Copyright © 2021 Springer Nature. This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s
AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/978-3-030-85347-1_33 (see: https://www.springernature.com/gp/open-research/policies/journal-policies).

Where the Bugs Are: A Quasi-Replication Study
of the Effect of Inheritance Depth and Width in
Java Systems

S. Counsell', Stephen Swift!, and A. Tahir?

! Dept. of Computer Science, Brunel University, London, UK
2 School of Fundamental Sciences, Massey University, Palmerston North, NZ

Abstract. The role of inheritance in the OO paradigm and its inher-
ent complexity has caused conflicting results in the software engineering
community. In a seminal empirical study, Basili et al., suggest that, based
on a critique of the Chidamber and Kemerer OO metrics suite, a class
located deeper in an inheritance hierarchy will introduce more bugs be-
cause it inherits a large number of definitions from its ancestors. Equally,
classes with a large number of children (i.e., descendants) are difficult to
modify and usually require more testing because the class potentially af-
fects all of its children. In this paper, we use a large data set containing
bug and inheritance data from eleven Java systems (seven open-source
and four commercial) to explore these two research questions. We ex-
plore whether it is the case that a class deeper in the hierarchy is more
buggy because of its deep position. Equally, we explore whether there is a
positive relationship between the number of children and bugs, if classes
with large numbers of children are indeed more difficult to modify. Re-
sults showed no specific trend for classes deeper in the hierarchy to be
more buggy vis-a-vis shallower classes; the four commercial systems ac-
tually showed a negative relationship. The majority of classes across the
hierarchy were also found to have no children and those classes included
the most buggy.

1 Introduction

The concept of inheritance is a cornerstone of the OO paradigm and plays a
key role in the functioning of any reasonably-sized OO system [12]. Inheritance
promotes reuse, encourages specialisation and is meant to reflect the way that
humans naturally structure information [4]. Controversy still surrounds inheri-
tance, not least because the deep levels that were typically envisaged in systems
have not materialised; systems still tend to be relatively flat with shallow inher-
itance structures [5]. Past studies have also argued about the optimum level of
inheritance, some suggesting that three levels of inheritance is the most efficient
depth for developers to or that flat systems without any significant depth to the
hierarchy is less likely to cause maintenance problems [7]. Very few empirical
studies have looked at inheritance particularly with respect to “buggyness” in
the past five to ten years and because of the different application type, nature,

2 S. Counsell et al.

artefacts, subjects used and research questions of studies that have looked at
inheritance in the past and our desire to cast light on those results, the most we
can hope to achieve is a “quasi-replication”. So we see our work as supporting
or refuting prior results, but with the many caveats of aforementioned factors.

In an early paper of Basili et al., [2] the six metrics of Chidamber and Ke-
merer (C&K) [6] were validated using eight C++ systems as a basis. The analysis
included the Depth in the Inheritance Tree of a class (DIT) and Number of Chil-
dren (NOC) C&K metrics. The DIT is a measure of the distance from the root
(in Java, the root is class Object from which all classes inherit). So, a class at
DIT level 1 is a class with only Object as its superclass; a class at DIT has 2
classes which it inherits from (in a line) between it and root etc. The NOC metric
is the number of immediate descendants below a class. So, if two classes X and
Y inherit from class Z, then Z has an NOC value of 2. The basis of their analysis
and validation of the DIT metric was the assumption that “....a class located
deeper in a class inheritance lattice is supposed to be more fault-prone because
the class inherits a large number of definitions from its ancestors.” Equally, the
study of NOC in the same paper was made on the basis that “a class with nu-
merous children has to provide services in a larger number of contexts and must
be more flexible. We expect this to introduce more complexity into the class de-
sign.” The assumptions of Basili et al., were heavily informed by the claims of
the two metrics by C&K in their original paper.

