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Abstract: A key concern in the design of 5G is the radio access network, which is expected to be significantly denser and more
advanced, with considerably higher infrastructure and power consumption cost than that of conventional mobile network
standards. Novel algorithms/approaches for optimal planning of the radio access network are required for tackling the additional
complexity of the problem of cost-efficient radio access planning in 5G, which cannot be properly handled by conventional
approaches. This study proposes a novel optimisation framework for the cost-efficient deployment and configuration of 5G base
stations. The main idea of the proposed optimisation framework is to exploit heterogeneity in three key 5G technologies,
heterogeneous base station architecture, cell range extension and multiple-input–multiple-output spatial multiplexing, by jointly
optimising their configurations during network design. In addition, the proposed optimisation framework includes generic steps
for applying meta-heuristic algorithms to the problem, which are necessary to overcome the problem's complexity, especially for
large problem instances. The authors’ results show that their novel optimisation framework improves the cost efficiency of the
network planning both in terms of power and infrastructural cost to operators.

 Nomenclature
CRE cell range extension
MIMO multiple-input–multiple-output
CAPEX infrastructural cost
l set of existing macro base stations/sites with no

MIMO
M set of candidate sites for macro base station

deployment
S set of candidate sites for small cell deployment
N set of base station models
vi site acquisition cost of site i, i ∈ M ∪ S
ix, y, z 3D Coordinates of site i, i ∈ M ∪ S ∪ l
bi Backhaul cost of site i, i ∈ M ∪ S
e(i, n, o) RF equipment cost of BS model n with MIMO antenna

configuration o installed in site i
P set of transmission power levels of base stations
O set of antenna configurations
D set of deployed base stations
Ad number of transmit RF chains of base station d
∂ MIMO efficiency
SINRu signal to interference and noise of UE u

ωmax, BW maximum achievable spectral efficiency, available
bandwidth

Cov service area coverage percentage threshold

1 Introduction
A key concern in the design of 5G for mobile network operators is
the radio access network, which is expected to be significantly
denser and more advanced, with considerably higher infrastructure
and power consumption cost than that of conventional mobile
network standards [1, 2]. This increased complexity motivates the
development of novel approaches for optimising the 5G radio
access network, which will account for most of the system
infrastructural and power consumption costs [3–7]. This paper
proposes and studies a novel 5G radio access network deployment
optimisation framework, where the main idea is to jointly optimise
three key 5G technologies, heterogeneous base station (BS)
architecture, cell range extension (CRE), and multiple-input–

multiple-output (MIMO) spatial multiplexing, during network
design to minimise the 5G radio access system cost of ownership.

2 Background
The general objective is to optimise the radio access network
topology/structure to achieve certain quality of service (QoS)
targets while minimising system cost. To achieve this objective,
many system models and optimisation problems have been
proposed over the last two decades engineered towards different
cellular system standards [8–10]. The most representative works
aim to exploit advanced system architectures such as small cell
BSs (heterogeneous network) and consider novel objectives. The
authors in [11] considered the problem of site selection for 5G BS
equipment that abides by downlink electromagnetic field limits.
However, their work does not include a mathematical BS planning
model or algorithm. The authors in [12] proposed an optimisation
for a two-tier cellular network containing BSs with fibre backhaul
and BSs with wireless backhaul. Although a metaheuristic
approach is proposed, their work only considered the problem of
BS site selection but not site configuration, which is not sufficient
for 5G networks. In [13], the authors proposed approximation
algorithms to select a subset of candidate sites to deploy macro or
small cells to minimise the total cost of ownership of the cellular
system while satisfying coverage and capacity constraints.
However, their work simplifies the 5G network planning task. For
example, their work assumes that the BS transmit power is always
fixed and that the type of BS to install in each candidate site is
known. Furthermore, their work does not consider the optimisation
of key 5G technologies like CRE and MIMO. The authors in [14–
16] formulated the same problem as in [13] as a multi-objective
problem and tackled it using different metaheuristic algorithms.
The main criticism of these works is the simplicity of the network
planning problem model assumed which is inadequate for the
proper planning of a 5G network. Furthermore, 5G networks will
leverage multiple key technologies like MIMO and CRE which is
not considered in these works. Hence, these works take a one-
dimensional approach focusing on optimising a single technology.
Our work uniquely builds on these works by jointly optimising
both the BSs structure and MIMO transmission configuration.

