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Abstract: This paper evaluates the impact of British Columbia’s carbon tax on manufacturers’ 
economic and environmental performance in a unified modeling framework that allows for mak-
ing critical distinctions between efficiency, technical change, and total factor productivity as per-
formance measures. In contrast to most papers that examine environmental policy impacts on 
either the economy or the environment, our approach combines a by-production model within a 
stochastic frontier framework to evaluate the tax’s impacts on both economic and environmental 
efficiency. Our findings suggest that a 1.0% increase in the carbon tax improved manufacturers’ ef-
ficiency in producing desirable output (real sales of manufactured goods) by 0.5%. In addition, the 
same 1.0% increase in the carbon tax improved manufacturers’ environmental efficiency for green-
house gas (GHGs) and carbon monoxide (CO) emissions by the same amount, 0.2%. However, the 
carbon tax led to lower environmental efficiency for emissions of nitrogen oxides (NOX), -0.3%. In 
addition, our use of a rich plant-level dataset reveals considerable heterogeneity in manufactur-
ers’ efficiency responses to the tax. Finally, we suggest that lower efficiency levels for undesirable 
outputs than desirable outputs indicate that the relative cost of adjusting production processes to 
improve efficiency favors economic efficiency over environmental efficiency.
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1. Introduction

A growing body of evidence suggests that environmental policies have had a profound impact

on emissions of greenhouse gases (GHGs) and air pollutants, like carbon monoxide (CO) and

nitrogen oxides (NOX). In Europe, for example, air pollution from manufacturing fell by between

23%–59% from 1995 to 2008, despite an increase in real shipments of 37% (Brunel (2017)). In the

United States, emissions of most air pollutants from manufacturers fell by 52% to 69% from 1990

to 2008, while total real shipments from the sector rose by 35%, primarily due to pollution taxes,

according to Levinson (2015). These results were more formally validated by Shapiro and Walker

(2018). Moreover, environmental policies have affected the composition of the manufacturing

sector (Greenstone (2002)), also contributing to the sector’s lower aggregate pollution intensity.

These pollution intensity trends and the extent to which environmental policies impact businesses’

performance also appear in the literature for Canada. Gu, Hussain, and Willox (2019) found that

total manufacturing emissions of several air pollutants and GHGs in the Canadian manufacturing

sector fell substantially between 2004 and 2012. Evidence from Cherniwchan and Najjar (2022)

indicates that clean air regulations reduced continuing exporters’ export volumes and increased

the probability of producers exiting the export market. Najjar and Cherniwchan (2021) show that

the decline in pollution intensity from 2000 to 2010 was primarily due to environmental regulation,

explaining as much as 61% of the decrease in nitrogen oxides. In addition, they demonstrate that

the regulation of some air pollutants significantly influenced patterns of entry and exit among

manufacturers.

The carbon tax, implemented by the provincial government of British Columbia (B.C.), has been

the focus of several studies that examine various aspects of the tax’s environmental or economic

impact. Carbone et al. (2020) and Yamazaki (2017), for example, looked at the effect of the tax

on employment and found that employment levels fell significantly in the most carbon-intensive

sectors but increased in the least carbon-intensive sectors. They estimate that the overall effect of

the carbon tax on employment was small.1

Using a difference-in-differences approach, Yamazaki (2022) argued that the carbon tax had a

1Many other papers consider the impact of B.C.’s carbon tax from the consumer’s perspective. See Xiang and Lawley
(2019) and Arcila and Baker (2022) for examples.
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modestly negative effect on manufacturers in B.C., and found that it generally lowered total fac-

tor productivity (TFP) by 1.0% and output by 0.15% annually. However, he also indicated that

when the revenues collected from the carbon tax were made revenue neutral by lowering corpo-

rate income taxes, TFP increased for the median manufacturing plant by 0.06% due to the positive

productivity effect of increased investment in emissions abatement technologies. The period ex-

amined, 2004 to 2012, precludes drawing definitive conclusions about the long-run effects of the

carbon tax. However, statistically insignificant evidence is presented that the changes in corporate

and personal income taxes to make the carbon tax revenue-neutral had a positive impact on TFP

one to two years later.

In contrast to these studies, Lutz (2016), who also used a difference-in-differences approach, found

that the European Union Emissions Trading System raised productivity in German manufacturing

firms. Bernard and Kichian (2021) argue that the revenue-neutral carbon tax had no negative im-

pacts on B.C.’s GDP, while Pretis (2022) finds conflicting results across multiple studies evaluating

the effects of B.C.’s carbon tax on employment.

A limitation of many studies is that they examine the effect of environmental policies on eco-

nomic or environmental performance, but not both.Analysis from 2 Additionally, environmental

performance is often defined using a single pollutant or type of pollutant that the environmental

policy in question targets, with no consideration given to how the policy may affect emissions

of other pollutants. This narrow focus may explain why some studies, including Cifuentes et al.

(2001), assume environmental policies uniformly reduce all pollutants. In reality, the adaptations

firms make to their production processes in response to environmental policies can positively or

negatively impact the generation of other pollutants.

Another limitation in the existing literature appears among studies that examine the impact of

carbon taxes or other types of environmental policies on productivity. Their estimation of TFP

using standard models makes it impossible to distinguish between the contributions to changes

in TFP from technical change and technical inefficiency change. Our findings suggest that manu-

facturers in British Columbia primarily responded to the carbon tax through efficiency-improving

2Najjar and Cherniwchan (2021) is an important exception, examining emissions intensities of four air pollutants
and relative changes in manufacturers’ output, and entry and exit, but it does not examine impacts on GHG emissions.
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adaptations to production rather than through technological change. In addition, we argue that

an understanding of the role of efficiency, distinct from technical change, allows for a deeper un-

derstanding of the Porter Hypothesis, which we illustrate with a simple example.

Overall, the literature alludes to a broad recognition that environmental policies have important

implications for both economic and environmental performance, even if the outcomes are not

always clear. Unfortunately, this lack of clarity comes, in part, from the piecemeal analyses em-

ployed to evaluate either economic or environmental performance separately, failing to account

for the degree to which economic and environmental outcomes are related. In studies focusing on

environmental performance, the analysis is often based on emissions of a single pollutant when

changes in production processes associated with policy interventions impact emissions of mul-

tiple pollutants. We address these shortcomings by using a by-production model in which the

production of desirable and undesirable outputs is estimated equation by equation, allowing each

output to be represented by its own production technology.

Our by-production model is demanding of the data, requiring that all desirable and undesirable

outputs be observed for each plant. Otherwise, including plants with no observations for one or

more undesirable outputs would have come at the expense of evaluating the impact of the carbon

tax on the joint production of all four outputs at the plant level. Results for net changes in outputs

associated with the carbon tax might still have meaning at the industry level. However, the vari-

ation of outputs’ complementarity or substitutability among plants could not be easily assessed.

As a result, we rely on a unique plant-level database that integrates economic and environmental

information, where each plant in our sample has observations for all desirable and undesirable

outputs.

An appealing aspect of stochastic frontier models is the ease with which researchers can estimate

the determinants of changes in inefficiency. This allows us to focus on how the carbon tax affected

transient (short-run) economic and environmental inefficiency. However, we also consider how

plants’ distance from the markets they serve impacted their persistent (long-run) inefficiency.

By employing these methods, we can address our primary question of interest as to whether car-

bon taxes affect economic and environmental efficiency. We find that B.C.’s carbon tax improved

environmental efficiency for emissions of GHGs for manufacturers in the province, consistent with
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most findings in the literature. Because we use a by-production model to evaluate multiple out-

puts, our analysis also shows that the carbon tax improved economic efficiency and environmental

efficiency for emissions of CO but reduced environmental efficiency for emissions of NOX. This

result suggests that reductions in climate change gases can have complex environmental implica-

tions. Finally, our stochastic frontier framework allows us to decompose productivity into changes

in inefficiency, distinct from changes in technology, and identify the determinants of changes in

short-run and long-run inefficiency. Our findings indicate that the carbon tax was, on average, a

significant contributor to improving manufacturers’ short-run economic efficiency, but with sub-

stantial heterogeneity.

