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ABSTRACT Accurately predicting stock prices remains a formidable challenge in financial markets.
Traditional predictive models often aggregate data frommultiple companies, failing to account for the unique
characteristics of each firm, which can hinder the model’s ability to identify company-specific patterns.
Moreover, existing research on stock price prediction frequently trains and tests models within the same
group of companies, neglecting to assess their generalizability on ‘Out-of-Sample’ companies. This study
addresses these limitations by employing BERT to encode business descriptions into vectors, capturing the
distinctive attributes of each company.We further enhance the predictive modeling framework by developing
features that describe the percentage change of existing indicators, adding significant novelty to the existing
research. Additionally, we apply a Restricted Boltzmann Machine (RBM) for dimensionality reduction after
the BERT encoding process. In our approach, both the technical indicators and the vectorized descriptions are
treated as distinct elements within the transformer encoder. By integrating these representations, our model
is better equipped to differentiate between firms and recognize their individual patterns. The proposed model
demonstrates superior performance over baseline models, particularly when tested on ‘Out-of-Sample’
companies, highlighting its ability to learn, understand, and analyze company-specific descriptions for more
accurate predictions. This research offers novel insights into addressing the heterogeneity in stock price
prediction.

INDEX TERMS Bert, BiLSTM, financial markets, heterogeneity analysis, predictive modeling, restricted
Boltzmann machine (RBM), stock prediction, technical indicators, textual data, transfer learning,
transformer.

I. INTRODUCTION
The accurate prediction of stock prices has long been a critical
focus in financial markets due to its significant implications
for investment strategies and economic forecasting [1].
This area of research has seen substantial development,
with numerous models and approaches being proposed over
the years to enhance prediction accuracy [2]. Traditional
statistical methods, such as time series analysis and econo-
metric models, have been widely used in this domain [3].
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However, the inherent complexity and volatility of financial
markets often limit the predictive power of these conventional
approaches.

In recent years, the advent of machine learning and deep
learning techniques [4] has sparked renewed interest in
stock price prediction [5]. These advanced methodologies
offer the ability to learn from large volumes of data,
uncovering intricate patterns and relationships that are not
easily detectable by traditional models [6]. Among these
approaches, the application of Natural Language Processing
(NLP) and transformer models has gained considerable
attention [7]. These models excel at understanding and
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processing textual data, enabling more nuanced analysis of
market sentiment, news articles, and other relevant text-based
inputs that influence stock prices [8].

Despite the progress made, much of the existing work
in stock price prediction continues to aggregate data from
multiple companies without differentiating between the
unique characteristics of each firm [9]. This approach, while
increasing the dataset size and potentially improving general
model performance, tends to overlook the distinct patterns
that are specific to individual companies. Although some
research has attempted to address this issue by grouping
similar companies through clustering techniques [10], these
methods still fall short of fully capturing the unique
business models, market positions, and defining attributes of
individual companies.

To address this gap, we propose a novel approach that
enhances stock price prediction by explicitly distinguishing
between companies using vectorized business descriptions.
Our method introduces a new way of integrating textual
descriptions as static, descriptive vectors that encapsulate the
specific characteristics of each firm, such as industry sector,
geographic location, and market scale. These vectors are
embedded into predictive modeling frameworks, enabling the
model to differentiate between companies more effectively
and learn from the unique patterns associated with each firm.

The core contributions of this study are twofold. First,
we introduce a novel approach by incorporating textual
business descriptions into the model, providing a richer and
more detailed representation of each company. This allows
the model to capture the inherent differences and similarities
between firms, leading to more accurate predictions. Second,
we rigorously test and compare the performance of the model
on unseen companies with new descriptions, highlighting the
model’s ability to generalize and apply learned patterns to
new, out-of-sample data. This underscores the potential of
transfer learning in stock price prediction, demonstrating how
the model can leverage learned knowledge to performwell on
new companies with different characteristics.

This paper is organized as follows: Section II provides a
comprehensive review of the relevant literature and previous
research that form the foundation of our study. Section III
offers an in-depth overview of the technical indicators,
deep learning models, and Word2Vec techniques employed
in our experiments. Section IV dives into the architecture
of both the proposed model and the baseline model used
in this study. Section V presents the experimental results
and compares them with findings from existing literature.
SectionVI discusses the conclusions drawn from our research
and suggests potential directions for future research on the
heterogeneity of the stock market.

II. RELATED WORK
The prediction of stock prices has been a longstanding chal-
lenge in financial markets, drawing considerable attention
from researchers and practitioners alike [11]. Over the years,
various methodologies have been proposed and refined,

ranging from traditional statistical techniques to advanced
machine learning models [12].

A. TECHNICAL INDICATORS
Technical indicators, mathematical tools derived from his-
torical price data such as previous open, high, low, close
prices, and trading volumes, are essential for capturing
trends, momentum, and other key aspects of market behavior.
As summarized by [13], these indicators play a crucial
role in price movement analysis by offering insights into
various market dynamics. Widely utilized in deep learning
models for stock price prediction, indicators like Moving
Averages, Relative Strength Index (RSI), and Moving
Average Convergence Divergence (MACD) provide valuable
features that help these models identify relevant patterns
in historical data [14]. Studies, including those by [15],
[16], and [17], have shown that incorporating technical
indicators into predictive models can enhance their accuracy.
However, as noted by [5], the improvements achieved through
these indicators alone are often marginal. Consequently,
recent research has focused on developing more sophisticated
models, such as those proposed by [18], [19], and [20],
which integrate technical indicators with additional data
sources and advanced methodologies to better capture the
complex dynamics of financial markets, thereby achieving
more substantial gains in prediction accuracy.

B. LONG SHORT-TERM MEMORY
Long Short-Term Memory (LSTM) networks, a type of
recurrent neural network (RNN), are particularly well-suited
for time series forecasting, including stock price prediction,
due to their ability to learn and retain long-term dependencies
in sequential data [21]. Research consistently demonstrates
that LSTM models outperform traditional machine learning
methods in capturing the complex temporal dynamics of
stock prices. For instance, works such as [22], [23], and [24]
indicate that LSTM models achieve superior predictive
accuracy by effectively modeling the nonlinear relationships
inherent in financial time series data. Furthermore, studies
like [25], [26], and [27] highlight the advantages of hybrid
models that incorporate LSTM units, demonstrating that
these models yield outstanding results by combining the
strengths of LSTMwith other methods, such as convolutional
neural networks (CNNs) or attention mechanisms. These
hybrid approaches not only improve predictive performance
but also enhance the model’s robustness and generalization
capabilities, making them highly effective in the volatile and
complex domain of stock price prediction [28].

