
Do Developers Use Static Application Security Testing (SAST)
Tools Straight Out of the Box? A Large-scale Empirical Study

Gareth Bennett
Tracy Hall

Emily Winter
{g.bennett,tracy.hall,e.winter}@lancaster.ac.uk

School of Computing and
Communications

University of Lancaster, Lancaster, UK

Steve Counsell
steve.counsell@brunel.ac.uk
Dept. of Computer Science

Brunel University
London, UK

Thomas Shippey
thomas.shippey@logicmonitor.com

LogicMonitor
London, UK

Abstract
Static application Security Testing (SAST) tools are an established
means of detecting vulnerabilities early in development. Previous
studies have reported low detection rates from SAST tools and
recommend either combining SAST tools or configuring rule sets
to detect more vulnerabilities. However, while previous work sug-
gests that developers rarely combine or configure any of the Auto-
matic Static Analysis Tools (ASATs) they use, it is currently unclear
whether SAST tools are used directly “out of the box”. To under-
stand how developers use SAST tools, we performed a large-scale
survey involving 1,263 developers. We pre-screened developers to
establish their SAST use and found that only 20% (204/1,003) used
SAST tools. Of those developers who did use SAST tools, we found
a large number did not use multiple tools (59%), did not configure
tools (54%) or did neither (40%). Our results suggest that more work
is needed to help developers combine and configure tools, since
doing so is likely to detect significantly more vulnerabilities.

Keywords
Survey, Vulnerability Detection, Static analysis
ACM Reference Format:
Gareth Bennett, Tracy Hall, Emily Winter, Steve Counsell, and Thomas
Shippey. 2024. Do Developers Use Static Application Security Testing (SAST)
Tools Straight Out of the Box? A Large-scale Empirical Study. In Proceedings
of the 18th ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM ’24), October 24–25, 2024, Barcelona,
Spain. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3674805.
3690750

1 Introduction
Vulnerabilities are a serious threat to a system and to its users
since their exploitation have severe consequences; some examples
include EternalBlue [1] and the recent Log4Shell [2]. Early detection
of vulnerabilities is essential to limit exploitation opportunity. Static
Application Security Testing (SAST) tools are one establishedmeans
of detecting vulnerabilities. Such tools are resource inexpensive

This work is licensed under a Creative Commons Attribution International
4.0 License.

ESEM ’24, October 24–25, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1047-6/24/10
https://doi.org/10.1145/3674805.3690750

and used in many different developer environments; as such, their
deployment is widespread in Open Source Software (OSS) [10, 31].

That said, SAST tools generate a large number of false positives
[21], do not detect all weakness types [18, 24, 26] and miss some
vulnerabilities [24]. There are known ways to improve SAST detec-
tion rates. In particular, combining multiple SAST tools has been
shown to increase vulnerability detection rates [14, 18, 19, 27, 29].
More importantly, configuring a single tool’s rule set, rather than
using it straight “out of the box” has been shown to outperform
combinations of tools [11]. Despite these benefits, previous work
suggests that developers appear to use only a limited number of
static analysis tools and rely on default configurations [10, 31].

It is also important to understand human factors associated with
using such tools [33] and several studies have analysed the context
in which static analysis tools are used by developers. However,
previous work has failed to focus on SAST tools [10, 31] or per-
formed qualitative work with a small number of developers [6]. In
this emerging results paper, we conduct a survey to understand
whether developers configure and combine their SAST tools, or
use them straight “out of the box”. We designed the survey to meet
these goals and provide quantitative results to complement previous
qualitative work [6]. We address the following research questions:

RQ1: How do developers use SAST tools?
We ask developers how they currently use SAST tools and compare
their use with previous work suggesting that they are rarely com-
bined or configured.
RQ2: How do developers configure SAST tools?
Static analysis tools can be configured to add, remove, edit or create
new rules. We ask developers which configurations they perform
on each SAST tool they use, identifying flaws in certain SAST tools.
RQ3: Why do developers configure SAST tools?
We ask developers why they configure their SAST tool to under-
stand what they want from them; this may highlight a disconnect
between the tool provider and their user base.
RQ4: What metrics are associated with developers when con-
figuring and combining SAST tools?
We perform statistical analysis on our survey responses to discover
which developer responses are associated with whether they config-
ure or combine SAST tools. This may highlight reasons why some
developers use multiple tools or, indeed, configure tools in the first
instance.

454

https://doi.org/10.1145/3674805.3690750
https://doi.org/10.1145/3674805.3690750
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3674805.3690750
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3674805.3690750&domain=pdf&date_stamp=2024-10-24

ESEM ’24, October 24–25, 2024, Barcelona, Spain Gareth Bennett, Tracy Hall, Emily Winter, Steve Counsell, and Thomas Shippey

Our study contributes the following:
• Results from a large scale survey involving 1,263 employed
developers regarding their SAST tool use and configurations;
this data is publicly available [7].