The remainder of the paper is organized as follows. Section 2 provides background information

about B.C.’s carbon tax. Section 3 discusses the NPRI-ASM database used in the analysis, in-

cluding a brief description of the determinants of inefficiency. Section 4 describes the theoretical

foundations of by-production models and our econometric specification of the stochastic frontier

model. Results are presented in Section 5, followed by conclusions in Section 6. Tables of addi-

tional results are in Appendix A.

2. British Columbia’s Carbon Tax

B.C.’s provincial government implemented a carbon tax of C$10 per tonne of CO2 equivalent

GHG emissions on July 1, 2008. After that, it rose by $5 per tonne every year until it reached

$30 per tonne in 2012. In 2018, the $5-per-tonne increment resumed each year, except for 2020.

The carbon tax reached $50 per tonne in April 2022 (British Columbia Ministry of Finance (2022)).

The carbon tax covers about 77% of all GHG emissions in the province (Ahmadi, Yamazaki, and

Kabore (2022) and Harrison (2012)). Exceptions to the carbon tax include fossil fuels for inter–

jurisdictional commercial marine and aviation purposes and fuels traveling to or from B.C. for

export or commercial marine and aviation purposes. Fuels used in greenhouse operations became

exempt starting in 2012, as were fuels used for agriculture in the following year. Biomass fuels

and fossil fuels that contribute to fugitive emissions are exempt.

Overall, the introduction of the carbon tax embodies many aspects of an ideal natural experiment,

making it exogenous to the internal decisions of manufacturing plants. In particular, the tax was
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implemented within five months of being announced, limiting polluters’ ability to adjust their

behavior in anticipation of the change. Moreover, the tax’s coverage was comprehensively levied

on all sources of carbon emissions from all industries until midway through 2012.

The revenue-neutral aspect of the carbon tax was intended to encourage businesses to substitute

away from more carbon-intensive fuels and toward more environmentally friendly energy sources

with minimal effect on their income levels due to the tax (Ahmadi, Yamazaki, and Kabore (2022)).

Revenues collected from the carbon tax were returned to individuals and businesses through tax

reductions or direct transfers. For businesses, the general corporate income tax rate was reduced

from 12% to 11% on July 1, 2008. It was further reduced to 10% in 2011. The small business income

tax rate was also reduced by one percentage point in 2011 to 3.5% and again in 2012 to 2.5%. In

addition, the income threshold between small businesses and general corporations was increased

from $400,000 to $500,000.

Because it was applied as a value-added tax on fossil fuels, it is possible to calculate the average

effective tax rate for each plant using fuel expenditure data. Since the changes in the carbon tax

typically take effect on July 1 each year, the average effective tax was calendarized by taking the

average tax of two years to better correspond with the information in the NPRI-ASM dataset.

3. Methodology

To analyze the impact of B.C.’s carbon tax implemented on manufacturers’ economic and environ-

mental efficiency, we use a by-production model to estimate the joint production of desirable and

undesirable outputs, measured as real sales and tonnes of emissions of pollutants, respectively.

Incorporating the by-production model into a stochastic frontier framework allows us to jointly

estimate economic and environmental efficiency. An additional benefit of this unified model is

that it allows us to identify the drivers of transient and persistent efficiency, which are the carbon

tax, and manufacturers’ distance to markets, respectively. The remainder of this section provides

some important concepts of stochastic frontier and by-production models and our motivation to

use them in a unified framework in Section 3.1. Section 3.2 presents our econometric approach,

which concludes with a discussion about our strategy to manage endogeneity.
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3.1 A Unified Stochastic Frontier and By-Production Conceptual Model

A strength of stochastic frontier models is that they relax the standard neoclassical assumption that

all plants are fully efficient. Common methods used to estimate total factor productivity (TFP),

like control function methods in the spirit of Olley and Pakes (1996), equate TFP growth with tech-

nological change. Relaxing the full efficiency assumption means that changes in TFP can result

from changes in technology (a shift in the production frontier) and changes in efficiency (plants’

movement closer to or further from the production frontier, which is not associated with idiosyn-

cratic noise). For example, a decline in inefficiency occurs when a plant increases its desirable

output by reducing waste, lowering the misallocation of resources, or both. In contrast, a decline

in the inefficiency in producing undesirable output can result from decreased emissions by reduc-

ing the misallocation of fossil fuels. In the stochastic frontier framework, inefficiencies associated

with desirable and undesirable outputs can be further decomposed into transient (time-varying

or short-term) and persistent (time-invariant or long-term) inefficiencies.

Although inefficient use of productive resources may seem to conflict with standard economic

assumptions about competitive markets and profit maximization, it only implies that producers’

efforts to achieve full efficiency may not be realized and can vary significantly among producers.

An extensive overview of the empirical evidence of how common inefficiency is observed as pro-

ductivity dispersion (Haltiwanger, Foster, and Krizan (2001)); misallocation (Hsieh and Klenow

(2009)); zombie firms (Caballero, Hoshi, and Kashyap (2008)); variation in firms’ management

practices, (Bloom and Van Reenen (2007)); and technology adoption (Griliches (1957) and Bloom

et al. (2019)) is presented in Chapter 1 of Grifell-Tatjé, Lovell, and Sickles (2018).

Moreover, acknowledging the role of inefficiency as more than idiosyncratic noise, as stochastic

frontier models do, allows for a deeper understanding of the Porter Hypothesis. The relationship

between economic inefficiency and the Porter Hypothesis is intuitively illustrated in Brännlund,

Lundgren, et al. (2009) and, more recently, in Førsund (2018). A simplified version is presented in

Figure 1, where the production of desirable output is measured on the y-axis, and undesirable out-

put is on the x-axis. Inefficient production of desirable output, Yg, is represented by point A below

the initial production function, f0(X). In this example, a new environmental policy highlights inef-

ficiencies, inducing producers to reduce undesirable output. In the short run, technology is fixed,
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but producers can still reach point B if efficiency gains are exhausted. In the long run, investment

in new technologies shifts the production function to fCT(X) where fully efficient producers can

reach a new point between points C and D (i.e., in the CD segment).

Inefficient producers at point A have the strongest incentive to invest in new technologies to sur-

vive. Figure 1 illustrates the first-mover advantage, whereby the “leaders” move to the new fron-

tier along the segment CD. At the same time, the “laggards” remain below point B if they do

not acquire new technologies through innovation or adoption. Among plants at point A, those

whose inefficiency is predominantly structural and persistent may face the biggest challenges and

payoffs from investing in new technologies.

Porter and Van der Linde (1995) present several case studies in which firms’ adaptation to envi-

ronmental regulations led to economic and environmental performance gains that they suggest

would not have been achieved otherwise. Recent studies like Bloom et al. (2019) also provide

extensive descriptions of the firm characteristics associated with the persistent dispersion of pro-

ductivity and efficiency measures among plants, which can be substantial even when the plants

belong to a larger enterprise. Kube et al. (2019) and Bloom et al. (2010) add that firms with

less structured environmental management processes lack the information necessary to identify

resource-saving measures.

The point of this simple illustration is to show how the roles of transient and persistent inefficiency

are crucial to understanding how gains in economic performance due to an environmental policy

are possible. In addition, the illustration indicates that changes in productivity are unlikely to

come only from technical change often associated with stronger investments following reductions

in income taxes intended to make carbon pricing policies revenue neutral. Therefore, a stochastic

frontier model is ideal for distinguishing between changes in efficiency and technical change as

sources of TFP growth. However, it is equally important to realize that environmental policies can

have unintended negative economic consequences in addition to their environmental implications

(Yang, Shao, and Yang (2021)). Therefore, an examination of each plant’s multiple economic and

environmental outputs is required, for which we employ stochastic frontier and by-production

methods as a unified modeling framework.

