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State Estimation for Markovian Jump Neural
Networks Under Probabilistic Bit Flips: Allocating
Constrained Bit Rates

Yuru Guo, Zidong Wang, Jun-Yi Li and Yong Xu

Abstract—In this paper, the state estimation problem is studied like robotics, control systems, and optimization problems,
for Markovian jump neural networks within a digital network  where their adaptive capabilities are effectively utilized.
framework. The wireless communication channel with limited In recent years, a significant focus has been placed on

bandwidth is characterized by a constrained bit rate, and the itchi | t K hich Markovi .
occurrence of bit flips during wireless transmission is mathemati- switching neural networks, among whic arkovian jump

cally modeled. A transmission mechanism, which includes coding- Neural networks (MJNNs) have emerged as a noteworthy
decoding under bit-rate constraints and considers probabilistic subset. Characterized by their incorporation of Markovian
bit flips, is introduced, providing a thorough characterization jump parameters, MIJNNs exhibit random transitions between
of the digital transmission process. A mode-dependent remote various network states [8], [11], [28], [30], [35]. This attribute

estimator is designed, which is capable of effectively capturing . o
the internal state of the neural network. Furthermore, a sufficient reflects the dynamic and probabilistic nature of these systems,

condition is proposed to ensure the estimation error to remain @S explored in various research works [6], [32], [36]-[38]. The
bounded under challenging network conditions. Within this theo- complex nature of MIJNNs makes them particularly suitable
retical framework, the relationship between the neural network’s  for Simu|ating real-world scenarios where abrupt Changes
estimation performance and the bit rate is explored. Finally, o ransitions occur in the operational dynamics of ANNS.
a simulation example is provided to validate the theoretical . .
findings. Current research on MJNNs pr|.mar|_ly focuses on areas su_ch
as control theory and state estimation, and some key topics
include exponential synchronization [47], finite-tiig, state
estimation [16], and resilient asynchronous state estimation
[43]. Despite these advances, it is important to recognize the
. INTRODUCTION existence of significant research gaps, especially regarding
challenges associated with the digital network transmission

th:r::]'?r(':cgt:Z?]?le?fgcfy(\a/?\:ks,str(ActNl;l:)c’)fv:rf]]:acz ?;Zr:nsrp;ﬁdsg’erocess in MJINNSs, which highlights the necessity for contin-
intr eficien veture of t u N, Serv&yq exploration and development in this specialized area of

as a cornerstone in the field of artificial intelligence. Con5|st|r}§q\”\”\lS research
of interconnected neurons organized in layers, ANNs exhibit Arhe historical .em hasis in state estimation has predom-
remarkable ability to process information, learn from data, an b L P
inantly been on networked systems within analog commu-

make complex decisions [17], [21]-{23], [25], [31], [40]. Thenication frameworks. Note that the rapid advancement in

arc_hltecture of ANNs aIIow; thef“ to pa_pture and represelibital network technology has prompted a significant shift
intricate patterns and relationships within datasets, makin o .

. . : .. IPcommunication methods used in control systems [4], [44].
them versatile and potent tools in a variety of application

- o Traditional analog communication techni ues, which were
Specifically, ANNs are crucial in areas such as pattern recogni- g d

tion, model prediction, and disease diagnosis [1]-[3], [5], [Bﬁnce widespread, are increasingly seen as insufficient for the

eeds of contemporary control systems. Consequently, digital
[24], [34]. Furthermore, the use of ANNs extends to domaing, ., ..\ \nication methods have gained prominence by offering
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in wireless channel capacity and bandwidth availability. These effectively allocates bit rates while fine-tuning the es-
limitations present significant challenges in achieving rapid timator gains. This approach aims to optimize perfor-
and reliable data transmission in wireless digital networks = mance by balancing the demands of data transmission
[39], [46]. Addressing these challenges necessitates strategic and processing efficiency in the network.

allocation of bit rates, which is crucial for optimizing resource The structure of this paper is organized as follows. Section I
utilization across network nodes [7]. Therefore, investigatingffers a comprehensive description of the models used in
bit rate constraints and their allocation strategies is essentigk study, which includes detailed information on discrete-
for a deeper understanding of the dynamics in wireless digitghe MINNs, the communication network with bit-rate con-
networks. straints, the coding-decoding process under the influence of
In wireless digital networks, the coding-decoding process fsobabilistic bit flips, and an overview of the estimation error
essential for data exchange [45], [48]. This process involvg§namics (EED). In Section IlI, the focus is on the analytical
converting an analog signal into a digital format through sangspects of the study, which encompasses the analysis of the
pling, quantization, and coding. The analog signal is first mag@undedness of estimation error, the design of estimator gains
discrete and then encoded into binaryval(]emdlfor dlgltal at an Opt|ma| de|ay rate, and a collaborative method for
transmission [41]. A significant challenge in this process arisgfe co-design of bit rate allocation and estimator gains. In
from the phenomenon of bit flips during transmission, whereiection 1V, a numerical example is presented to demonstrate
a bit within the original binary data stream may change froffe practical application of the theoretical findings, which
1 to 0 or from 0 to 1 with a certain probability. These serves to validate the correctness of the results derived in the
phenomena can result in errors attributed to factors suchggdy and includes explanatory notes for better comprehension.
channel noise, signal attenuation, and equipment malfunctiofige paper concludes in Section V by summarizing the main
[14], [19], [27], [29]. The occurrence of bit flips can resulfindings and contributions of the research.
in decoding errors, particularly in scenarios with constrained Notations: In this paper, we employ specific symbols to
bit rates, thereby impacting system performance. Therefor@presem various mathematical concefi&’, R™*", and
understanding and mitigating the effects of probabilistic bl represent then-dimensional Euclidean space, the x n
flipping becomes paramount to ensure reliable data transntigal matrices, and the non-negative integers, respectively. The
sion. symbol || - || refers to the Euclidean norm, and | stands
Motivated by the above discussions, in this paper, we tackl§ the absolute valu€i-, P- and Var- depict the expectation,
the state estimation problem for MJNNs with bit flips undesrobability and variance for a stochastic variable. For a matrix
conditions of constrained bit rates. This problem encompasses its transpose is denoted hy?, and A(X) signifies its
three primary challenges: 1) the development of a comprehefinimum eigenvalue. A column vector is expressedcby.
sive mathematical model that accurately represents both thg diagonal matrix is articulated @sag: - -. The Kronecker