• Statistical analysis on developer responses and discussion of
the results in the wider context of static analysis tools.

• Insights into SAST tools from professional developers and
recommendations for future work for SAST tool providers,
SAST tool users and researchers.

The remainder of the paper is organised as follows: Section 2 de-
scribes our methodology; Section 3 then presents our results. Our
findings are discussed in Section 4. We then discuss related work
(Section 5) before concluding in Section 6.

2 Methodology
2.1 Survey Design & Distribution
Table 1 presents the survey questions and response types (Single
choice (SC), Multiple Choice (MC), and Ranking (R)). We discuss
our two pre-screening questions in Section 2.3. Questions Q1-Q8
cover current interactions with SAST tools and whether developers
combine or configure them (RQ1). Questions Q9-Q11 are repeated
for each SAST tool developers’ use and help identify which tools
are being configured and the types of configurations developers
make (RQ2). Questions Q12-Q14 ask developers when and why
they configure tools to understand what motivates them to do so
(RQ3). We also asked eight demographic questions to understand
which developers configured and combined tools (RQ4) adapted
from Stack Overflow’s Developer Survey [3]; however, we omit
these questions from the table due to space limitations.

Table 1: Survey questions and response type.
Q Question Type

Q0.1 Which type of vulnerability detection tools and tech-
niques have you used to detect vulnerabilities?

MC

Q0.2 Which of these specific vulnerability detection tools have
you used to detect vulnerabilities?

MC

Q1 How many years have you used SAST tools? SC
Q2 How do you generally use SAST tools? MC
Q3 How often do you use SAST tools to scan your code? SC
Q4 Which of the following explains why you use SAST

tools?
MC

Q5 How effective are SAST tools at detecting vulnerabili-
ties?

SC

Q6 Which weakness types are SAST tools particularly effec-
tive at detecting?

MC

Q7 Which SAST tools do you use? MC
Q8 Have you configured the rule set of SAST tools? SC
Q9 Regarding the configurability of {Q7 selected tool}, select

all statements that apply. I have...
MC

Q10 How easy is {Q7 answer} to configure? SC
Q11 Which of the following best describes why you don’t

configure {Q7 answer}?
MC

Q12 How often do you configure the rule set for SAST tools? SC
Q13 When specifically are you likely to configure the rule set

of SAST tools?
MC

Q14 Rank the following statements as to why you configure
SAST tools?

R

Conducting a pilot study can help ensure that a study has no
obvious errors or omissions [22, 25, 32]. We conducted a pilot study
with Software Engineering postgraduate students who had experi-
ence with SAST tools, as they represented our target population.
In response to this pilot, we added an additional question (Q6). We
distributed the survey on LinkedIn and various subreddits, since
these sources were relevant to developers who use SAST tools
and have large active communities (771,000 active members on
r/cybersecurity). We added a Capctha prompt for developers re-
cruited from these online sources to limit automated responses. To
attract further participants, we also recruited from Prolific [4], a
paid recruitment service connecting researchers with professionals.
Paid recruitment services have gained popularity in research be-
cause they provide a large audience of professionals, a high response
rate and an easy recruitment process [23, 30]. Overall, we gathered
1,263 responses from participants (less than 1% from online sources
and 99% from Prolific).

2.2 Data Handling
The surveys were created using Qualtrics [5]. Participant responses
were exported to .csv files and combined with their Prolific demo-
graphic data. Data was secured on the Qualtrics platform or on
encrypted hard drives and all data handling ethics were approved
by Lancaster University. Four duplicate entries, 87 incomplete sub-
missions and one entry whose participant revoked consent after
submission were removed. The Prolific identifier for each entry
was then removed to anonymise the data.

2.3 Pre-screening
It is suggested participants from paid services, such as Prolific, often
exaggerate their skills to be included in more studies [15, 30]. There-
fore, to ensure high quality reliable responses, we pre-screened
participants. Danilova et al., [15] recommend several questions to
pre-screen participants, which we adapt to identify developers who
use SAST tools. We first filtered participants using Prolific default
options: computer programming skills, an approval rate of 95-100
(i.e., rate of completed studies: abandoning studies lowers approval
rate) and an employment role in coding, technical writing or sys-
tem administration. We created a short survey, separate from our
main survey, with two questions (Q0.1 and Q0.2 found in Table
1). Q0.1 asks participants which vulnerability detection techniques
they used; participants who did not select SAST tools were not
eligible for the main survey. Q0.2 is a multiple choice question
where participants were provided with a selection of real and fake
vulnerability detection tools. Participants who claim to use fake
tools were removed from the analysis. Overall, we gathered 1,263
responses from participants: 23% (286/1263) responded to Q0.1 as
using SAST tools and were eligible for our study. However, 21%
(260/1,263) failed our quality check by selecting fake tools and were
removed from analysis, leaving 1,003 participants. Reid et al., [30]
reported similar results with 33% of participants providing incon-
sistent responses and Danilova et al., [15] reported that 42% of their
participants did not meet the criteria they claim to. Therefore, the
286 participants who selected SAST tools was reduced to 204. The
remainder of the survey was distributed to the 204 participants, of
whom 175 responded.