C. TEXT ENCODING
Text encoding is the process of converting textual data into
a numerical format that can be understood and processed
by machine learning models [7]. This transformation is
crucial becausemodels cannot directly interpret raw text; they
require the text to be encoded into vectors or other numerical
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representations [29]. One of the most advanced methods for
text encoding in recent years is the BERT (Bidirectional
Encoder Representations from Transformers) model [30].
BERT, which utilizes the transformer architecture, has
dramatically improved the understanding of context and
semantics in text data [31]. It encodes text by considering the
bidirectional context, meaning it takes into account both the
preceding and following words in a sentence, allowing for
a deeper and more nuanced understanding of language [32].
Studies such as [33], [34], and [35] have successfully
employed BERT for stock price prediction, demonstrating
that the model’s ability to extract features from textual
sources like news articles and financial reports significantly
enhances predictive accuracy. These works have shown that
using text encoding with BERT leads to more informed
and accurate predictions in the volatile domain of financial
markets.

D. FEATURE EXTRACTION
Feature extraction is a critical process in machine learning,
particularly in the context of unsupervised learning, where
models identify and learn patterns from data without labeled
outputs [36]. Unsupervised learning techniques enable the
discovery of hidden structures within the data, which can
then be used to improve the performance of predictive
models as presented by [37], [38], and [39]. One powerful
approach to feature extraction in this domain is the use of
Restricted Boltzmann Machines (RBMs) [40]. RBMs are
stochastic neural networks designed to learn a probability
distribution over input data, making them highly effective
for unsupervised feature learning [41]. They are capable
of uncovering latent patterns in complex datasets, which
can then be utilized as informative inputs for downstream
tasks [42]. Research has shown that unsupervised learning
techniques, such as clustering, have been effectively applied
in studies [43], [44], and [45], where they have been
used to categorize financial data into meaningful groups.
Additionally, works like [46], [47], and [48] have employed
RBMs for feature extraction in financial data, demonstrating
that these models can significantly enhance the accuracy
and performance of stock price prediction models by
capturing underlying patterns that other methods might
miss.

E. TRANSFORMER
The Transformer model, introduced by [49], is a deep learn-
ing architecture that has revolutionized the field of Natural
Language Processing (NLP) by enabling efficient handling
of sequential data [50]. Unlike traditional models that
process data sequentially, the Transformer uses self-attention
mechanisms to capture the relationships between words in
a sentence, regardless of their position [51]. This allows
the model to process sequences in parallel, significantly
improving computational efficiency and performance [52].
In the context of stock prediction, the Transformer model

offers several advantages, particularly in its ability to
capture complex dependencies within financial time series
data [53]. By leveraging its self-attention mechanism, the
Transformer can effectively model both short-term and long-
term relationships in stock prices, leading to more accurate
predictions.

Studies such as [54], [55], and [56] have successfully
applied Transformermodels to stock price prediction, demon-
strating that these models outperform traditional methods by
better capturing the intricate patterns and trends in financial
data. These works highlight the Transformer’s ability to
enhance predictive accuracy and robustness, making it a
powerful tool in the highly volatile and dynamic field of
financial forecasting.

F. TIME-SERIES PREDICTION WITH DEEP LEARNING
Recent advancements in time series prediction and con-
trastive learning have led to the development of novel
methods that improve both accuracy and interpretability. [57]
introduced a dual-stage attention-based recurrent neural net-
work (DA-RNN), which addresses the challenges of selecting
relevant input features and capturing long-term dependencies
by employing an input attention mechanism and a tempo-
ral attention mechanism. This model has shown superior
prediction performance using datasets like SML 2010 and
NASDAQ 100. Building on the theme of improving time
series modeling, [58] presented AutoTCL, a parametric
augmentation framework for contrastive learning that fac-
torizes time series into informative and task-irrelevant parts,
applying adaptive transformations to enhance both univariate
and multivariate tasks. Similarly, [59] proposed InfoTS,
a method that utilizes information-aware augmentations
through a meta-learner network to select optimal augmenta-
tions, leading to improved performance in both forecasting
and classification. Together, these approaches demonstrate
significant advancements in time series forecasting and
classification, improving accuracy and generalization while
addressing the complexities inherent in temporal data.

Together, these advancements in technical indicators,
deep learning models, and feature extraction techniques
have pushed the boundaries of what is possible in stock
price prediction. The integration of these methods offers a
multifaceted approach to understanding and forecasting mar-
ket movements, with each component contributing unique
strengths to the predictive process.

III. METHODOLOGY
A. TECHNIQUE INDICATORS
This study leverages a set of basic and derived technical
indicators to analyze stock price movements and inform
trading decisions. The fundamental indicators used are the
Open, High, Low, and Close (OHLC) prices, as well as
tick volume and spread. These indicators form the basis for
generating an additional 44 features, categorized as follows
in Table 1.
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TABLE 1. List of indicators, labels, and number of indicators used.

1) SIMPLE MOVING AVERAGES (SMA)
The Simple Moving Average (SMA) is a widely used
technical indicator that smooths out price data by creating a
constantly updated average price. It helps in identifying the
direction of the trend over a specified period [60].

The SMA is calculated by taking the arithmetic mean of a
given set of prices over a specific number of periods.

SMAn(t) =
1
n

n−1∑
i=0

P(t − i) (1)

where:
• SMAn(t) is the Simple Moving Average at time t over
n periods.

• P(t − i) is the close price at time t − i.
• n is the number of periods over which the average is
calculated.

In this research the ‘mv100’, ‘mv50’, ‘mv9’ are moving
averages over 100, 50, and 9 periods, respectively. SMAs help
in smoothing out price data to identify trends over different
time frames.

2) BOLLINGER BANDS
Bollinger Bands consist of a set of lines plotted two
standard deviations (positively and negatively) away from a
simple moving average (SMA) of the price which provide
a relative definition of high and low prices of a financial
instrument [61].

Middle Band (MB): The middle band is the simple
moving average (SMA) of the close price, typically over
20 periods.

MB(t) = SMA20(t) =
1
20

19∑
i=0

P(t − i) (2)

Upper Band (UB): The upper band is calculated by adding
two standard deviations to the middle band.