More specifically, we make the following contributions:
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i. A novel 5G radio access network planning optimisation
problem framework is proposed that aims to jointly optimise
three key 5G technologies, heterogeneous BS architecture,
CRE and MIMO spatial multiplexing. Since different
configurations of these technologies will have different system
capacity and cost implications, the idea is to jointly optimise
the technologies during network design. This is in contrast to
the existing literature that focuses on optimising only one
technology.

ii. To solve the proposed 5G optimisation problem, we show the
application of meta-heuristic algorithms by proposing a generic
solution representation to the problem and a fitness function.
This allows any meta-heuristic algorithm to be applied and
studied. Meta-heuristics algorithms are important to tackle the
complexity of the proposed optimisation problem which
resembles the facility location problem and has been proven to
be NP-hard [17]. Meta-heuristic algorithms are also important
to tackle the large search space of the problem, especially as
the number of candidate sites and BS configurations increases.
This makes meta-heuristic algorithms a suitable candidate for
practical application to the problem of 5G BS deployment over
exact methods. Additionally, meta-heuristic algorithms are
important for optimising towards multiple 5G objectives,
simultaneously.

iii. Finally, using the proposed 5G optimisation problem
framework, we investigate the impact of the different MIMO
configurations using a capacity biased power efficiency metric.
Results indicate that MIMO sizably increases the throughput
capacity of a heterogeneous cellular access network; and also
increases the power efficiency despite an increase in power
consumption. However, the homogenous unoptimised MIMO
configuration model from literature results in reduced power
efficiency especially when the actual traffic demand is
considered, as the MIMO order increases.

3 Proposed 5G heterogeneous network system
model
A 3D geographical service area, G, is considered for BS
deployment. Our model aims to exploit both heterogeneous BS
types/models (macro, micro and pico cells), MIMO multi-antenna
transmission and CRE to increase network capacity in more
infrastructure (CAPEX) and energy-efficient network manner.
Notations used are defined in Nomenclature.

A (m × n) MIMO configuration means the BS has m transmit
antennas and the user (UE) equipment has n antennas for signal
reception. For this work m = n. Each site i is defined by three
variables: (a) its 3D coordinates ix, y, z; (b) its site acquisition cost vi;
and (c) backhaul cost bi. It is assumed that small cell candidate
sites and BSs are by a given ratio less expensive compared to
macro sites and BSs. The notations x and x are used for macro and
small cell BSs, respectively.

3.1 BS models and configurations

• In each candidate macro site m ∈ M, we assume that operators
can deploy an omnidirectional macro BS operating in one of |O|
MIMO antenna configurations with a transmission power level
pm ∈ P. We assume that all RF chains of BSs m ∈ M operate at
the same power level pm. MIMO spatial multiplexing is
assumed to increase system capacity [18]. Thus, the capacity of
the BS to handle traffic is increased as the number of RF chains
increases, however, this also increases the energy consumption
of the BS and also the equipment cost. While in each small cell
site s ∈ S, one of N^  models for small cell BSs can be deployed,
operating in one of |O| MIMO antenna configurations at
transmission power level ps ∈ P. Each small cell model
represents a different type of small cell BS with a different
power consumption profile, communication range (i.e.
maximum transmit power) and equipment cost.