455

Do Developers Use Static Application Security Testing (SAST) Tools Straight Out of the Box? A Large-scale Empirical Study ESEM ’24, October 24–25, 2024, Barcelona, Spain

Man. Unit. Pen. SAST DAST IAST
0

200

400

600

800 772

595

369
204

129 63

nu
m
be
ro

fp
ar
tic

ip
an
ts

Figure 1: Q0.1: Techniques used to detect vulnerabilities.
Manual Code Review (Man.), Unit Testing (Unit.), Penetration Testing (Pen.), Static Application Security
Testing (SAST), Dynamic Application Security Testing (DAST), Interactive Application Security Testing (IAST).

2.4 Demographics
To further strengthen confidence in the generalisability of our study,
we compared our participants’ demographic information with pre-
vious results. The demographics of our participants closely matched
the demographics from Stack Overflow’s 2023 Developer Survey
results [3] with some notable exceptions. First, the age of our par-
ticipants was slightly lower, likely due to recruitment from a paid
service attracting less financially stable participants. Second, our
study contained more participants residing in countries close to
the UTC timezone (United Kingdom, Portugal, South Africa) and
fewer respondents residing in the USA, possibly due to the time our
surveys were posted (0900 UTC), as positions were filled quickly.

2.5 Statistical Analysis
In our study, we obtain categorical data at nominal, ordinal and
binary levels. We follow previous approaches and perform Chi-
Square Tests of Independence to identify associations between two
categories [25, 28]. We set the statistical significance level at 0.05
and present the results with the Chi-Square result (X-squared),
Degrees of Freedom (df) and probability value (p-value).

3 Results
3.1 Pre-screening Results
Figure 1 suggests that SAST tools are used by 20% (204/1003) of
developers. Previous work has concluded that ASAT use is wide-
spread throughout OSS (between 56% and 66%) [10, 31]. However,
we find SAST tool use to be much lower, possibly suggesting SAST
tools are much less ubiquitous than ASATs. Previous work analysed
repositories, whereas we survey developers, so it could be that 20%
of developers contribute to 56%-66% of repositories. It may also be
explained by different roles dealing with security violations, such
as security specialists.

Finding 1: SAST tools are popular vulnerability detection
tools, but may be less widespread than generic ASATs;
20% (204/1003) of developers used SAST tools.

3.2 RA1: Current SAST Use
Table 2 suggests that most developers use SAST tools in their CI/CD
pipelines (62%). Integrating static analysis tools into Continuous In-
tegration (CI/CD) pipelines ensures code is being scanned regularly.
This relatively high CI/CD SAST use may be related to our later
finding that 42% of employers enforced SAST use and we assume
this is done via CI/CD integration.

Table 2: Q2: How developers use SAST tools.

Response Count % (n=175)
CI/CD Pipeline 108 61.7%
Web Interface 82 46.9%

Command Line Interface 80 45.7%
IDE Plugin 69 39.4%

Standalone application 29 16.6%
Table 3: Q4: Why developers use SAST tools.

Response Count % (n=175)
They are good at detecting vulnerabilities 136 77.7%

They are convenient to use 99 56.6%
I am encouraged by my employer 86 49.1%

SAST tool usage is company policy 73 41.7%
I am encouraged by my colleagues 50 28.6%

Table 4: Q5: How effective SAST tools are.

Response Count % (n=175)
Not effective 0 0.0%

Slightly effective 10 5.7%
Moderately effective 92 52.6%

Very effective 66 37.7%
Extremely effective 7 4.0%

Table 3 presents responses as to why developers use SAST tools
(Q4 Table 1) and suggests that most developers use SAST tools
because they believe they are good at detecting vulnerabilities
(78%) and convenient to use (57%). However, when asked how ef-
fective SAST tools are (Q5 Table 1), most developers (53%) believed
SAST tools to be only moderately effective (Table 4), suggesting
improvements can still be made to the detection rate of SAST tools
to increase their effectiveness.

Finding 2: Developers believe SAST tools to be good at
detecting vulnerabilities and convenient to use; however,
only moderately effective, suggesting improvements can
be made to their detection rate to improve effectiveness.

Figure 2 shows the different SAST tools used by developers.
SonarQube is the most popular tool, used by 59% of developers.
Despite this, developers do use a variety of tools; in the ’Other’ cat-
egory, 30 developers named 26 unique tools. However, the majority
of developers only use a single tool.

50 100

SonarQube

GitHub’s CodeQL

Other

Semgrep

Snyk Code

BetterScan

FindSecBugs

HCL AppScan

104

44

30

29

22

13

8

8

Figure 2: Q7: Top eight SAST tools developers use.