In this paper, we use a large data set of seven open-source systems and four
commercial systems containing thousands of classes to explore the relationship
between DIT, NOC and bugs. Since we have no developer maintenance infor-
mation for the systems analysed, we use bugs as a surrogate for maintenance
complexity. We justify this on the basis that a class with higher numbers of
bugs reflects a class which is likely to be complex and has, over its lifetime, been
more difficult to maintain. We investigate two research questions. Firstly, we
explore whether there is a correspondence between the level of inheritance and
the incidence of bugs. Put another way, are classes at deep levels of inheritance
more buggy than shallower classes? Secondly, is there a relationship between
NOC and bugs? In other words, does a larger number of children belonging to
a class (given by a higher NOC) indicate that the class will be more bug-prone?
Results showed no specific trend for classes deeper in the hierarchy vis-a-vis
shallow classes; the majority of the open-source systems showed no relationship
between DIT and bugs. The four commercial systems showed a strong negative
relationship for our first question. In terms of the other research question related
to NOC, the vast bulk of classes across the hierarchy were found to have zero
children, including the one hundred most bug-prone classes in every system. The
message seems from our work is quite stark: empirical studies provide useful re-
sults and others may support and refute those results. Ultimately however, a
“one size fits all” approach to the use of inheritance and advocating a specific
depth or width of inheritance may simply be unattainable.

The remainder of the paper is structured as follows. In the next section, we
describe preliminary information. We then analyse our two research questions

Where the Bugs Are......Depth and Width in Java Systems 3

by examining bug data in the eleven systems (Sections 3&4). In Section 5, we
look at related work and threats to our study before concluding and pointing to
future work (Section 6).

2 Preliminaries

The data used in this study was originally produced by Madeyski et al., [11] and
comprises a range of metrics from 43 releases of eleven Java open source and
27 releases of 6 industrial Java projects. The four industrial projects belonged
to the insurance domain and all projects were developed by the same software
development company. We note that the data used in this study is freely avail-
able to download from a repository link in the original paper by Madeyski et
al., [11]. In contrast to our work, the analysis described in their paper was not
related specifically to inheritance; the study empirically evaluated process met-
rics for those which most significantly improved defect prediction models based
on product metrics. In their work, the c¢jkm tool [16] was used to collect the DIT
and NOC metrics and the Buglnfo tool, developed by one of the authors of [11],
was used to collect bug information.

Table 1 shows the number of classes, the mean DIT and NOC and and
corresponding median (med.) values for all classes where there was at least
one bug across the eleven systems we studied®. We note that class Object is
considered to be at DIT level 0. The four commercial systems are named Prop-1
to Prop-4 in the table. We can see, for example, that the Ant system has 350
buggy classes and the mean DIT of those classes is 2.55, with median 3. The mean
NOC for this system is 0.67, with median 0. The DIT data seems to suggest that
for the open-source systems, it is between DIT level 1 (below root) and DIT level
2 that the bulk of the bugs seem to lie; for the four commercial systems, there is
a clear pattern for classes at DIT level 3 to be the source of problems - all four
DIT mean and median values for the commercial systems are approximately
3. This is an interesting characteristic of the data since at least one study in
the past has suggested that DIT level 3 may be the point beyond which code
comprehension starts to become excessively complex for developers [7] and that
is when problems start arising in the maintenance process. The four commercial
systems stand out from the rest of the table in that sense.

A further striking feature of the table are the low values for NOC across all
systems. For the set of bug-prone classes shown in the table, only one system
(Camel) has an NOC value exceeding 1. The lowest NOC value was for the jEdit
system (with an NOC value of just 0.20); all median NOC values were 0. The low
values for NOC in our systems reflect the similar conclusion by Basili et al., [2]
that most classes do not tend have more than one child and that flat systems
(with low levels of DIT) are frequent [5].

ant.apache.org, camel.apache.org, ant.apache.org/ivy, jedit.org, logging.apache.org/log4j, lucene.apache.org,
poi.apache.org

4 S. Counsell et al.

Table 1. Summary of DIT and NOC (all systems)

