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Abstract: In recent years, significant advancements have been made in the field of brain–computer
interfaces (BCIs), particularly in the area of emotion recognition using EEG signals. The majority of
earlier research in this field has missed the spatial–temporal characteristics of EEG signals, which are
critical for accurate emotion recognition. In this study, a novel approach is presented for classifying
emotions into three categories, positive, negative, and neutral, using a custom-collected dataset. The
dataset used in this study was specifically collected for this purpose from 16 participants, comprising
EEG recordings corresponding to the three emotional states induced by musical stimuli. A multi-class
Common Spatial Pattern (MCCSP) technique was employed for the processing stage of the EEG
signals. These processed signals were then fed into an ensemble model comprising three autoencoders
with Convolutional Neural Network (CNN) layers. A classification accuracy of 99.44 ± 0.39% for
the three emotional classes was achieved by the proposed method. This performance surpasses
previous studies, demonstrating the effectiveness of the approach. The high accuracy indicates that
the method could be a promising candidate for future BCI applications, providing a reliable means of
emotion detection.

Keywords: Auto Encoder (AE); Brain–Computer Interface (BCI); Convolutional Neural Network
(CNN); Electroencephalogram (EEG); emotion detection; ensemble deep learning; multi-class
common spatial pattern (MCCSP)

1. Introduction

The complex interactions between physiological and cognitive processes, known as
emotions, play a crucial role in shaping human behavior and experiences [1]. These inter-
actions have driven significant progress in biomedical engineering, artificial intelligence,
and neuroscience [2,3]. In artificial intelligence [4,5], understanding and modeling these
interactions have led to advancements in emotion-recognition systems, enabling machines
to better interpret and respond to human emotional states. Based on two primary scientific
viewpoints, emotions are examined using cognitive appraisal theory, which views them as
assessments of how well current conditions match with personal goals or well-being [6].
Alternatively, the James–Lange theory suggests that emotions arise from the perception
of physiological changes, such as variations in heart rate, respiration, tears, and hormone
composition [7]. This dual perspective highlights the conscious and intensely mental nature
of emotions, characterized by varying degrees of pleasure or displeasure.

In general terms, emotions can be categorized into two main perspectives: discrete
and dimensional. The discrete perspective asserts that humans possess a core set of
basic emotions, as exemplified by Ekman’s six: anger, disgust, fear, happiness, sadness,
and surprise [8,9]. Meanwhile, the dimensional approach categorizes emotions along
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the dimensions of valence, arousal, and dominance [10]. Valence describes the intrinsic
attractiveness or unpleasantness of a situation or stimuli, which ranges from negative
to positive and reflects an individual’s level of aversion or favorability. Arousal, on the
other hand, refers to the level of physiological and psychological activation elicited by an
emotional state, ranging from lethargy (low activation) to excitement (high activation) [11].
Dominance indicates the perceived level of control or power associated with an emotion.
This model allows for a detailed characterization of emotions beyond discrete categories,
enabling a deeper understanding of human affective experiences. Figure 1 illustrates a
range (set) of emoticons that represent various emotional states, which are used to convey
the dimensional approach to emotions.
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Emotion research employs a variety of methodologies, including cognitive assess-
ments, physiological measurements, and subjective self-reports [12]. Researchers use
diverse stimuli, such as music [13], images, and movies [14], to elicit emotions in controlled
conditions. Music, in particular, is noted for its efficacy in inducing emotional responses.
Tools like the Self-Assessment Manikin (SAM) are often used to measure subjective expe-
riences of valence, arousal, and dominance, enhancing our understanding of emotional
nuances [15]. Consequently, the study of emotions necessitates an interdisciplinary ap-
proach that encompasses physiological, cognitive, and behavioral aspects.

Emotion recognition is crucial for human–computer interaction (HCI) systems, en-
abling computers to better understand and respond to users’ affective states [16]. Despite
the rapid integration of computers into our daily life, they still lack the ability to com-
prehend human emotions, which hinders the effectiveness of HCI. Identifying a user’s
emotional state facilitates more natural and personalized interactions, applicable in educa-
tion, entertainment, and healthcare [17,18].

Existing emotion-recognition research concentrates on two primary categories: (1) non-
physiological signals like facial expressions, speech, and gestures [19–22], and (2) physio-
logical signals such as Electrocardiogram (ECG), Electromyogram (EMG), Galvanic Skin
Response (GSR), and Respiration (RS) [23–27]. While non-physiological methods are
cost-effective and easy to implement, their reliability can be compromised by individuals
concealing their emotions. Physiological signals, particularly EEG, offer more reliable in-
sights into underlying emotional responses due to their ability to capture real-time neuronal
activity [28,29].

EEG is a widely used technique in brain mapping and neuroimaging, which quantifies
the electrical fields generated by brain activity with high temporal resolution [30]. By
capturing electric potential differences on the scalp, EEG reflects neuronal activity and has
been instrumental in various clinical applications such as studying sleep patterns [31] and
epilepsy [32]. EEG is also valuable in neuroscience and psychology research, providing
opportunities for studying cognitive functions, affective monitoring, and brain–computer
interfaces (BCIs). Several datasets exist for emotion recognition using EEG signals. Notable
examples include DEAP (which combines EEG, physiological, and video signals) [33],
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DREAMER (focused on EEG and ECG signals from affordable off-the-shelf devices) [34],
SEED (with three emotion classes) [35], and SEED-IV (which expands SEED to four emotion
classes) [35].

EEG signals are susceptible to noise from external sources and other physiological
activities, resulting in a low signal-to-noise ratio [36]. Furthermore, EEG data exhibit
nonlinear and non-stationary characteristics [37], posing challenges for traditional emotion-
recognition models.

To address these challenges and enhance the performance and generalizability of
EEG-based emotion-recognition models, novel approaches are essential. Ensemble learning
offers a promising solution [38,39]. In recent years, the application of ensemble learning
methods for emotion recognition has garnered significant attention and demonstrated
remarkable success [40–42].