Our motivation for choosing a by-production model also stems from the need to recognize that
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environmental policies intended to reduce emissions of one pollutant may lead producers to adapt

production processes with positive or negative spillover effects for other pollutants they generate.

To illustrate this point, Holland (2011) uses the example of electricity generation from natural gas,

which produces emissions of nitrogen oxides (NOX) and GHGs. Electricity producers responded

to the implementation of an environmental policy by increasing the combustion temperature to

raise the output of electricity generated per unit of natural gas and reduce carbon dioxide (CO2)

emissions. However, higher combustion temperatures typically cause NOX emissions to increase

exponentially (Apt and Katzenstein (2011)). In this example, CO2 and NOX were net substitutes.

Figure 1: Inefficiency change, technical change, and the Porter hypothesis
Source: Authors’ interpretation from (Brännlund, Lundgren, et al. 2009) and (Førsund 2018)

In some cases, the reduction in total fuel consumed may offset the increase in NOX emissions.

Therefore, the overall effect of the environmental policy on NOX emissions is determined by

whether the output effect from reducing fuel consumption is larger than the substitution effect

from changes in how the fuel is consumed. Bonilla, Coria, and Sterner (2018) provide a simi-
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lar example. Environmental policies may also induce fuel switching from gasoline to diesel, for

example, which reduces GHG emissions but significantly increases NOX emissions, according to

Stern (2006).

These results suggest that the generation of each undesirable output has a unique relationship

with the inputs that produce it. A distinguishing characteristic of by-production models is that

they describe the technology used to generate undesirable output as a function of inputs, such

as fossil fuels, which are a subset of the inputs used to produce desirable output. Pollution-

generating inputs are considered non-rival or joint because their use in producing one output

does not prevent the production of the other.

In addition, undesirable outputs have some unique characteristics. These characteristics are

• Production of desired outputs generates undesirable outputs.

• While desirable outputs are freely disposable, undesirable outputs are not.

• Undesirable outputs cannot be substituted for desirable outputs.

• Undesirable outputs can be substituted for some desirable inputs.

In contrast to by-production models, standard models use a single production technology to char-

acterize both desirable and undesirable outputs in a single estimator. To see why this distinction

matters, consider the case where good and bad outputs (Yg and Yb) are produced in isolation. In

such a case, economic efficiency in producing good output (output-oriented technical efficiency)

is defined as the ratio of actual output Yg to the maximum possible output Ŷg. Thus, if Yg/Ŷg < 1,

there is potential for producing more output without using more inputs. On the other hand, if one

uses the cost-minimizing behavior where the objective is to minimize costs without reducing out-

put, the cost efficiency (input-oriented) is defined as the ratio of minimum possible cost to actual

cost. In this case, Ĉg/Cg < 1. Thus, if cost efficiency is less than 1, then there is potential for re-

ducing cost without producing less output. Environmental efficiency is defined in the same way,

as the ratio of the minimum possible undesirable output Ŷb to the actual undesirable output Yb.

If Ŷb/Yb < 1, there is scope for reducing the production of undesirable output. Note that to dis-

tinguish between good and bad outputs, we use the superscripts b and g assuming that these are
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produced in isolation without any link between the two. The link between Yb and Yg is modeled

in two ways.

The first approach is to model desirable and undesirable outputs using a single equation produc-

tion technology in which desirable and undesirable outputs, as well as inputs, enter as arguments.

In this case, one cannot separate technical and environmental efficiency. Also, this specification

fails to satisfy the axioms of production theory. To understand why, consider how technology is

specified by a single equation

F(Yg, Xn, Yb, t) = Ag, (1)

where F(.) is a transformation function, Yg is a vector (g ∈ RG
+) of desirable outputs and Yb is a

vector (b ∈ RB
+) of undesirable outputs. Xn is a vector (n ∈ RN

+) of factor inputs that generate

desirable and undesirable outputs, and t is time, which captures shifts in technology. Finally, Ag

includes a constant term as well as the inefficiency and random components of a composite error

term. Here we focus on a single desirable output.

The main problems with the single equation model are as follows.

1. Note that monotonicity assumptions on the technology require that FYg ≥ 0, FXn ≤ 0 and

FYb ≤ 0, where FYg , FXn and FYb are partial derivatives of F (.). Since FXn and FYb have the

same signs, there is no difference between Yb and Xn in F
(
Yg, Xn, Yb) = Ag from a purely

mathematical point of view. That is, undesirable outputs can be treated as inputs (Bau-

mol and Oates (1988); Reinhard, Lovell, and Thijssen (1999); Reinhard, Lovell, and Thijssen

(2000); and Lee, Park, and Kim (2002)). Since inputs are assumed to be freely disposable, so

are undesirable outputs, violating the axioms of production theory.

2. Technical and environmental efficiency are confounded. The technology with input-oriented

technical inefficiency is

F(Yg, θXn, Yb, t) = Ag, (2)
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where θ is input-oriented technical inefficiency. Since Xn and Yb have the same mathematical

feature (monotonicity conditions), one cannot determine whether θ represents the possible

reduction in inputs or undesirable outputs.

3. Environmental inefficiency measures the possible reduction in Yb. The model cannot have

inefficiency in both Xn and Yb, i.e., one cannot get separate measures of both economic and

environmental inefficiency from θ.

The second approach is the recently-developed by-production model proposed by Førsund (2009)

and Murty, Robert Russell, and Levkoff (2012), and first applied in Kumbhakar and Tsionas (2016).

They discuss theoretical problems of a single equation representation of the technology to model

undesirable outputs, and advocate for a by-production technology that separates the production

of desirable output from undesirable outputs. Technology for desirable output is specified as

F (Yg, θ Xn, t) = Ag, which does not include undesirable outputs.3 By-production technology

establishes the link between desirable and undesirable outputs by specifying the technology as

H
(
Yg, Ybλ, Xr, t

)
= Ab, where Xr is a subset of Xn that generate Yb and the inverse of λ is envi-

ronmental inefficiency. Instead of having one technology to produce all the undesirable outputs,

we assume that the technology for each undesirable output is separate.

3.2 Econometric Modeling

The first equation in our model describes the technology of the production of one desirable output,

which is produced using capital, labor, and intermediate inputs. Undesirable outputs do not

enter as arguments in this equation. We assume that production technologies for each undesirable

output (GHG, NOX, and CO) depend on desirable output and undesirable inputs (fossil fuels).

Technology to produce desirable output (with the plant and time subscripts added) is specified as:

Yg
it = f g(Xn

jit, t) exp(ϵg
it) (3)

3One can use output-oriented inefficiency and write the technology as F (µYg, Xn, t) = Ag, where µ ≥ 1 is output
oriented inefficiency.
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where Yg is desirable output, Xn is a vector of j inputs used in the production of Yg, t is time,

and i indexes plants. Finally, following Colombi et al. (2014), Tsionas and Kumbhakar (2014),

Badunenko and Kumbhakar (2017), we specify log Ag
it ≡ ϵ

g
it = vg

it + vg
0i − ug

it − ug
0i where ϵ

g
it is a

composite error term composed of a random noise term, vg
it, and a firm-specific random effects

term, vg
0i, which are zero mean random variables. ug

it is transient (time-varying) inefficiency, and

ug
0i is persistent inefficiency, which are both non-negative. Assuming a translog functional form,4

we can write equation 3 as:

log(Yg
it) =β0 +

J

∑
j=1

β j log(Xn
jit) +

J

∑
j=1

J

∑
k=1

β jk log(Xn
jit) log(Xn

kit)+

J

∑
j=1

β jt log(Xn
jit)t + βtt +

1
2

βttt2 + βdmDm + βdtDt + ϵ
g
it (4)

where βjk = βkj for symmetry restrictions, and Dm and Dt represent indicator variables for man-

ufacturing sub-industries and the period from 2008 to 2012, respectively. Note that the error term

ϵ
g
it in equation 4 is decomposed into four components.