456

ESEM ’24, October 24–25, 2024, Barcelona, Spain Gareth Bennett, Tracy Hall, Emily Winter, Steve Counsell, and Thomas Shippey

Table 5: The number of tools used and configuration status.
of tools Configure Don’t configure Total
Single 32 65 97
Multiple 43 24 67
Total 75 89 164

Contingency Table 5 presents the number of developers who use
a single or combinemultiple SAST tools and whether they configure
their tools. Previous work recommend configuring or combining
multiple SAST tools as doing do may detect more vulnerabilities
[11, 14, 18, 19, 27, 29]. However, many developers do not configure
SAST tools (54%) or use more than a single tool (59%) and 40% do
neither, potentially missing many vulnerabilities.

RA1 Summary:Most developers have integrated SAST
tools into their CI/CD pipelines. However, most develop-
ers do not combine multiple tools or configure their tools,
and many do neither.

3.3 RA2: Tool Configurability
The rule sets of SAST tools can be typically configured by the
user, such as enabling, disabling, editing or even creating new
rules. We asked developers for each SAST tool they use: what
type of configurations they perform and how difficult each tool is
to configure.
Table 6: Developers combining and configuring SAST tools.
Combine (Comb), Configure (Conf), Enable (Ena), Disable (Dis), Edit (Edi), and Create (Cre)

Tools Total Comb Conf Ena Dis Edi Cre
SonarQube 99 38 41 33 26 24 16
CodeQL 37 28 23 17 10 14 13
Semgrep 28 20 17 16 12 10 5
Snyk Code 22 18 8 6 4 4 2
BetterScan 12 8 7 4 4 5 1
HCL AppScan 8 6 7 6 0 4 3
FindSecBugs 8 8 3 3 2 2 0
Veracode 3 3 2 2 2 2 0
Total 247 150 124 100 69 77 44

Table 6 presents the total number of developers that used each
SAST tool and the type of configurations they performed. Note:
figures are lower than Figure 2 because 11 participants provided
no answer regarding configuring tools. Enabling standard rules is
the most common type of configuration change performed on 41%
of tools. These results suggest that more tools have rules enabled
than disabled, and may suggest a discrepancy between the tool
providers and their users in respect of what they want from the
tool, i.e., balancing the true and false positives reported.

Table 6 also presents the rate of combination and configuration
of each tool. Despite SonarQube being the most popular tool, it is
one of the least configured tools, configured by 41% of its users.
Developers not configuring their SAST tools may suggest there
is some difficulty when configuring the tool or, alternatively, in-
tegrating SAST tools into CI/CD pipelines may make configuring
tools less accessible. However, most tools were described as at least
slightly easy to configure (74%), albeit by developers who already
configure tools. In section 3.5, we report what metrics are associated
with developers configuring and combining SAST tools.

RA2 Summary: The most common type of configura-
tion was to enable rules which were previously disabled,
whereas developers rarely created new rules.

3.4 RA3: Why do developers configure SAST
tools?

Table 7: Q14: Why developers configure SAST tools.
Ranking

Statement 1st 2nd 3rd 4th 5th 6th Mean St. dev.
Detect more vulnera-
bilities

50 16 3 3 1 0 5.52 5.07

Add suggested fixes 6 12 14 14 24 3 3.95 3.60
Add additional infor-
mation

3 16 19 20 15 0 3.62 3.29

Add rules created by
someone else

6 19 23 15 10 0 3.37 3.13

Reduce number of
warnings

7 9 13 21 21 2 3.36 3.14

Other 1 1 1 0 2 68 1.19 0.95

Table 7 presents developer rankings of why they configure SAST
tools. Not surprisingly, the majority of developers who configured
SAST tools prioritise detecting more vulnerabilities, with 88% of
participants choosing this as their first or second most important
reason. The large difference between ’detect more vulnerabilities’
and ’reduce the number of warnings’ could suggest that developers
care more about catching missed vulnerabilities than decreasing
the number of false positives.

RA3 Summary: Developers who configure SAST tools
prioritize detecting more vulnerabilities over reducing the
number of warnings considerably, which may suggest that
developers prefer fewer false negatives over fewer false
positives.

3.5 RA4: Metrics associated with configuring
and combining SAST tools

Table 8: How developers use SAST tools x company size.
1 2-9 10-49 50-249 250+ Total

Uses CI/CD 2 3 10 29 64 108
Does not use CI/CD 0 8 14 20 24 66

X-squared = 15.542, df = 4, p-value = 0.0037
Uses Standalone 2 4 7 4 12 29

Does not use Standalone 0 7 17 45 76 145
X-squared = 18.906, df = 4, p-value = 0.0008

Table 8 explores whether there is an association between how
developers use SAST tools (e.g., command line, CI/CD pipeline)
and whether they are based in small or large companies (in terms
of number of employees). Table 8 suggests that larger companies
favour integrating SAST tools into their build processes rather than
using a standalone tool. It makes sense that companies move from
using a dedicated SAST application to integrating SAST into build
processes as the company grows. Integrating SAST tools into a
CI/CD pipelines ensures that all code changes are scanned before

457

Do Developers Use Static Application Security Testing (SAST) Tools Straight Out of the Box? A Large-scale Empirical Study ESEM ’24, October 24–25, 2024, Barcelona, Spain

being pushed to a central repository and may even block commits
depending on user specified security violations. Such integration
also automates SAST scans and should make it easier for developers
to use multiple tools.