This study investigates the complex interplay between music, emotions, and the brain.
Music, chosen for its universal ability to induce emotions, was used to explore its general
and physiological effects on individuals with varying mental and emotional backgrounds.
To account for individual differences, we selected music based on the participants’ cultural
context (Iranian), using historical themes for positive emotions and sad themes for negative
emotions. This approach acknowledges that the impact of music depends on the listener’s
neuronal condition, mental history, and listening habits. Our meticulously designed
experimental framework integrates psychometric assessments (BDI and SAM tests), EEG
recordings, and carefully chosen music stimuli. Combining these data sources will allow
us to elucidate the neural substrates of emotional processing triggered by music, ultimately
advancing our understanding of affective neuroscience and potentially opening the way
for advancements in music therapy.

2. Literature Review

In [43], the authors extracted features from preprocessed EEG data, considering time
domain, time-frequency domain, and nonlinear features related to emotion. They used
Linear discriminant analysis (LDA) for feature selection and trained a classifier using the
ensemble learning method, AdaBoost, for binary classification. Their approach achieved an
average accuracy rate of up to 88.70% on the dominance dimension in the DEAP dataset. A
new ensemble learning method with multiple objective particle swarm optimization was
introduced in [44]. Key steps included feature extraction from preprocessed EEG data using
a 4 s sliding time window with a 2 s overlap, resulting in a feature vector. L1 regularization
was applied for effective feature selection, followed by model selection to identify optimal
sub-models. An ensemble operator converted single model classification results from
discrete to continuous values. The ensemble parameters were optimized using multiple
objective particle swarm optimization, and the approach was evaluated on DEAP and SEED
datasets, achieving improved recognition performance with average accuracies of 65.70%
for arousal and 64.22% for valence (DEAP) and the average accuracy on the SEED database
is 84.44%. In [45], ensemble learning-based machine learning (EML) algorithms were
compared with conventional machine learning (CML) algorithms for emotion recognition
using the DREAMER database. They separated EEG signals into theta, alpha, beta, and
gamma bands using discrete wavelet transform (DWT), followed by empirical mode
decomposition. Thirty-one statistical features were extracted from the intrinsic mode
functions (IMFs). EML algorithms (including bagging, random forest, rotation random
forest, extreme gradient boost, and adaptive boosting) outperformed CML algorithms
in terms of mean accuracy for both arousal (88.95% vs. 83.08%) and valence (88.90% vs.
82.81%) dimensions. In [46], a method called Multi-Scale Frequency Bands Ensemble
Learning (MSFBEL) was proposed. EEG frequency bands were reorganized into several
local scales and one global scale, with a base classifier trained on each scale. They designed
an adaptive weight learning method to assign larger weights to more important scales,
effectively fusing complementary information. This approach achieved average accuracies
of 82.75%, 87.87%, and 78.27% across three sessions on the SEED-IV dataset, and an average
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accuracy of 74.22% in four-category classification under 5-fold cross-validation on the
DEAP dataset. In [47], three nonlinear features and eight ensemble learning approaches
were proposed to predict six basic emotions. They utilized a randomized grid search
technique for tuning the hyperparameters of each algorithm to increase the recognition
rate. The synthetic minority oversampling technique (SMOTE) was used to handle the
imbalanced sample distribution of each emotion. Their highest average accuracy was
achieved at 89.38% using Higuchi fractal dimension on the DEAP dataset. In [48], a multi-
scale principal component analysis and symlets-4 filter were used for the preprocessing
stage. They utilized a version of DWT, namely dual-tree complex wavelet transform
(DTCWT), for the feature extraction. Various statistical criteria were applied to reduce
feature dimension size. This framework achieved nearly 96.8% accuracy using a random
subspace ensemble classifier on the SEED dataset. In [49], a method was developed where
they derived combinations of all adjacent frequency bands at various scales through a
process of permutation and reorganization. They employed a classification approach known
as homogeneous-collaboration-representation to obtain the classification outcomes for each
combination. In the final step, they introduced a circular multi-grained ensemble learning
method to re-extract the features of each result and combined the machine learning methods
with a simple majority voting system for decision fusion. Their proposed framework
achieved an accuracy of 95.09% and 94.38% in arousal and valence, respectively, on the
DEAP dataset, and 96.37% accuracy on the SEED-IV dataset.

Deep learning methods offer significant advantages over traditional machine learning
techniques, especially in emotion detection and classification from EEG signals [50]. They
automatically extract complex features from raw data, eliminating the need for time-
consuming manual feature engineering. In EEG signal processing, deep learning models
like CNNs and Long Short-Term Memory networks (LSTMs) excel in capturing spatial
and temporal patterns, demonstrating superior accuracy and robustness [51]. This high
performance is due to their ability to learn from large datasets, effectively capturing
intricate patterns essential for accurate emotion classification. While traditional methods
have their merits, deep learning is particularly adept at managing the complex and high-
dimensional nature of EEG signals, often leading to superior performance and reduced
manual intervention. Moreover, deep learning algorithms can integrate feature extraction,
data preprocessing, and classification within a single framework, simplifying processing
pipelines and enhancing overall performance. The success of deep learning in managing
complex data across various domains, such as images, text, and audio signals, motivates
its application to EEG-based emotion recognition [52,53]. Deep learning is currently being
used in hot topics such as COVID-19 [54,55], speculative hype [56], password meter [57],
social media [58], music [59], tackling domain shifts [60], modeling analysis [61], image
and attention detection [62,63], postoperative intensive care unit [64], predictive [65,66],
mathematical modeling [67], risk behavior [68,69], peer assessment [70], optimizing [71],
multi objective [72,73], human decision [74].

