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Abstract: In our interconnected society, prioritizing the resilience and sustainability of road infras-
tructure has never been more critical, especially in light of growing environmental and climatic
challenges. By harnessing data from various sources, we can proactively enhance our ability to detect
road damage. This approach will enable us to make well-informed decisions for timely maintenance
and implement effective mitigation strategies, ultimately leading to safer and more durable road
systems. This paper presents a new method for detecting road potholes during low-light conditions,
particularly at night when influenced by street and traffic lighting. We examined and assessed
various advanced machine learning and computer vision models, placing a strong emphasis on
deep learning algorithms such as YOLO, as well as the combination of Grad-CAM++ with feature
pyramid networks for feature extraction. Our approach utilized innovative data augmentation
techniques, which enhanced the diversity and robustness of the training dataset, ultimately leading
to significant improvements in model performance. The study results reveal that the proposed
YOLOv11+FPN+Grad-CAM model achieved a mean average precision (mAP) score of 0.72 for the
50–95 IoU thresholds, outperforming other tested models, including YOLOv8 Medium with a score of
0.611. The proposed model also demonstrated notable improvements in key metrics, with mAP50 and
mAP75 values of 0.88 and 0.791, reflecting enhancements of 1.5% and 5.7%, respectively, compared
to YOLOv11. These results highlight the model’s superior performance in detecting potholes under
low-light conditions. By leveraging a specialized dataset for nighttime scenarios, the approach offers
significant advancements in hazard detection, paving the way for more effective and timely driver
alerts and ultimately contributing to improved road safety. This paper makes several key contribu-
tions, including implementing advanced data augmentation methods and a thorough comparative
analysis of various YOLO-based models. Future plans involve developing a real-time driver warning
application, introducing enhanced evaluation metrics, and demonstrating the model’s adaptability in
diverse environmental conditions, such as snow and rain. The contributions significantly advance the
field of road maintenance and safety by offering a robust and scalable solution for pothole detection,
particularly in developing countries.

Keywords: detection; potholes; road; YOLOv8; Grad-CAM++; feature pyramid networks; RTDERT;
lightning; computer vision
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1. Introduction

Growing traffic loads, aging roads, and climate-related challenges are rapidly accel-
erating road infrastructure deterioration [1]. Potholes are a common issue caused by the
deterioration of road pavements, leading to discomfort and an increased risk of accidents.
As a result, efficient maintenance and resilience planning have become critically impor-
tant. In this context, the rapid and accurate detection of pavement defects is essential for
enhancing road safety, improving resilience, and supporting climate adaptation efforts.
These factors directly contribute to the sustainability of transport infrastructure [2]. Manual
inspections of road infrastructure can be time-consuming, costly, and sometimes subjective.
However, computer vision and image processing advances provide quicker and more
efficient methods for assessing road conditions [3]. These advancements inspired this study,
which makes the following contributions:

• This study offers a comprehensive comparative analysis of various advanced YOLO
models, including YOLOv8 (in nano, small, and medium sizes), YOLOv9c, YOLOv10,
YOLOv11, MobileNetSSD, and RTDERT, specifically for night-time road pothole
detection. The evaluation assesses each model’s accuracy, speed, and computational
efficiency, providing insights into the most suitable models for different real-world
applications and computational environments.

• This study implements a series of advanced data augmentation techniques to improve
model robustness, including random cropping, rotation, color jittering, Gaussian noise,
and blur effects. These augmentations simulate diverse lighting and environmental
conditions, enhancing the model’s adaptability to real-world variations, such as poor
lighting, fog, or image quality fluctuations.

• By integrating a feature pyramid network (FPN) into the YOLO architecture, this
study enhances the model’s ability to detect potholes of varying sizes. This approach
captures high-resolution details for small potholes and a broader context for larger
potholes, improving detection accuracy across various pothole dimensions.

