BASIC SCIENCE AND PATHOGENESIS

POSTER PRESENTATION

GENETICS

Alzheimer's & Dementia[®] THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

Co-methylation network analysis of Psychosis in Alzheimer's disease

Morteza P Kouhsar¹ | Luke Weymouth¹ | Adam Smith¹ | Jennifer Imm² | Claudia Bredemeyer¹ | Yehani Wedatilake³ | Ali Torkamani⁴ | Sverre Bergh^{3,5} | Geir Selbaek⁶ | Jonathan Mill² | Clive G Ballard² | Robert Sweet⁷ | Julia Kofler⁸ | Byron Creese^{1,9} | Ehsan Pishva^{1,10} | Katie Lunnon²

¹University of Exeter, Exeter, United Kingdom

²University of Exeter, Exeter, Devon, United Kingdom

³Norwegian National Advisory Unit on Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway

⁴Scripps Research, La Jolla, CA, USA

⁵Centre for Old Age Psychiatric Research, Innlandet Hospital Trust, Ottestad, Norway

⁶Oslo University Hospital, Oslo, Norway

⁷Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, PA, USA

⁸University of Pittsburgh, Pittsburgh, PA, USA

⁹Brunel University London, London, United Kingdom

¹⁰Maastricht University, Maastricht, Netherlands

Correspondence

Morteza P Kouhsar, University of Exeter, Exeter, United Kingdom. Email: M.Kouhsar@exeter.ac.uk

Abstract

Background: Psychosis (broadly delusions and hallucinations) has a cumulative disease prevalence of around 40% in Alzheimer's disease (AD). The epigenomic, genomic, and neuropathological data provide powerful evidence that AD+P has a distinct neurobiological profile. Here, we used the weighted gene co-expression network analysis (WGCNA) method to investigate DNA methylation associated with AD+P in the dorsolateral prefrontal cortex of 153 post-mortem brain samples.

Method: Our primary analysis focused on applying WGCNA to the PITT-ADRC cohort, followed by subsequent replication of its findings in the BDR cohort. The genotype data from PITT-ADRC and the WGCNA results were further utilized to identify the most significant methylation Quantitative Trait Loci (mQTLs) associated with psychosis. Subsequently, we explored RNA sequencing data from PITT-ADRC to identify genes affected by the replicated findings uncovered in our primary analysis.

Result: We identified five AD+P-related modules in the PITT-ADRC cohort, with one of them being replicated in the BDR cohort. This replicated AD+P-related module exhibits a high enrichment in the T cell receptor signalling pathway. According to the colocalization analysis results, this module shares significant SNPs in some regions that are also significantly associated with Schizophrenia and Educational Attainment.

Conclusion: Understanding molecular differences between AD and Psychosis at the genetic and epigenetic levels could guide us in discovering appropriate treatments for AD+P cases. To this end, we initiated a comprehensive, large sample-sized network analysis study based on genetic and epigenetic data.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Alzheimer's Association. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.