System|#Classes| DIT mean|med. NOC mean|med.
Ant 350 2.55 3.00 0.67 0.00
Camel 562 1.98 2.00 |1.23 0.00
Ivy 119 1.73 1.00 [0.52 0.00
jEdit 303 3.23 2.00 |0.20 0.00
Log4j |260 1.71 1.00 {0.32 0.00
Lucene|438 1.78 2.00 (0.71 0.00
Poi 707 1.84 2.00 [0.89 0.00
Prop-1{2436 3.02 3.00 [0.79 0.00
Prop-2 (1514 3.09 3.00 (0.72 0.00
Prop-3 (840 3.10 3.00 |0.35 0.00
Prop-4 (1299 3.45 3.00 [0.80 0.00

3 DIT metric analysis

3.1 Summary of DIT data

For our analysis, we first explore the relationship between DIT and bugs and we
then consider NOC. Henceforward, for expressiveness and clarity, we now refer
to classes at inheritance level 1, 2 as simply DIT1, DIT2, respectively. Table 2
summarises the number of classes at each inheritance level (given by the DIT)
for the eleven systems. Here, we report DIT6 and greater as a single total in
the final column of the table for the purposes of brevity (this is chiefly because
relatively few classes were found at levels greater than 6). For example, for the
Ant system, there were 997 classes at DIT1, 498 classes at DIT2 and 521 classes
at DITS3 etc.

The most noticeable feature of the table is the relatively stable numbers of
classes evenly distributed across the four proprietary systems, when compared
with the seven open-source systems. To put this into perspective, only 13943
classes from a total of 53649 (25.99%) for the four commercial systems were
found at DIT1; for the open-source systems, the corresponding figure was 6917
from 13942 classes; this represents 49.61% of the total number of classes across
the seven systems. For the four proprietary systems, DIT3 contained more classes
than its corresponding DIT1 value in every case, reflecting the relatively even
spread of classes in those systems. It is also interesting to note that the number
of classes in the DIT>6 category for the seven open-source systems was far lower
compared to the four commercial systems. Only jEdit shows significant numbers
of classes at DIT6 and greater. jEdit is an editor tool and that type of system
(based on panels, frames, boxes and labels) is acknowledged to contain a richer
inheritance structure because of their very structured nature. We note that the
maximum depths across all eleven systems was 9 (Prop-3) followed by DIT8 for
jEdit, Prop-1 and Prop-4. Ant, Log4j and Prop-2 all had maximum DIT7, so
the systems were broadly comparable in that sense.

Where the Bugs Are......Depth and Width in Java Systems 5

Table 2. Summary of DIT levels (per system)

System/Depth|DIT1|DIT2|DIT3|DIT4|DIT5/DIT>6
Ant 997| 498| 521| 265| 130 31
Camel 1827 683| 584| 182 127 25
Ivy 617 149 64 63 22 18
jEdit 1971] 919 151 63| 167 424
Log4j 349| 130 43 18 6 11
Lucene 590 426| 144 40 5 0
Poi 566| 966 111 26 12 2
Prop-1 4343| 1682| 6364| 4744| 2087 3838
Prop-2 3100| 1312| 3939| 2125| 2150 527
Prop-3 2162 621| 2724| 1014| 940 1406
Prop-4 1395 386| 2129| 2073| 1969 619

Table 3 shows the eleven systems studied, the number of classes in each sys-
tem, the number of bug-prone classes (i.e., classes containing at least one bug)
and the number of bug-free classes of that total. It also provides the percentages
that these values represent. For example, Ant comprised 2442 classes, of which
350 were bug-prone and 2092 bug-free. This represents 14.33% and 85.67% of the
total, respectively. The table shows that the most buggy of the eleven systems
was Logd4j, where 46.68% of classes contained at least one bug. The least buggy
system was jEdit, where only 8.2% of classes contained at least one bug. Gener-
ally speaking, the four proprietary systems were less bug-prone than the seven
open-source systems; however Prop-4 stood out from the other three commercial
systems, with a relatively high bug level (15.52%).