• This study introduces Grad-CAM as an explainability module within the YOLO model,
generating heat maps highlighting areas critical to the model’s detection process. This
integration provides a transparent interpretation of the model’s focus areas, aiding in
understanding and validating the model’s decision-making in real-world applications,
particularly under challenging conditions.

• This study contributes significantly to designing and implementing a real-time appli-
cation that uses the best-performing YOLO model to provide images with marked
potholes. This application demonstrates the practical applicability of AI-based pothole
detection in improving road safety by alerting drivers to potential road hazards.

• The models were tested under various environmental conditions (e.g., lighting changes,
weather conditions, road types) to validate their reliability and adaptability in diverse
scenarios. This thorough testing demonstrates the robustness and effectiveness of the
models in handling real-world variabilities, ensuring their suitability for deployment
in broad, practical settings.

• Recognizing the constraints in real-world applications, this study optimizes models for
deployment on mobile and edge devices, balancing detection accuracy with computa-
tional and memory efficiency. This makes the solution viable for embedded systems,
such as in-vehicle or roadside devices, to facilitate scalable pothole detection.

The paper is organized as follows: Section 1 reviews existing solutions on domain of
pothole recognition and highlights the benefits and drawbacks of the evaluated models; Section 2
presents the analysis of existing scientific research; Section 3 presents the materials and methods
of study; Section 4 presents the analysis of the results obtained by comparing such models as
YOLOv8 (nano, small, medium), YOLOv9c, RTDERT, and the reinforced YOLOv8 with FRN
and Grad-CAM++ approach for road pothole detection; Sections 5 and 6 conclude the paper.
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2. Literature Review Related to YOLO Models

To comprehensively analyze studies related to YOLO models, we employed the
literature review software Litmaps (https://www.litmaps.com) to identify and address
gaps in existing research. Our analysis included 1541 scientific papers sourced from the
Scopus database. Based on this dataset, we created a graph analyzing literature sources
related to YOLO models generated by the Litmaps tool, presented in Figure 1.
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Studies shown in Figure 1 indicate that deep learning and computer vision techniques
have significantly enhanced intelligent transportation systems and improved road safety.
This section reviews related works organized into four main themes: YOLO-based semantic
segmentation and feature extraction for road safety, smart vehicles, and accident prevention
systems, overview object detection across various domains, and traffic with road monitoring
systems.

Semantic segmentation and feature extraction are crucial for enhancing road safety.
Anagha et al. [4] made notable advancements in road scene semantic segmentation by
employing the UNet-EfficientNetb7 model. This approach achieved high accuracy across
various datasets, including CamVid and Cityscapes. By integrating low-level spatial infor-
mation with high-level features, the model provides precise segmentation and effectively
addresses the computational challenges associated with autonomous driving. Adebiyi
et al. [5] analyzed various image feature extraction filters for classifying pothole anomalies,
highlighting the significance of feature extraction in machine learning classifiers. Their
study examined filters such as Auto Color, Binary Filter, and Edge Detection under different
lighting conditions, providing valuable insights for selecting the most effective filters for
pothole detection.

Prasad et al. [6] focused on detecting vulnerable road users in low-light conditions
using the YOLO framework. They compared the performance of YOLOv5m, YOLOv7,
and YOLOv8m on the ExDark dataset. The study underscored the importance of accurate
detection in poor lighting conditions to enhance the safety of pedestrians, cyclists, and
motorcyclists.

Nishad et al. [7] proposed a smart vehicle accident prevention system integrating IoT
technology with real-time data acquisition and intelligent decision-making algorithms.
The system employs a variety of sensors, including alcohol, temperature, infrared (IR),
and ultrasonic sensors, to improve road safety and prevent accidents. Its comprehensive
design and implementation aim to establish an effective mechanism for enhancing accident
prevention and overall road safety.

https://www.litmaps.com
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Object detection techniques have been utilized in various fields beyond road safety.
Singh and Krishnamurthi [8] enhanced the YOLOv3 model for agricultural object detection,
optimizing it for real-time applications and achieving high accuracy in identifying different
objects within agricultural settings. Similarly, Khemlapure et al. [9] employed deep learning
models such as CNN, AlexNet, and YOLO to detect product defects in manufacturing,
demonstrating high accuracy in binary and multiclass classification tasks.