UB(t) = MB(t) + 2 × σ20(t) (3)

where σ20(t) is the standard deviation of the close price over
20 periods.

Lower Band (LB): The lower band is calculated by
subtracting two standard deviations from the middle band.

LB(t) = MB(t) − 2 × σ20(t) (4)

The ‘bb_bbm’, ‘bb_bbh’, ‘bb_bbl’ represent the mid-
dle band (moving average), upper band, and lower band
respectively.

3) RELATIVE STRENGTH INDEX (RSI)
The Relative Strength Index (RSI) [62]is a momentum
oscillator that measures the speed and change of close price
movements. It is used to identify overbought or oversold
conditions in a market. The RSI oscillates between 0 and
100 and is typically used with a 14-period setting.

1) Calculate the average gains and losses over the
specified period (e.g., 14 or 50 periods).

2) Calculate the Relative Strength (RS):

RS =
Average Gain
Average Loss

(5)

3) Calculate the RSI:

RSI = 100 −

(
100

1 + RS

)
(6)

‘rsi14’, ‘rsi50’ are RSI over 14 and 50 periods, respec-
tively, measures the speed and change of close price
movements to identify overbought or oversold conditions.
‘rsimv9’ is a 9-period moving average of the 14-period RSI.

4) PRICE PERCENTAGE CHANGE FEATURES
‘f1’ to ‘f10’ calculate the percentage change between
different prices (open, close, high, low) and their shifts over
different periods.

f1 =

(
Close − Open

Open

)
× 100 (7)

f2 =

(
High − Low

Low

)
× 100 (8)

f3 =

(
Hight−1 − Lowt−1

Lowt−1

)
× 100 (9)

f4 =

(
Hight−2 − Lowt−2

Lowt−2

)
× 100 (10)

f5 =

(
Hight−3 − Lowt−3

Lowt−3

)
× 100 (11)

f6 =

(
Hight−4 − Lowt−4

Lowt−4

)
× 100 (12)

f7 =

(
High − Open

Open

)
× 100 (13)

f8 =

(
High − Close

Close

)
× 100 (14)

f9 =

(
Open − Low

Low

)
× 100 (15)

f10 =

(
Close − Low

Low

)
× 100 (16)

5) MOVING AVERAGE PERCENTAGE CHANGE FEATURES
‘f11’ to ‘f13’ calculate the percentage change between
the closing price and the moving averages (50-period, 9-
period, and 100-period, respectively). Features ‘f14’ to ‘f16’
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compute the percentage changes between different moving
averages themselves.

f11 =

(
Close − MV50

MV50

)
× 100 (17)

f12 =

(
Close − MV9

MV9

)
× 100 (18)

f13 =

(
Close − MV100

MV100

)
× 100 (19)

f14 =

(
MV9 − MV50

MV50

)
× 100 (20)

f15 =

(
MV9 − MV100

MV100

)
× 100 (21)

f16 =

(
MV50 − MV100

MV100

)
× 100 (22)

6) RSI PERCENTAGE CHANGE FEATURES
f17, f18’ calculate the percentage difference between dif-
ferent RSI values (rsi14, rsi50, rsimv9). f17 computes the
percentage change between the 14-period RSI and the 50-
period RSI, while f18 calculates the percentage change
between the 50-period RSI and a 9-period simple moving
average of the 14-period RSI.

f17 =

(
RSI14 − RSI50

RSI50

)
× 100 (23)

f18 =

(
RSI50 − RSImv9

RSImv9

)
× 100 (24)

7) BOLLINGER BAND PERCENTAGE CHANGE FEATURES
f19’ to ‘f23’ calculate the percentage difference between
the close price and Bollinger Bands (bb_bbm, bb_bbh,
bb_bbl), and between the bands themselves. Specifically, f19
computes the percentage change between the closing price
and the middle Bollinger Band (20)-period simple moving
average), f20 calculates the percentage change between
the closing price and the upper Bollinger Band, and f21
calculates the percentage change between the closing price
and the lower Bollinger Band. Additionally, f22 computes
the percentage change between the lower and upper Bollinger
Bands.

f19 =

(
Close − BBMiddle

BBMiddle

)
× 100 (25)

f20 =

(
Close − BBUpper

BBUpper

)
× 100 (26)

f21 =

(
Close − BBLower

BBLower

)
× 100 (27)

f22 =

(
BBLower − BBUpper

BBUpper

)
× 100 (28)

8) ROLLING MAXIMUM AND MINIMUM
‘f23’ to ‘f28’ calculate the percentage difference between
the close price and its rolling maximum or minimum
over different periods (20, 50, 100). Specifically, ‘f23’ to
‘f25’ compute the percentage change between the rolling

maximum closing prices over 20, 50, and 100 periods,
respectively, and the current closing price. Conversely, ‘f26’
to ‘f28’ calculate the percentage change between the rolling
minimum closing prices over the same periods and the current
closing price.

f23 =

(
max(Closet−20:t ) − Close

Close

)
× 100 (29)

f24 =

(
max(Closet−50:t ) − Close

Close

)
× 100 (30)

f25 =

(
max(Closet−100:t ) − Close

Close

)
× 100 (31)

f26 =

(
min(Closet−20:t ) − Close

Close

)
× 100 (32)

f27 =

(
min(Closet−50:t ) − Close

Close

)
× 100 (33)

f28 =

(
min(Closet−100:t ) − Close

Close

)
× 100 (34)

9) CLOSE PRICE SHIFTS
‘f29’ to ‘f33’ calculate the percentage change of the close
price compared to its previous values over different periods (1
to 5).’f29’ computes the percentage change from the closing
price of the previous day to the current closing price. Features
‘f30’ to ‘f33’ extend this calculation to the closing prices
from 2 to 5 days prior, respectively.

f29 =

(
Closet−1 − Close

Close

)
× 100 (35)

f30 =

(
Closet−2 − Close

Close

)
× 100 (36)

f31 =

(
Closet−3 − Close

Close

)
× 100 (37)

f32 =

(
Closet−4 − Close

Close

)
× 100 (38)

f33 =

(
Closet−5 − Close

Close

)
× 100 (39)

10) TRADING TIME
‘h1’ captures the hour of the day from the datetime values.
The second line creates a new column wd that captures the
day of the week (with Monday as 0 and Sunday as 6) from
the datetime values, which could be useful for identifying
patterns related to different weekdays.