dynamics of MJNNs and the bit rate limitations characteristigroduct is represented by the symho] and I denotes the
of the communication network; 2) the formulation of a methoghentity matrix with proper dimensions.

to model and manage stochastic bit flips that occur during
wireles; .transm.ission; an.d 3) the development of strategies || ProsLEM FORMULATION AND PRELIMINARIES
for devising estimator gains that ensure error boundedness, .
even in the face of bit rate constraints. These challenges for Markovian Jump Neural Networks
the core of our research, aiming to enhance the robustneskor a discrete-time homogeneous Markov chelik) taking
and efficiency of state estimation in MINNs within the digitayalues in a finite sefl = {1,2,...,s}, let the transition
communication landscape. probability matrix® £ (o,)) € R"*" be given by
In response to the identified challenges, our study makes . N
several IIZey contributions in addressing(‘;:j the state egtimation Plr(k+1) =lr(k) =} = 0y, Va5 €11 @)
problem for discrete-time ANNs with Markovian jump pawherecs,, > 0 and ijl o, =1
rameters in digital communication networks, particularly under Consider a class of discrete-time MIJNNs with noise distur-
constrained bit rate conditions. bance represented by
1) We tackle the state estimation problem for discrete- n
time ANNs featuring Markovian jump parameters by wi(k+1) =h; rayvi(k) + Zwim(k)gj(:z:j(k))
taking into account the bit rate constraints that reflect j=1 )
the inherent bandwidth limitations in such networks. + ai 7 wyvi (k)
2) We systematically address the occurrence of probabilis- LY ‘ _ .
tic bit flipping, caused by interference noise, within Yi(k) =ci.r2s(k) +bir (v (k)
the context of constrained wireless digital transmissidor i € Z = {1,2,...,n}, wherex;(k) € R andy;(k) € R
networks. This issue is comprehensively mathematicaltienote the state and measurement output of neyyn@spec-
modeled, providing a robust framework for understandively; h; ., € R refers to the state feedback coefficient;
ing and mitigating its impact. scalarsa; , (1) andb; (i) are weight coefficients of the noise;
3) We establish a significant connection between estimatian; -,y € R represents the interconnection strength between
performance and bit rate allocation. To this end, weeuronsi and j; the disturbance input;(k) € R satisfies
introduce a collaborative optimization algorithm thatv;(k)| < v with a given scalaw. In addition,g;(-) : R - R
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is an activation function of thg-th neuron subjecting to the

. : _ (K e
following assumption. xi(k) yitk) it |
Assumption 1The nonlinear activation function satisfies the Se';sor — Colfler o
following condition: : N oy |
T 1 : package :
(g;(d1) — gj(da)—172;(d1 — do)) Di(k) 2 (831 (K), -, 0,0, ()Y~ —
. v
x (g5(d1) — g;(da) —mj(d1 — d2)) <0
Wireless digital communication Bit fllins
whered;, d> € R are some scalars, amel; andr; are known network with constrained bit rate P
constants.

Di(k) = {8;1(k), -+, 0;4,(K)},

B. Communication Network With Bit-Rate Constraints v

) o o ) Estimator |, a0i(k)) Decoder
In practical digital communication networks, especially g ¢ 7

those that are wireless, the original signals from sensors
must be converted into binary characters by a coder for L
transmission. Due to the ofter): limited bandv?//idth of thes%g' 1. Research framework for ANNs under bit fiips.
networks, there is a restriction on the number of bits that can

be transmitted at any given time. Efficiently allocating the bit t1a maximum quantization level, of sensori is limited
rate for each neuron is crucial to avoid data collisions durir}g, allocated bit rates, which can be deduced by
wireless transmission.

In our study, we consider a scenario where the total available A, 2o (6)
bit rates for the entire network are representedAbyA €
N). The measuremeny;(k) of each neuron in the MINNs is  Let {¢,,/,,...,¢,} be the corresponding quantization re-

transmitted over this bit-rate constrained wireless network. Th#n forn sensors. We take the central value of the subinterval
bit rates allocated to each coder in the network must adheseapproximate the original data, which is computed by
to the following specific condition for ensuring optimal use

X ) . e 20; — 1)9;
of the available bandwidth and efficient transmission of data a(yi(k)) = —6; + ( - ) . @)
[15]: A
- According to the above description, the quantization error
Az Z;Ai’ AieN ) of the measuremeny; (k) is defined as:
whereA; (i € T) denotes the bit rates allocated to the neuron ei(k) £ yi(k) — q(yi(k)).

