.8 30.4 459 44.4 31.7 51.9
Impro faster RCNN [19] 48.6 93.9 42.5 28.6 49.1 41.4 55.0
FCOS [47] 48.7 94.8 43.1 41.3 49.8 35.0 55.8
PP-Yolo [38] 47.4 95.1 38.4 27.5 48.3 453 63.2
Deformable DETR [55] 49.2 96.1 42.4 44.7 49.0 49.2 58.9
TDD-Net [9] 49.3 95.2 43.7 32.1 50.1 36.2 56.6
Sniper [45] 51.4 97.9 472 45.7 51.4 54.1 60.5
IPDD framework (In this paper) 56.4 98.8 57.8 47.6 56.6 57.2 63.3
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Fig. 7. Comparison of visualization results of our IPDD framework (left two
columns) and TDD-Net (right two columns).

in Fig. 8, where the IoU threshold is fixed to 0.5. The PR
curve reflects a trade-off between classification accuracy and
capability to cover positive samples (i.e., recall). The SR curve
shows the confidence scores under different recall values.
Generally, the value of precision and confidence scores will

monotonically decline as recall increases. Thus, an effective
and practical model is supposed to enable the precision and
confidence scores to maintain stable even when recall is
increased. As a result, the larger area enclosed by PR, SR
curves and coordinate axes, the better performance of the
model. Fig. 8 shows that the IPDD framework is able to keep
the value of precision and confidence score at a high level with
growing recall, which validates the robustness and reliability
of the IPDD framework on PCB defect detection.

2) Ablation study and error analysis: To further validate
the effectiveness of our proposed IPDD framework, an ab-
lation study has been conducted in this paper, where two
variant IPDD frameworks (i.e., IPDD-Nv1 and IPDD-Nv2) are
adopted. To be specific, the IPDD framework employs both the
designed ABFPN and other robustness enhancement strategies.
In the variant IPDD framework, IPDD-Nv1, the input layer is
the original one without using data argumentation techniques,
the backbone is the conventional ResNeXt-152, the neck part
is the proposed ABFPN, and the cascade RCNN is used as the
detection head. The only difference between IPDD-Nv2 and
IPDD-Nv1 is that the neck part in IPDD-Nv2 is a conventional
FPN.
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Fig. 8. Precision-recall and score-recall curves of each defect type (IoU=0.5).
The aplatlon study results are shown in Table VII. It can @ Impro YOLOV3 *
be seen in Table VII that IPDD-Nv1 outperforms IPDD-Nv2 56 1 Impro faster RCNN
on all indicators, particularly on AP,. The AP, of IPDD-NvI @ Fcos
is 3.1% larger than that of the IPDD-Nv2, which indicates 54 V PP-Yolo V4
the competitiveness of the designed ABFPN (that can be : $;fDoerible DETH
. . -Ne
seen as an outstanding feature fusion method). By further Sniper
introducing robustness enhancement strategies, it is found 521 % IPDD-Nv2
that except for APs, the IPDD framework has increased by 5 IPDD-Nv1
0.6%, 0.6%, 3.6%, 0.6%, 2.9% and 0.7% respectively on T 50 - Y IPDD framework
AP, APQ@50, APQT75, AP,,, AP, and AR when compared £ ® [ |
with IPDD-Nv1. On the AP, metric, the value of AP, in 18- "
the proposed IPDD framework is slightly smaller than that v
of the IPDD-Nvl, due mainly to the reason that the applied
strategies focus on objects with middle-size or large-size. As 46 1
such, the proposed IPDD framework could achieve satisfactory
overall detection performance. Improvements on other six 44 -
indicators have demonstrated that other introduced strategies @
can effectively enhance robustness of the model. 52 54 56 58 60 62
Fig. 9 is the scatter plot of the precision and recall, including Recall
eight PCB defect detection methods and the two variant IPDD . . .
frameworks. Based on the relationship between precision and T lig. 9'.h Scatter plot of the precision-recall relationship of each
algorithm.

recall, the point in the upper right corner indicates that the
model is robust. As can be seen in Fig. 9, the proposed
IPDD framework is the best out of 10 methods. It should also
be noticed that the variant IPDD-Nv1 which only employs
the proposed ABFPN ranks second, which implies that the
introduced ABFPN is competitive in small object detection.
Additionally, the PR curve is used for error analysis [18].
Fig. 10 (a) and (b) show the PR curves of the TDD-Net and
the IPDD framework, where seven colored areas are marked.
To be specific, C75 and Cjg stand for the area enclosed by
the PR curve and coordinate axes at IoU = 0.75 and IoU =
0.5, respectively. Compared with the TDD-Net, the proposed
IPDD framework has an improvement on the AP by 3.6%
on Csg and 14.1% on C+s5, which indicates the effectiveness

and superiority of the proposed ABFPN in positioning. After
removing location errors, the obtained new area is denoted by
the indicator Loc. Notice that AP of the IPDD framework on
Loc is further increased from 98.8% to 99.3%, whereas AP
of TDD-Net on Loc is changed from 95.2% to 96.5%, which
indicates that inaccurate localization is a common reason
that causes the low detection performance. To conclude, the
proposed IPDD framework performs better than the TDD-Net.

The indicator Oth is the value of AP after eliminating all
misclassification results; and further when all false positive
samples are removed, the AP value is characterized by BG.
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TABLE VII
ABLATION STUDY RESULTS OF THE [IPDD FRAMEWORK

Algorithms AP | AP@50

APQT5

AP, | AP, | AP, | AR

IPDD-Nv2 54.1 98.0

532 45.7 543 542 | 60.5

IPDD-Nvl 55.8 98.2

54.2 48.8 56.0 | 543 | 62.6

IPDD framework | 56.4 98.8

57.8 47.6 56.6 57.2 | 63.3
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Fig. 10. Error analysis via precision-recall curves.

It is found that both Oth and BG remain unchanged in Fig.10
(b), which shows that the IPDD framework could achieve
precise classifications. The results on AP regarding Oth
and BG in the TDD-Net demonstrate that the classification
accuracy of the TDD-Net is worse than that of the proposed
IPDD framework. The last indicator F'N is the AP value after
eliminating all kinds of mistakes. Based on the above discus-
sions, the proposed IPDD framework demonstrates remarkable
classification accuracy, and the main reason for inaccurate
detection is imperfect positioning performance.

V. CONCLUSION

In this paper, an IPDD framework has been put forward
for PCB surface defect detection, where an ABFPN has been
designed as the neck part of the IPDD framework for feature
fusion. In the developed ABFPN, the atrous convolution
operator with different dilation rates has been utilized to
enlarge the receptive field. The skip connection has been
adopted for the atrous convolution operators, which could

enhance the interactions among features in different levels.
In addition, a balanced module has been introduced in the
ABFPN for studying the semantic information of the obtained
features. The performance of the ABFPN has been evaluated
on three public datasets, and the ablation studies prove the
effectiveness of the ABFPN especially for small-sized objects.
The designed IPDD framework has been successfully applied
to small object detection with application to PCB surface
defect detection. Several robustness enhancement strategies
have been employed in the IPDD framework to further im-
prove the overall detection performance. Experimental results
have demonstrated the superiority of the proposed IPDD
framework over seven state-of-the-art methods in terms of both
localization and classification.

In the future, we aim to 1) apply the proposed IPDD
framework to other small object detection tasks such as
defect detection of industrial components and object detection
in pastoral landscapes; 2) investigate a precise localization
method to improve the positioning performance of the IPDD
framework; and 3) utilize evolutionary computation algorithms
to tune the hyperparameters of the proposed IPDD framework.
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