h1 = Hour(datetime) (40)

wd = Weekday(datetime) (41)

B. BIDIRECTIONAL ENCODER REPRESENTATIONS FROM
TRANSFORMERS (BERT)
BERT is a pre-trained model that leverages the encoder
component of the Transformer architecture, distinguishing
itself from convolutional and recurrent neural networks. The
core strength of BERT lies in the powerful Transformer
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encoder, which allows the model to be extended to con-
siderable depths, thereby fully exploiting the properties of
deep neural networks and enhancing model accuracy. The
BERT model employs a multi-headed attention mechanism,
where the input vector Xa ∈ Rk undergoes multiple linear
transformations to generate different linear values, which
are then input into the attention block to compute attention
weights. This is mathematically represented as:

Att(Q,K ,V ) = Softmax
(
QKT
√
dk

)
V (42)

where h denotes the number of heads in the attention
mechanism. The final output of the multi-headed self-
attention mechanism is derived by concatenating the outputs
from each head and performing another linear transformation,
as expressed by:

Vl = Linear (Wl · concat(Att1,Att2, . . . ,Atth) + bl) (43)

Here,Q,K , and V are the word-embedding representations
of the input text, where Xa = Q = K = V . The similarity
between words is calculated using dot product, followed by
scaling by a factor 1

√
dk

to prevent excessively large values
that could adversely affect gradient backpropagation. This
is then followed by the application of the softmax function
to compute the attention weights, which are subsequently
multiplied by V to yield the attentional output Vl .
After obtaining Vl through the multi-headed attention

mechanism, a new vector Va = Vl + Xa is formed via a
residual connection. This vector Va is then normalized and
passed through a feedforward network, and the final output
of the Transformer is computed by applying another residual
connection, as shown below:

Vt = Feed(Wf Va + bf ) + Va (44)

In this equation, ‘‘Feed’’ denotes a linear function, and
the final output of the Transformer is represented by Vt .
The entire computation within the Transformer for any input
vector Xa is encapsulated by the expression ‘‘Trans.’’ The
BERT model itself is constructed by stacking multiple Trans-
former layers, allowing it to model complex dependencies
and capture deep contextual information within the text. This
deep architecture enables BERT to excel in a wide range of
natural language processing tasks.

C. RESTRICTED BOLTZMANN MACHINE (RBM)
Restricted Boltzmann Machines (RBMs) are stochastic neu-
ral networks that are particularly effective for unsupervised
learning, allowing them to learn a probability distribution
over a set of inputs. An RBM consists of two layers: a
visible layer (representing the input data) and a hidden layer
(capturing the underlying features). The connection between
the visible and hidden layers is undirected, and there are no
connections within a layer, making the architecture bipartite.

The energy function, which the RBMminimizes, is defined
as:

E(v, h) = −

∑
i

viai −
∑
j

hjbj −
∑
i,j

viWijhj (45)

where: vi and hj represent the binary states of the visible and
hidden units, respectively, ai and bj are the biases associated
with the visible and hidden units, Wij represents the weight
between visible unit i and hidden unit j.
The probability of a particular visible vector v is defined

as:

P(v) =
1
Z

∑
h

e−E(v,h) (46)

where Z is the partition function, calculated as:

Z =

∑
v,h

e−E(v,h) (47)

RBMs are typically trained using contrastive divergence,
an efficient approximation to maximum likelihood learning.
During training, the model updates the weights and biases to
minimize the difference between the data distribution and the
model distribution. The updates are computed as follows:

1Wij = ϵ
(
⟨vihj⟩data − ⟨vihj⟩model

)
(48)

1ai = ϵ (⟨vi⟩data − ⟨vi⟩model) (49)

1bj = ϵ
(
⟨hj⟩data − ⟨hj⟩model

)
(50)

where ϵ is the learning rate, and ⟨·⟩data and ⟨·⟩model
denote expectations under the data and model distributions,
respectively.

Once trained, the RBM can be used to extract features by
computing the hidden layer activations given the visible layer
inputs. The hidden unit activations are calculated as:

P(hj = 1 | v) = sigmoid

(
bj +

∑
i

viWij

)
(51)

These learned features can then be used as inputs
to downstream tasks, such as classification or regression
models, significantly enhancing the model’s ability to capture
complex patterns in the data. RBMs have been successfully
applied in various domains, including financial data analysis,
where they have proven to be effective in feature extraction
and improving prediction accuracy.

D. LONG SHORT-TERM MEMORY (LSTM)
Long Short-Term Memory (LSTM) networks are a type
of recurrent neural network (RNN) that are particularly
well-suited for modeling sequential data, such as time series
or natural language. Unlike standard RNNs, which suffer
from the vanishing gradient problem, LSTMs are designed to
capture long-term dependencies by incorporating a memory
cell that can maintain information across long sequences.

An LSTM cell consists of three gates: the input gate, the
forget gate, and the output gate. These gates control the flow
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of information into and out of the memory cell. The equations
governing the operation of an LSTM cell are as follows:

ft = σ (Wf · [ht−1, xt ] + bf ) (52)

it = σ (Wi · [ht−1, xt ] + bi) (53)

C̃t = tanh(WC · [ht−1, xt ] + bC ) (54)

Ct = ft ∗ Ct−1 + it ∗ C̃t (55)

ot = σ (Wo · [ht−1, xt ] + bo) (56)

ht = ot ∗ tanh(Ct ) (57)

In these equations: - ft is the forget gate, which determines
what information from the previous cell state Ct−1 should
be forgotten. - it is the input gate, which decides what new
information should be stored in the current cell state. - C̃t
is the candidate cell state, which is generated based on the
current input xt and the previous hidden state ht−1. - Ct is
the updated cell state, which is a combination of the previous
cell state and the new candidate cell state, modulated by the
forget and input gates. - ot is the output gate, which controls
the output of the LSTM cell. - ht is the hidden state, which
is the output of the LSTM cell and also serves as the input to
the next time step.

Here, σ represents the sigmoid function, and tanh repre-
sents the hyperbolic tangent function. The weight matrices
Wf ,Wi,WC ,Wo and the bias vectors bf , bi, bC , bo are
learned during the training process.

LSTMs have been extensively used in various applications,
including stock price prediction, where their ability to capture
both short-term and long-term dependencies in financial
time series data leads to more accurate predictions. For
example, by maintaining a memory of past stock prices and
other relevant financial indicators, LSTM networks can better
forecast future trends compared to traditional models.