i, that is, each coder has limited bit rates to encode the data

packet. As a result, the data compression is required, whitRe upper bound on the absolute value of the quantization
can be realized by a uniform quantizer. To be specific, tHror |ei(k)| is the distance from the center point to the end
quantizer segments the quantization region into a set numpB8nt of the subinterval. Then, we further obtain

of uniformly spaced intervals. The quantization process in- 5
volves mapping each input data to its corresponding interval. lei (k)] < =. (8)
Given a scalap; > 0 decided by the range of the sensors, A

the quantization region of theéth sensor measurement iS Remark 1:In wireless communication networks, bit rate

represented by allocation can follow either dynamic or static protocols. Dy-
namic protocols adjust bit rates dynamically based on the

lyi (k)| < 0. (4) . . ik -

fluctuating needs of user devices, aiming to optimize the

Choosing a quantization leveh; (denoting the number €fficiency of data transmission for each device. On the other
of intervals) for the sensof, the quantization region canhand, static protocols allocate bit rates based on predetermined
be uniformly segmented into some subintervals, which aféteria, regardless of individual device requirements. More

denoted by specifically, static protocols are designed to ensure fair data
transmission, particularly beneficial in scenarios where mul-
5 < ik iy 2_51 tiple users share limited bandwidth. In this paper, we have
Ql,z- z_yz()< z+ . . . L.
A chosen to employ a static bit rate allocation protocol within
20; 46; i i
Qo —6; + 2 < ya(k) < —6; + =2 the context of MJINNs so as to ensure a fa!r and equitable
A; A; (5) distribution of bandwidth among all neurons in the network.
By doing so, we aim to promote consistent and unbiased
5 data transmission across the network, which an important
On,itdi— Kz < yi(k) < 4. consideration in environments where bandwidth is a limited
i resource.
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C. Coding-Decoding Process Under Probabilistic Bit Flips TABLE |

As shown in Fig 1. the coder pIays a critical role by QUANTITATIVE INTERVALS AND CORRESPONDINGCODEWORDS
converting quantized data into a binary data streBpik),
which is subsequently transmitted over a wireless digital
communication network. While numerous studies have exten
sively explored encoding mechanism, many tend to be overly

idealized when it comes to the wireless transmission of signals. )
In practice, many factors such as channel noise, multi-usd{Pinterval. According to the formula (13), the corresporuge

interference, and equipment failures introduceanon-negligikﬂée betwegn the number. of interval and .codeworq can be
probability of bit flips (i.e., bit error) within the binary dataclearI‘y obt’alnt::‘d as,shown in Table l. If the blt_stream is flipped
stream during transmission. This, undoubtedly, exerts a certgl m ‘000" to *1007, fhe corresponding data is changed from
influence on the decoding error. q(yi(k)) = —1.75 to q(yi(k)) = —1.25. .

In order to specifically analyze the impact of bit flips on the " order to deal with the decoding outpilty; (k)) contain-
estimation performance, let us first introduce the mathemati¢a? ungertalnty, a lemma is given to describe its statistical
model [19]. Denote the binary bit stream generated byithe properties.

Codeword | 000 | 100 | 010 | 110 | 001 | 101 | 011 | 111
Number 1 2 3 4 5 6 7 8

coder as Lemma 1:L_et the signalq(yi(l@)) be t_rans_mit_ted_ via a
memoryless binary symmetric channel with bit flipping prob-
Di(k) 2 {01 (k), 0i2(k), ..., 0n, (k)} (9) ability ;. Then, the decoding signgly;(k)) has the mean
wheref; ,.(k) € {0,1} is the codeword and € {1,2,...,A;} and variance given by
stands for the number of bits. E{G(yi(k)} = (1 — 2p:)q(ys (k) (15)

After the bit stream passes through the bandwidth-
constrained communication network, the data received by tAéd
decoderi becomes 62(22h — 1)

" _A 02T ) s
Bu(k) 2 {61 (), Gia(k), ..., 6un (k) (10) Var{a(yi(k))} = 3pi(1 = Po) =5 v (16)

where the expectation is taken with respect to the stochastic
variablesp; .. (k).

Proof: Taking the expectation of (14), we have from (11)
ézr(k) = pi,r(k)(l - ezr(k)) + (1 _pi,r(k))ei,r(k) (11) and (12) that

with the codewordd; (k) € {0,1}. In this case, each
probabilistically flipped bit satisfies the following condition:

wherep; (k) represents the flip probability of theth bit for E{qd(y:(k))}
the i-th coder data, obeying the Bernoulli distribution. It is Ai 5 r—1 .
imperative to note that S (2 2o E {Q”A(k)} 27+ 1) 0i
(k) = 1, ther-th bit is flipped N A
Pir\F) = 0, ther-th bit remains unchanged =6+ (22 (ﬁi(l — ow(k))
For the sake of analysis, we assume that occurrence of the =1
fIip_piqg of each bit is mutually independent of each other and + (1 _ ﬁi)H- (k))2r—l +1 51‘/&'
satisfies
IED i,T k = 1 — 71" 12 Ai e
wherep; € (0,1) (z € Z) is a known constant. r=1
The quantization output (7) is further expressed in concrete A R
bits in the following form: +2p: > (1= 20;,(k))27 16/ A (17)
r=1
2N 0 (k)27 1) 6 : . o .
q(yi(k)) = —6; + ( < ) . (13) According to (14), the following relation is further obtained:
' E{q(yi(k))}