3.2 Coverage and traffic model

• Let pr d, k, i  be the received downlink power by UE i from
antenna k of BS d, which can be computed using the Hata
propagation model [19]. To model signal coverage of a service
area, we define a set, C, of dense and uniformly distributed
points over G that should receive a signal power from at least
one BS above a given threshold, Q. The percentage of C that is
covered defines the degree of coverage of the network, which
should be maximised

Υc, d = 1 if point c c ∈ C is covered by BS d
0 otherwise . (1)

• Furthermore, we model the expected traffic demand distribution
by a set U of demand points distributed across the service area
where every demand point, u, u ∈ U, has a minimum data
demand, Ru, that must be provided by the deployed network in
addition to its coverage requirement, Q. Demand points
aggregate data traffic demand from UEs in a small area.

3.3 Cell association

LTE-advanced allows coordinated multi-BS data transmission,
however, in this work, it is assumed a UE can only be linked to one
and consequently receive data from one BS at a time. However, it
is assumed that UEs receive data simultaneously from all RF
chains of their serving BS when MIMO is used. Let the binary
matrix a represent the UE to BS associations such that a d, i
determines if the UE is associated to BS d where the variable is 1 if
it does or 0 otherwise. Traditionally, a UE i is associated to a BS Si
from which it receives the strongest downlink power, according to
(2)

Si = arg max
d

pr d, i ∀d ∈ D pr d, i ≥ Q (2)

Si = arg max
d

β
^
d pr d, i pr d, i ≥ Q . (3)

However, due to the very small transmission power of small cells
compared to macro BSs, small cell biasing is defined for small cell
networks. The use of small cell biasing allows small cell BSs to
attract more UEs. In this work, it is assumed that only small cell
BSs utilise biasing consequently bias β value for a macro BS is
zero. Computing the optimal bias values for small cells is a
challenging optimisation task that is part of the proposed 5G
problem [20]. Consequently (2) is modified to (3) by adding a bias
to the received pilot power.

3.4 Network capacity

The network capacity defines the traffic handling capability of the
network and is closely related to the individual load of the BSs.
Overloaded BSs will provide connected UEs with poor QoS. A BS
d is stable if its load (ρd) is less than or equal to one and is defined
by (4). Based on the average load of deployed BSs, we consider
maximising the percentage of satisfied UEs, i.e. on the average, the
number of UEs that receive their minimum data requirement, given
by (6)

ρd = max 0.1, ∑
i

U
a d, i

Ru

∂ Ad BW ωu (4)

ωu = min δlog21 + ϵ SINRu, ωmax (5)

τ =
∑d

D (1/ρd)
U ⋅ 100. (6)
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3.5 Network power consumption

Minimising the power consumption of cellular networks is highly
desired since energy bills account for a significant percentage of
operational cost. We incorporate a detailed energy consumption
model from [21], not described here for space limitation. The
power consumption of the network is a function of the number,
type/model, transmission power and load of the deployed BSs and
also the number of RF chains employed for each BS (i.e. the
MIMO order). Given the BS model (n), the MIMO antenna
configuration (o), the BS transmit power (p) and load (ρd) let the
power consumption of BS d be given by Ed = E o, n, p, ρd .

4 Proposed 5G problem model
The objective of the proposed optimisation problem is to find the
optimal number, locations, types, transmission powers (p), small
cell bias vector (β

^
) and the number of RF antenna chains of BSs

that maximises the network capacity while minimising CAPEX
and energy consumption cost, subject to the coverage constraint.
The following decision variables are introduced:

xi, x^i = 1, if a BS is deployed in site i
0, otherwise (7)

zin, ẑin = 1, if a BS of model n is deployed in site i
0, otherwise (8)

kio, k
^
io =

1, if antenna configuration o is deployed in site i
0, otherwise

(9)

The objectives are thus

Capacity: max
x, x, β^, p, z

τ (10)

C1 = ∑
m ∈ M

∑
n ∈ N

∑
o ∈ O

xm e m, n, o ⋅ kmo ⋅ zmn + vm + bm (11)

C2 = ∑
m ∈ S

∑
n ∈ N̂

∑
o ∈ O

x^m e^ m, n, o ⋅ ẑmnk
^
mo + vm + bm (12)