E. TRANSFORMER ENCODER
The Transformer encoder is a key component of the
Transformer architecture, which has revolutionized natural
language processing by allowing for efficient handling of
sequential data. Unlike traditional models such as recurrent
neural networks (RNNs), the Transformer encoder processes
the entire sequence of data in parallel, enabling faster training
and better capture of long-range dependencies.

The Transformer encoder consists of multiple layers, each
composed of two main components: a multi-headed self-
attention mechanism and a position-wise fully connected
feedforward network. The self-attention mechanism allows
the model to focus on different parts of the input sequence
when encoding each element, while the feedforward network
further transforms these representations.

1) MULTI-HEADED SELF-ATTENTION
The self-attention mechanism computes a weighted sum
of input vectors, where the weights are determined by the
similarity between different elements of the sequence. The

equations for self-attention are as follows:

Attention(Q,K ,V ) = Softmax
(
QKT
√
dk

)
V (58)

Here: Q (queries), K (keys), and V (values) are the input
matrices obtained by linearly projecting the input sequence.
dk is the dimension of the key vectors. The dot product QKT

computes the similarity between the queries and keys. The
Softmax function normalizes the result to obtain the attention
weights.

In a multi-headed attention mechanism, this process is
repeated multiple times (with different linear projections),
allowing the model to focus on different parts of the sequence
simultaneously:

MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)WO

(59)

where each head headi is computed as:

headi = Attention(QWQ
i ,K WK

i ,V WV
i ) (60)

WQ
i , W

K
i , WV

i , and WO are learned weight matrices.

2) POSITION-WISE FEEDFORWARD NETWORK
After the multi-headed self-attention mechanism, the output
is passed through a fully connected feedforward network,
which is applied identically to each position in the sequence:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (61)

Here, W1 and W2 are learned weight matrices, and b1 and b2
are bias vectors. The ReLU function introduces non-linearity,
allowing the network to capture complex patterns.

3) LAYER NORMALIZATION AND RESIDUAL CONNECTIONS
Each sub-layer (self-attention and feedforward network) is
followed by layer normalization and a residual connection,
which helps stabilize training and allows the model to learn
more effectively:

Output = LayerNorm(x + SubLayer(x)) (62)

The output of the Transformer encoder is a set of encoded
vectors, one for each input element, which can be used for
various downstream tasks such as classification, translation,
or sequencemodeling. The ability of the Transformer encoder
to process sequences in parallel and capture long-range
dependencies has made it highly effective in tasks such as
stock price prediction, where it can model complex temporal
relationships in financial data.

F. PROPOSED MODEL
In this research, we propose a novel predictive model
designed to forecast the next day’s closing price of stocks,
with a focus on differentiating between specific companies.
The model architecture consists of two primary channels.
The first channel processes the Open, High, Low, and
Close (OHLC) data along with various generated technical
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FIGURE 1. Proposed model structure.

indicators. These inputs are fed into a Bidirectional Long
Short-Term Memory (BiLSTM) network, which is capable
of capturing temporal dependencies and patterns within the
time-series data. The second channel handles the vectorized
long business descriptions of the companies, utilizing a
Restricted BoltzmannMachine (RBM) for feature extraction.

The outputs from both channels are then analyzed using
a Transformer model, which integrates the results to identify
patterns specific to individual companies. This approach III-F
allows the model to differentiate between companies and
improve the accuracy of the stock price predictions.

G. EVALUATION METRICS
In this study, we aim to predict the next day’s closing price of
selected companies, framing the problem as a regression task.
We will employ various models to perform the prediction,
and the effectiveness of these models will be evaluated using
the two key metrics: Mean Squared Error (MSE) and Mean
Absolute Error (MAE). The formulas for these metrics are as
follows:

• Mean Squared Error (MSE):

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (63)

• Mean Absolute Error (MAE):

MAE =
1
n

n∑
i=1

|yi − ŷi| (64)

Here, yi represents the actual value, ŷi represents the
predicted value, and n is the total number of data points.
These metrics will allow us to comprehensively assess the
performance of the models and their suitability for predicting
financial time series data.

IV. EXPERIMENTAL SETUP
A. DATA SOURCE
The data utilized in this study were sourced from Yahoo
Finance. For the first dataset, the companies selected were
the 100 largest by market capitalization, spanning from
Apple Inc. (AAPL) to European Metal Recycling Limited

TABLE 2. Dataset 1: Companies with no stock split among the Top
100 largest companies in US.

(EMR), as shown in Table 2. An additional dataset was
compiled for companies ranked 101st to 170th by market
capitalization, covering firms from O’Reilly Automotive
(ORLY) to WEC Energy Group (WEC), as shown in Table 3.
Both datasets consist of daily prices from January 1, 2020,
to December 31, 2023.

In this study, we did not select companies that had
undergone stock splits within the sample period to ensure
the consistency and integrity of the dataset. Stock splits can
introduce sudden, non-fundamental changes in stock prices,
which could distort the true underlying patterns that the
model aims to learn. By excluding companies with stock
splits, we eliminate this potential source of noise, allowing
the model to focus on capturing the genuine relationships
between the company-specific characteristics and stock price
movements. This approach helps to enhance the accuracy and
reliability of the predictive model.

For the unseen companies, we selected companies ranked
101th to 170th in market share. After removing companies
that underwent stock splits during the period, the remaining
companies are as follows:

B. DATA PRE-PROCESSING
1) VECTORISED COMPANY DESCRIPTION
The long business descriptions of the companies were
retrieved from Yahoo Finance, specifically from the
‘Long Business Description’ section under the category
of ‘asset_profile’. These descriptions were then vectorized
using the BERT (Bidirectional Encoder Representations
from Transformers) model. Subsequently, an independent
Restricted Boltzmann Machine (RBM) was trained for
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TABLE 3. Dataset 2: Companies with no stock split among the 101-170
largest companies in US.

feature extraction, reducing the dimensionality of each vector
to a length of 100.

2) SCALING
To ensure that all features contribute equally to the prediction
model and to enhance the performance of the regression
algorithms, data scaling will be applied as part of the prepro-
cessing step. Specifically, we will use the StandardScaler() to
standardize the features and the stock prices by removing the
mean and scaling to unit variance. The transformation can be
expressed as follows:

zi =
xi − µ

σ
(65)

where xi is the original feature value, µ is the mean of
the feature values, and σ is the standard deviation. This
standardization process transforms the data to have a mean
of 0 and a standard deviation of 1, ensuring that each feature
is on the same scale. This step is crucial for models that rely
on the assumption that the input data is normally distributed
or models sensitive to the scale of the input features.