Table 3. System Summary by bugs

System |#Classes|Buggy |Bug-free| %Buggy |#Bugs
Ant 2442 350 2092 14.33 637
Camel (3428 562 |2866 16.39 |1371

Ivy 933 119 |814 12.75 307
jEdit 3695 303 |3392 8.20 943
Log4j |557 260 |297 46.68 645

Lucene|1205 438 767 36.35 1314
Poi 1683 707 976 42.00 1377
Prop-1 {23058 2436 (20622 |10.56 4102
Prop-2 (13153 1514 |11642 |11.49 2167
Prop-3 |8867 840 |8027 9.47 1362
Prop-4 8571 1299 (7272 15.52 1930

6 S. Counsell et al.

3.2 Correlation of DIT vs bugs

One way of determining the relationship between DIT and bugs is through corre-

lation of the variables studied. Table 4 shows the results of correlation between

DIT and bugs for the eleven systems and for completeness we provide three

correlation coefficients: Pearson’s r, Spearman’s and Kendall’s rank. Pearson’s

is a parametric measure and Spearman’s and Kendall’s coefficients are non-

parametric, making no assumption about the data distribution [8]. Here, single
Wy ”

asterisked values (“x”) in the table represent significance at the 1% level and
double asterisked values (“x+”) represent significance at the 5% level.

Table 4. Correlation of DIT and bugs

System|Pearson’s|Spearman’s|Kendall’s
Ant 0.04 0.10 0.08
Camel -0.04 -0.01 0.00
Ivy -0.01 0.10 0.09
jEdit -0.01 -0.02 -0.02
Log4j 0.10 0.20* 0.17%*
Lucene -0.04 0.00 0.00
Poi -0.20* -0.11*| -0.10%*
Prop-1 -0.14%* -0.08%* -007*
Prop-2 -0.09* -0.09*| -0.07*
Prop-3| -0.07** 0.04 0.03
Prop-4 -0.19* -0.11*| -0.10%*

The table shows a clear trend for the set of open-source systems; only two
of the seven sets of correlation values show any significance and they are in
opposing direction to each other (one is positive and one negative); for five of
the open-source systems, there is clearly no notable relationship between DIT
and bugs, with all values around the zero mark (i.e., just below or just above).
This supports the view that there is no observable pattern to the distribution
of bugs across the systems in terms of a DIT “landscape”. So, it does not seem
to be the case that classes at deep levels of the inheritance hierarchy are more
buggy than at lower levels and, if we associate bugs with classes that are difficult
to maintain, which is a reasonable assumption, then buggy classes do not seem
to discriminate between one level or another.

The POI system stands out from Table 4, since the correlation values for this
system are all negative and significant at the 1% level. In these cases, a higher
DIT therefore suggests a lower incidence of bugs. In terms of OO theory, this is
what we might expect to occur, since classes at deeper levels of the inheritance
hierarchy would be smaller (because of specialisation), be more maintainable as a
result and therefore be the source of fewer bugs. But that is not how in practice
it seems to work out. For the set of four proprietary systems, a different, yet
equally distinct pattern can be seen; for three of the four systems there is a

Where the Bugs Are......Depth and Width in Java Systems 7

negative, significant association between DIT and bugs which was only present
in one of the open-source systems (we saw the same for the POI system). The
data for the four industry systems suggests that the deeper in the inheritance
hierarchy a class resides, the lower its propensity for bugs. Prop-4 has the highest
correlation coeflicients overall.

From Table 4, we also see that the Log4j system is positively and significantly
correlated at the 1% level. It is worth remarking that this system had the highest
percentage of bugs (46.68%), as can be seen from Table 3. For this system, it
appears that a higher DIT value does indicate a higher propensity for bugs, but
this is probably because there are so many bugs in this system that this result
was inevitable anyway. Table 5 shows the distribution of bugs across the DIT
levels for this system. For example, at DIT1 there were 345 bugs, representing
52.83% of the total number of bugs (i.e., 636). The table also shows “bug-density”
values which we define as the number of bugs at a particular DIT level, divided
by the number of classes at that level containing at least one bug; this reflects
the average number of bugs per class. If we now inspect these values, we see
an interesting trend. The lowest bug-density of 2.25 was found at DIT1 and the
highest at DIT4 (value 3.6). In other words, the highest propeunsity for bugs was
found at DIT4 and the lowest bug density at DIT1.