Let the technologies for the undesirable outputs be:

Yb
it = f b(Xr

jit, t)exp(ϵb
it) (5)

where Ab
it ≡ exp(ϵb

it). We assume a translog form again for these technologies and substitute the

predicted value of real sales Ŷg, rather than the actual value Yg, and write equation 5 as:

4An alternative to the translog functional form is the Cobb–Douglas. However, it does not satisfy the second order
(concavity) condition for profit maximization. Among general flexible functional forms, including the generalized
Leontief, the translog has become so ubiquitous and well-understood that it is a commonly accepted standard.
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log(Yb
it) =α0 + αY log(Ŷg

it) +
1
2

αYY log(Ŷg
it)

2 +
R

∑
j=1

αj log(Xr
jit)+

1
2

J

∑
j=1

J

∑
k=1

αjk log(Xr
jit) log(Xr

kit) +
1
2

R

∑
j=1

αjY log(Xr
jit) log(Ŷg

it)+

J

∑
j=1

αjt log(Xr
jit)t + αtt +

1
2

αttt2 + αdmDm + αdtDt + ϵb
it (6)

where fossil fuels are represented as Xr,
(
Xr ⊂ Xn

∣∣ r ∈ RR
+

)
. The symmetry restrictions are αjk =

αkj. The error term ϵb
it in equation 6 is decomposed into four components as it was with the

production of desirable output in equation 4 ϵb
it = vb

it + vb
0i + ub

it + ub
0i where ub

0i > 0 and ub
it >

0 are persistent and transient environmental inefficiency, respectively. However, an important

difference is that the signs in front of the terms ub
it and ub

0i in equation 6 are positive, not negative, to

reflect that an increase in environmental inefficiency increases undesirable output. As expressed in

equation 4, vb
it and vb

0i are the zero mean random noise and random firm effects terms, respectively.

We estimate the models specified in equation 6 equation by equation to obtain estimates of the

technology parameters as well as components of economic and environmental inefficiencies.

Distributional assumptions are made on the error components to use the maximum likelihood

method (viz., half-normal distribution on the inefficiency components and normal distribution

on the noise and firm effects). To explain persistent and transient inefficiency, we allow the

variances of the inefficiency components to be functions of some exogenous variables Badunenko

and Kumbhakar (2017). We use the following strategy to address the endogeneity of inputs and

outputs. Upon consideration of the approaches described in Kumbhakar (2012) to derive an

estimating equation in which the regressors are uncorrelated with the error components, we use

the predicted value of real sales, Ŷg, rather than the actual value, Yg, in equation 6.

To estimate the model, we assume that the noise, vit, and the firm-specific random effects, v0i,

terms are both homoscedastic. This assumption is, however, relaxed for both persistent, u0i, and

transient, uit, inefficiency components. Persistent and transient inefficiencies for desirable output

are expressed, respectively, as:

14



u0i ∼ N+
(
0, σ2

u0i
)
≥ 0 where σ2

u0i = exp (zu0iγu0) , i = 1, . . . , N and (7)

uit ∼ N+
(
0, σ2

uit
)
≥ 0 where σ2

uit = exp (zuitγu) , i = 1, . . . , N. (8)

Here zu0i denotes the vector of time-invariant variables that determine the variance of the persis-

tent inefficiency (variance of random effects). The term zuit denotes the vector of variables that

determines the variance of the transient inefficiency. Because the efficiency indices are TEu0i =

exp (−u0i) and TEuit = exp (−uit), their rates of change due to changes in zu0i and zuit (i.e,

∂ log TE0i/∂zu0i and ∂ log TEuit/∂zuit) are given by −∂u0i/∂zu0i and −∂uit/∂zuit. Marginal effects

are approximated at the mean values of −∂E(u0i)/∂zu0i and −∂E (uit) /∂zuit, respectively. Since

the assumed distributions of inefficiencies are half-normal, the marginal effects can be derived

from −
√
(2/π)∂σu0i/∂zu0i and −

√
(2/π)∂σuit/∂zuit, respectively. Hence, the determinants of the

variance of the levels of inefficiency are also the determinants of the levels of efficiency. The de-

terminants of persistent and transient inefficiency are defined similarly to produce undesirable

outputs expressed in equations 5 and 6.

A model that comprises technology and determinants of either economic or environmental

efficiencies can be estimated in one step using the classical maximum likelihood (ML) approach

Colombi et al. (2014) or the maximum simulated likelihood (MSL) method Filippini and Greene

(2016). The details of estimation are provided in Colombi et al. (2014) and Filippini and

Greene (2016) as well as Badunenko and Kumbhakar (2016). We estimate efficiencies following

Badunenko and Kumbhakar (2017), who relate the production frontier technology to the dual

cost frontier technologies, using a single-step MSL method that allows heterogeneity in the four

random error components. Estimating the four equations as a seemingly unrelated regressions

(SUR) system would generate more precise estimates. However, as Lai and Kumbhakar (2018)

indicate, calculating the marginal effects of the exogenous determinants as part of a closed-form

solution for a system of equations with non-symmetric error components is computationally

nearly intractable.
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4. Data

Data for our empirical analysis come from Statistics Canada’s linked NPRI-ASM database. It com-

bines information from the National Pollutant Release Inventory (NPRI) and the Annual Survey

of Manufacturing (ASM). The database is one of the most comprehensive sources of information

on undesirable outputs and production activity available for Canada’s manufacturing sector. Our

dataset for manufacturers in B.C. is an unbalanced panel that includes 505 observations for 75

plants from 2004 to 2012. These plants are all large emitters of GHGs, CO, and NOX.

The NPRI-ASM database is distinct from other databases because the ASM includes detailed in-

formation on fossil fuels essential for calculating GHG emissions at the plant level, in addition

to its extensive financial employment information. Combined with the detailed information on

releases of pollutants from the NPRI, we can examine how manufacturers’ decisions impact their

economic and environmental performance related to climate change from GHG emissions and

human health impacts from emissions of multiple air pollutants.

From a modest review of the literature for papers with comparable datasets, we found few that

include economic and environmental information. One example is the facility-level criteria air

pollution data contained in the Toxic Release Inventory (TRI) maintained by the U.S. Environ-

mental Protection Agency, which can be linked with facility-level economic information from the

National Establishment Time Series database (NETS). However, these data contain no information

on GHG emissions, limiting environmental analysis to air pollutants, as in Cherniwchan (2017).

Others, like Yamazaki (2022) and Ahmadi, Yamazaki, and Kabore (2022), use fuel expenditure

data to calculate GHG emissions as we do but do not examine the role of air pollutants. Impor-

tant contributions have been made using aggregate data that combine emissions of GHGs and air

pollutants with economic information (Cole and Elliott (2003)). However, as our results indicate,

there is considerable heterogeneity at the plant level that is washed away when the analysis is

performed using aggregate data.

The NPRI includes information for over 300 pollutants collected by Environment and Climate

Change Canada (ECCC) under the authority of the Canadian Environmental Protection Act, 1999

Environment and Climate Change Canada (1999). All industrial plants, including manufacturers
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that meet or exceed specified criteria and emission thresholds, must report annually to ECCC on

any of the more than 300 pollutants (Environment and Climate Change Canada (2015)). Two of

the most common air pollutants reported are CO and NOX, which we include in our model as

undesirable outputs.

The NPRI inclusion requirements are based on the amount of a given pollutant emitted and the fa-

cility’s size (measured by employment). In general, large facilities that emit more than a minimum

emission threshold are required to report. The minimum emission threshold varies by pollutant.