Yang et al. [10] developed PRE-YOLO, a lightweight model for detecting whether
electric vehicle riders wear helmets on complex traffic roads. This model incorporates atten-
tion mechanisms and convolutional modules to improve feature extraction and detection
accuracy, thereby addressing safety concerns in traffic environments.

Numerous studies have leveraged the YOLO algorithm for various traffic and road
monitoring applications. Al-qaness et al. [11] developed an improved YOLO-based road
traffic monitoring system that combines neural networks and image-based tracking to detect
and count vehicles in real-time, demonstrating acceptable results in changing scenarios.
Similarly, Chowdhury et al. [12] enhanced public safety on roads in Bangladesh using a
YOLOv2 algorithm under the DarkFlow framework to detect multiple objects and actions,
aiming to reduce accidents and capture criminals.

The introduction of YOLOv4 by Wang and Bochkovskiy et al. [13] marked another
leap forward. YOLOv4 integrated several advancements, including the cross-stage partial
network, which enhanced gradient flow and reduced computational complexity. This
model achieved state-of-the-art performance on the MS COCO dataset, demonstrating
the effectiveness of combining multiple innovations in network architecture and training
strategies.

Various studies have explored integrating YOLO models with other technologies to
enhance road detection and maintenance. Liu et al. [14] combined YOLO models with
3D ground-penetrating radar images, significantly improving road defect detection and
classification. This approach leverages YOLO’s real-time object detection capabilities and
the subsurface imaging provided by GPR, offering a comprehensive solution for monitoring
road infrastructure.

Gour and Kanskar [15] developed an automated AI-based road traffic accident alert
system using the YOLO algorithm. Their system detects accidents in real time and sends
alerts to relevant authorities, aiming to reduce response times and potentially save lives.
The study highlights the practical application of YOLO in enhancing road safety and
improving emergency response efficiency.

Jin and Zheng [16] focused on improving the YOLO V3 algorithm for road target
detection. Their modifications to the network architecture and training process resulted in
enhanced detection accuracy and speed. This research optimizes YOLO models for specific
road safety and traffic management applications.

Wu et al. [17] introduced YOLO-LWNet, a lightweight YOLO network for mobile
devices to detect road damage. The architecture is optimized for efficient performance on
mobile terminals without compromising detection accuracy. This study demonstrates the
potential for deploying advanced object detection models on resource-constrained devices,
expanding real-time monitoring and maintenance possibilities.

Bao et al. [18] utilized various YOLO models, including YOLOv5 and YOLOv7, for
road defect detection, emphasizing the models’ real-time performance and high accuracy.
Du et al. [19] enhanced YOLOv3 for road target detection by incorporating K-means++
clustering and cross-entropy loss functions, significantly improving detection accuracy and
sensitivity. Fassmeyer et al. [20] employed Scaled-YOLO and CVAE-WGAN for camera-
based road damage assessment, achieving competitive performance.

He [21] focused on YOLOv4 for road scene detection, highlighting the significance of
grayscale and binarization processes in image analysis. Lin et al. [22] developed a road
environment identification system using YOLOv5, which processes images to recognize
and label objects within the road environment. Liu et al. [23] introduced a lightweight
YOLO model for recognizing road surface defects using ground-penetrating radar. This
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model combines MobileNetV2 and the CBAM attention mechanism to enhance detection
efficiency.

Liu et al. [24] introduced the BGS-YOLO model, which incorporates a bi-directional
feature pyramid network and global attention mechanism to enhance multi-level feature
fusion and improve key target identification in complex data environments. Lv et al. [25]
combined YOLOv5 with monocular distance estimation and an anomaly detection filter to
improve the accuracy of object detection and tracking. Mahmood et al. [26] applied YOLO
to infrared images for vehicle detection in road traffic, comparing its performance with
K-means++ clustering and other deep learning methods.