CAPEX: min
x, x̂, z, ẑ

C1 + C2 (13)

Power: min
x, x, β^, p, z

∑
m ∈ M

xmEm + ∑
m ∈ S

x^mEm
(14)

Subject to

∑
i = 1

D

∑
c = 1

C
Υdc ≥ 1 − Cov C (15)

∑
i = 1

O
kdo ≤ 1 ∀d (16)

∑
i = 1

N
zdn ≤ 1 ∀d (17)

∑
i = 1

D
aiu ≤ 1 (18)

aiu ≤ xiΥiu ∀i, u . (19)

The above optimisation problem aims to design a high capacity but
cost-efficient cellular access network by exploiting heterogeneous
BS types, MIMO multi antenna transmission and CRE. The
optimisation problem has three objectives; to maximise the
capacity of the network (10), to minimise CAPEX given in (13)
and to minimise energy consumption (12). Equation (15) states that
the coverage of the network over the service area must be greater
than or equal to the given threshold, Cov. Constraints (16) and (17)
state that only one type and configuration of the BS can be
deployed at any site while (18) and (19) enforce that a UE can only
be associated to one BS at a time and that a UE can only associate
to a BS that has been deployed, respectively. The BS transmit
power and small cell biasing constraints (not shown) take the
general form of (16) and (17).

5 5G BS optimisation using meta-heuristics
The high dimensions and large search space of the proposed 5G
optimisation problem makes it infeasible to use exact methods to
find the ‘optimal solution’ in a practical time, especially for large
problem instances. For example, a scenario with merely ‘30’
candidate BS sites and ‘5’ BS configurations will have a gigantic
search space of 530. This motivates the application of meta-heuristic
algorithms. Meta-heuristic algorithms, if applied correctly and fine-
tuned, can overcome the large search space of the problem to find
good approximate solutions to the problem or even optimal ones in
some cases. However, they do not guarantee on the optimality. The
successful application of Meta-heuristic algorithms in 5G cellular
architecture depends on novel solution representation, the design of
efficient search operators, tuning and comparisons between
different algorithms, and incorporation of problem-specific
knowledge.

We introduce the term ‘cell plan’ which is used to describe a
candidate solution to the optimisation problem.

5.1 Solution representation

The solution representation is a critical issue for applying any
meta-heuristic algorithm to solve an optimisation problem. The
solution representation should allow every point in the search space
to be reached. We propose an integer matrix representation where
the configuration of every candidate site is represented by an
integer vector as shown in Fig. 1. 

The integer matrix represents the configurations of an arbitrary
cell plan for which the cost and performance implications are
computed using a fitness function. The matrix has the same number
of rows as the total number of BS sites (L), such that the
configuration for the ith candidate site is given by the ith row of the
matrix. At this stage of our work, we consider four configurations
per site; the power level/deployment status (p), the type of BS
deployed (n), the antenna transmission set up (o) and the bias value
(β) for small cell BSs.

5.2 Fitness function

The fitness function (or fitness) returns a quantitative assessment of
the quality of a candidate cell plan with respect to the design
objectives. We propose the following fitness function to be
maximised:

Fig. 1  Solution representation
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ΔCov = Coverage target − Achieved coverage
ΔCov = max 0, ΔCov

Capacity = min Capacity target, Achieved capacity

F1 = Capacity
cost1/ ∝ (20)

F2 = KΔCov (21)

F = F1

F2
. (22)

The fitness function in (22) adopts a strategy where cell/network
plans that do not meet the coverage performance target of the
network are penalised in the search process by the result of (21).
‘cost’ can either be energy consumption given by (12) or the
CAPEX (13). α (alpha) is a parameter for adjusting the ratio of
importance between the desired system QoS performance (in this
case capacity) and cost of the system, and is an integer between 1
and 20.