Table 9: SAST tool deployment x combine SAST tools.
Multiple tools Single tool Total

Uses CLI 45 35 80
Does not use CLI 26 68 94

X-squared = 13.466, df = 1, p-value = 0.0002
CI/CD 45 63 108

Does not uses CI/CD 26 40 66
X-squared = 0.018776, df = 1, p-value = 0.8910

We found no significance difference between developers using
SAST tools in their build processes and the rate at which they
combine multiple tools. Table 9 presents how developers use SAST
tools and whether they use multiple tools. We found significant
results from developers using SAST tools through the Command
Line Interface (CLI), which may be due to it being easier to au-
tomate compared to IDE plugins, web interfaces and standalone
applications. However, the discrepancy between CLI and CI/CD
results may suggest that developers have less control of their build
process compared to the tools they use via a command line.

Finding 4: How developers interact with SAST tools
seems related to company size (number of employees);
larger companies seem to favour integrating SAST tools
into their CI/CD pipelines. However, using SAST tools in
CI/CD pipelines does not result in multiple tools being
used.

Table 10: Experience using SAST tools x configure SAST tools.
Configure Do not configure

Less than a year 6 26
Between 1 and 5 57 49
Between 6 and 10 9 12

11+ 3 2
Total 75 89

X-squared = 12.629, df = 3, p-value = 0.0055

With regard to developers configuring tools, we found only
one metric to be statistically significant: the number of years of
experience with SAST tools. Table 10 presents the results of our
statistical analysis of developer years of experience using SAST
tools and whether or not they configure them. These results suggest
that new users do not configure SAST tools and it is likely that
more effort is needed to assist new users to configure their tools.

RA4 Summary: Larger companies seem to prefer inte-
grating SAST tools into CI/CD pipelines; however, this
is not associated with more SAST tools being used. Us-
ing multiple SAST tools is associated with using tools
through a command line. Whether developers configure
tools seems related to prolonged experience with SAST
tools.

4 Discussion
4.1 SAST tool use
Using SAST tools out of the box can provide some benefit and
detect vulnerabilities missed by human error. However, combining
tools will detect more vulnerabilities [14, 18, 19, 27, 29]. Li et al.,
[24] report that even the best performing SAST tool could only
detect 13% of real Java vulnerabilities, but can be improved to 28%
by combining tools.

Our results suggest that most developers do not configure (54%)
or combine multiple SAST tools (59%) and many do neither (40%).
The lack of SAST tool use potentially leaves many missed vulnera-
bilities and developers should consider either configuring a single
tool or combining multiple tools to detect more vulnerabilities.

4.2 SAST deployment
On a positive note, 62% of developers integrate SAST tools into
their CI/CD pipelines, allowing SAST tools to automatically scan
code to help prevent vulnerabilities being introduced. Do et al.,
[17] recommend using multiple tools with a single reporting sys-
tem, which CI/CD pipelines can help with. However, we found no
significant association between developers combining tools and
integrating them into their build process. Further work is needed to
help developers combine multiple tools into their CI/CD pipeline,
such as a standardised taxonomy of rules to help reduce the number
of duplicate warnings from multiple tools.

Our results also suggest there is no association between the
type of SAST deployment and whether developers configure their
SAST tools. Zampetti et al., [34] reviewed configurations of ASATs
in CI/CD pipelines and found that all tools were configured in a
pipeline. Our results are much lower, in that many developers do
not configure tools even in the CI/CD pipeline. Integrating SAST
tools in CI/CD pipelines is favoured by larger companies. However,
it is important to establish SAST tool use early in a project - less
experienced users are unlikely to configure tools. More work to
assist developers configure SAST tools such as training, tutorials or
automating the process of turning missed vulnerabilities into new
rules for SAST tools is clearly needed.

4.3 SAST tool configurations
Developers that configure SAST tools enable rules more than other
types of configurations. Enabling rules was performed on 81% of
configured tools, more so than disabling rules, which was per-
formed on 56%. Our results suggest a discrepancy between SAST
tool providers and their users.