Similarly, after passing through the wireless digital network

A
and experiencing probabilistic bit flipping, the decoding output  __ L 95 or=15 /A 1 6. /A,
s denoted as q(yi(k)) + 2p; ; NINER VN
250 0, (k)2r "t +1) 6, A I A
st = .+ L = L 230, (k)2 16 /A, — 5,/As
7 r=1
Example 1:Given A; = 3 bits, §; = 2, the maximum B As - 5
quantization level is deduced hy; = 8. We take the central =q(yi(k)) +2pi | 0i — 22 Oir (k)27 41 N
value of subinterval as the quantization output, subsequently, - r=1 !
the calculation unit is based on half the Ieng%h of each =(1 = 2ps)q(yi(k))- (18)
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Subsequently, we delve into the analysis of the variance of Define the estimation error ag (k) £ x;(k) — #;(k) and

4(yi(k)). To streamline the calculations, we obtain the nonlinear function ag; (k) = g;(x;(k)) — g;(2,(k)). We
A s have the following EED:
(20, bin (k)21 +1) 5,
—0; + =
A, (k + 1) hi, zxz + Z Wij, 1gj + QU (k)
di di
=2Y 0;,(k 2T1 = — 0+ = _
Z I Te ~ (1= 2pi)(yi(k) —ei(k)) + oi(k) )

+ 10 (1 = 2pi)ci @i (k)

L V s
:22 (i (k) = E {8, (K)}) 27" 5 = 0,
:(hi’l N lm(l 2]71 C” xz + E meg]

5.
r—1 ?
+ <QZE {91 r 2 + 1) 21\1’ —+ (a“ — llz(l — 2p1)b“)vz( ) — i,z¢i( )
0;r(k) —E{0;.(k)}) 21 = — E{q(v:(k))}.
; ( { }) 24 {alys(k))} Define the augmented error vector as
(19) B _ T
. _ (k)= [aT (k) 3(k) ... @L(k)] .
Based on (19), the variance ¢fy;(k)) is expressed as
5 The augmented EED is presented by
Var{g(y:(k))} ] )
A 2 z(k+1) =H,z(k) + W,g(k) + A,v(k)
= <—5z— + <2 0ir (k)27 + )5 /A> — Lp(k) + (I —2P)e(k) (24)
r=1
2 where
- (B{atwh))})
X 2 Wlé [wij-,l]a(iajeza ’LEH),
i } L ' 7
=E <2 (0ir(k) —E{0;r(k)}) 27" 2Ai> #, £H,—L(I - 2P)C,,
r=1 A, 2 A —L(I -2P)B,,
A
_4 9 _ E 91 . k 22r 2 i [3 KX ,29 sy na fy
; ( { )} { 7 ( } ) 22A LZ é dia'g{ll,h 12717 tey ln,l}u
Ai _ _ _ _ A, & diag{ai ., a2, .., an.},
_4; (1= 60 (k)P,(1 = P)) + 0, (k) Pi(1 — P,)) B, & ding{byr.byrr. . b).
% 227«72£ Cil é diag{cl,zu 02717 ey Cn,l}a
22Ai Pédia’g{ﬁlvl_)Qv"'aﬁn}a
4 62(22A — 1) a
:gpl(l _pZ)T =, (20) v(k) £ col{vi(k),va(k), ..., vn(k)},
’ A
which ends the proof. n f(k) R COl{fl(k)’ ?Q(k)’ ’f”(k)}’
From Lemma 1, the decoding output is given by g(k) = col{gu(k), G2(k), ..., gn(k)},
k) = col k), p2(k), ..., 0n(k
Q) = (L= 25)a((k) + k) (@D) #k) = ooligr(R), $2(k), . fnlil}
where ¢;(k) is a stochastic variable with zero mean and Definition 1: [42] The EED is said to be exponentially
varianceV,. mean-square bounded if there exist constgmts< 1, p > 0
and p3 > 0 such that the following inequality holds:
D. Estimation Error Dynamics E{|Z(k)||?} < p¥pa + ps (25)

To estimate the internal state of MJNNs efficiently b bound of th
utilizing the decoded measurement output, we devise t %\ere ps is an asymptotic upper bound of the error
remote estimator as follows: k)|1}.

Zi(k+1) = hi2i(k +Zwmgg 25k [1l. M AIN RESULT

In this section, the analysis of the mean-square boundedness
liz ik—l—Qiizik 22 . ! .
th ( (i (k)) ( Pi)ciadil )) (22) for the EED is presented. Subsequently, we formulate designs
wherez;(k) denotes the state estimate for the neurpand for estimator gains by incorporating the optimized decay rate
l;, € R represents the mode-dependent gain to be designeahd the bit-rate allocation strategy.
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A. Boundedness Analysis which can be further expressed as
In the following the_orem, a sufficien_t condition is given to F(k)] T lalMTM o MTJFMTl F(k)]
ensure the exponential boundedness in the mean-square sense _ 2 ~ <0 (30)
for the EED. 9(k) * ol g(k)
Theorem 1:Consider the MINNs (2), the known positiveor any scalar; > 0.
integersA;, and the remote estimator (22) with given estimator Combining (28) with (30), one has
gainl;, (¢ € 7). Then, the augmented EED (24) is expo- T T
nentially mean-square bounded if there exist positive scalars AV(k) <x(F)ax" (k) + o™ (F)u(k) — azV(k)

a1, 11, Y2, 0 < ap < 1, and positive definite and symmetric +yoeT (K)e(k) + tr (\I/LlTﬁJLZ\TJ) (31)
matricesP, such that the following inequality holds for all
e I where
Qnu 0 Q3 My Iy HIPA, iy
Qo Qa3 | <0 (26) 1, & x Il WIP,A, Tl
* * —75]*1 * * 133 s |
where * * * M4y
A 1:[11 éﬁ?ﬁ]ﬁl — (1 — 042)'PZ — OélMTM,
— ZU'LJP% J € Ha 1:[22 éWzT,]SJWZ _ CYlI,
BN . - o MT 4
Qy N _alMTM - (1 - 042)7)1 QIM 11ED) é'HZT’PJWZ + alT_F,
* —oul U Adiag{W), s, ..., U,} 2 GTT