3) TRAIN TEST SPLIT
To prevent the model from learning from future data, which
could lead to overfitting, the dataset is split into training,
validation, and test sets based on chronological order.
The training data spans from 2020-01-01 to 2023-04-01,
the validation set covers the period from 2023-04-01 to
2023-08-01, and the test set includes data from 2023-08-01
to 2023-12-31 as in Figure 2. It is important to note that the
scaling of features is performed using the statistics (mean
and standard deviation) derived only from the training set to
ensure that no future information is leaked into the model

FIGURE 2. The split interval of train, validation, and test set.

during the scaling process. This approach helps maintain the
integrity of the model evaluation.

C. SOFTWARE AND HARDWARE SETUP
The experiments in this study were conducted using the
following software environment: PyTorch 2.4.0, TensorFlow
2.13.0, Keras 2.13.1, Pandas 2.0.3, and Numpy 1.24.3.
The hardware configuration consisted of an Apple Sil-
icon processor (ARM architecture) with 12 CPU cores
(12 physical, 12 logical) and 32.0 GB of RAM, running on
macOS (Darwin 23.6.0). GPU acceleration was leveraged
using theMPS Backend (Metal Performance Shaders), which
was enabled and available for PyTorch, with the MPS device
specified as mps.

V. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS
In this section, we will present the results in a comparative
manner. First, we demonstrate that our proposed model,
which incorporates additional company-specific features
such as detailed business descriptions, outperforms the
baseline model that does not include these features. We will
then compare the performance of our model against several
recent models from the existing literature.

Next, we assess the generalization capability of our
model by testing a pre-trained version (trained on data
from Companies 1-100) on a new set of companies
(Companies 101-170) using the same data preprocessing
steps. We will also train the baseline model on this new
dataset (Companies 101-170) for comparison. Our proposed
model continues to outperform the baseline, even when eval-
uated on unseen business descriptions from new companies.
This indicates that our model not only differentiates between
companies based on their descriptions but also generalizes
the knowledge gained from previous descriptions, effectively
transferring this understanding to new, unseen companies.

To ensure the robustness of our results, we conducted
the experiments 20 times independently and calculated the
average of the evaluation metrics for each model.

A. RESULTS ON 1-100 COMPANIES AND COMPARISON
WITH THE SOTA MODELS
In this section, we explore the advantages of the proposed
model by comparing its performance against six other
methods, including a baseline model trained exclusively
on the generated features. The baseline model is trained
and validated on the same dataset, and the comparison is
conducted using evaluation metrics such as Mean Squared
Error (MSE) and Mean Absolute Error (MAE).
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The other four models represent state-of-the-art techniques
in the domain of stock price prediction, including transformer
and LSTM architectures. These models were chosen as
baselines for several reasons. First, they represent the current
state-of-the-art (SOTA) in predictive modeling, making them
suitable benchmarks to evaluate the performance of the
proposed model. Second, their underlying architectures share
similarities with the proposed model, such as the use of
deep learning components like LSTMs, GRUs, transformers,
and hybrid structures. This allows for a fair comparison
in terms of model structure and methodology. Additionally,
these baseline models are all specifically designed for stock
price prediction, making them highly relevant for assessing
the effectiveness of the proposed approach in this specific
application domain.

For instance, [51] integrates the Empirical Mode Decom-
position (EMD) algorithm with LSTM, GRU, and trans-
former units to enhance feature extraction and capture
complex patterns in stock data. Similarly, [63] employs
a CNN-LSTM hybrid model, leveraging the strengths
of convolutional layers for spatial feature extraction and
LSTMs for sequential data processing. Reference [64]
utilizes a deep attention network, which aligns closely
with transformer-based models in emphasizing important
temporal patterns in stock sequences. Lastly, [52] implements
a hybrid LSTM model that combines multiple techniques
to improve prediction accuracy. By selecting these models,
the comparison not only demonstrates the novelty and
effectiveness of the proposed model but also highlights its
advantages when benchmarked against well-established and
competitive approaches in the field detailed is shown in
Table 4.

TABLE 4. Comparison of results including baseline model and existing
literature on 1-100 (seen) companies.

Figure 3 illustrates the prediction results from our proposed
model for the seen companies (1)-100) on the first 6 trading
days of the testing set, dated from 2023-08-01.

Figure 4 provided demonstrates the training process,
showcasing the Mean Squared Error (MSE) and Mean
Absolute Error (MAE)metrics for the training, and validation
sets. The close alignment of these error metrics across all
three sets suggests that the model is not overfitting. The
absence of significant divergence between the training and
validation errors indicates that the model is generalizing well
to unseen data, as the errors remain consistent across different
datasets. Thus, this plot provides strong evidence that the
model maintains a balanced performance and does not exhibit
signs of overfitting.

FIGURE 3. Results for the 1-100 (seen) companies on the first 6 trading
days of the testing set, dated from 2023-08-01.

FIGURE 4. Results for the 1-100 (seen) companies on the first 6 trading
days of the testing set, dated from 2023-08-01.

TheMSE andMAEmetrics for the training, validation, and
test sets are presented in Table 5. With the implementation
of early stopping during the training process, we believe that
significant overfitting has been effectively mitigated.

TABLE 5. Comparison of training, validation, and test set of proposed
model on 1-100 (seen) companies.

Based on the sector-specific analysis, as is shown in
Figure 5, we observe varying performance across different
sectors as measured by the MSE (Mean Square Error).
The analysis reveals that certain sectors, such as Consumer
Staples and Utilities, tend to have lower MSE values,
indicating that the model performs better in these industries
where market dynamics might be more stable or predictable.
On the other hand, sectors such as Consumer Discretionary
and Healthcare exhibit relatively higher RMSE, which could
be attributed to the more volatile nature of these sectors.
This variability in performance suggests that while the model
provides accurate predictions in some industries, its applica-
bility may be less reliable in sectors characterized by rapid
changes in external factors, such as geopolitical influences
or fluctuating commodity prices. Hence, understanding these
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FIGURE 5. Results for the 1-100 (seen) companies group by industry
sectors of the testing set, dated from 2023-08-01.

sectoral differences is crucial for refining the model and
ensuring it is tailored to specific market environments.