Wan et al. [27] introduced YOLO-LRDD, a lightweight model for detecting road
damage based on YOLOv5s. This model effectively balances detection precision with
speed. Wu [28] developed LKF-YOLO, a target detection model for road traffic that
enhances YOLOv8 by integrating efficient down-sampling modules and focal modulation
networks. Additionally, Ali and Zhang [29] improved YOLOv3 for detecting road targets
by optimizing anchor parameters and feature map outputs, increasing detection accuracy
and decreasing missed detection rates.

The YOLO series has greatly advanced the object detection area by offering a quick,
precise, and unified method. These developments have opened the door for additional
study and advancement in creating scalable and effective object-detecting systems. Since
Ren et al. [30] introduced the YOLO framework, object detection has significantly pro-
gressed. By presenting object identification as a single regression issue and predicting
bounding boxes and class probabilities in a single evaluation [31], YOLO transformed the
field. This strategy differs from previous approaches like region-based convolutional neural
networks and the deformable components model, which were accurate but computation-
ally demanding and slow. The end-to-end optimization made possible by YOLO’s unified
design significantly improves detection performance [32]. Fast YOLO, a reduced version of
the original YOLO model, outperforms other real-time detectors in mean average precision,
processing images at an incredible 155 frames per second [33].

Together, these studies improve item detection, road safety, and intelligent transporta-
tion systems across various domains, demonstrating the adaptability and potency of deep
learning and computer vision methodologies.

3. Materials and Methods
3.1. Dataset

Our study utilizes several publicly available datasets, alongside a custom primary
dataset, to train and evaluate the proposed models for pothole detection under low-light
conditions.

1. Pothole Detection Computer Vision Project by Roboflow Universe: Provides a range
of annotated pothole images that support our findings [34].

2. Potholes YOLO-NAS by Kaggle: This dataset, contains annotated images tailored for
training and predicting potholes using the YOLO-NAS model. It offers a diverse set
of pothole images that enhance model generalizability [35].

3. Pothole Dataset by Roboflow: Hosted publicly by Roboflow, this dataset provides
a collection of images focused on pothole detection. Its open access and detailed
annotations make it a valuable resource for benchmarking [36].

4. Pothole-Detection Project by Jay on GitHub: This GitHub-hosted dataset, curated by
Jay, contributes a variety of annotated pothole images. It enhances the diversity of
our dataset, supporting model robustness across different road and environmental
conditions [37].

5. Additionally, we developed a primary dataset based on these public resources, incor-
porating further annotations and samples specifically tailored for night-time pothole
detection. This custom dataset, hosted on Roboflow Universe [38], provides more
refined annotations for low-light conditions, supporting our focus on enhanced detec-
tion performance.
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Each dataset contributed unique image samples and annotation quality, allowing us
to create a robust training and validation dataset with diverse lighting and road conditions,
which was instrumental in optimizing model performance.

3.2. Methods and Models

In computer vision, object detection models like YOLO play a crucial role in enabling
fast and efficient recognition of objects in images or video streams. These models are
designed to detect and classify objects in a single pass; however, they employ different
techniques to accomplish this objective.

A large number of authors [39] have employed various versions of YOLO in their
articles. YOLO stands out from similar networks as it only requires a single pass through
the image for analysis.

The process for recognizing objects, like detecting potholes on roads, generally follows
a systematic image-handling pipeline [40]. This pipeline can be divided into four main
steps: data fetching, data preprocessing, machine learning for object recognition, and
results generation. Below is a detailed description of each step (see Figure 2):
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Figure 2. The research process.

The output stage displays detected potholes, bounding boxes, and any interpretative
overlays such as Grad-CAM heat maps.