A T AT _.T
Ms = [H, W], Qs =[A I-2P], Applying the Schur Complement Lemma to the above
Qoo = diag{—v1, =2}, P, = diag{P1.,, Pass-- -, Pur}, formula, one hadl, < 0 based on the condition (26) in

M 2 diag{i, ..., 1hn}, M 2 diag{ma, ..., mn}. Theorem 1. Then, we derive that
T
Proof: Choose the following Lyapunov-like function for AV(k) <= a2V(k) +y1v" (k)u(k)
boundedness analysis: + voeT (k)e(k) + max {tr (\IJLlTﬁJLli/)} . (32)
V(k) = & (k) Por) T (k)- (27) In terms of the definitions of noise(k) and quantization
Denotes (k) £ 1, o(k + 1) £ 3, and define an augmentede!rore(k) , we obtain
vector as ol (k)v(k) <n©?, (33)

X(k) 2 [E#7(k) §T(k) oT(k) eT(k)]".

Calculating the mathematical expectation of the difference

k) ng;(?i)Q (34)

of V(k), we obtain Substituting (33) and (34) into inequality (32), and taking
AV(E) 2E{V(k + 1)|V(k)} — V(k) the mathematical expectation of it, we deduce the following
(LT () + 7207 (k)o(k) — a2 V(k) nequatty
+ y2eT (k)e(k) + E {7 (k)LTP,L,0(k)}  (28) E{V(k+1)} <(1 —a2)E{V(k)} +© (35)
where where
My HIPW, HIPA T 2 0o + Z (2A ) + max {tr (@L??%LZ\TJ)} :
I N * WZT,]SJWZ WZT,]stL H24
S % I35 sy |’ Furthermore, we obtain from (35) that
* * * T4y E{V(k)} <(1—-a)E{V(k-1)}+06
M 2H P, — (1 - a2)P,, < (- a)’E{V(k - 2)} + (1+ (1 - 02))0
I3 éj?ﬁjjz —ml, My & 7:1?753([ —2P), <

oy 2WIP,(I - 2P), L3y £ ATP,(I - 2P),
My 2(1 —2P)TP)(I — 2P) — 1.
From Assumption 1, we know that the nonlinearijy:) Which implies

fulfills . h-1 .
vy - (=0 BOI0)) | OFE (1 —ay)
(g(k) - Mgz(k))T (g(k) - Mi;(k)) <0, (29 BRI < A ema®) T mimen A

< (1 — a)"E{V(0) +®Zl—a2, (36)

(37)
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Recalling Definition 1, the EED (24) is exponentially mean-  Proof: According to the characteristic of the positive
square bounded. Furthermore, the following inequality holdifinite matrix?, and condition (41), we have

ask goes to infinity:

9 Y (P, — YPL (P, — )T >0, (43)
e
(0%) minzGH A(P’L)
which means that the upper bound of the EED is represented P, —20> P (44)
by O. The proof is complete.

E{||z(k)|*} < 20, (38)  which implies

Combining (40) with (44), and applying the Schur Comple-

B ment Lemma to the inequality (40), it is evident that

Remark 2:The estimation error boun@ in digital commu-
nication networks is influenced by several factors, including —Q+ 3P, <0. (45)
noise, coding-decoding parametéysbit rateA;, varianceV,,

gains L,, and decay coefficient,. When system parameters Itis inferred from inequality (39) that

(like o;, L,, a2, and bit flip probabilitiesp;) are fixed, the Qll 0 013
error bound .is primari!y dep_endent on the_ﬂ bit ratefor e_ach % Qo Qs | <0 (46)
neuron. An increase i; raises the maximum quantization .
level A; and reduces the variande of the decoding signal, * * =P

leading to a lower error bound. This relationship underscorgéere
the importance of bit rate management in minimizing estima- PN ST
b, - [—oﬂMTMJr (03 —1)P, oMM

tion errors in digital communication networks.

* —aq
B. Estimator Design Under Optimized Decay Rate Along the line of the proof of Theorem 1, we obtain
Having analyzed the boundedness of the EED, the next ste (3|2} < (1 —a2)*E{V(0)} C)
would be to focus on the design of estimator by taking into min,er A(P,) o min,er A(P,)
account the specified bit rate allocation. The following theorem (47)

shows the optimization of the decay rate of the EED as a wa

. ' L . 9 :
to acquire the fastest convergence performance, with a knO\é\/e ere® is defined in inequality (35)1 — o7 determines the

bit rate allocationd; (i € 7) cay rate of the EED and, finally, the error upper bound is
Theorem 2:Consider the MINNs (2) and the estimato?btaIneOI as - A €]
(22) with known positive integers\; (: € Z). The EED 0= aZmin,en AP,

is exponentially mean-square bounded if there exist positive ) , ,
scalarsii, 71, v9, 0 < as < 1, positive definite and symmetric'n this case, the optimal decay rate of EED is obtained

matricesP,, and matrices?, and 0, such that the following by solving the maximization problem (42), and the proof is