Table 5. Bugs and bug-density (Log4j)

Depth DIT1|DIT2|DIT3|DIT4|DIT5|DIT>6
Bugs 345| 201| 51| 18 11 19
% Bugs 52.83|31.60| 8.02| 2.83| 1.73| 2.99
Classes 153] 71 18 5 4 8
Bug-density| 2.25| 2.83| 2.83| 3.6| 2.75| 2.38

Figure 1 shows the bug-densities for the seven open-source systems and Figure
2 the corresponding values for the four commercial systems. The most striking
feature is for the jEdit system which stands out for the peak at DIT4 (bug
density 9.43). The most notable feature across the two figures more generally is
that the bug density varies, but for the four commercial systems that variance is
relatively small. The bug density ranges between 1.14 and 2.44 for those systems,
indicating that bugs do not seem to dominate any particular level. While the
variance is wider for the open-source systems (values range between 0 and 3.67
in most cases) there seems to be no standout DIT. The two figures support thus
the view that there is no harmful, useful or remarkable level of inheritance - a
view stated unequivocally by Prechelt et al., [14].

3.3 The role of class size

One relevant question that arises from the preceding analysis is why there are
such differences between the open-source systems and the proprietary systems in

8

S. Counsell et al.

=
o

Bug density
O B N W H» U1 OO N 0 O

DIT level

Fig. 1. DIT vs. Bug density (seven open-source systems)

2.5

1.5

Bug density

0.5

1 2 3 4 5 6
DIT level
Prop-4 Prop-2 Prop-3 Prop-1

Fig. 2. DIT vs. Bug density (four commercial systems)

Where the Bugs Are......Depth and Width in Java Systems 9

terms of results from Table 4 and from Figures 1 and 27 One possible explanation
is that commercial systems are arguably better maintained and have cleaner
code structures than open-source systems (although we cannot generalise in this
sense). They may also be subjected more to practices such as refactoring [9]
throughout their lifetime, which has the effect of stemming code decay and
stopping code smells emerging. Smaller class sizes would be the norm and smaller
classes we know are generally easier to maintain than larger classes, as well as
generating fewer bugs on average. Table 8 shows the median and mean class
sizes for each of the eleven systems. We again measure class size using the C&K
WMC metric.

Table 6. WMC data per system

System|Median|Mean|Max.
Ant 8.74 5/ 120
Camel 6.93 4| 166
Ivy 9.43 5 205
jEdit 7.59 3| 413
Log4j 6.64 5/ 105
Lucene 7.68 5| 166
Poi 12.23 9| 134
Prop-1 4.84 4| 347
Prop-2 4.42 3| 140
Prop-3 4.30 3| 136
Prop-4 3.96 2| 212

The table shows that for only one open-source system (jEdit) is the median
lower than the commercial systems and no mean WMC is lower in across the
set of open-source systems. The most striking aspect of the table is the low
class sizes for the four commercial systems. This evidence, together with the
results from Table 4 and Figure 2 suggests that keeping classes relatively small
may be one way of preserving a system’s structure and, although our analysis is
based on just eleven systems, potentially minimising the number of bugs in the
system. To verify that smaller classes arise across the hierarchy, Table 7 shows
the correlation values of DIT versus WMC for all eleven systems.

As we might expect, for the four commercial systems Prop-1 to Prop-4,
Spearman’s and Kendall’s values are positive and significant at the 1% level.
The same cannot necessarily be said of the seven open-source systems (where
only Ivy shows the same type of relationship). Our belief that the commercial
systems (Prop-1 to Prop-4) may be better maintained and looked after seems to
have some traction. That said, whichever way this is looked at, bugs still do not
seem to discriminate at any particular DIT level. It also suggests that there is
no pattern in terms of the size of a class at any level.