In [75], the authors utilized a 3D-CNN architecture to extract spatial–temporal features
from EEG and facial data in the DEAP dataset. Data augmentation and ensemble learning
techniques improved fusion predictions, resulting in recognition accuracies of 96.13% for
valence and 96.79% for arousal classes. In [76], the authors proposed an approach that
leveraged dynamic entropy measurements derived from EEG signals, capturing consec-
utive entropy values over time to enhance the characterization of emotional patterns. By
combining ensemble learning techniques with a recurrent neural network (RNN), their
approach achieved the highest average accuracy of 94.67% for distinguishing negative
and positive emotions in the DEAP dataset. In [77], the authors computed differential
entropy over five frequency bands extracted from EEG signals and developed a hybrid
model based on CNN and LSTM. The extracted features were fed to all three models (CNN,
LSTM, and hybrid). An ensemble model then combined the predictions of all three models.
Their proposed approach was validated on two datasets (SEED and DEAP), and achieved
97.16% accuracy on the SEED dataset for emotion classification. The authors in [75], used
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the Continuous Wavelet Transform (CWT) [78] approach to generate scalograms from
one-dimensional EEG signals. Then, five different CNNs—AlexNet, VGG-19, Inception-v1,
ResNet-18, and Inception-v3—were retrained using these images. The classification of emo-
tional state was determined using a majority voting procedure. Their approach attained an
accuracy of 96.90% in identifying four emotional states in the DEAP dataset.

Numerous studies have investigated automatic emotion recognition based on EEG
signals, each of them bringing valuable insights to the field. However, many of these
studies have limitations. Earlier studies overlooked spatial information between electrodes,
despite its importance as an input factor. Furthermore, while there are existing databases
primarily based on visual stimulation, they are not necessarily optimal for all deep learning
networks. To address the specific needs and goals of our research, we created a dataset
focused exclusively on auditory stimulation, which was carefully designed to align with
the specific objectives of our study. This decision demonstrates our determination to
personalize the dataset to our study concerns rather than depending simply on existing
public databases, which may not have entirely satisfied our needs.

Consequently, this research aims to address these limitations by introducing a novel
model that balances high reliability and low computational complexity for automatic
emotion recognition. To achieve this, a new database focusing on emotion detection
utilizing musical stimuli was carefully collected at Tabriz University’s BCI laboratory, while
following all necessary standards. The proposed model combines multi-class common
spatial patterns (MCCSPs) with ensemble deep learning, effectively identifying optimal
features from recorded EEG signals to classify basic emotions into three distinct classes
(positive, neutral, and negative). The study’s contributions are structured as follows:

• A new database for emotion recognition using musical stimuli based on EEG signals
was collected.

• The combination of MCCSPs and ensemble deep learning, incorporating autoencoders
with 2D-CNN layers, was used to extract features from spatio–temporal 2D represen-
tations of EEG signals. This approach led to the elimination of the feature selection
block diagram.

• An algorithm based on ensemble deep learning was provided, designed to be resilient
to environmental noise.

• In addition to the traditional fully connected layers (used for classification after feature
extraction from the ensemble model), other major classifiers—k-nearest neighbors
(KNNs), support vector machines (SVMs), and multilayer perceptrons (MLPs)—were
also employed.

• An automatic model was presented, achieving superior accuracy and minimal error in
classifying three emotional classes compared to prior research.

In the subsequent sections, we delve into the details of our research. Section 3 covers
materials and methods, including data collection, outlining data preprocessing, the mathe-
matical foundations relevant to MCCSPs, and deep learning networks. We then present
simulation results and compare them with prior research in Section 4. Section 5 explores
applications related to our current study, and finally, Section 6 provides the conclusion.

3. Materials and Methods

In this section, we begin by detailing the data-collection process. Subsequently, we
cover data preparation and preprocessing, explore the mathematical foundations of the
MCCSPs approach, discuss the design of the ensemble deep network architecture, address
hyperparameters and network training details, and describe the training and evaluation
sets. The main structure of our proposed model for automatic emotion identification from
EEG signals using musical stimulation is depicted in Figure 2.
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3.1. Data Collecting

Our work sought to build an EEG-based emotion-recognition database that includes
positive, negative, and neutral emotions. In order to achieve robust emotion classification,
we employed a multi-modal approach combining physiological data (EEG) with self-
reported emotional experiences using the SAM questionnaire test. The University of
Tabriz’s ethics committee approved the study procedure, which was carried out in the
university’s BCI lab (Faculty of Electrical and Computer Engineering), in accordance with
all ethical standards. Participants provided written informed consent and underwent a
health screening prior to data collection. The consent form ensured no history of mental
illness or epilepsy, no use of psychiatric drugs, normal sleep patterns, and avoidance of
fatty foods, caffeine, and hair washing before the test. Participants also completed the
Beck Depression Inventory (BDI); those scoring above 21 were excluded to prevent the
inhibition of emotional induction, as per psychological standards. To ensure the reliability
of self-reported emotional experiences, participants completed the nine-point SAM test
before and after each music track, reporting their emotional valence (positive/negative)
and arousal (high/low) on a defined scale. Scores below 3 on the SAM test were considered
low, and scores above 6 were considered high.

Sixteen individuals (6 females and 10 males) aged 20 to 28 participated in the experi-
ment. Emotions were induced through music stimulation, with tracks selected for their
emotional content: sad music for negative emotion induction and traditional/historical
music for positive emotions. Each track was played for one minute, followed by a 15 s
pause to prevent emotional carryover. Additionally, a neutral state was incorporated into
the process. Participants listened via headphones to enhance the induction process.

EEG signals were recorded using a 21-channel Medicom device, standardized accord-
ing to the 10–20 system (Fp1, Fp2, F7, F3, Fz, F4, F8, A1, T3, C3, Cz, C4, T4, A2, T5, P3, Pz,
P4, T6, O1, O2). Silver-chloride electrodes were arranged in a cap configuration to facilitate
data acquisition. All channel data were referenced to the A1 and A2 electrodes, digitized
at 250 Hz, with an impedance matching of 10 kΩ on the electrodes. We used a bipolar
recording mode to improve the quality of the signal.