B. RESULTS ON 101-170 (UNSEEN) COMPANIES
In this section, the proposed model was tested on a set of
70 additional companies (101-170) that were not seen during
its training phase and compared with a baseline BiLSTM
model, which was both trained and tested on the same set of
companies (101-170). The results in Table 6 demonstrate that
by incorporating vectorized features, our model can not only
differentiate between different companies but also effectively
learn from the provided descriptions and generalize this
knowledge to unseen companies with new descriptions.

TABLE 6. Comparison of results with baseline model on 101-170 (unseen)
companies.

The proposed model utilizes an additional channel for
vectorized descriptions and introduces a transformer encoder
to integrate the outputs of both channels into a fully connected
layer. While this architecture increases the model’s size,
it enhances the learning efficiency, allowing the model to
converge faster and requiring fewer epochs for complete
training. In contrast, the baseline model, although taking less
time per epoch, requires significantly more epochs to achieve
full training. As a result, the overall training time of the
proposed model is shorter compared to the baseline model.

Figure 6 illustrates the prediction results from proposed
model for the unseen companies on the first trading 6 days
of the testing set, dated from 2023-08-01.

On the sector-specific analysis as is shown in Figure 7,
we observe varying performance across different sectors as
measured by the MSE (Mean Squared Error). The analysis
reveals that certain sectors, such as Communication Services
and Utilities, tend to have lower MSE values, indicating that
the model performs better in these industries where market
dynamics are relatively stable and predictable. Conversely,

FIGURE 6. Results for the 101-170 (unseen) companies on the first
6 trading days of the testing set, dated from 2023-08-01.

FIGURE 7. Results for the 101-170 companies group by industry sectors of
the testing set, dated from 2023-08-01.

sectors like Consumer Discretionary and Technology exhibit
higher MSE, which could be attributed to the more volatile
and fast-changing nature of these markets. This variability
in performance suggests that while the model demonstrates
strong predictive accuracy in some industries, it may be less
reliable in sectors influenced by external factors such as
rapid technological advancements or fluctuating consumer
preferences. Therefore, understanding these sector-specific
differences is essential for further refinement of the model
and its application across varying market environments.

VI. DISCUSSION OF RESULTS
In this section, we provide a detailed analysis of the results
obtained from our proposed model, specifically focusing on
its comparative performance with state-of-the-art (SOTA)
stock prediction models and its efficacy in predicting stock
prices for companies outside the training set.

A. COMPARATIVE PERFORMANCE WITH SOTA MODELS
The results of our experiments demonstrate that our proposed
model, which incorporates vectorized company descriptions
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as static features, significantly outperforms existing SOTA
models in stock price prediction tasks. Traditional models
typically aggregate indicators from multiple companies into
a unified training set without distinguishing the unique
characteristics inherent to each company. This approach,
while it increases the dataset’s size, inherently overlooks
the heterogeneity among companies, which can lead to
sub-optimal prediction accuracy. Each company operates
under unique market conditions and possesses distinct
financial and operational characteristics, which influence its
stock price movements. Aggregating all companies into a
single dataset assumes a homogeneity that does not exist,
resulting in a model that may fail to capture the nuanced
patterns that are specific to individual companies.

Our model addresses this critical limitation by integrating
company-specific descriptions into the predictive modeling
framework. These descriptions, encoded into vectors using
advanced natural language processing techniques, allow the
model to recognize and differentiate between companies,
much like how an experienced human trader would consider
both quantitative data (e.g., price history, trading volumes)
and qualitative information (e.g., company fundamentals,
market position) before making trading decisions. The
incorporation of these descriptive vectors enables the model
to identify distinct patterns within each company’s data,
leading to more accurate and reliable stock price predictions.
This is particularly crucial in financial markets where the
same market event can have varying effects on different
companies, depending on their individual characteristics.

B. GENERALIZATION TO UNSEEN COMPANIES
To further validate the robustness and generalizability of our
model, we conducted experiments on a dataset comprising
companies ranked 101st to 170th by market capitalization,
which were not included in the training set. This experiment
aimed to assess the model’s ability to apply learned pattern
from seen companies to predict the stock prices of unseen
companies based on their descriptive vectors and technical
indicators.

The results were promising and indicated that the model
successfully generalized the patterns and descriptions learned
from the training companies to unseen companies. This
was evidenced by the model’s ability to analysis unseen
companies based on their business descriptions together
with technical indicators and predict their price movements
with a higher degree of accuracy. The model achieved
this by leveraging the underlying similarities between the
vectorized descriptions of unseen companies and those of
companies in the training set. For instance, companies within
the same sector often share common market dynamics and
risk factors, which influence their stock price movements in
similar ways. Our model was able to capture these specific
patterns and apply them effectively to unseen and similar
companies, thereby supporting the hypothesis that companies
with similar characteristics tend to exhibit similar price
behaviors.

Moreover, the success of our model in predicting the
stock prices of unseen companies highlights its potential
for practical applications in real-world trading scenarios.
The ability to generalize from a known set of companies
to new companies without requiring retraining on the
entire dataset presents a significant advantage in dynamic
financial markets where new companies frequently emerge
and existing companies undergo changes.

C. TIME COMPLEXITY ANALYSIS AND EXPERIMENTAL
STUDIES
In this section, we analyze the time complexity and discuss
the experimental results comparing the proposed model
with the baseline model in terms of training efficiency.
The proposed model introduces an additional channel for
vectorized descriptions and employs a transformer encoder to
fuse the outputs from the two channels into a fully connected
layer. While this architectural enhancement increases the size
and complexity of the model, it leads to a faster learning
process.

From a time complexity perspective, the use of a
transformer encoder, despite adding computational overhead,
significantly improves the model’s ability to capture complex
patterns in the data. This results in faster convergence,
allowing the proposed model to be fully trained in fewer
epochs. The transformer encoder’s self-attention mechanism
efficiently captures relationships across input sequences,
leading to more robust feature representations.

In contrast, the baselinemodel, while simpler and requiring
less time per epoch, lacks the enhanced learning capabilities
provided by the transformer. Consequently, it requires a
greater number of epochs to achieve comparable perfor-
mance. Although the baseline model benefits from lower
per-epoch computational costs, the overall training time is
extended due to the larger number of epochs required for
convergence.