10 S. Counsell et al.

Table 7. Correlation of DIT vs. WMC per system

System|Pearson’s|Spearman’s|Kendall’s
Ant 0.04 0.09 0.07
Camel -0.13* -0.12%* -0.09%*
Ivy 0.04 0.32*| 0.26*
jEdit -0.06 -0.08 -0.07
Logdj -0.10 0.07 0.06
Lucene -0.15%* -0.15*% -0.12%
Poi -0.08%* 0.06 0.05
Prop-1 -0.16* 0.26* 0.23%*
Prop-2 0.01 0.24* 0.20%*
Prop-3 -0.13%* 0.29%* 0.25*
Prop-4 -0.14* 0.34* 0.29%*

Summary: No clear pattern to the relationship between the depth of a class
(given by DIT) and the incidence of bugs was found for the eleven systems
studied.

4 NOC metric analysis

The study of Basili et al., suggests from C&K’s suite of metrics that classes
with a high NOC value would be more complex and difficult to maintain. In
their words: “Classes with large number of children are difficult to modify and
usually require more testing because the class potentially affects all of its children.
Thus, a class with numerous children has to provide services in a larger number
of contexts and must be more flexible. We also believe that classes with a high
NOC value will contain more bugs than classes with a low or zero NOC because
of the extra complexity in classes with that high NOC. As per DIT, and for
brevity, we now refer to a class with zero children as NOCO.

4.1 Correlation of NOC vs. bugs

To explore the relationship between NOC and bugs, we correlated their values
across the eleven systems. Table 8 shows these correlation values for all classes
containing at least one bug.

As we found for the DIT analysis, there is no clear trend in the data. For
the open-source systems, there is only one system with a positive, significant
relationship (Log4j). Interestingly, the same system showed the same result for
DIT. This system had the highest percentage of bugs and it may simply be that
is the only reason why the correlations were so significant. Most of the values
in the table are close to zero, suggesting no obvious or standout relationship
between NOC and bugs. For the four commercial systems, there is some evidence

Where the Bugs Are......Depth and Width in Java Systems 11

Table 8. Correlation of NOC and bugs

System|Pearson’s|Spearman’s|Kendall’s
Ant -0.03 0.04 0.03
Camel 0.09** 0.06 0.06
Ivy 0.00 0.07 0.07
jEdit -0.02 -0.14%* -0.13*
Log4j 0.13%* 0.13%%| 0.11%*
Lucene 0.00 0.05 0.04
Poi 0.00 -0.05 -0.05
Prop-1 0.04 0.10* 0.10%*
Prop-2 -0.01 0.06*%*| 0.06**
Prop-3 -0.01 0.02 0.02
Prop-4 0.00 0.02 0.02

of positive, significant relationships, but it only applies to two systems (Prop-1
and Prop-2).

One explanation for the lack of any trend in the NOC data and a feature of
the eight systems studied by Basili et al., [2] is that most classes in the eleven
systems had few or mostly zero children. Inspection of the NOC data revealed
that for example, in the Ant system, 2163 of the 2442 classes (88.57%) had zero
children; for the Camel system, the corresponding value was 90.15%. For Prop-1,
the figure was 95.75% and for Prop-2, 94.45% of classes had zero children. We
then listed the hundred most buggy classes in each of the eleven systems and
found that for the Ant system, 77 of those 100 classes were at NOCO. For the
Camel system, we found the corresponding value of 71 classes. For Prop-1, the
number of classes with NOCO in the top 100 buggy classes was 90 and for Prop-2,
the figure was 88. Our original research question regarding whether classes with
large numbers of children were more bug-prone seems to be largely overshadowed
by the fact that so few classes in all the systems have children at all and that
the most buggy classes are contained in that group.

Summary: No clear pattern to the relationship between NOC belonging to a
class and the incidence of bugs was found for the eleven systems studied. The
vast majority of classes had zero children.