A minimum concentration threshold may be used for certain substances instead of a minimum

emission threshold. Facilities that do not meet the inclusion requirements may still voluntarily

report to ECCC. The following are the inclusion criteria used for the NPRI:

• Plants employing more than ten workers (full-time equivalent) must report to the NPRI on

each pollutant they emit above the minimum emission threshold (or the minimum concen-

tration threshold).

• Plants that employ fewer than ten workers (full-time equivalent) and operate a device that

uses a fossil fuel input (e.g., boiler or generator) must report to the NPRI on each pollutant

emitted above the minimum emission threshold.

• Plants that employ fewer than ten workers (full-time equivalent) and do not operate a device

that uses a fossil fuel input are not required to report to the NPRI.

Any plant that emits less than the minimum emission threshold or the minimum concentration

threshold for a given pollutant is not required to report to the NPRI on that pollutant. These

thresholds apply to our sample of manufacturers, implying that our results are specific to large

emitters of CO and NOX in B.C.’s manufacturing sector. Therefore, our results may not be repre-

sentative of all manufacturers in B.C.

The ASM includes detailed information on Canadian manufacturing plants’ production activity,

such as shipments, employment, salaries and wages, inventories, and goods purchased for resale

and commodity data, including consumption of fossil fuels.
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An NPRI facility is potentially a smaller unit of observation than an ASM plant. As a result, some

plants in the ASM correspond with multiple facilities in the NPRI. When a plant in the ASM is

associated with multiple facilities, the pollutant emissions are aggregated to the plant level. We

calculated the emissions of carbon dioxide equivalent GHGs using the plant’s expenditures on

seven fossil fuels, including gasoline, heavy fuel oil, light fuel oil, propane, natural gas, coal, and

diesel. Then, to deflate expenditures, we used prices for B.C. to derive fuel volumes (liters, cubic

meters, or tonnes) for each of the seven fuels. Finally, we calculated emissions of GHGs for each

plant using CO2 equivalent global warming factors for each of the fuels.

An alternative approach to deriving GHG emissions from fuel expenditure data would be to link

the direct estimates of GHG emissions collected by the Greenhouse Gas Reporting Program (GH-

GRP) at Environment and Climate Change Canada. However, the number of plants linked to the

ASM and NPRI databases from 2004 to 2012 was too small to produce consistent estimates. In ad-

dition, Ahmadi, Yamazaki, and Kabore (2022), who use the same approach as we do to calculate

GHG emissions, note that research by Quick (2014), which shows that calculating GHG emissions

is more accurate than measurements taken from emissions monitoring systems.

Plant-level data for prices of gross output, capital, labor, and intermediate inputs would be ideal;

however, such detailed price information is rarely available. Instead, we relied on industry-

level price data from Statistics Canada’s Annual Multifactor Productivity Program from Statistics

Canada Table 36-10-0217.

4.1 Determinants of Inefficiency

Early approaches to estimating inefficiency sought to address the problem of heteroscedasticity

by expressing the variance of inefficiency as a function of exogenous factors that are interpreted

as determinants of inefficiency (Wang (2002) and Wang and Schmidt (2002)). However, their mod-

els did not distinguish between transient and persistent inefficiency components. Consequently,

there were no determinants of persistent inefficiency. It is important to include these two compo-

nents and their determinants because the policy implications of these inefficiencies are different.

Persistent inefficiency is usually caused by structural variables that do not change in the short run,

while the factors determining transient inefficiency can be changed in the short run.
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Several determinants of transient inefficiency were considered to account for economic or environ-

mental shocks that could potentially influence economic and environmental inefficiency. Aside

from the provincial government’s carbon tax policy, the most relevant economic and environ-

mental shocks experienced by manufacturers in B.C. between 2004 and 2012 were the 2008–09

recession, the 2010 Winter Olympics held in Vancouver, and the mountain pine beetle infestation.

Variables used to account for these shocks included industry employment and unemployment

rates; levels, rates, and ratios of job creation and destruction; interest rates; and markups estimated

following De Loecker and Warzynski (2012). These variables were included in our estimations in

their original and logged values. Several specifications combining quadratic and interaction terms

were also tried. Only specifications using the carbon tax produced parameter estimates with con-

sistent signs and magnitudes at standard levels of statistical significance. Parameter estimates for

other determinants associated with labor and financial markets or profitability were rarely statis-

tically significant and were frequently difficult to reconcile with economic theory. The irrelevance

of these time-varying variables suggests that the time and industry dummies sufficiently capture

the influence of economic and environmental shocks other than the carbon tax.

Table 1: Summary Statistics

Mean SD

Sales (Y) 168,000,000 292,000,000
Capital (K) 26,000,000 52,000,000
Labor (L) 270 220
Intermediate Inputs (M) 115,000,000 248,000,000
Gasoline (G) 15,000 67,000
Heavy Fuel Oil (HFO) 735,000 4,877,000
Light Fuel Oil (LFO) 40,000 384,000
Propane (P) 60,000 218,000
Natural Gas (NG) 150 220
Coal (C) 3,000 15,000
Diesel (D) 387,000 341,000
Distance to Markets (DM) 710 570
Average Effective Carbon Tax Rate (CT) 7.4 12.5
Greenhouse Gases (GHG) 37,000 49,000
Carbon Monoxide (CO) 2,000 6,000
Nitrogen Oxides (NOX) 260 420

Note: Sales and capital are measured CDN$ 2012. Labor is the number of employ-
ees. Fossil fuels are in liters for gasoline, heavy fuel oil, light fuel oil, propane and
diesel; cubic meters for natural gas; and tonnes for coal. Emissions of pollutants
are in tonnes.
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The carbon tax is defined as the average effective carbon tax rate for each plant. It is calculated by

multiplying the volume of fuel purchased by the calendarized per-unit-of-fuel carbon tax. Sum-

ming the dollar value of the carbon tax paid on each fuel gives the total annual carbon tax paid for

each plant. This is the average effective carbon tax. When we divide this amount by the plant’s

total fuel expenditure (excluding the average effective carbon tax), we get the average effective

carbon tax rate, hereafter referred to as the carbon tax. At the time the carbon tax was introduced,

91% of GHG emissions in the province came from three fossil fuels: natural gas (43%), gasoline

(24%), and diesel (24%) (British Columbia Ministry of Finance (2008)). The ASM includes expen-

diture by fuel type by manufacturing plant for these three fuels as well as for coal, propane, light

fuel oil, and heavy fuel oil.

Persistent inefficiency is inherently structural and specific to individual manufacturers. Once pro-

duction for a manufacturing plant is set, the operation is fixed in the short term. For example, firms

cannot relocate production without incurring costly adjustments. Indeed, Ahmadi, Yamazaki, and

Kabore (2022) suggest that shifting manufacturing activity to other Canadian provinces to avoid

the B.C. carbon tax, referred to as carbon leakage, was inconsequential. As a result, distance to

markets was an ideal time-invariant determinant to explain persistent inefficiency. It is defined as

the distance from individual plants to shipping destinations reported in the NPRI-ASM data set.

Unlike the effect of the carbon tax on transient efficiency from 2008 to 2012, the effect of distance

to markets is relevant for the entire nine-year period.

The link between distance to markets and economic performance is well established. For instance,

Boulhol, De Serres, and Molnar (2008) cite numerous seminal articles indicating that higher trans-

portation and communication costs associated with distance to markets act as an obstacle to both

domestic and foreign trade and foreign direct investment, which reduce knowledge spillovers that

negatively impact productivity. More recently, Saha and Mishra (2020) reached similar conclu-

sions after controlling for cultural differences. Similar results are found in numerous papers that

use spatial autoregressive stochastic frontier methods found in Glass, Kenjegalieva, and Sickles

(2016). Distance to markets is equally relevant for producing undesirable outputs as they relate to

fuel costs associated with the transportation of physical goods, according to Harrington and Warf

(2002).
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One other determinant of persistent inefficiency considered was the first year of operation of the

plants, which is a time-invariant indicator of how well the manufacturer is established in the

market relative to others. However, like many of the discarded candidates for determinants of

transient inefficiency, its parameter estimates were seldom statistically significant.