inequalities hold for alk € IT: complete. u
a0 913 C. Co-design of Bit Rate Allocation Scheme and Estimator
L Q2A3 <0, y€ell (39) The allocation of bit rates to each neuron in MINNSs signifi-
* x =P, cantly influences estimator gain, as highlighted in Theorem 2.
—Q aol ] Given fixed system parameters and quantization regions, the
l <0 (40) bit rate A; directly impacts the upper bound of the error dy-
*  Pu— 21_ namics and overall estimation performance. This section aims
P, >1 (41) to minimize the upper bound of the EED by co-designing the
bit rate allocation strategy and the estimator gain, optimizing
where both for enhanced system performance.
R NS V0.V g - s B MT2+M Corollary 1: When the bit rateA; for each neuron is
O = . ol treated as a variable, the optimization for the error bound is
) ! . transformed into the following minimization problem with a
Qs £ [P,H, — L,(I —2P)C, P,W,] . given scalara; (0 < g < 1):
QQ3 2 [75.7141 - EZ(I - 2P)Bz ﬁ](l - 2P)}T' min L
. _ _ Qg min,ent A(P,)
Moreover, the optimal decay rate of EE[:(k)|| is derived st T<0(Viell), 0<A; <A 48)
by solving the following maximization problem: o oo T
() where
maxq
s.t (392)— (41) (42) T 00 T
o ’ ~ T é * QQQ T23 s
and the estimator gain is given by, = 7;;1&_ % * —75]
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Algorithm 1 Optimal bit-rate allocation strategy and estimator The minimization problem (48) involves constraifit <

co-design algorithm. A; < A. To effectively handle this constraint within the

1: Initialization : Initialize parametersN, I, w, ci1, c2, optimization process, a transformation of (48) is undertaken
position X,, and velocity V, of each particle(o € by introducing a penalty function:

{1,2,...,N}); o .
2: if T < 0 is feasiblethen min —————— + nF(A)
3:  Compute the fitness functioR(X,) G2 minen A(P)
4 else st. T <0 (Ve ell) (49)
5. F(X,) =00 where F(A) £ max {0,3°"_, A, — A} is the exterior penalty
6: end if function withA £ [A1, A, ..., A,], andy is a constant called
7. for p=1:1do _ _ penalty coefficient. The fitness function of PSO algorithm is
8 UpdateX, andV, of the particle swarm according t0,e nner hound of the error dynamics, which is defined as
formulas (50) and (51)
90 foro=1:Ndo i) & A
10: if T < 0 is feasiblethen FA) Qg min,enr A(P,) T Fd)
11: Compute F(X,) with updatedX,, denoted as  Algorithm 1 demonstrates the integration of the PSO al-
F(X,) gorithm with the LMI technique, aligned with the specified
12: else objective function. This algorithm is tailored to tackle the
13 F(X,) =00 minimization problem, considering the inherent constraints
14: end if and nonlinearity of the problem. Within the PSO algorithm, a
15: if F(X,) <F(X,) then swarm of particles (representing a potential solution) explores
16: F(X,) = F(X,) the search space. The position and velocity of each particle
1 end if characterize these potential solutions. The algorithm iteratively
18:  end for refines the positions of the particles, relying not only on each
19:  Update the historical optimum fitness and location farticle’s individual experience but also on insights gained
particle swarm; from the best-performing particles in the population. Through
20: end for this collaborative process, the PSO algorithm aims to find the
21: Obtain the particle with the minimum fitness, whosgptima| solution to the minimization problem.
corresponding position is the optimal bit-rate allocation penote X, £ [Xo,1,X0.2,...,X0o,n] and V, =
scheme; [Vo1,Voa,...,V,n] (0 €{1,2,...N}) as the position and
22: The estimator gairL, is obtained by solving (49) underyeg|ocity of theo-th particle, respectivelyN is the number of
optimal bit-rate allocation protocol. particles in the search space, and the maximum number of
iterations is represented dy P, denotes the-th particle’s
best position, an®, represents the global best position of the
NN —a;MTM — (1—a2)P, mw particle swarm._The updgtes of particle velocity and position
1= * ol |’ obey the following equations:
Yis 2 [PH — L, —2P)C, P,w]", Vo(o+1) =wV,(0) + c1&1 (Po(0) — Xo(0))
Tos 2 [PA, — L,(I - 2P)B, P,(I—-2P)]". + c2&a(Py(0) = Xo(0)). (50)
Xo(0+1) =Xo(0) + Vo(o) (51)
Within this framework, the estimator gain is derived by= \here o € {1,2,...,1} indicates the iteration numbewy
PlL,. stands for the inertia weight; the acceleration constentnd

Proof: Definel £ {I,I,I,I,ﬁ,}. Let the scalars in  c2 denote the self-learning factor and the group learning factor,
Theorem 1 bex, € (0,1). By pre-multiplying the inequality respectively; and¢&, are two stochastic integers distributed
(26) with T and post-multiplying it withI”, we see that the in the interval[l,2]. To prevent the particle’s search position
condition Y < 0 holds and the proof is now complete. m from exceeding the limited interval leading to an unproductive