Table 1 summarizes the descriptive statistics for the BDI and SAM scores and justifica-
tions for exclusions of participants (e.g., Subject 3 was excluded because of mismatched
SAM ratings). The results of the SAM test validation are presented in Figure 3. The entire
experiment lasted approximately 12 min (720 s). The music playback order is shown in
Figure 4. The Persian songs that were played for the subjects are listed in Table 2. To
prevent the brain from habituating to a task over time, which can occur if the task follows a
repetitive pattern, it is necessary to introduce random stimulation. Habit formation can
result in signals that are not due to genuine stimulation but rather the brain’s adaptation to
the task. Therefore, to avoid generating such signals, it is essential to apply stimulation in a
random manner. As shown in Figure 4 and Table 2, this principle is observed by playing
music with positive emotions followed by two pieces of music with negative emotions in a
randomized sequence. Figure 5 also shows samples of EEG signals for the three stages of
emotion for T3 and F8 channels on Subject 4.
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Table 1. Validation of subjects in the EEG signal recording process for emotions recognition.

Subject Sex Age BDI

Mean Valence
of Induction
for Positive

Emotion

Mean Arousal
of Induction
for Positive

Emotion

Mean Valence of
Induction for

Negative
Emotion

Mean Arousal of
Induction for

Negative
Emotion

Result of
Validation

Reason for Removal
Subject

1 M 25 16 9 9 1.8 1 ✔ -
2 M 24 22 6.8 6.2 3.6 2 ✘ Beck depression (21 < 22)

3 F 27 19 6.2 7.4 4.2 4.6 ✘
Mismatch of the control
question in the SAM test

4 M 24 4 7.4 7.6 2.4 2.6 ✔ -

5 M 24 0 5.8 5 4.4 5.6 ✘
Mismatch of the control
question in the SAM test

6 M 28 10 5.6 5.4 2 1.6 ✘
The desired lack of

induction in the positive
emotional class

7 M 28 13 7.2 7.4 3.8 3.8 ✘
The desired lack of

induction in the negative
emotional class

8 M 20 19 7.8 7.4 2.8 3 ✔ -

9 M 26 9 7.4 7 3.4 5.4 ✘
The desired lack of

induction in the negative
emotional class

10 F 23 9 6.8 6.6 3.8 3.2 ✘
The desired lack of

induction in the negative
emotional class

11 F 25 22 7.8 8 4.5 3 ✘ Beck depression (21 < 22)
12 F 27 1 8.6 8.6 2 1.2 ✔ -
13 F 29 9 6 6 2 1.2 ✔ -
14 M 26 8 8 8 1.8 1.8 ✔ -
15 F 25 12 - - - - ✘ Motion noise
16 M 27 0 7.4 8 1.8 2 ✔ -
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duction in the positive 

emotional class 

7 M 28 13 7.2 7.4 3.8 3.8 ✘ 
The desired lack of in-
duction in the nega-
tive emotional class 

8 M 20 19 7.8 7.4 2.8 3 ✔ - 

9 M 26 9 7.4 7 3.4 5.4 ✘ 
The desired lack of in-
duction in the nega-
tive emotional class 

10 F 23 9 6.8 6.6 3.8 3.2 ✘ 
The desired lack of in-
duction in the nega-
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11 F 25 22 7.8 8 4.5 3 ✘ 
Beck depression (21 < 

22) 
12 F 27 1 8.6 8.6 2 1.2 ✔ - 
13 F 29 9 6 6 2 1.2 ✔ - 
14 M 26 8 8 8 1.8 1.8 ✔ - 
15 F 25 12 - - - - ✘ Motion noise 
16 M 27 0 7.4 8 1.8 2 ✔ - 
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Table 2. The sequence and musical genres employed for eliciting emotional responses.

Emotion Sign and
Music Number

The Type of Emotion
Created in the Subject The Style of the Music

N1 Negative Advance income of Isfahan
P1 Positive Azari 6/8

N2 Negative Advance income of
Homayoun

P2 Positive Azari 6/8
P3 Positive Bandari 6/8
N3 Negative Afshari piece
N4 Negative Advance income of Isfahan
P4 Positive Persian 6/8
N5 Negative Advance income of Dashti
P5 Positive Bandari 6/8
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3.2. Preprocessing

In the preprocessing of EEG signals, a multi-step approach was employed to ensure
the integrity and quality of the data. Initially, a notch filter was applied to remove the
50 Hz frequency of the power supply, which is a common source of electrical interference
in EEG recordings. Subsequently, a Finite Impulse Response (FIR) filter was utilized within
the EEGlab environment, with a passband set between 0.5 and 45 Hz. This filtering range
was chosen to retain the frequency components most relevant to cognitive processes while
excluding high-frequency noise and slow drifts. Following the filtering, Independent
Component Analysis (ICA) was conducted using the “runica” command, a standard
procedure in EEGlab for isolating and removing artifacts from the EEG data. ICA is
particularly effective in identifying components associated with eye movements and blinks,
as well as other non-brain activities. The next step in the preprocessing pipeline involved
the visual inspection of the data to manually identify and remove any remaining artifacts
from muscle movements or other sources of noise. The careful procedure guaranteed that
the resulting EEG data were devoid of artifacts and appropriate for further analysis.
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Because the first part of each 60 s signal in the positive and negative classes may be
affected by the previous event, we removed the first 10 s [44]. Also, we removed the last
10 s due to lack of specific feeling or in other words saturation of emotions in the second
half of the signals. Therefore, the final signal for each of the positive and negative classes
was 200 s. For the neutral class, no deletions were made, and considering that the signal
was recorded eight times without playing music, we had 120 s of data for the neutral
class. Figure 4 illustrates that the neutral class has fewer data points compared to the
positive and negative classes, leading to a data imbalance. This imbalance can potentially
cause overfitting and introduce bias into classification results, reducing overall accuracy.
To address the issue of class imbalance, we employed overlapping techniques. During
this procedure, epochs corresponding to each emotion were merged to create an extended
continuous signal. Rectangular windows with predetermined lengths and overlaps were
then applied to ensure that the number of epochs gathered for each emotion category
was equalized.