In this study, we utilized a dataset derived from various public datasets. This dataset
consists of 2188 uniquely annotated images depicting roads with potholes. To normalize
the pixel values of an image, which range from 0 to 255, we convert them to a range of 0 to
1 using the following formula:

x́ =
x

255
(1)

To improve the robustness and diversity of our training dataset, we implemented
a variety of advanced data augmentation techniques. These techniques include random
cropping, rotation, flipping, color jittering, and the addition of Gaussian noise [41]. To
help the model learn to handle low-quality images and those affected by motion blur, we
also introduced a blur effect. Additionally, color manipulation allows the model to adapt
to different lighting conditions, such as bright sunlight or low ambient light at night. By
adding fog to the images, we enhance the model’s ability to recognize potholes in foggy
conditions. By simulating various real-world scenarios, these augmentations significantly
improve the model’s generalization capability, leading to more accurate pothole detection
in a wide range of situations.

Data augmentations were applied to every alternate image, resulting in three deriva-
tive images for each original image. This approach increased the size of the training set to
6613 images. The dataset was then randomly divided into training (70%), validation (15%),
and test (15%) samples.

To enhance the YOLO model’s capability in detecting potholes of various sizes, includ-
ing both small, shallow cracks and large, deep potholes, a multi-scale feature extraction
mechanism using feature pyramid networks (FPN) was implemented. The YOLO archi-
tecture was modified to include FPN. The compression of pothole recognition results is
showcased in Figure 3.
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Figure 3. Comparison of results for pothole recognition models: (a) Yolo-based models; (b) Yolo +
FPN-based models.

In the first step, a feature pyramid network (FPN) was added to the existing YOLO
architecture. FPNs are widely used to enhance object detection models by combining
features from different convolutional layers. This allows the model to access fine details
(useful for detecting small potholes) and broader contextual information (for larger pot-
holes). In the standard YOLO model, a single feature map is used for detection. By adding
FPN, we enable multi-scale feature extraction, where feature maps from different layers
(low, medium, and high levels) are merged. The low-level layers capture high-resolution,
detailed features, while higher layers provide contextual information. Pyramid construc-
tion was implemented by connecting feature maps from different layers top-down. A
higher-level feature map was upsampled with lower-level features to construct a feature
pyramid. This enables the model to better identify varyingly sized potholes in a single
pass.

Next, multi-scale fusion was implemented by adjusting the forward pass in YOLO
to utilize the FPN-generated multi-scale feature maps. This step involves modifying the
model to perform detection on the fused feature pyramid, allowing it to detect both small
and large potholes more accurately. We redefined anchor boxes to match different feature
map scales, ensuring the model has anchor boxes tailored for detecting potholes at various
scales within the same image. The YOLO model with FPN now generates bounding boxes
for each scale in the pyramid, enhancing the precision of detecting potholes across varying
sizes (Figure 4).
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Models such as YOLOv8 (nano, small, medium) [42], YOLOv9c [43], MobileNetSSD [44],
and RTDERT [45] were trained for road pothole detection. During our research, we utilized
hyperparameter tuning methods to enhance the performance of the YOLO model.

The Adam optimizer was employed for the optimization of each model, using 30 epochs,
200 iterations, and a weight decay of 0.0005. This approach significantly improved pothole
detection performance. Additionally, IoU-aware regression loss functions, such as CIoU (Com-
plete IoU), were implemented to enhance the accuracy of bounding box regression [46]. All
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models were trained using the same hyperparameters. Our findings indicate improvements
of approximately 3–5% in both detection accuracy and efficiency, underscoring the importance
of careful hyperparameter selection in YOLO-based applications for road maintenance and
safety.