Christakis & Bird [13] report that developers are often frustrated
by ASATs due to the wrong checks turned on by default from their
tool providers and conclude that program analysis should not have
all rules on by default because a high false positive rate leads to
disuse. However, Ami et al., [6] interviewed developers which ex-
pressed a different viewpoint: “The developer is the enemy” in that
they were typically against developers regulating which warnings
to ignore or disable. SAST tool providers may disable rules because
they generate more false positives than true positives. However,
SAST users enable them regardless. The majority of developers

458

ESEM ’24, October 24–25, 2024, Barcelona, Spain Gareth Bennett, Tracy Hall, Emily Winter, Steve Counsell, and Thomas Shippey

configure tools to detect more vulnerabilities (67%), which suggests
they prioritise reducing false negatives; a finding shared with Ami
et al., [6], who report nearly all interviewed developers preferred
fewer false negatives over fewer false positives. Our recommenda-
tion is that SAST tool providers should reconsider the priorities of
their tools and enable all rules by default. SAST tool users should
configure their tool for their needs, but be cautious when determin-
ing which warnings to ignore or disable.

4.4 SAST vs. ASATs
We discuss similar previous work in more detail in Section 5, but
our study contradicts findings from previous work. Previous work
suggests ASATs are widespread throughout OSS and developers
rarely configure tools. We find specialised SAST tools to be less
widespread than ASATs; only 20% (204/1,003) of participants used
SAST tools. However, those who used SAST tools configured them
at a higher rate than ASATs. Our results showed that 46% of devel-
opers configured their SAST tool.

It is well known that static analysis tools produce a large number
of false positives; studies have concluded the high false positives
rate is a burden to developers [20, 21] and recommend reducing the
false positive rate of ASATs. However, we found that developers
configured tools to detect more vulnerabilities, not to reduce the
number of warnings and enable rules more so than disable them.
Our results also suggest that developers prioritise reducing false
negatives rather than reducing false positives, a finding shared by
Ami et al., [6]. Our results highlight differences between ASATs and
SAST tools; studies drawing conclusions about one type of static
analysis tool should not generalise to all types.

4.5 Threats to validity
Any empirically-based study needs to consider the different validity
threats (internal, external and construct) that may undermine its
results.
Internal validity: In our study, we perform Chi-Square Tests of
Independence on developer responses and discuss significant re-
sults. The results may be due to extraneous variables not discussed.
External Validity:We recruited participants from a paid service
which is known to show inconsistent results [15, 30]. However, we
mitigate this threat by pre-screening all participants for fraudulent
responses.
Construct validity:Our surveymay be vulnerable to selection bias.
However, we compared the demographics of our participants with
the wider population to ensure they were representative. To avoid
response bias, we also avoided leading questions where possible.

5 Related Work
It is important to evaluate static analysis tools to establish a baseline
of their performance so that they can be improved. There have been
many studies that evaluate static analysis tools [8, 9, 12, 16, 19, 24,
26, 27]. Previous studies typically run a static analysis tool on a set
of defects and report their performance on various metrics, such
as precision, recall, time or usability. Li et al., [24] evaluated seven
SAST tools on a set of real vulnerability data and reported that only

13% of vulnerabilities could be detected, showing poor recall in
production settings; they suggest using a combination of tools. Our
study evaluates a number of SAST tools by surveying developers
to report a metric yet to be explored - their configurability. We
report which tools are configured by developers and what type of
configurations they perform.

Investigating human factors associated with using tools is also
important to better integrate tools into developer workflows and to
understand the reasons why tools may or may not be adopted [33].
Beller et al., [10] mined 122 repositories and surveyed 36 developers
and reported that a majority of developers used a single ASAT tool;
moreover, configurations very rarely changed. Vassallo et al., [31]
investigated ASAT use in different contexts by surveying 56 devel-
opers and interviewing 11 industry experts. The study confirmed
previous findings that ASATs were rarely configured; most devel-
opers (56%) only configured ASATs at the start of a project and 16%
never configured them. Our work resembles previous work as we
survey developers regarding their static analysis use. However, we
focused on SAST tools rather than ASATs.

Ami et al., [6] performed in-depth interviews with 20 practition-
ers to uncover an industry perspective on SAST tools. Our study
most resembles Ami et al.’s study but obtains quantitative data to
complement their qualitative approach. Ami et al., report many
findings, including that developers are more tolerant of false posi-
tives than the academic literature suggests and show a preference to
fewer false negatives [6]. However, they do not question developers
about their configuration of SAST tools. Rather, they ask about how
developers address issues with their SAST tools, such as missed
vulnerabilities. While being concerned with security, few develop-
ers cared about missed vulnerabilities, assuming other techniques
would detect them. We share many of the findings by Ami et al.,;
we found that the majority of developers used SAST tools as is,
i.e., never addressing missed vulnerabilities. We also found that the
primary motivator behind developers configuring SAST tools was
to reduce the number of false negatives.