In the proposed method, each channel contains 200 s of signals for both the positive
and negative classes, and 120 s for the neutral class. To prevent overfitting, the overlap
method segmented the data into 3 s sections with a 70% overlap for the positive and
negative classes, and an 86% overlap for the neutral class, compensating for fewer data
points in the neutral class. Based on the sampling rate, segmenting each channel resulted
in 219 × 750 data points for both the positive and negative classes, and 208 × 750 data
points for the neutral class. With 7 subjects and 19 channels involved, the final dimensions
of the input tensor were (7 × 219) × 750 × 19 for the positive and negative classes, and
(7 × 208) × 750 × 19 for the neutral class. This amounted to 1533 matrices of 750 × 19 for
the positive and negative classes and 1456 matrices of 750 × 19 for the neutral class.

During the final step of preprocessing, the signal underwent decomposition into
frequency bands delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (30–45 Hz) using an FIR filter with an order of 800. The specific ranges for each
band were selected subjectively. The entire frequency range (all-band) was 0.5 to 45 Hz.

3.3. MCCSP

In the proposed study, the CSP algorithm provides inputs to feature extraction meth-
ods. This study employs the MCCSP algorithm, which extends spatial patterns to data com-
prising multiple classes [79,80]. Unlike two-class CSPs, MCCSPs involve additional steps,
including class-specific covariance matrix calculations, combining these into a multi-class
covariance matrix, generalizing spatial filters across classes, and performing projections
for each class to ensure multi-class discrimination. The main idea of this algorithm is
to increase the disparity between classes of EEG data by using a projection matrix that
converts the data into a spatial space with fewer dimensions [81]. The flowchart of the
MCCSP process is shown in Figure 6.

Given our objective to categorize EEG signals based on emotions into three classes,
positive, negative, and neutral, we initially subtract the mean from the raw EEG data of
each class. This results in [Xi,j]T×C for i = 1, 2, 3 and j = 1, 2, . . . , N, where i and j are the
index of the class number and sample number, respectively. Here, T indicates the number of
samples in each segment, C stands for the number of EEG channels, and N is the maximum
number of samples according to the number of classes (for first and second classes—positive
and negative—N = 1533, and for third class—neutral—N = 1456). This procedure, known
as common average referencing, is typically carried out to eliminate noise. Subsequently,
we calculate the covariance matrix for each class as shown in Equation (1):

Ri =
N

∑
j=1

Xi,j
TXi,j,

{
i = 1, 2, 3

j = 1, 2, . . . , N
(1)

For each of the three classes, denoted by the index i, we compute a distinct covariance
matrix. The notation XT represents the transpose of matrix X. The combined covariance
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matrix is then derived by summing the individual covariance matrices across all classes as
shown in Equation (2):

R =
3

∑
i=1

Ri, (2)
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Decomposition of the combined covariance matrix to obtain its eigenvalues and
eigenvectors is outlined in Equation (3):

R = U0ΛU0
T , (3)

The matrix U0 is an C × C unitary matrix that holds the principal components, and Λ
is a C × C diagonal matrix with the eigenvalues. Consequently, we construct the whitening
transformation matrix as presented in Equation (4):

W = Λ−1/2U0
T , (4)

This procedure identifies the components associated with non-zero eigenvalues. We
then transform the covariance matrix Ri into Si using the mapping defined below:

Si = WRiWT , (5)

The variable i denotes the class number. We determine the spatial values and vectors
of the covariance matrix within the new space Si for class i in the following manner. The
eigen decomposition of the covariance matrix Si in this new space for the i-th class is
expressed as Equation (6):

Si = UiΛiUi
T , i = 1, 2, 3 (6)

The matrix Ui is the common principal components matrix for class i. We select m
principal components from Si that correspond to the largest eigenvalues, and similarly,
m principal components associated with the smallest eigenvalues are chosen, which are
represented by Us

i . The spatial filter for the i-th class is then formulated as Equation (7):

SFi = (Us
i )

TW, i = 1, 2, 3 (7)

where SFi denotes the spatial filter for class i. Following the acquisition of this spatial filter,
we can express the decomposition of Xi,j as Equation (8):

Xi = SPiZi, i = 1, 2, 3 (8)
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The term SPi signifies the pseudoinverse of SFi, which is interpreted as the spatial
patterns matrix for the i-th class. The variable Zi represents a new time series created by
projecting Xi,j onto the CSP space, and this relationship is formulated as follows:

Zi = SFiXi,j, j = 1, 2, . . . , N (9)

where Xi represents the EEG data for the i-th class, and SFi is the associated spatial filter
obtained from Equation (7). Zi, which is the output of the MCCSP algorithm, is used as
input for the next step.

We iterate the procedure across all emotion classes to acquire spatial filters for each
one. Then, utilizing these spatial patterns, we extract feature vectors for every class, which
serve as the output from the MCCSP method. The core principle of MCCSP, when applied
to more than two conditions, is its ability to calculate spatial patterns for an individual
class in contrast to all other conditions. The MCCSP algorithm functions similarly to CSP,
aiming to minimize variance across all classes except the target class, while maximizing
variance within the target class. This process enables MCCSP to yield information that is
more easily distinguishable between classes.

The output dimensions of the MCCSP remain unchanged and no dimension reduction
has taken place. In the following phases, we used the results from the MCCSP as a
foundation for our feature extraction techniques.