To tackle the non-convex nature of the minimization proﬂ]“nd search, well-defined boundaries are established for both
lem outlined in (48), which presents considerable challenge@sition and velocity. The boundaries are denoted as
in terms of solvability, we propose an innovative co-design
method. This method combines the particle swarm optimiza- Vi< Volo) < Vr, Xi < Xole) < X
tion (PSO) algorithm with the linear matrix inequality (LMI) Through the PSO-based co-design method for estimators,
technique. The integration of PSO (known for its effectivenesge achieve the optimal allocation strategy. This enables a thor-
in solving non-convex optimization problems) with the LMlough analysis of how varying bit rates impact the estimation
technique (widely used for handling control and estimatigmerformance of MJNNs.
problems) offers a powerful approach, which aims to effi- Remark 3:In this study, we've investigated the remote
ciently navigate the solution space and find an optimal (estimation problem for MINNSs in digital communication net-
near-optimal) solution to the minimization problem. works by focusing on the challenges of limited bit rates and
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probabilistic bit flips. Key achievements include i) establishin
a sufficient condition for mean-square boundedness of the El
in Theorem 1, ii) determining mode-dependent estimator gai
under specific bit rate allocations in Theorem 2, and iii) cc
designing a bit-rate allocation strategy with optimal estimat:
gains in Corollary 1. These contributions are crucial fc
enhancing estimation accuracy and efficiency in constrain
digital network environments.

Remark 4:This paper makes several innovative contribt
tions to the field of state estimation for MIJNNSs, distinguishin
itself from existing research in key aspects.

1) Focus on Discrete-Time MJNNSs in Digital Networkge
specifically target discrete-time MJNNs within digital
communication networks, emphasizing the impact ¢
constrained bit rates in wireless networks. This perspe
tive is crucial in understanding how limited bit rates
affect network performance.

2) Probabilistic Bit Flips in Constrained Network&or the

Neuron 1

Amplitude

. . . . . . . . . I
5 10 15 20 25 30 35 40 45 50
time k
Neuron 2

Amplitude
o

I I I I I I I I I
5 10 15 20 25 30 35 40 45 50
time k
Neuron 3

Amplitude

time k

Fig. 2. State and estimation for the neurons.

first time, our study considers probabilistic bit flips in

bit-rate constrained networks, analyzing the addition

al The nonlinear functiory; (-) is of the following form:

decoding error they introduce. We also explore how

constrained bit rates impact estimation performance,

providing new insights into this area.
3) Optimization of Decay Rate for Fast Convergendée

g;(z;(k)) = 0.28 tanh(z, (k)).

The external noise is set ag(k) = 0.8 cos(k) with v =
(.8, and the initial state and corresponding state estimate are

achieve the fastest convergence performance by optimiz-

ing the decay rate. The application of the PSO algorith
to allocate bit rates effectively compresses the upp

bound of the EED. This innovative approach is unique

in the context of state estimation for MJNNSs.

H{ovided as

er 21(0) = 0.4, 22(0) = 0.2, 23(0) = 0.3,
21(0) = &2(0) = 23(0) = 0.

4) Co-Design Approach for Estimator Gains and Bit-Rate The flip probabilities of each bit for different neuron are
Allocation We propose a co-design strategy that ingiven as
volves optimizing estimator gains and developing a bit-

rate allocation protocol. This comprehensive approach

aims to enhance the overall estimation performance

p1 = 0.1, po = 0.05, ps = 0.12.

ofBased on the aforementioned parameter settings, the estima-

the network, tackling the challenges posed by MINNfon performance of MINNSs is analyzed under the maximiza-

in a holistic manner.

IV. I LLUSTRATIVE EXAMPLE

tion problem of decay raté — o3 in Theorem 2 and various
bit rate allocation protocols in Corollary 1, respectively.
Scenario 1Firstly, we employ an average allocation strate-

In this section, a simulation example is presented to demdh- (AAS) to compute the estimator gains, which ensures that

strate the effectiveness of the estimator under constrained
rates.

Consider the MINNs composed of= 3 neurons with two
jumping topologies (i.eIl = {1, 2}), where the system model
parameters are given as follows:

H, = diag{0.7,0.9,0.6}, C; = diag{0.9,0.8,1},

A = diag{0.2,0.2,0.3}, B; = diag{0.2,0.1,0.4},
H, = diag{0.8,0.9,0.85}, Cy = diag{0.85,1,0.8},
Ay = diag{0.1,0.1,0.2}, By = diag{0.2,0.3,0.1},

h neuron in MINNSs is assigned with identical bit rates,
thereby guaranteeing an equitable distribution of network
resources. Based on Theorem 2, assume that the available
bit rates of the entire wireless network are = 30. We
have Ay = Ay = A3 = |A/3] = 10 bps by AAS.

The parameters, of the quantization region are chosen as
01 =1, 02 = 0.5, 63 = 0.7. According to (42), the optimized
decay rate parameter is; = 0.9559. Correspondingly, we
obtain the estimator gains as

Iy =0.9150, I = 1.1908, Is; = 0.7377,

0.3 0.1 0.2
4%} 0.1 —-03 02

| 01 02 —0.3]

[—0.5 0.2 0.3]
Wo=102 —04 02

| 0.1 04 —05]

Iy = 1.0597, loo = 0.9178, I35 = 1.2686.

The system states and their estimates are depicted in Fig. 2.
The error norm|z(k)|| and the estimation error boundO =
2.123 are plotted in Fig. 3, which verifies that the estimation
error is indeed exponentially mean-square bounded.