6 Conclusions and future work
In this emerging results paper, we surveyed 1,263 developers to
understand how they used and configured SAST tools. We found
that only 20% (204/1,003) of developers used SAST tools, but those
who did use them typically used them in their CI/CD pipelines (62%).
However, a large amount only use a single tool with its standard
configuration (40%), potentially leavingmanymissed vulnerabilities.
To aid in this sense, SAST tool providers should make their tools
easier to configure and employers/managers should introduce SAST
tools early in development and encourage the configuration of SAST
tools. We highlighted differences between ASATs and SAST tools
and suggest any future work which analyses static analysis tools
to take care when generalising results to all types of static analysis
tools. We also found that developers tended to enable rules more
than disable them and prioritise detecting more vulnerabilities than
reduce the number of warnings. Our results suggest a discrepancy
between SAST tool providers and their users. We recommend first,
that all rules be enabled by default by SAST tool providers and,
second, caution developers to ensure they configure their tools
according to their needs.

459

Do Developers Use Static Application Security Testing (SAST) Tools Straight Out of the Box? A Large-scale Empirical Study ESEM ’24, October 24–25, 2024, Barcelona, Spain

References
[1] 2017. CVE-2017-0144. https://nvd.nist.gov/vuln/detail/CVE-2017-0144. Accessed:

2024-06-06.
[2] 2021. CVE-2021-44228. https://nvd.nist.gov/vuln/detail/CVE-2021-44228. Ac-

cessed: 2024-06-06.
[3] 2023. Developer Survey. https://survey.stackoverflow.co/2023/. Accessed: 2024-

06-04.
[4] 2024. Prolific. https://www.prolific.com/. Accessed: 2024-06-04.
[5] 2024. Qualtrics XM. https://www.qualtrics.com. Accessed: 2024-06-06.
[6] Amit Seal Ami, Kevin Moran, Denys Poshyvanyk, and Adwait Nadkarni. 2023. "

False negative–that one is going to kill you": Understanding Industry Perspectives
of Static Analysis based Security Testing. arXiv preprint arXiv:2307.16325 (2023).

[7] Anon. 2024. Do Developers Use Static Application Security Testing (SAST) Tools
Straight Out of the Box? A large-scale Empirical Study. https://zenodo.org/
records/11488719. Accessed: 2024-06-05.

[8] Aman Anupam, Prathika Gonchigar, Shashank Sharma, Prapulla SB, and Anala
MR. 2020. Analysis of Open Source Node. js Vulnerability Scanners. International
Research Journal of Engineering and Technology (IRJET) e-ISSN (2020), 2395–0056.

[9] Andrei Arusoaie, Stefan Ciobâca, Vlad Craciun, Dragos Gavrilut, and Dorel
Lucanu. 2017. A comparison of open-source static analysis tools for vulnerability
detection in c/c++ code. In 2017 19th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 161–168.

[10] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the state of static analysis: A large-scale evaluation in open source soft-
ware. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. IEEE, 470–481.

[11] Gareth Bennett, Tracy Hall, Emily Winter, and Steve Counsell. 2024. Sem-
grep*: Improving the Limited Performance of Static Application Security Test-
ing (SAST) Tools. In Proceedings of the 28th International Conference on Evalu-
ation and Assessment in Software Engineering (Salerno, Italy) (EASE ’24). As-
sociation for Computing Machinery, New York, NY, USA, 614–623. https:
//doi.org/10.1145/3661167.3661262

[12] Paul E Black, Damien Cupif, Guillaume Haben, Alex-Kevin Loembe, Vadim Okun,
and Yann Prono. 2023. SATE VI Report. (2023).

[13] Maria Christakis and Christian Bird. 2016. What developers want and need
from program analysis: an empirical study. In Proceedings of the 31st IEEE/ACM
international conference on automated software engineering. 332–343.

[14] Roland Croft, Dominic Newlands, Ziyu Chen, andMAli Babar. 2021. An empirical
study of rule-based and learning-based approaches for static application security
testing. In Proceedings of the 15th ACM/IEEE international symposium on empirical
software engineering and measurement (ESEM). 1–12.

[15] Anastasia Danilova, Alena Naiakshina, Stefan Horstmann, and Matthew Smith.
2021. Do you really code? Designing and Evaluating Screening Questions for
Online Surveys with Programmers. CoRR abs/2103.04429 (2021). arXiv:2103.04429
https://arxiv.org/abs/2103.04429

[16] Aurelien Delaitre, Bertrand Stivalet, Paul Black, Vadim Okun, Terry Cohen, and
Athos Ribeiro. 2018. SATE V Report: Ten Years of Static Analysis Tool Expositions.
(2018-10-23 2018). https://doi.org/10.6028/NIST.SP.500-326

[17] Lisa Nguyen Quang Do, James R Wright, and Karim Ali. 2020. Why do software
developers use static analysis tools? a user-centered study of developer needs
and motivations. IEEE Transactions on Software Engineering 48, 3 (2020), 835–847.