3.4. Ensemble Model

Our ensemble learning framework employs a parallel structure, with identical datasets
shared across three sub-networks CNN-Autoencoder (CNN-AE), as depicted in Figure 7.
Each sub-network processes the data through convolutional layers with 16 filters in the
first layer and 8 filters in the second layer, followed by maximum pooling. The outputs of
these layers provide encoded features, which are then processed by the autoencoders. The
first section of the ensemble model consists of three autoencoders, each receiving the same
input data. The encoded features from these autoencoders are flattened and concatenated.
This design ensures that the ensemble model effectively captures the complexity of EEG
signals for emotion recognition, enhancing robustness and accuracy. The concatenated
features are then input into a fully connected network with 128 neurons. This network
reduces the feature dimensionality before passing the data through a SoftMax layer with
3 neurons, each representing one of the three emotional states: positive, negative, and
neutral. Key aspects of our ensemble learning approach include using a shared dataset
to train all three deep networks, employing a parallel training structure, and utilizing a
stacking method where CNN-AEs are trained first, and their outputs are concatenated and
fed into the meta-learner (fully connected network). In the training process, 70% of the
data were used for training, 15% for testing, and 15% for validation.

An autoencoder is a type of neural network that uses backpropagation to transform
low-dimensional input data into high-dimensional representations by extracting essential
information. By minimizing the reconstruction loss between the input and the output, the
network creates a compressed representation in its middle layer. The architecture consists
of input layers, hidden layers, and output layers, as depicted in Figure 8. The portion of the
network from input to hidden layer is termed the “encoder network”, while the segment
from hidden layer to output layer is the “decoder network” [82]. Both input and output
layers share the same dimensions.

Our proposed encoder network comprises a set of two convolutional blocks that
process the MCCSP outputs. Each block contains a convolutional layer with 3 × 3 and
2 × 2 sized kernels, followed by ReLU activation and max-pooling layers. The hidden
layer then holds the compressed output, capturing the essential features in a feature
tensor. Finally, the decoder network reconstructs the feature tensor using up-sampling
and convolutional blocks, which include transpose convolutional layers, ReLU activation,
and up-sampling layers. The optimizer used was Adam, and the model was trained over
a total of 10 epochs. The transpose convolutional layer operates similarly to a regular
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convolutional layer but in reverse, effectively increasing the dimensionality of input layers.
The autoencoder is trained by minimizing the reconstruction loss function between the
original and the reconstructed data. Further details about the autoencoder network are
provided in Table 3.
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Table 3. The details of the autoencoder network architecture.

L Layer Type Activation
Function Output Shape Size of Kernel

and Pooling
Number of

Filters
Padding

(Size: Same)

0–1 Convolution 2-D ReLU (750, 19, 16) 3 × 3 16 Yes
1–2 Max-pooling 2-D - (375, 10, 16) 2 × 2 - Yes
2–3 Convolution 2-D ReLU (375, 10, 8) 2 × 2 8 Yes
3–4 Max-pooling 2-D - (188, 5, 8) 1 2 × 2 - Yes
4–5 T. Convolution 2-D 2 RuLU (188, 5, 8) 2 × 2 8 Yes
5–6 Up-sampling 2-D - (375, 10, 8) 2 × 2 - Yes
6–7 T. Convolution 2-D ReLU (375, 10, 16) 3 × 3 16 Yes
7–8 Up-sampling 2-D - (750, 19, 16) 2 × 2 - Yes
8–9 T. Convolution 2-D Sigmoid (750, 19) 3 × 3 1 Yes

1 Feature tensor dimension, 2 Transpose Convolution 2-D.

The features extracted from the ensembled autoencoders are reshaped into vectors.
Then, these three vectors are concatenated and fed into a fully connected network with
128 neurons. The final output of this network, after passing through the last layer with
3 neurons, is ready for classification. This process is summarized in Table 4.
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Table 4. The details of the output of ensemble model.

Layer Type Activation Function Output Shape

Flatten - (7520, 1)
Concatenate - (22,560, 1)

Fully connected ReLU (128, 1)
Fully connected SoftMax (3, 1)

4. Results

In this section, the outcomes of the proposed model will be revealed and contrasted
with earlier research. All pertinent simulations were executed on a computer system that
includes a Core i7 processor, and 16 GB of RAM (4800 MHz).

As mentioned, we used MCCSP as the initial processing. Figure 9 illustrates the
topographical distribution of brain signals post-MCCSP processing, categorized by different
emotional states and frequency bands. In this figure, each row corresponds to a distinct
emotional state (positive, negative, and neutral), while each column represents a specific
frequency band (delta, theta, alpha, beta, and gamma). The application of a CSP algorithm
within the MCCSP framework has a notable impact on the variance of EEG channels, either
amplifying or attenuating the signal variance within specific frequency ranges for each
emotional state. For instance, in the alpha band, the frontal region exhibits significant
variance in the positive emotional state. Conversely, the frontal and central regions display
notable variance in the negative emotional state. In the neutral state, variance is prominently
observed in the central region. This variation in signal power, depicted by the color scale
from blue (indicating negative variance) to red (indicating positive variance), underscores
the spatial modulation of brain activity associated with different emotional states and
frequency bands. Note that the signal was normalized between −1 and 1 to be comparable.
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Figure 10 illustrates the accuracy and error of the suggested approach for the auto-
matic identification of three emotions, positive, negative, and neutral, for both training
and validation sets on 10 iterations of the algorithm. This algorithm is founded on the
combination of MCCSP and autoencoder networks. It is widely recognized that the validity
of the proposed method was established in four iterations of the algorithm, achieving a 99%
accuracy rate. Furthermore, the network error was significantly decreased from 0.5 to 0.001.