Figs. 2 and 3 show the observed impact of the alpha parameter
on the capacity and energy efficiency of the optimal cell pan
returned. Simply, it can be observed that higher values of α
increasingly favour the network capacity performance over cost. To
achieve higher capacity more BS nodes or antennas are required
which in turn lowers the energy efficiency of the network as the

network capacity approaches 100%. A detailed analysis of the
parameter is out of the scope of this work.

6 Results
In this section, we evaluate the proposed 5G network-planning
model that jointly optimises the BS type and their MIMO setups.
We also discuss some important results observed. We consider a
16 km2 (4 km × 4 km) area with no existing BSs. All BSs are
assumed to use omnidirectional antennas. It is assumed that macro
and small cells use separate 5 MHz bandwidth at 2 GHz frequency
range as such no inter tier interference is assumed, however, there
is inter-cell interference between cells of the same type. Other
interference scenarios can also be assumed. Table 1 contains the
parameters used for the simulation. We assume 2000 demand
points, each with a data demand of 5 Mps. We employ a simulated
annealing (SA) meta-heuristic as outlined in Algorithm 1 (see
Fig. 4) to tackle the 5G deployment problem. The SA is a
probabilistic meta-heuristic technique for approximating the global
optimum of a search space. The SA maintains a temperature value
that decreases in each iteration by a constant cooling rate. The
temperature is used to compute the probability for accepting a
worse solution as a method for escaping local optima solutions (see
[22]). The optimal parameters for the SA were set through
experimentation.

6.1 What's the benefit of the proposed 5G optimisation
framework?

To evaluate the cost efficiency benefit of our proposed 5G BS
deployment optimisation problem, where the heterogeneous BSs,
small CRE bias and MIMO spatial multiplexing antenna setup
configurations are jointly exploited (optimised) during BS
deployment, we compare against the state of the art station
deployment model in literature for planning a heterogeneous
cellular access network [16], the Heterogeneous BS with fixed
homogenous antenna transmission setup model. In this model, the
BS antenna transmission setup is assumed to be fixed
homogenously per BS and only the type, power, number and
locations of BSs are optimised. Under this model, we consider the
influence of different setups for MIMO spatial multiplexing per
deployed BS on meeting the demand of the traffic scenario. The
power consumption of the cell plan is considered as the cost factor
during the optimisation; however, the infrastructural cost (i.e.
CAPEX, e.g. equipment, site acquisition, backhaul) is also
reported. The service area coverage requirement is set to 99%. All
results are averaged over 25 runs of a SA algorithm. The ‘set up’ is
the MIMO antenna configuration assumed.

Table 2 shows the performance of the proposed 5G deployment
framework against the fixed homogenous antenna transmission set
up framework used in the literature. The influence of MIMO on the
result of network planning is also shown. The power efficiency
metric is computed using (20) with α = 2, and is scaled to the [0, 1]
range. α is set to 2 to bias towards higher capacity solutions as a
key requirement of 5G. In the table, capacity is defined as the
average Shannon throughput (capacity) seen by the demand points,
considering the available bandwidth, the capacity demand
distribution across the coverage areas of the deployed BSs and the
Signal to noise ratios. The Shannon capacity defines the maximum
theoretical rate at which data bits can be transmitted across the link
with acceptable error probability from any BS to a demand point,
and is computed by (5). The Shannon capacity is important to
comment on the networks instantaneous data transfer capacity as
opposed to (6), which focuses on the number satisfied UE demand.
It can be clearly observed from Table 2 that the highest throughput
capacity (150 Mbs) is achieved when the highest (of all the
scenarios considered) MIMO set up is utilised homogenously per
BS (Alg ‘D’). However, it can also be seen that this algorithm also
has the highest power consumption, which is used to power the
extra antennas. It can also be observed that all the scenarios that
use MIMO (B, C, D) have higher power efficiency than the
baseline Alg ‘A’ without MIMO. However, it is observed that the
power efficiency does not increase consistently by deploying