5 Related work

There have been many (often conflicting) empirical results on the role of inher-
itance and as a community we are still no nearer establishing an optimal level
of inheritance depth. Perhaps, as our study suggests, it will always elude us.
Twenty-four years ago, Daly et al., [7] published the results of a controlled ex-
periment into inheritance and its relationship with class maintainability using

12 S. Counsell et al.

the C++ language. The study evaluated subjects in their task of maintaining
code written with different levels of inheritance (3 and 5); these were then com-
pared with the effectiveness of similar tasks on systems containing no inheritance
(flat systems). Results showed that subjects maintaining code with three levels
of inheritance completed the tasks more quickly than those working on tasks on
the flat system. The interesting observation however, was that subjects working
on code with five levels of inheritance struggled with the inherent complexity
at that depth and took longer to complete than tasks for the corresponding flat
system. This suggests that beyond a level of inheritance, maintenance becomes
problematic. One study that did “semi-replicate” the work of Daly et al., was
by Prechelt et al. [14]. In their empirical study, they used a longer and more
complex program and added a different type of maintenance task also. They
cast doubt on the results of Daly et el., and concluded that: “....previous results
plus ours suggest that there is no such thing as usefulness or harmfulness of a
certain inheritance depth as such”. Results from the paper herein seem to back
up this claim.

In our paper, we also note that a big impediment to analysis of NOC was
the high number of NOCO values (i.e.. most classes having zero children). Inter-
estingly, previous work on inheritance by Nasseri et al., [13] showed that, over
time and as they evolved, inheritance hierarchies in open-source systems tended
to collapse to bring classes up to shallower levels. Perhaps it is the case that
as systems evolve, structures start to fragment through maintenance and it is
simply easier to amalgamate classes and move them to shallower levels closer
to the root than to try to maintain them at the deeper levels. This feature of
systems ties with work by Bieman et al [3] who describe a study of nineteen
C++ systems (with 2744 classes in total); only 37% of these systems had a
median class DIT >1. Other studies have shown that flat systems (with low in-
heritance depths) are more easily maintained. Perhaps flat systems leads to fewer
“mistakes” by developers and by implication, fewer bugs. Alternatively, moving
classes to shallower levels is what the developers hope will happen. Finally, the
danger of using inheritance were pointed out by Wood et al., [17]: inheritance
should only be used with care and only when it is felt absolutely necessary.

5.1 Threats to validity

For any empirical study, need to consider the threats to its validity [15] [1].
Firstly, we only used eleven systems in our study. In this paper, our intention
was to highlight key features of inheritance through the prism of DIT and NOC
and while there is no such thing as the right number of systems to use in any
empirical study, we feel that the work gives a fairly representative insight in the
more broader issues typical of all systems. The four industrial systems were all
developed in the same company and so we accept that this represents a “sub-
threat” in this category. Secondly, we have made the assumption throughout the
paper that bugs are a surrogate for complex classes and that a complex class
will harbour and generate more bugs than a simple, less complex class. While

Where the Bugs Are......Depth and Width in Java Systems 13

we accept that this may not always be true, we feel that in the absence of devel-
oper maintenance data to work with, this is a reasonable assumption to make.
Thirdly, class size per se would influence the propensity for bugs (larger classes,
more bugs) and we have looked at depth versus bugs as one indicator; however,
this factor was not a key motivator of our work - rather that a class had ex-
perienced at least one bug. Fourthly, many of the previous empirical studies of
inheritance used C++ systems, whereas we use Java. We defend this stance on
the basis that while there are significant differences between the two languages,
the OO paradigm is common to both and developer behaviour when maintaining
systems does not seem to differ that greatly in the OO paradigm; one could ar-
gue that the different constructs used by OO languages may however have made
a difference (this is a topic for future work). Fifthly, we have focused on classes
where at least one bug was found and also of the twenty-five systems at their
latest version point; this is because we wanted to understand the distribution of
those bugs across inheritance as it stands presently. The study could be criti-
cised because it failed to compare those results to classes without any bugs or
indeed to look at version data. In our defence however, we were trying to quasi-
replicate earlier work of studies where bugs were the dependent variable (and
versions/version history were not explored). Sixthly, we have used a data set with
different projects (open source and commercial), built by different developers,
facing different development issues. This presents a risk to the generalisability
of the results. Finally, the reader will have noted that the literature on empir-
ical studies of inheritance has been fairly static over the past ten years. (The
references in this paper are mostly from the mid-90’s to around latest 2010.)
We feel however, that this in no way undermines the need for studies like ours.
In fact, it begs the question “why have there been no contemporary studies of
inheritance on an empirical basis?” And also “what has changed in the past ten
years?” such that no researchers are exploring this facet of systems any more.