Our experimental studies corroborate this analysis. The
proposed model, despite the higher per-epoch complexity,
exhibited faster convergence, resulting in a shorter total train-
ing time compared to the baseline model. This demonstrates
the trade-off between per-epoch time complexity and the
total number of epochs required for training. Ultimately,
the proposed model offers a more efficient training process,
achieving superior performance with fewer epochs, thus
reducing the overall computational cost in practice.

D. IMPLICATIONS FOR FINANCIAL MODELING
The implications of our findings are multifaceted. Firstly,
the integration of company-specific descriptive vectors
represents a significant advancement in stock price prediction
models, particularly in addressing the issue of heterogeneity
among companies. By moving away from a one-size-fits-all
approach and towards a more nuanced model that accounts
for individual company characteristics, our approach offers
a more precise tool for financial forecasting. Secondly,
the model’s ability to generalize from known to unknown
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entities opens up new possibilities for the application of
transfer learning in financial markets. This approach not only
enhances prediction accuracy but also reduces the need for
frequent retraining, thus offering amore efficient and scalable
solution for stock price prediction.

E. ADDRESSING THE LIMITATION OF COMPARATIVE
ANALYSIS
A key limitation of this study is the comparative analysis
between our proposed model and other state-of-the-art
(SOTA) stock prediction models. Although our research
highlights the benefits of integrating vectorized company
descriptions into the predictive framework, the comparison
with existing models was not as comprehensive as it could
have been. This limitation might raise questions regarding the
relative superiority of our model.

There are several factors contributing to this challenge.
Firstly, each SOTA model in the field of stock prediction
typically employs its own set of technical indicators and
methodologies. These unique characteristics make it difficult
to establish a direct and fair comparison across models. The
diversity in the indicators used means that models are often
optimized for specific tasks or datasets, which complicates
attempts to compare their performance on a more general
level.

Secondly, SOTA models are frequently trained and tested
on different datasets, drawn from various markets, time
periods, and companies. The lack of a standardized dataset
for stock price prediction research means that models are
often evaluated under different conditions. This variation is
inherent to financial prediction, where market dynamics can
differ significantly depending on the time period, geographic
region, and sector of the companies involved. Consequently,
it is challenging to compare models directly, as theymay have
been optimized for distinct market environments or temporal
contexts.

In practice, researchers typically present their results
using metrics such as Mean Squared Error (MSE) and
Mean Absolute Error (MAE) to evaluate and compare the
performance of their models. However, thesemetrics alone do
not fully account for the variations in market conditions and
datasets, making it difficult to draw definitive conclusions
about one model’s superiority over another.

Despite these challenges, our research has demonstrated
the potential of our proposed model to outperform a selected
set of baseline models, particularly in its ability to generalize
to unseen companies. However, we acknowledge that a more
extensive and standardized comparison with a broader range
of SOTA models could have provided a stronger validation
of our model’s performance. Future research should aim
to address this limitation by utilizing more standardized
datasets or developing methodologies that allow for fairer
comparisons across different models and market conditions.

While our study makes a valuable contribution to the
field of stock price prediction, the inherent challenges of
comparing models with different technical indicators and

datasets must be recognized. Addressing these challenges in
future work will be essential to provide a more robust and
convincing case for the adoption of our model in financial
prediction tasks.

VII. CONCLUSION AND FUTURE WORK
A. CONCLUSION
This research presents a significant advancement in the
field of stock price prediction by introducing a model that
integrates vectorized company descriptions as static features.
Unlike traditional state-of-the-art (SOTA) models, which
often rely on aggregated data from multiple companies,
our approach acknowledges the unique characteristics and
heterogeneity inherent in different firms. This recognition of
company-specific attributes represents a substantial departure
from existing methods, which tend to treat all companies as
if they operate under similar conditions. By incorporating
descriptive vectors into the predictive framework, our model
is able to discern and leverage the distinct patterns that
are specific to each company, leading to more accurate and
reliable stock price predictions.

The novelty of our approach lies in its ability to simulate
the decision-making process of human traders, who con-
sider both quantitative data, such as historical prices, and
qualitative information, such as a company’s market position
and business model. This holistic view allows the model to
capture a broader range of factors that influence stock prices,
offering a more comprehensive and nuanced prediction
tool. The success of our model in outperforming existing
SOTA models highlights the importance of addressing the
heterogeneity in stock markets, a factor that has been largely
overlooked in previous research.

In summary, our research contributes a novel and effective
method to the existing body of work on stock price prediction,
addressing critical gaps in current SOTA models by incorpo-
rating company-specific features. This advancement not only
improves prediction accuracy but also opens new avenues for
integrating qualitative data into predictive models, paving the
way for future research and practical applications in finance.

B. FUTURE WORK
Building on the promising results of this study, several
avenues for future research are proposed to further enhance
the model’s robustness, generalizability, and applicability
across diverse financial contexts. One significant direction
for future work involves expanding the scope of the model
to include a more varied set of companies. By testing the
model on companies with diverse descriptions from a wide
array of sectors, researchers can evaluate its performance
across different industries and market environments. This
would help ascertain whether the model’s ability to capture
and leverage company-specific patterns holds consistently
across various sectors, including those thatmay have different
market dynamics or are subject to different regulatory
environments.
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Another potential area for future exploration is the
application of the model to different geographic markets.
Financial markets in different regions are often influenced by
distinct economic conditions, cultural factors, and regulatory
frameworks. Testing the model in diverse markets, such
as emerging markets or markets with different levels of
liquidity and volatility, could provide valuable insights into its
adaptability and effectiveness in predicting stock prices under
various economic conditions. This would not only contribute
to the model’s generalizability but also enhance its utility for
global financial forecasting.

Additionally, future research could investigate the inte-
gration of other qualitative features into the model, such as
news sentiment, social media trends, and macroeconomic
indicators. These factors can have significant impacts on
stock prices, and their inclusion could further improve
the model’s predictive accuracy. For instance, incorporating
real-time sentiment analysis from financial news or social
media platforms could enable themodel to react more quickly
to market-moving events, providingmore timely and accurate
predictions.

In conclusion, while this study makes a significant
contribution to the field of stock price prediction, the potential
for further advancements is vast. By exploring these proposed
avenues of future research, the model’s capabilities can
be extended and refined, leading to even more accurate,
adaptable, and generalizable tools for financial forecasting.

DATA ACCESS
The data for this study has been sourced from the public
repository Yahoo Finance. Related code can be found at:
https://github.com/xilu5047/Stock_prediction
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