Scenario 21n some specific application scenarios, adopting
an AAS might not be the most optimal approach, because
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TABLE 1l
257 EFFECT OFDIFFERENTPROTOCOLS ON THEERRORBOUND
ol Parameters A (bps) Protocol Bit rate allocation Bound
A1, A2, A3 (bps)
30 AAS 10, 10, 10 2.3037
o 15F 61=1 30 PSO 11, 9, 10 2.2035
5 §2=0.5 20 AAS 6, 6, 6 2.3045
g §3=0.7 20 PSO 7,6,7 2.3040
< gt 10 AAS 3,33 2.3519
10 PSO 4,3,3 2.3309
30 AAS 10, 10, 10 2.4561
08 5,=0.4 30 PSO 9,10, 11 2.4560
§2=1.25 20 AAS 6, 6, 6 2.4585
0 | | | | ! | | | ] ‘ 63=2 20 PSO 57,8 2.4568
5 10 15 20 25 30 35 40 45 50 10 AAS 3,3, 3 2.6017
time k 10 PSO 2,35 2.5068

Fig. 3. Estimate error and bound.

the estimator gain design section have been introduced. The
certain nodes may necessitate higher transmission speedsfif@t is aimed at optimizing the decay rate of the EED to
carrying out more complex tasks compared to others. In sugkhieve the fastest convergence performance, while the second
scenario, to enhance the performance of the MJINNS, it fiscuses on reducing the error upper bound by incorporating
advisable to use the error bound as a metric and employ 81¢2SO algorithm for optimal bit rate allocation. Finally, the
PSO algorithm to dynamically adjust the bit rate allocatiogffectiveness of the proposed estimation strategy has been
strategy. The superiority of the PSO-based bit rate allocatigemonstrated, and a detailed analysis of the relationship
strategy over the AAS becomes evident through the followingstween estimation performance and constrained bit rates
analysis. has been provided. In future research, to address bit flips
Settinga, = 0.92, and given the quantization parametergccurring in wireless networks, it may be considered to en-
asd; =1, & = 0.5 anddz = 0.7, the error bound is obtainedhance data transmission reliability by utilizing retransmission
using both the AAS and PSO-based allocation methods ffechanisms or employing multipath transmission methods,
Table II. The variation of the error bound is also analyzegereby further reducing coding-decoding error.
for a set of different quantization parametefs = 0.4,
02 = 1.25 andé3 = 2. The PSO algorithm is observed to not
only maximize the utilization of network resources but also
optimize bit rate allocation according to the specific demandgdl G. Aceto, D. Ciuonzo, A. Montieri and A. Pescapé, Mobile encrypt-
of each node, thereby enhancing the estimation performance |ed traffic classification using deep learning: experimental evaluation,
- L . . essons learned, and challengéS8EE Transactions on Network and
of the MINNSs. Additionally, it is inferred that an increase in  service Managementol. 16, no. 2, pp. 445-458, Feb. 2019.
available bit rates\ correlates with a gradual decrease in thd2] G. Aceto, D. Ciuonzo, A. Montieri and A. Pescapé, Toward effective

At ; mobile encrypted traffic classification through deep learnieurocom-
error bound. The quantization parameters play a crucial role puting, vol. 409, pp. 306-315, Oct, 2020,

in determining the decoding accuracy of the data, and a mofg s. Arik, A modified Lyapunov functional with application to stability of
suitable parameter setting is expected to result in an overall neutral-type neural networks with time delayisurnal of the Franklin
; ; ; : Institute vol. 356, no. 1, pp. 276-291, Jan. 2019.
reduction in estimation errors. [4] J. Cao, D. Ding, J. Liu, E. Tian, S. Hu and X. Xie, Hybrid-triggered-
based security controller design for networked control system under
V.. CONCLUSION multiple cyber attacks,Information Sciencesvol. 548, pp. 69-84,
' Feb. 2021.
In this work, the bounded state estimation problem has bed$i B. Chen, Y. Chen, G. Zeng and Q. She, Fractional-order convolutional
addressed for MINNs within a digital network framework. neural networks with population extremal optimizatid¥eurocomput-

. . ing, vol. 477, pp. 36-45, Mar. 2022.
The measurement outputs from MJINNs, which are transmittgg) G? Chen, J. F;ga, J. H. Park, H. Shen and G. Zhuang, Sampled-

over wireless networks to a remote estimator, have been sub- data synchronization of stochastic Markovian jump neural networks

jected to bit rate constraints. A coding-decoding process has With ti_me'g’arying del'ag’é'EEE ;rans"ggggz;” Ne”'a'z’(\)‘;;""orks and
e s s . Learning Systemsrol. 33, no. 8, pp. -3841, Aug. .
been modeled that accounts for probabilistic bit flips durmgh] R. Chen and Q. Ling, Event-triggered feedback stabilisation of switched

wireless transmission, and the effects of these bit flips on the linear systems under finite bit ratdET Control Theory & Applications
decoded output have been detailed. By utilizing the structural_ Yol 14 no. 20, pp. 3428-3439, Feb. 2021. . .

h teristi f MINN de-d dent timator h 84 J. Cheng, L. Liang, H. Yan, J. Cao, S. Tang and K. Shi, Proportional-
characteristics o e S( a mode-aepen er_1 _es Imaj O.I’. integral observer-based state estimation for Markov memristive neural
been developed. Within this framework, a sufficient condition networks with sensor saturationtsEE Transactions on Neural Net-
has been derived for ensuring the exponential boundedness gf Works and Learning Systemeol. 35, no. 1, pp. 405-416, Jan. 2024.
the EED. A b d th d . h b e[%] D. Christmann, R. Gotzhein, S. Siegmund and F. Wirth, Realization of

€ — n upper bound on the erro_r _ynamms as be -'! try-once-discard in wireless multihop networkEEE Transactions on
established and, subsequently, two optimization problems in Industrial Informatics vol. 10, no. 1, pp. 17-26, Feb. 2014.
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