5. Results

Our results are derived by estimating equations 4 and 6 for desirable and undesirable output,

respectively. Because the primary objective of our analysis is to evaluate the impact of the car-

bon tax on economic and environmental inefficiency, we present the estimation results for the

determinants of inefficiency in Table 2. Although we have described economic and environmental

performance in terms of efficiency to keep our discussion more intuitive, it is important to recall

that our estimates represent levels of inefficiency. Therefore, positive coefficients imply that the

determinant increases inefficiency (reduces efficiency), while a negative coefficient indicates that

it contributes to lower inefficiency (higher efficiency). The results for all estimates, including co-

efficients and standard errors, for desirable and undesirable outputs, are presented in Tables A.1

and A.2, respectively, in Appendix A. In addition, the marginal effects of determinants of transient

and persistent inefficiency for each output are presented in Table A.3, also in Appendix A.

The average effective carbon tax rate (CT), though it was introduced in the middle of the sample

period, is statistically significant for all outputs and indicates that the carbon tax lowered tran-

sient inefficiency for emissions of GHGs and CO. However, it had the opposite effect on transient

inefficiency for emissions of NOX.

Table 2: Determinants of inefficiency

Variable Sales GHGs CO NOX

log(DM) -43.772 *** 0.220 0.315 *** 2.052 ***
log(DM)2 4.316 *** -0.161 ***
log(CT) -2.378 *** -1.086 ** -0.733 ** 1.405 *

Note: * , ** , and *** indicate significance levels of 5%, 1%, and 0.1%,
respectively.

The determinant for persistent inefficiency, distance to markets (DM), and its squared term are

statistically significant for desirable output and two out of the three undesirable outputs. The
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mixed signs and the relative magnitudes of the coefficients for DM and its quadratic term for real

sales indicate that for relatively short distances, some distance between manufacturers and the

clients to whom they ship their goods has some positive effects on their economic performance.

However, as distances to shipping destinations increase, being further removed from their clients

is detrimental to economic efficiency, i.e., inefficiency increases. The point at which the effect of a

marginal increase in distance to markets on economic efficiency turns from positive to negative is

difficult to determine.

To better understand the relative importance of each determinant’s effect on inefficiency, Table 3

reports the elasticity of inefficiency with respect to each determinant. For example, the elasticity

of inefficiency with respect to the carbon tax for sales is -0.52. This means that a 1.0% increase

in the carbon tax from the mean (7.4% in Table 1) would be associated with a decrease in short–

term inefficiency of 0.52% on average. This relationship can be expressed equivalently as a 0.52%

increase in efficiency. This efficiency gain would translate directly into an $875,000 increase in real

sales for an average manufacturer in our sample.

Table 3: Elasticities of inefficiency with respect to determinants

Output Type Output Determinant Mean StDev. Min. Max.

Desirable Output Sales
Distance to Market 5.103 4.192 -11.734 11.675
Carbon Tax -0.521 0.517 -1.170 0.000

Undesirable Output

GHGs
Distance to Market 0.110 0.000 0.110 0.110
Carbon Tax -0.237 0.236 -0.534 0.000

CO
Distance to Market 0.158 0.000 0.158 0.158
Carbon Tax -0.161 0.159 -0.361 0.000

NOX
Distance to Market 0.017 0.157 -0.228 0.647
Carbon Tax 0.308 0.305 0.000 0.691

Note: The elasticities represent the percent change in inefficiency due to a one percent change in the
determinants.

The elasticities of inefficiency with respect to emissions of GHGs and CO are -0.24 and -0.16, re-

spectively. They imply that a 1.0% increase in the carbon tax would reduce environmental ineffi-

ciency (increase environmental efficiency) for those pollutants by 0.24% and 0.16%, respectively.

The responsiveness of desirable output (real sales) to changes in the carbon tax is represented

by the elasticity of -0.52%, meaning a 1.0% increase in the mean carbon tax would be associated
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with a decrease in transient inefficiency by roughly 0.52%. That is, real sales would increase by

0.52%. Extrapolating to a more realistic 10% increase in the carbon tax would mean transient

inefficiency would be reduced by roughly 5.2% on average. The similar sign and magnitude of

these two elasticities imply that GHGs and CO are complements, as described by Holland (2011)

and Bonilla, Coria, and Sterner (2018). In this sense, NOX would be characterized as a substitute

given that its elasticity is positive (0.31), meaning that a 1.0% increase in the carbon tax would

generate a 0.3% increase in environmental inefficiency. These results provide some insight into

the magnitude of the spillover effects of the carbon tax on emissions of pollutants that were not

directly targeted by the initial policy.

Table 4 provides estimates of environmental efficiency for desirable and undesirable outputs,

where the overall efficiency is calculated by multiplying persistent and transient efficiency. The

results indicate that the average overall efficiency for producing desirable output among the sam-

ple of 75 manufacturers in B.C. is 90.7% for the sample period from 2004 to 2012. The overall

efficiency level for desirable output reflects lower short-term (92.7%) efficiency than long-term

(97.9%) efficiency. However, the distributions of short and long-term efficiencies are relatively

similar.

Table 4: Economic and environmental efficiency

Output Type Output Efficiency Type Mean StDev. Min. Max.

Desirable Output Sales
Persistent 0.979 0.092 0.411 1.000
Transient 0.927 0.077 0.334 0.999
Overall 0.907 0.115 0.301 0.999

Undesirable Output

GHGs
Persistent 0.962 0.004 0.953 0.978
Transient 0.882 0.086 0.403 0.981
Overall 0.849 0.083 0.387 0.951

CO
Persistent 0.324 0.146 0.047 0.631
Transient 0.591 0.167 0.033 0.873
Overall 0.197 0.112 0.008 0.506

NOX

Persistent 0.384 0.164 0.039 0.760
Transient 0.883 0.117 0.142 0.971
Overall 0.339 0.151 0.031 0.730

Note: A value of 1.00 represents full efficeincy. Overall efficiency is the product of transient and
persistent effciency.

The interpretation for the three undesirable outputs reflects environmental efficiency, where the
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producer’s objective is to minimize emissions of undesirable output as opposed to maximizing

sales or desirable output. The highest overall efficiency level among undesirable outputs was

85% for GHGs, followed by just under 34% for NOX, mostly due to relatively low long-term ef-

ficiency. Environmental efficiency in CO was substantially lower at just under 20%, which was

again primarily attributable to long-term efficiency.

One reason for the relatively low levels of efficiency for undesirable outputs is that producers tend

to be more efficient at maximizing desirable output than minimizing undesirable outputs due to

differences in profit incentives. This difference implies that the cost of inefficiently generating sales

and potentially going out of business is significantly higher than it is for being environmentally

inefficient in terms of reducing emissions, for which fines and taxes tend to be comparatively

small. Furthermore, it suggests that the cost of emitting GHGs is relatively higher than it is for

emitting NOX and especially CO. The broader environmental policy implication is that firms are

more likely to focus on reducing inefficiency (production and environmental) in proportion to the

degree that it reduces their profitability.

The information in Table 4 provides a snapshot of average efficiency over the nine-year period

for the four outputs. Figure 2 shows that in 2008 when the carbon tax was introduced, short-term

efficiency picked up sharply for sales and emissions of GHGs and CO after exhibiting only modest

trends or no trend from 2004 to 2007. The sustained increases in short-term efficiency after 2008 for

sales, GHGs and CO sharply contrast with those for short-term efficiency for NOX. The trends in

long-term efficiency for all outputs were flat, reflecting that, by definition, they are time-invariant.