6 Conclusions and further work

In this paper, we explored two research questions related to inheritance. The
first explored the relationship between the depth of a class in the inheritance
hierarchy and bugs and the second that a high number of children belonging to
a class would render that class as more buggy. We found no evidence that classes
at a specific depth of inheritance were more bug-prone than at any other depth.
We did note some interesting differences between commercial and open-source
systems, however, suggesting that the former are better maintained and looked
after more generally. We also found no evidence to support the view that classes
with a high NOC were any more buggy than other classes. The overwhelming
number of classes had no children. Inheritance hierarchies, either through design
or evolution do not tend to follow that pattern. One conclusion is that how a
system evolves depends on factors such as the type of system, whether open-
source or commercial and possibly system age. Work by Harrison et al., [10]
suggested that large systems were equally difficult to maintain regardless of use

14

S. Counsell et al.

of inheritance. Perhaps it is the case that as systems grow and evolve, inheritance
is just one more problem amongst an array of other problems that a developer
faces. It thus becomes relatively less of a problem.

Future work will focus on extending the study to more commercial and open-

source systems. We would also like to investigate the role that refactoring and
code smells [9] play in the removal and possible introduction of bugs into code
at different levels and the difference that such practices make to the shape of a
system.

References

1.

10.

11.

12.
13.

14.

15.

16.
17.

A. Ampatzoglou, S. Bibi, P. Avgeriou, and A. Chatzigeorgiou. Guidelines for
managing threats to validity of secondary studies in software engineering. In Con-
temporary Empirical Methods in Soft. Eng., pages 415-441. Springer, 2020.

V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented design
metrics as quality indicators. IEEE Trans. Software Eng., 22(10):751-761, 1996.
J. M. Bieman and J. Zhao. Reuse through inheritance: A quantitative study of
C++ software. In ACM SIGSOFT Symposium on Soft. Reusability, 1995, Seattle,
USA, pages 47-52, 1995.

G. Booch. Object-oriented development. IEEE Trans. Software Eng., 12(2):211—
221, 1986.

M. Cartwright and M. Shepperd. An empirical investigation of an object-oriented
software system. IEEE Trans. Soft. Eng., 26(8):786-796, 2000.

S. Chidamber and C. Kemerer. A metrics suite for object oriented design. IEEE
Trans. Software Eng., 20(6):476-493, 1994.

J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. Evaluating inheritance
depth on the maintainability of object-oriented software. Empirical Software En-
gineering, 1(2):109-132, 1996.

A. Field. Discovering Statistics Using IBM SPSS Statistics. Sage Publications
Ltd., 4th edition, 2013.

M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA, 1999.

R. Harrison, S. Counsell, and R. Nithi. Experimental assessment of the effect
of inheritance on the maintainability of object-oriented systems. J. Syst. Softw.,
52(2-3):173-179, 2000.

L. Madeyski and M. Jureczko. Which process metrics can significantly improve
defect prediction models? an empirical study. Softw. Qual. J., 23(3):393-422, 2015.
B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1997.

E. Nasseri and M. J. Shepperd. Class movement and re-location: An empirical
study of java inheritance evolution. J. Syst. Softw., 83(2):303-315, 2010.

L. Prechelt, B. Unger, M. Philippsen, and W. Tichy. A controlled experiment on
inheritance depth as a cost factor for code maintenance. J. Syst. Softw., 65(2):115—
126, 2003.

P. Runeson, M. Host, A. Rainer, and B. Regnell. Case Study Research in Software
Engineering: Guidelines and Examples. Wiley Publishing, 1st edition, 2012.

D. Spinellis. Tool writing: A forgotten art? IEEE Softw., 22(4):9-11, 2005.

M. Wood, J. Daly, J. Miller, and M. Roper. Multi-method research: An empirical
investigation of object-oriented technology. J. Syst. Softw., 48(1):13-26, 1999.