A key enhancement in our approach is the integration of a novel neural network
architecture that combines both the feature pyramid networks (FPNs) (Figure 5) and path
aggregation network (PANs). This architecture enables efficient feature capture across
multiple scales and resolutions, which is essential for detecting objects of varying sizes
and shapes [47]. Specifically, the FPN component in YOLOv8 gradually reduces the
spatial resolution of the input image while increasing the feature channel count, producing
feature maps that support object detection across a broad range of scales. Meanwhile, the
PAN architecture complements this by aggregating features from different network levels
through skip connections, enhancing the model’s capacity to capture intricate details.
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The RT-DETR transformer-based model is known for its exceptional speed and accu-
racy, surpassing existing YOLO detectors in both aspects. It efficiently manages multi-scale
feature processing by isolating interactions at different scales and then combining them.
This makes RT-DETR an ideal choice for applications that require rapid and precise object
detection [48]. One variant of the model, RT-DETR-L, achieves an average precision (AP)
of 53.0% on the COCO val2017 dataset while running at a speed of 114 frames per second
(FPS) on a T4 GPU. In addition to the classical implementation, we incorporated a feature
pyramid network (FPN) as a multi-scale feature fusion technique. This enhancement is
essential for effectively detecting objects of varying sizes, which is particularly important
for identifying potholes of different dimensions.

3.3. Enhancing Datasets Through Effective Data Augmentation Techniques

To improve model performance and robustness, we implemented a range of data
augmentation techniques aimed at increasing the diversity of training data and enhancing
detection accuracy in low-light conditions [49]. The primary methods employed include
the following:

1. Images are flipped horizontally or vertically to address asymmetries in road conditions
and variations in pothole orientation.

2. Random rotations are applied to images, aiding the model’s ability to generalize
across various angles.

3. Kernel-based filters are used to simulate motion and emphasize important features.
4. Sharpening enhances images to highlight pothole details, aiding edge and texture

detection.
5. Blurring filters, such as Gaussian blur, simulate motion blur and low-light noise,

assisting the model in recognizing potholes in slightly blurred conditions.
6. To train the model to detect potholes despite partial occlusions, we employed tech-

niques that delete or mask sections of the image.

Each of these augmentation techniques enhances the model’s robustness, allowing it
to generalize more effectively to real-world situations and manage difficult conditions like
low lighting, motion blur, and partial occlusion [50]. This combination of augmentations
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leads to improved model performance, resulting in significant increases in accuracy and
reliability.

The output stage displays detected potholes, bounding boxes, and any interpretative
overlays such as Grad-CAM heatmaps. Integration of Grad-CAM into the YOLOv11 model
aims to enhance interpretability by identifying the regions in an image that have the
highest influence on the model’s predictions. The heatmaps generated are overlayed on the
input images to offer insights into the model’s attention during object detection. Based on
Figure 6, we integrate the Grad-CAM approach in the ML object recognition step as part of
the object detection and recognition process.
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4. Results

This section presents the analysis of the results obtained by several deep learning models
for pothole detection under low-light conditions, including YOLOv8 (Nano, Small, Medium),
YOLOv9c, YOLOv10, MobileNetSSD, RTDERT, and the proposed YOLOv11+FPN+Grad-
CAM model. Performance was assessed using key metrics such as precision, recall, and
mean average precision (mAP) across various IoU thresholds, including mAP50, mAP75, and
mAP50–95. The results highlight the strengths and limitations of each model under different
scenarios (review Table 1).

Table 1. Performance metrics of different computer vision models.

Model Title mAP50 mAP75 mAP50-95

YOLOv8 Nano 0.831 0.732 0.549
YOLOv8 Small 0.840 0.724 0.604

YOLOv8 Medium 0.867 0.719 0.611
YOLOv9 0.773 0.754 0.6
RTDERT 0.674 0.569 0.472

MobileNet 0.643 0.584 0.581
YOLOv10 0.842 0.754 0.641
YOLOv11 0.853 0.734 0.682
Our Model

(YOLOv11+FPN+Crad-CAM) 0.88 0.791 0.72

In terms of average accuracy at the 50% overlap threshold (mAP50), the overviewed
model demonstrated a score of 0.8, indicating relatively high accuracy of object localization
at this level of requirements. With a higher overlap threshold of 75% (mAP75), the accuracy
dropped to 0.7, indicating a decrease in localization accuracy with stricter criteria.