Some minor changes appear due to some manufacturers entering and exiting the dataset. We

evaluated the impact of plant entry and exit on our estimates of inefficiency, following Melitz and

Polanec (2015) for each output; however, the effects were negligible. As a result, the patterns of

change in overall efficiency closely mirror short-term efficiency.

The improvement in short-term economic efficiency provides some support for the Porter Hy-

pothesis, which suggests that well-designed environmental policies increase productivity and in-

novation (Porter (1991) and Porter and Van der Linde (1995)). However, the Porter Hypothesis

is usually viewed through the lens of standard models that assume businesses are fully efficient

and cannot respond to economic or environmental shocks by reducing inefficiency not associated
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Figure 2: Marginal effects of the carbon tax on output efficiency.
Note: Full efficiency = 100%. Overall efficiency is the product of transient and persistent efficiency. An increase in sales
efficiency indicates an increase in sales relative to fixed consumption of inputs without technical change.
Source: Authors’ calculations.

with technical change. Therefore, improvements in productivity are assumed to only come from

long-term investments in environmentally clean technologies that generate higher productivity

and profitability much later.

In response to the carbon tax, improvements in short-term economic efficiency suggest that rec-

ognizing inefficiencies and adjusting production processes accordingly involves some cost.5 Why

some plants could improve their efficiency in a relatively short time while others did not may

be related to differences in structured environmental management processes that help managers

identify resource usage inefficiencies (Bloom et al. (2010)). It is also possible that the cost to ad-

just production processes to mitigate higher fuel prices was higher than the cost imposed by the

carbon tax for some manufacturing plants.

Since the dataset used for this analysis covers a relatively short period after the implementation

of the carbon tax, and long-term efficiency is defined as varying only between plants but not over

5For an example of how variation in manufacturers’ energy efficiency associated with differences in managerial
ability helps to explain sub-optimal adoption of energy-efficient technologies known as the “energy paradox” see Boyd
and Lee (2019).
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time, the results presented here should be regarded as partial support for the Porter Hypothesis.

However, improvements in transient (short-term) economic efficiency may lead to longer-term

economic efficiency gains from knowledge spillovers between plants within the same enterprise,

according to Galloway and Paul Johnson (2016). They found that among electricity generators,

the within-firm benefits of such knowledge spillovers of 3%–4% occur at least three years after

increased regulatory stringency. Additional spillovers between enterprises may take even longer

to affect economic performance.

One of the most important benefits of using plant-level data is that it allows insights into the

diversity of outcomes from a single policy. For example, Si et al. (2021) found substantial hetero-

geneities in output and profits arising from public energy policies across power plants and over

time using plant-level data. The importance of heterogeneity in our results is apparent in Figure

3, which shows how responsive individual manufacturers’ output efficiencies were to changes in

the average effective carbon tax. Each of the four output efficiencies was highly responsive at

low levels of taxation for some manufacturers, suggesting that they had relatively little difficulty

adapting their consumption of fossil fuels even at low levels of taxation. However, other man-

ufacturers with effective tax rates of nearly 60% showed no response in their output efficiency.

For example, the curved red line for GHGs indicates that the marginal effect of the carbon tax (x-

axis) on environmental efficiency (y-axis) was positive for all plants and that the size of the effect

was relatively large when the effective carbon tax rate was low. The tick marks for the rug plot

along the x and y-axes are mostly grouped around the origin. For efficiency, the plot shows that

the percentage-point improvement in GHG-related environmental efficiency for many plants was

less than one percentage point.

On the other hand, a relatively small number of plants saw their efficiency increase by more than

two percentage points, pulling the average level of GHG efficiency up. Along the x–axis, the

rug plot indicates that there were many plants whose effective carbon tax rates were just above

zero and well below the average of 7.4%, indicated by the vertical black line. It also shows that a

modest number of plants paid an effective tax rate of over 40%. In this case, the red line represent-

ing marginal effects suggests that the adjustment costs of reducing fossil fuel consumption likely

exceeded the carbon tax that manufacturers paid.
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Figure 3: Marginal effects of the carbon tax on economic and environmental efficiency.
Notes: The rug plot on each axis shows a one-dimensional heatmap. The dashed black vertical line is the mean value
of the average effective carbon tax.
Source: Authors’ calculations.

High average effective carbon tax rates for some plants motivate concerns about the prevalence of

carbon leakage. Carbon leakage occurs when stricter environmental standards in one region in-

centivize businesses to relocate carbon-intensive operations to regions with weaker environmental

standards. However, shifting production is generally costly, which may explain why Ahmadi, Ya-

mazaki, and Kabore (2022) found that shifting manufacturing activity to other Canadian provinces

to avoid B.C.’s carbon tax was not consequential to their findings.

If the motivation for businesses to improve efficiency is to increase profitability and competitive-

ness, the levels of efficiency for each output should reflect their relative importance to businesses’

bottom lines. Therefore, differences in manufacturers’ efficiency responses reflect the cost of pay-

ing the tax relative to adjusting production to avoid the tax. Moreover, if efficiency gains for

another output, such as desirable output, yield higher returns with a smaller adjustment cost, the

incentive to reduce emissions of undesirable outputs becomes even smaller. Consequently, the

effectiveness of environmental policies is inextricably linked to both economic and environmental

outcomes.
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6. Conclusion

This paper estimates economic and environmental efficiency using a by-production model in a

stochastic frontier framework, markedly improving upon existing models that do not distinguish

between the technologies that generate desirable and undesirable outputs. In addition, we demon-

strate how exogenous determinants of efficiency can be modeled to explain how environmental

policies, like the B.C. carbon tax, can impact economic and environmental performance.

Our key findings are that B.C.’s carbon tax improved environmental efficiency for GHG and CO

emissions but reduced environmental efficiency for emissions of NOX in the province’s manu-

facturing sector. Thus, reductions in climate change gases may come at the expense of lower air

quality from higher emissions of smog-producing pollutants such as NOX. Also, the improve-

ment in transient economic efficiency associated with implementing the carbon tax suggests that

improving economic and environmental performance are not strictly in opposition to each other.

Another implication from our findings is that the responsiveness of businesses to carbon taxes is

not uniform. For example, some manufacturers showed greater capacity to adapt their production

processes and technologies while others did not, forcing them to absorb the higher energy costs

or find efficiencies unrelated to reducing fuel consumption. This finding implies that efforts to

improve environmental outcomes should also consider using plant-level data, when possible, to

understand distributional impacts.

Finally, businesses focused on improving the economic and environmental efficiency for desirable

and undesirable outputs do so according to how it can improve their profitability and competi-

tiveness. Therefore, the wide disparity of efficiency levels for undesirable outputs relative to those

for desirable output indicates that the cost of adjusting production to avoid the carbon tax likely

exceeded the cost of paying the carbon tax for many manufacturers.