Fig. 2  Impact of alpha on capacity achieved by the optimal cell plan
 

Fig. 3  Impact of alpha on energy efficiency of optimal cell plan
 

Table 1 Base station parameters
Parameter Macro BS Micro BS Pico BS
max. cell radius, km 0.9 0.26 0.08
pmax, dBm 46 39 22
power config, dBm 46, 42.1, 39.8 39, 36.3 22
antenna gain, dB 18 12 7
bias config., dBm NA 0, 1, 2, 3, 4 0, 1, 2, 3, 4
MIMO config. 1 × 1 to 4 × 4
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higher-order MIMO transmission homogenously across the BSs.
Finally, it can be seen that power efficiency is best improved (by
38%) when the proposed joint MIMO and Heterogeneous BS
planning framework is used, with only a 3% drop in Shannon
throughput from Alg ‘D’ with the highest Shannon throughput.
This can be attributed to increased flexibility introduced by the
proposed framework in terms of possible network configurations.

However, our problem model also increases the size of the problem
search space due to an increase in the number of network
configurations.

A second empirical simulation is done using (6) as the capacity
metric which considers the actual demanded traffic to compute the
percentage of demand points that received their demanded capacity
based on the BSs loads. A total of 2000 demands points, each with
a fixed capacity requirement of 5 Mbs is randomly distributed on
the service are. The objective is to minimise the cost (energy or
CAPEX) of the network to handle the demanded capacity for all
demand points and provide the required coverage. The candidate
site cost for macro sites is randomly set between 7 and 15, their
backhaul cost is set to 5 per deployed BS, the equipment cost is
computed by MIMO order × (0.1 × backhaul cost). Similarly, the
site cost of small cell candidate sites is set randomly between 1.5
and 3, while their backhaul is set to 0.3 × backhaul of macro BS.
Their equipment cost is set in the same manner as above. These
values were set after consulting an industry domain expert familiar
with the cost structure of mobile networks. A similar power
consumption trend to Table 2 is observed in Table 3. Increasing the
number of transmit antennas used to configure the BSs (MIMO)
also increases the power consumption mainly due to power
consumed by the extra amplifiers required to power them.
However, a different trend in power efficiency is observed
compared to Table 2 where Shannon's throughput was used as the
capacity metric. It is observed that the power efficiency of the
deployed network decreases (from the baseline scenario) as the
MIMO order increases when using the Heterogeneous BS with
fixed homogenous antenna transmission setup network planning
model (i.e. Alg B to D), despite the reduction in the total number of
BS sites deployed. This can be attributed to the inflexibility of this
model, which always deploys high capacity BSs across the service
area to meet the demanded capacity even in areas that may not
require that level of capacity increase. In contrast, the proposed 5G
deployment framework introduces flexibility in the network design
process by making the MIMO antenna transmission set up and
CRE per deployed BS additional decision variables of the network
planning algorithm. The benefit of the proposed framework can be
observed in Table 3, which achieves the highest power efficiency
of all the algorithms considered. In comparison, to Alg ‘A’ (which
achieves the second-best power efficiency) and Alg ‘D’ (which
uses the lowest number of candidate sites), the proposed
framework deploys 49 less BS sites than Alg ‘A’ and consumes
about 7740 less Watts compared to Alg ‘D’ while still achieving a
100% capacity.

In Table 4, the CAPEX cost (as given by (13)) is considered as
the cost component during the network optimisation. It can be
observed that the use of MIMO decreases the total CAPEX cost
and thus maximises the CAPEX efficiency. This savings arises
from the reduced cost associated with the deployment of new BS

Fig. 4  Algorithm 1: Outline for SA algorithm for 5G BS deployment
 

Table 2 Performance of the proposed 5G deployment
framework and Influence of MIMO (Cap: Capacity, E: Energy
consumption, #BS: Number of base stations, PE: Power
efficiency)
Alg BS trans setup Cap, bit/s Power, W PE (α = 2)
A (baseline) 1 × 1 3.50×1007 83.02 0.00

B 2 × 2 7.20×1007 151.28 0.43

C 3 × 3 1.10×1008 371.41 0.40

D 4 × 4 1.50×1008 542.71 0.56

Proposed optimised 1.45×1008 312.60 0.94

Bold values indicates of the just for emphasis.
 