The proposed model outperformed all other configurations, achieving the highest
mAP50 of 0.88, mAP75 of 0.791, and mAP50–95 of 0.72. This superior performance reflects
its ability to accurately detect and localize objects even under challenging conditions. The
integration of FPN and Grad-CAM significantly enhanced the model’s robustness and
interpretability.

YOLOv9c demonstrated a balanced performance with a mAP50 of 0.854 and mAP75 of
0.754. Its overall mAP50–95 score of 0.6 indicates solid performance across varying overlap
thresholds, though it fell short of YOLOv8 Medium and the proposed YOLOv11+FPN+Grad-
CAM.

The RTDERT model achieved moderate performance, with a mAP50 of 0.674 and
mAP75 of 0.569. Its mAP50–95 score of 0.472 indicates limited adaptability under stricter
localization requirements. While powerful (30.2 million parameters), its larger size (66.5 MB)
makes it less efficient for practical deployment.
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Known for its compactness, MobileNetSSD achieved competitive results, with a
mAP50 of 0.643, mAP75 of 0.584, and mAP50–95 of 0.581. Its lightweight architecture
(2.25 million parameters, 8.48 MB file size) makes it highly suitable for mobile and embed-
ded systems despite slightly lower accuracy.

The study further validated model performance using privately collected images
in diverse low-light scenarios, including poor-quality images and dirty roads. Table 1
showcases the night-time detection results.

Key benefits we achieved after conducting our experiments are as follows:

• The proposed YOLOv11+FPN+Grad-CAM model consistently outperformed other
models in terms of both detection accuracy and localization robustness.

• The mAP50–95 metric showed significant improvements, highlighting the model’s
adaptability across varying IoU thresholds.

• Compact models like MobileNetSSD offer trade-offs between accuracy and resource
efficiency, making them ideal for constrained environments.

The results visualization highlights the comparative performance of different models
used for pothole detection. Metrics such as average precision (mAP) are presented across
various intersection over union (IoU) thresholds, such as 50, 75, and 50–95. These figures
illustrate the accuracy and robustness of each model under varying conditions, showcasing
their strengths and limitations in pothole detection tasks.

During research we utilized various types of pothole images and used privately
collected images to validate the results and ensure that the models worked in various cases,
for example, in cases with low quality images, poor lighting, and dirty roads (see example
in Figure 7).
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The YOLOv8 Medium model exhibited strong results, achieving a mAP50 of 0.873, a
mAP75 of 0.8591, and an overall mAP50–95 of 0.6318, demonstrating its ability to detect
and localize objects accurately under varied conditions. Its architecture of 25.8 million
parameters and 52 MB size strikes a balance between complexity and efficiency.

MobileNetSSD showed competitive performance with a mAP50 of 0.8337 and a mAP75
of 0.6457. Its lightweight architecture, comprising 2.25 million parameters and a file size of
8.48 MB, makes it highly suitable for resource-constrained environments despite slightly
lower localization accuracy.

The YOLOv9c model achieved a mAP50 of 0.854 and a mAP75 of 0.644, with an overall
mAP50–95 of 0.600, reflecting balanced performance and adaptability across IoU thresholds.
Its architecture, with 25.5 million parameters and a file size of 51 MB, maintains an efficient
trade-off between performance and resource usage.
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RTDERT demonstrated moderate capabilities, with a mAP50 of 0.769 and a mAP75 of
0.501, and an overall mAP50–95 of 0.472, indicating potential for improvement under stricter
criteria. Its larger architecture, featuring 30.2 million parameters and a file size of 66.5 MB,
supports complex object detection tasks but at the cost of increased computational demands.