[18] Sarah Elder, Nusrat Zahan, Rui Shu, Monica Metro, Valeri Kozarev, Tim Menzies,
and Laurie Williams. 2022. Do I really need all this work to find vulnerabilities?
An empirical case study comparing vulnerability detection techniques on a Java
application. Empirical Software Engineering 27, 6 (2022), 154.

[19] Christoph Gentsch. 2020. Evaluation of open source static analysis security
testing (SAST) tools for c. (2020).

[20] Nasif Imtiaz, Akond Rahman, Effat Farhana, and Laurie Williams. 2019. Chal-
lenges with responding to static analysis tool alerts. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). IEEE, 245–249.

[21] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
2013 35th International Conference on Software Engineering (ICSE). IEEE, 672–681.

[22] Mark Kasunic. 2005. Designing an effective survey.
[23] Harjot Kaur, Sabrina Amft, Daniel Votipka, Yasemin Acar, and Sascha Fahl. 2022.

Where to recruit for security development studies: Comparing six software
developer samples. In 31st USENIX Security Symposium (USENIX Security 22).
4041–4058.

[24] Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang
Liu, and Yixiang Chen. 2023. Comparison and Evaluation on Static Application
Security Testing (SAST) Tools for Java. (2023).

[25] Johan Linaker, Sardar Muhammad Sulaman, Martin Höst, and Rafael Maiani de
Mello. 2015. Guidelines for conducting surveys in software engineering v. 1.1.
Lund University 50 (2015).

[26] Rahma Mahmood and Qusay H Mahmoud. 2018. Evaluation of static analysis
tools for finding vulnerabilities in Java and C/C++ source code. arXiv preprint
arXiv:1805.09040 (2018).

[27] Francesc Mateo Tudela, Juan-Ramon Bermejo Higuera, Javier Bermejo Higuera,
Juan-Antonio Sicilia Montalvo, andMichael I Argyros. 2020. On Combining Static,
Dynamic and Interactive Analysis Security Testing Tools to Improve OWASP
Top Ten Security Vulnerability Detection in Web Applications. Applied Sciences
10, 24 (2020), 9119.

[28] Mary L McHugh. 2013. The chi-square test of independence. Biochemia medica
23, 2 (2013), 143–149.

[29] Paulo Nunes, Ibéria Medeiros, José Fonseca, Nuno Neves, Miguel Correia, and
Marco Vieira. 2019. An empirical study on combining diverse static analysis tools
for web security vulnerabilities based on development scenarios. Computing 101
(2019), 161–185.

[30] Brittany Reid, Markus Wagner, Marcelo d’Amorim, and Christoph Treude. 2022.
Software Engineering User Study Recruitment on Prolific: An Experience Report.
CoRR abs/2201.05348 (2022). arXiv:2201.05348 https://arxiv.org/abs/2201.05348

[31] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Har-
ald C Gall, and Andy Zaidman. 2020. How developers engage with static analysis
tools in different contexts. Empirical Software Engineering 25 (2020), 1419–1457.

[32] Stefan Wagner, Daniel Mendez, Michael Felderer, Daniel Graziotin, and Marcos
Kalinowski. 2020. Challenges in survey research. Contemporary Empirical
Methods in Software Engineering (2020), 93–125.

[33] Emily Winter, Vesna Nowack, David Bowes, Steve Counsell, Tracy Hall, Sæ-
mundur Haraldsson, and John Woodward. 2022. Let’s talk with developers,
not about developers: A review of automatic program repair research. IEEE
Transactions on Software Engineering 49, 1 (2022), 419–436.

[34] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-
similiano Di Penta. 2017. How open source projects use static code analysis
tools in continuous integration pipelines. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). IEEE, 334–344.

460

https://nvd.nist.gov/vuln/detail/CVE-2017-0144
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://survey.stackoverflow.co/2023/
https://www.prolific.com/
https://www.qualtrics.com
https://zenodo.org/records/11488719
https://zenodo.org/records/11488719
https://doi.org/10.1145/3661167.3661262
https://doi.org/10.1145/3661167.3661262
https://arxiv.org/abs/2103.04429
https://arxiv.org/abs/2103.04429
https://doi.org/10.6028/NIST.SP.500-326
https://arxiv.org/abs/2201.05348
https://arxiv.org/abs/2201.05348

	Abstract
	1 Introduction
	2 Methodology
	2.1 Survey Design & Distribution
	2.2 Data Handling
	2.3 Pre-screening
	2.4 Demographics
	2.5 Statistical Analysis

	3 Results
	3.1 Pre-screening Results
	3.2 RA1: Current SAST Use
	3.3 RA2: Tool Configurability
	3.4 RA3: Why do developers configure SAST tools?
	3.5 RA4: Metrics associated with configuring and combining SAST tools

	4 Discussion
	4.1 SAST tool use
	4.2 SAST deployment
	4.3 SAST tool configurations
	4.4 SAST vs. ASATs
	4.5 Threats to validity

	5 Related Work
	6 Conclusions and future work
	References