Figure 11 presents the receiver operating characteristic (ROC) analysis and the confu-
sion matrix for the automatic detection of three emotions. As per this figure (Figure 11a),
the optimal placement of the curves for all three emotions lies between 0.9 and 1, signifying
the optimal performance of the proposed method’s classification process. Moreover, as
per the confusion matrix (Figure 11b), only two instances of negative emotion and one
instance of neutral emotion were misclassified, suggesting that the proposed network was
highly effective in distinguishing samples of each class. Note that these figures illustrate
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the all-band situation. Figure 12 is a display of the data of three classes, positive, negative,
and neutral, in different layers of the autoencoder network. As can be seen, the input layer
data, the output of the third filter from the first CNN layer, and the output of the third filter
from the second CNN layer in the autoencoder network for the three emotion classes are
shown as examples. By visually comparing the output of the second CNN layer among the
classes, the network’s ability to extract distinguishable features is clearly evident.
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To determine the importance of the activation function in the proposed method,
three other commonly used functions, namely Leaky-ReLU, Type-2 Fuzzy, and tanh, were
examined. The results of this examination are shown in Figure 13. As can be seen, all
functions led to an accuracy of over 97%. Among these functions, ReLU and Leaky-ReLU
achieved accuracies of 99.71% and 99.56%, respectively, indicating the compatibility of these
functions with the proposed method (Figure 13a). However, in examining the time required
to train the network, the ReLU function required the least time among the functions
(Figure 13b). The ReLU function with 35 s and the Type-2 Fuzzy function, respectively, had
the least and most time spent on training the network in the proposed method.

Figure 14 presents the t-distributed stochastic neighbor embedding (t-SNE) diagram
for the three classes of emotions across various network layers. As depicted, nearly all
samples from the three classes are entirely distinct from each other in the final layer of
the network.

In addition, the suggested approach underwent testing in a simulated noise-filled
environment for additional assessment. Gaussian white noise was incorporated into the
collected EEG data at different signal-to-noise ratios (SNRs) for this purpose. The results
acquired are illustrated in Table 5. Considering the susceptibility of EEG signals to noise,
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the network employed for categorizing emotions must be resilient to noise for it to be
applicable in real-time scenarios. Figure 15 shows the t-SNE diagram of three emotion
classes in different layers of the proposed method at −4 dB SNR. As can be seen, the
suggested network can guarantee superior classification precision in environments with
noise and is suitable for use in BCI applications.
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Table 5. The accuracy of the proposed method at different SNRs.

SNR (dB) Accuracy (%)

−4 97.73

0 97.91

1 97.94

10 98.54

20 98.82

Also, the performance of the proposed method was tested in different frequency
bands to examine the amount of information related to positive, negative, and neutral
emotions in these bands. The results of this case are shown in Table 6. As can be seen, the
highest classification accuracy is related to the alpha frequency band (99.96%). The speed of
training and testing the network is also noteworthy, which for all frequency band divisions
is between 36 and 42 s.

Table 6. The performance of the proposed method in different frequency bands.

Freq. Band Acc. Pre. Rec. F1 Kappa
Time (s)

Train Test

Delta 98.97 99.03 99.02 99.01 98.45 35.89 0.35
Theta 98.97 98.92 98.94 98.93 98.45 39.94 0.34
Alpha 99.96 99.96 99.96 99.96 99.93 36.22 0.33
Beta 99.52 99.49 99.51 99.49 99.27 35.86 0.32

Gamma 99.64 99.59 99.64 99.62 99.45 35.38 0.35
All-bands 99.56 99.53 99.56 99.54 99.33 40.98 0.35

5. Discussion

As we have seen, deep learning can be applied in various parts of human life, including
assessment [83], mental health [84,85], feature extraction [86], and emotion recognition [87].
In this study, we introduced a novel approach to classifying emotions from EEG signals
into three categories: positive, negative, and neutral. We collected a custom EEG dataset,
specifically designed to capture emotional responses induced by musical stimuli. Utilizing
the MCCSP technique for initial signal processing, we enhanced feature extraction by
identifying spatial patterns across different classes. This method allowed us to capture
the intricate spatial–temporal dynamics of EEG signals, which are crucial for accurate
emotion recognition. Our ensemble model, comprising three autoencoders with CNN
layers, demonstrated significant improvements over traditional methods. The parallel
structure and stacking method employed in our framework enabled the model to effec-
tively handle the complexity and high dimensionality of EEG data. This approach not
only reduced the need for manual feature engineering but also enhanced the robustness
and accuracy of emotion classification. Our proposed method achieved an impressive
classification accuracy of 99.5%, outperforming previous studies and demonstrating its
potential for real-time BCI applications. The key strengths of our method include its ability
to automatically extract and process complex features, resilience to noise, and superior
performance in classifying emotions across various frequency bands. These findings align
with recent developments in CSP-based techniques, which have proven useful in multiple
BCI applications [88–90].

Some studies have shown that higher frequency spectrums such as beta and gamma
are more effective in identifying emotions [91,92]. Therefore, we divide the beta and gamma
frequency bands into sub-bands beta1 (13–21 Hz), beta2 (21–30 Hz), gamma1 (30–38 Hz),
and gamma2 (38–45 Hz) to further investigate the performance of the proposed method
in these spectrums. Table 7 shows the result of this investigation. As can be seen, the
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gamma2 frequency sub-band shows the highest accuracy for classifying three emotions
(97.94%), which is comparable to the accuracy of other bands (Table 6). However, the beta
sub-bands resulted in lower accuracy, which is still noteworthy for a three-class problem.
Although both beta and gamma bands play a role in experiencing emotions and processing
information, the gamma band is more specifically associated with complex information
processing and sensory coherence, which can include deep emotional experiences [93]. This
might explain the lower accuracy associated with the beta band.

Table 7. The performance of the proposed method in beta, and gamma frequency sub-bands.

Freq. Band Acc. Pre. Rec. F1 Kappa

Beta1 75.70 76.09 75.30 75.48 63.59
Beta2 77.47 78.35 78.61 78.48 66.11

Gamma1 92.78 92.62 92.72 92.65 89.15
Gamma2 97.94 97.92 98.05 97.98 96.90

Table 8 contrasts previous studies and their respective methods with the proposed
model. According to Table 8, the proposed method achieved the highest accuracy compared
to earlier works. However, this comparison may not be entirely fair as the databases used
are not the same.

Table 8. Comparing the performance of prior research with the proposed model.