An area for future research could include econometric methods to estimate by-production models

as a system of equations as a seemingly unrelated regressions (SUR) system to generate more

precise estimates or as a system approach described by Kumbhakar (2012) to mitigate endogeneity

issues further.
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7. Appendix A

Table A1: Regression results: Undesirable output

Coef. p-value

Intercept 6.730 0.000
log(K) 0.015 0.052
log(L) 1.428 0.000
log(M) 0.094 0.000
t -0.167 0.009
0.5log(K)2 0.005 0.000
0.5log(L)2 0.101 0.000
0.5log(M)2 0.061 0.000
0.5t2 0.006 0.004
Ind1 0.036 0.435
Ind2 0.100 0.024
Ind3 0.150 0.005
Ind4 0.189 0.000
Yr08-12 -0.106 0.000
log(K)log(L) 0.000 0.913
log(K)log(M) 0.000 0.213
log(K)t 0.000 0.292
log(L)log(M) -0.099 0.000
log(L)t -0.002 0.618
log(M)t 0.008 0.080

v0: Intercept -5.603 0.000
u0: Intercept 77.888 0.000
u0: log(DM) -43.772 0.000
u0: log(DM)2 4.316 0.000
vi: Intercept -5.078 0.000
ui: Intercept -3.330 0.000
ui: log(CT) -2.378 0.000

Note: Regression results for the determinants of inefficiency
shown here include four intercepts representing the four com-
ponents of the composite error term. They are the random per-
sistent (v0), persistent inefficiency (u0), random transient (vi)
and random inefficiency (ui) terms.
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Table A.2: Regression Results: Undesirable Output

GHGs CO NOX

Coef. p-value Coef. p-value Coef. p-value

Intercept 12.261 0.000 77.833 0.000 4.864 0.117
log(Y) -1.562 0.000 -8.879 0.000 -1.325 0.000
log(G) -0.125 0.000 1.462 0.000 0.139 0.603
log(P) 0.171 0.000 0.963 0.000 -0.310 0.041
log(NG) 4.360 0.000 3.474 0.013 -1.046 0.521
log(C) 0.209 0.000 0.683 0.336 2.416 0.000
log(D) 0.003 0.906 -1.986 0.000 0.624 0.000
log(LFO) -0.228 0.000 -0.738 0.039 0.206 0.356
log(HFO) -0.102 0.000 -0.509 0.112 -0.258 0.000
t -0.006 0.815 -1.653 0.000 -0.284 0.524
0.5log(Y)2 0.135 0.000 0.499 0.000 0.135 0.000
0.5log(G)2 0.017 0.007 0.040 0.027 -0.028 0.058
0.5log(LFO)2 0.154 0.000 0.209 0.000 -0.035 0.329
0.5log(P)2 0.017 0.000 0.029 0.060 0.029 0.004
0.5log(NG)2 0.149 0.000 -0.008 0.904 0.088 0.057
0.5log(C)2 0.037 0.000 -0.008 0.663 0.039 0.000
0.5log(D)2 0.000 0.985 0.106 0.000 0.037 0.007
0.5log(HFO)2 0.037 0.000 0.000 0.997 -0.017 0.010
Ind1 -0.005 0.257 0.011 0.492 -0.022 0.021
Ind2 -0.378 0.000 2.812 0.000 -0.594 0.041
Ind3 -0.166 0.002 3.210 0.000 1.074 0.003
Ind4 -0.811 0.000 -1.412 0.001 -2.771 0.000
Yr08-12 -1.249 0.000 -0.997 0.292 -0.955 0.002
0.5t2 0.089 0.041 0.157 0.409 -0.216 0.013
log(Y)log(G) 0.001 0.595 -0.091 0.000 0.005 0.779
log(Y)log(P) -0.015 0.000 -0.062 0.000 0.004 0.688
log(Y)log(NG) -0.211 0.000 -0.2 0.027 0.054 0.554
log(Y)log(C) -0.027 0.000 0.003 0.955 -0.145 0.000
log(Y)log(D) -0.009 0.000 0.118 0.000 -0.047 0.000
log(Y)log(LFO) 0.015 0.000 -0.007 0.775 -0.020 0.178
log(Y)log(HFO) -0.001 0.551 0.028 0.215 0.024 0.000
log(Y)t 0.006 0.037 0.082 0.000 0.019 0.442

Note: Regression results for the determinants of inefficiency shown here include four intercepts repre-
senting the four components of the composite error term. They are the random persistent (v0), persis-
tent inefficiency (u0), random time-varying (vi) and random inefficiency (ui) terms.
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Table A.2: Regression results: Undesirable output, continued

GHGs CO NOX

Coef. p-value Coef. p-value Coef. p-value

log(G)log(P) -0.001 0.393 0.004 0.153 0.000 0.916
log(G)log(NG) 0.003 0.200 0.016 0.198 -0.004 0.519
log(G)log(C) -0.004 0.032 -0.003 0.689 0.006 0.225
log(G)log(D) 0.000 0.670 -0.003 0.557 -0.011 0.000
log(G)log(LFO) 0.002 0.095 -0.002 0.672 0.002 0.514
log(G)log(HFO) 0.001 0.543 0.008 0.063 0.001 0.623
log(G)t 0.004 0.001 -0.008 0.119 0.008 0.004
log(P)log(NG) 0.001 0.731 -0.002 0.852 -0.001 0.946
log(P)log(C) -0.005 0.004 -0.052 0.000 -0.012 0.131
log(P)log(D) 0.002 0.111 0.007 0.236 0.008 0.045
log(P)log(LFO) 0.000 0.811 0.000 0.986 -0.003 0.149
log(P)log(HFO) -0.002 0.002 0.002 0.588 0.001 0.755
log(P)t -0.001 0.398 -0.006 0.243 0.000 0.930
log(NG)log(C) -0.069 0.000 -0.032 0.120 0.041 0.013
log(NG)log(D) -0.011 0.000 -0.032 0.027 0.011 0.050
log(NG)log(LFO) 0.000 0.998 0.022 0.161 0.005 0.487
log(NG)log(HFO) -0.016 0.000 0.010 0.451 -0.011 0.027
log(NG)t -0.003 0.370 0.003 0.806 -0.008 0.457
log(C)log(D) -0.001 0.650 -0.002 0.743 -0.006 0.200
log(C)log(LFO) 0.023 0.000 0.001 0.956 -0.010 0.214
log(C)log(HFO) -0.003 0.041 -0.003 0.648 0.004 0.463
log(C)t -0.002 0.320 0.004 0.650 -0.005 0.297
log(D)log(LFO) -0.006 0.000 0.012 0.014 -0.001 0.803
log(D)log(HFO) -0.003 0.000 -0.009 0.001 -0.005 0.001
log(D)t -0.004 0.001 -0.002 0.717 0.003 0.179
log(LFO)log(HFO) -0.001 0.502 0.006 0.125 0.005 0.015
log(LFO)t -0.004 0.081 0.008 0.290 -0.007 0.083
log(HFO)t 0.004 0.000 0.003 0.573 0.002 0.542

v0: Intercept -2.550 0.000 0.668 0.000 -0.613 0.000
u0: Intercept -7.398 0.006 -0.836 0.115 -5.350 0.000
u0: log(DM) 0.220 0.616 0.315 0.000 2.052 0.000
u0: log(DM)2 -0.161 0.000
vi: Intercept -3.945 0.000 -0.763 0.000 -1.809 0.000
ui: Intercept -2.683 0.000 0.320 0.429 -6.057 0.009
ui: log(CT) -1.086 0.006 -0.733 0.003 1.405 0.018

Note: Regression results for the determinants of inefficiency shown here include four intercepts repre-
senting the four components of the composite error term. They are the random persistent (v0), persis-
tent inefficiency (u0), random transient (vi) and random inefficiency (ui) terms.
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Table A.3: Marginal effects of the determinants on inefficiency

Output Type Output Determinant Mean StDev. Min. Max.

Desirable Output Sales
Distance to Market -0.006 0.056 -0.491 0.002
Carbon Tax -0.090 0.087 -0.180 0.000

Undesirable Output

GHGs
Distance to Market 0.000 0.000 0.000 0.000
Carbon Tax -0.059 0.053 -0.113 0.000

CO
Distance to Market 0.001 0.002 0.000 0.011
Carbon Tax -0.182 0.158 -0.343 -0.001

NOX
Distance to Market 0.001 0.004 0.000 0.024
Carbon Tax 0.020 0.007 0.008 0.027

Note: The marginal effects show the change in inefficiency due to a one percentage point change in the
average effective carbon tax rate or a one kilometer change in distance to markets.
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