The proposed YOLOv11+FPN+Grad-CAM model surpassed all other configurations,
achieving the highest mAP50 of 0.88, mAP75 of 0.891, and mAP50–95 of 0.72. This superior
performance underscores its effectiveness in detecting and localizing objects accurately
under challenging conditions, facilitated by the integration of FPN and Grad-CAM for
enhanced robustness and interpretability.

These results highlight the adaptability of the evaluated models across different
environmental and lighting conditions, with the proposed model demonstrating the best
performance in both accuracy and robustness.

Figure 8 showcases the detection results of the pothole recognition model in night-
time scenarios, highlighting its ability to detect and localize potholes under challenging
low-light conditions. Key features such as accurate bounding boxes and high-confidence
scores showcase the model’s robustness despite poor visibility, variations in lighting from
streetlights or vehicle headlights, and potential noise in the environment. This result
emphasizes the practical applicability of the proposed method for real-time road hazard
detection during night-time driving.
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5. Discussion

In general, the choice of a model for pothole detection should balance between detec-
tion accuracy and computing requirements. The proposed YOLOv11+FPN+Grad-CAM
model seems to be the best option if you have access to robust resource capacities.

The integration of Grad-CAM into the YOLO model demonstrated significant im-
provements in model interpretability, as observed through the generated heatmaps for
each detection. The model consistently focused on areas with visible pothole features, with
the heatmaps closely aligned with actual pothole regions in most test scenarios. This was
particularly evident under challenging conditions like low light or occlusion, where the
heatmaps highlighted the distinct characteristics of potholes, aiding the detection process.

Grad-CAM analysis revealed an average increase of 1.5% and 2.8% in true positive de-
tections, as the model’s attention was directed towards relevant features. Misclassifications,
particularly in cases of false positives, were easier to analyze through Grad-CAM over-
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lays, as the model’s focal points provided insights into possible feature misinterpretations.
Validation tests across varied lighting and weather conditions confirmed that Grad-CAM
consistently highlighted relevant features, enhancing model reliability in real-world con-
ditions. The results indicate that integrating Grad-CAM not only improves transparency
in model decision-making but also contributes to higher detection accuracy by aiding the
understanding and refinement of model focus areas.

6. Conclusions

This paper comprehensively compares various YOLO-based models and examines
the practical challenges of integrating these models into a driver warning system. Our
evaluation of YOLO and similar models for detecting road potholes shows an accuracy of
80%, precision of 85%, recall of 90%, and an F1-score of 85%. These results indicate a strong
ability to identify and classify potholes with high reliability accurately.

The main contributions of our paper are as follows:

1. Implementing advanced data augmentation techniques;
2. Conducting a comparative analysis of YOLO-based models;
3. Demonstrating model adaptability across varied low-light conditions.

The experimental results highlight the effectiveness of advanced architectures such
as YOLOv11+FPN+Grad-CAM for pothole detection in low-light conditions. The com-
prehensive evaluation across different metrics confirms the practicality of these models
for enhancing road safety and maintenance. The results also underscore the importance
of choosing models based on deployment requirements, balancing accuracy, size, and
computational efficiency.

Our findings highlight the potential of these models to improve road maintenance
and safety, particularly by promoting safer and more reliable travel at night.

Future enhancements in model training using diverse datasets could help address
these challenges. Additionally, exploring improvements in model architecture, such as
integrating attention mechanisms, could further enhance detection accuracy. The next
research iteration should focus on developing more sophisticated algorithms to refine night-
time pothole detection. Based on this solution, we plan to organize a real-time recognition
interface that can be applied in self-driving vehicles to avoid potholes on the road under
various environmental conditions.

This study provides valuable insights; however, there are several limitations to con-
sider. The dataset used for evaluation mainly consists of pre-recorded video segments from
specific geographic regions. As a result, it may not fully represent the variability in road
conditions, traffic scenarios, and environmental factors encountered worldwide. Future
research should aim to include a more diverse and comprehensive dataset.
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