Study Stimulus Ensemble Method Number of Emotions
Considered Acc. (%)

Bhatti et al. [94] Music WT + MLP 4 78.11
Subasi et al. [95] Video clip RFE + SVM 3 93
Salama et al. [75] Video clip 3D-CNN 2 96.46

Ashokkumar et al. [76] Video clip RNN 2 94.67
Iyer et al. [77] Video clip CNN + LSTM + Hybrid 3 97.16

Bagherzadeh et al. [80] Video clip AlexNet + VGG-19 + Inception-
v1 + ResNet-18 + Inception-v3 4 96.90

Proposed method Music MCCSP + CNN-AE 3 99.5

To fairly compare the performance of the proposed method with other methods, it
is essential to apply all of them to the same dataset. For this purpose, we developed
another approach, referred to as the traditional method, for the sake of comparison with
our proposed method. The framework and extracted features of this method are depicted
in Figure 16 and Table 9, respectively. The features, after extraction, were tested for their
significance using the Kruskal–Wallis statistical test with a confidence level of 0.05. For
the classification section, three prevalent classifiers, SVM, KNN, and MLP, were employed
in a bootstrap ensemble model to yield the highest accuracy. The kernel of the SVM was
linear. The number of neighbors for the KNN and the number of hidden layers for the MLP
network were set to 5 and 35, respectively. To delve deeper, the accuracy of the traditional
ensemble method was evaluated across various frequency bands and documented in
Table 10. As per the table, the highest accuracy is associated with the beta frequency
band (95.90%). By juxtaposing Tables 6 and 10, we deduce that our suggested method
outperforms the traditional method across different frequency bands, particularly all-bands
(approximately 5% more).

Table 11 assesses the proposed model against previous studies based on this dataset to
gauge its effectiveness. The proposed emotion-recognition method achieved a classification
accuracy of approximately 99.44 ± 0.39%, while studies [13,28] reported accuracies of
around 95.23% and 98%, respectively.
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Table 9. Extracted features in traditional method.

Features Extracted from MCCSP Output Number

Variance of the samples for each channel 19
Mean autocorrelation across channels 1

Mean entropy of autocorrelation across channels 1
Autocorrelation zero-crossings across channels 1

Statistical features * of DWT 10
Total 32

* The mean, standard deviation, median, maximum, minimum, absolute sum, and the moments of the second
(variance), third (skewness), fourth (kurtosis), and fifth orders.

Table 10. The performance of the traditional ensemble method in different frequency bands.

Freq. Band Acc. Pre. Rec. F1 Kappa

Delta 94.58 94.53 94.61 94.55 91.87
Theta 93.47 93.53 93.43 93.46 90.22
Alpha 93.58 93.81 93.61 93.55 90.39
Beta 95.90 95.89 95.84 95.85 93.86

Gamma 94.24 94.59 94.59 94.48 91.38
All-bands 94.14 93.86 93.79 93.80 91.22

Table 11. Performance comparison of prior research and the proposed model on the same dataset.

Study Method Number of Emotions
Considered Acc. (%)

Sheykhivand et al. [28] CNN-LSTM 3 95.23
Baradaran et al. [13] Customized CNN 3 98
Baradaran et al. [96] CNN + Type-2 Fuzzy 2 98.2

Traditional method MCCSP + Hand-Crafted
Features 3 94.14

Proposed method MCCSP + CNN-AE 3 99.44 ± 0.39

6. Conclusions

In this study, we present a new framework for the automatic detection of emotions
from EEG signals by integrating MCCSP and an ensemble network consisting of three
parallel autoencoders with CNN layers and ReLU activation functions. For this purpose, we
collected a standard dataset, comprising EEG signals of individuals listening to music. The
proposed model demonstrated a remarkable accuracy of 99.44 ± 0.39% in distinguishing
between positive, negative, and neutral emotional classes. The high level of accuracy is
particularly important for applications in neuromarketing and user experience design,
where accurate emotion detection is crucial. In these fields, understanding and responding
to users’ emotional states with precision can greatly enhance product engagement and
customer satisfaction [96,97].

In addition, the proposed method exhibited significant robustness in a simulated
noisy environment, maintaining accuracy above 97% even at an SNR of −4 dB. This
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robustness is essential for real-world applications, such as adaptive learning systems,
where environmental noise can be a common challenge [98]. Adaptive learning systems
personalize the learning experience based on the learner’s performance, behavior, and
emotional state. Accurate emotion recognition helps these systems adapt content and
teaching methods to keep students engaged and motivated.

One of the notable strengths of our model is its rapid processing speed for test data,
with an average detection time of approximately 0.35 s. This swift response is crucial for
applications in mental health monitoring, where timely detection of emotional states can
significantly impact the effectiveness of interventions. Mental health monitoring systems
can benefit from such rapid emotion recognition by providing real-time feedback and
support to individuals. For instance, detecting signs of stress, anxiety, or depression early
allows for immediate intervention, thereby improving mental health outcomes. The ability
to swiftly and accurately detect emotional states ensures that these systems can respond
to changes in a person’s emotional well-being promptly, making them more effective and
reliable in practical scenarios [99,100].

Despite our study’s promising results, there are some limitations. Firstly, the number
of subjects in our dataset was relatively small, which might affect the generalizability of
our findings. In order to address this, future research should aim to collect larger and more
diverse datasets. Expanding the dataset not only increases the statistical power of the study
but also enhances the robustness of the model across different populations and conditions.

Secondly, our analyses were not gender-based, which could overlook potential gen-
der differences in emotional responses. To overcome this limitation, future studies should
include a balanced representation of genders and perform gender-specific analyses. This ap-
proach would help in understanding any gender-related variations in emotion recognition
and improving the model’s accuracy and applicability for all genders.

Thirdly, the selection of musical stimuli was limited to Iranian songs due to cultural
preferences and availability. This restriction may affect the generalizability of our findings
to other cultural contexts. To address this limitation, future research should consider
including a diverse range of musical stimuli from different cultures. This approach would
help in understanding how different types of music influence emotional responses and
provide evidence that the model can generalize well across various cultural backgrounds.
Additionally, collaborating with researchers from different cultural contexts can provide a
richer and more diverse dataset, enhancing the model’s robustness and applicability.
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