Table 3 Performance of the proposed 5G deployment framework taking into account demanded traffic (PE: Power Efficiency
(α = 1))
Alg Trans setup Cap, % Power, W #BS PE
A(baseline) 1 × 1 100 7348.3 127 0.81
B 2 × 2 100 9596.2 75 0.42
C 3 × 3 100 12,284 60 0.14
D 4 × 4 100 14,336 47 0.00
Proposed optimised 100 6595.8 78 1.00
Bold values indicates of the just for emphasis.

 

Table 4 CAPEX comparison (Back: Backhaul cost, Site: Site acquisition cost, Equip: Equipment Cost, #BS: Number of BSs)
Alg #BS Equip Back Site Total
A 127 26.8 267.5 491 785.3
B 75 39.3 196.5 388 623.8
C 60 53.3 177.5 357 587.8
D 47 64.6 161.5 306 532.1
Prop. 50 54.6 162.5 307 524.1
Bold values indicates of the just for emphasis.
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sites and backhauling. This further characterises the influence of
MIMO on the CAPEX deployment outcome. Alg ‘A’ employs the
traditional cellular transmission (without MIMO) and
consequently, a higher number of BSs are needed to achieve the
same capacity target. Since for each of these BSs, the mobile
network operator incurs a cost for site acquisition and backhaul,
this significantly increases CAPEX even with when low-cost small
cell BSs are exploited. Another interesting observation is the
impact of MIMO on the equipment cost. It can be observed that as
the MIMO order increases; higher equipment cost is incurred (see
Figs. 5 and 6). The proposed 5G framework can be seen to improve
(by 8 units) the CAPEX cost over Alg ‘D’ (which achieves the
second-best CAPEX cost reduction) in comparison to the baseline
Alg, ‘A’. These results show the cost flexibility introduced by the
proposed 5G framework that decides if it is more cost-efficient to
deploy a new BS, the type of BS or if it better to employ more
antennas on existing BSs.

7 Conclusion
In this work, we have proposed and evaluated an optimisation
framework for planning 5G access network planning where the
MIMO, cell range bias configurations as well as BS types are
jointly optimised. This is in contrast to a state-of-the-art model in
literature that assumes a fixed MIMO and CRE configuration
across BSs. From simulations, it is observed that the use of MIMO
sizably increases the throughput capacity of a heterogeneous
cellular access network; and also increases the power efficiency
despite an increase in power consumption. However, the fixed
MIMO configuration model from literature results in reduced
power efficiency especially when the actual traffic demand is

considered, as the MIMO order increases. Furthermore, it observed
that there is a sizable reduction in the number of deployed
candidate sites when higher MIMO order BSs are deployed.
Results presented show that the design flexibility introduced by the
proposed 5G framework increases cost-efficiency of the network
design task in terms of both power and CAPEX efficiency. The
results also show the effectiveness and versatility of meta-heuristic
algorithms for deploying and operating cost-efficient 5G networks,
which we intend to study extensively in future work.

In Fig. 5 all BSs are deployed with a single antenna,
consequently, the cell plan returned has a high BS density in order
to provide the demanded capacity.

In the cell plan shown in Fig. 6, the MIMO setup per BS is not
fixed homogenously since it is included as a decision variable in
the proposed 5G planning model. This is in contrast to existing
network planning models from literature that assume a fixed
homogenous MIMO transmission setup across the BSs. For
example, as determined by the network planning algorithm, some
BSs use 3 × 3 configurations others are deployed with 1 × 1 and 2 
× 2 configurations. A visual decrease in the number of sites can
also be clearly observed compared to Fig. 5 as a consequence of
MIMO.
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Fig. 6  Optimal cell plan result of proposed model
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