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A B S T R A C T

Sweden is at the forefront of the transition of its energy sector to low-carbon technologies with profound
consequences for both energy generation and its distribution. However, the impact of this transition on the
performance of Electricity Distribution System Operators (DSOs) has not been thoroughly studied. The article
addresses this gap by using a novel approach and detailed georeferenced firm-level, weather, and regional
data in Sweden from 2014 to 2019. Our findings indicate that (i) an increase in the number of small-scale
feeders and (ii) a higher degree of decentralized energy production (decentralization) both improve DSOs’ cost
efficiencies. Additionally, we demonstrate that DSOs have adapted well to long-term weather variability. These
results have significant implications for the effective implementation of renewable energy policies.
1. Introduction

This study examines the cost efficiency effects of integrating renew-
able energy production units to regulated electricity distribution net-
works in Sweden. As a global leader in transitioning its energy sector to-
ward climate neutrality, Sweden serves as a model for many other coun-
tries across Europe. The Renewable Energy Directive (2018/2001/EU)
mandates that 40 percent of the EU’s gross final energy consumption
must come from renewable energy sources by 2030 to reduce green-
house gas emissions. To achieve this target, European countries are
intensifying their efforts by expanding small-scale renewable energy
generation (decentralized generation). This expansion includes diverse
sources of power generation such as small hydro, biomass, biogas, solar
power, wind power, and geothermal power.

Electricity distribution system operators (DSOs) are required to
connect small-scale renewable energy generation to their distribution
grids (Johansson et al., 2020). DSOs therefore play a pivotal role in
the effective integration of renewable energy resources into existing
grid networks. The security and quality of electricity supply involve
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1 Additionally, factors like solar irradiation, orientation, and the level of self-consumption at each production unit also influence this dynamic.
2 Anaya and Pollitt (2017) deliver empirical evidence for DSOs in Brasilia. They use stochastic frontier analysis to measure the impact of weather on the

efficiency of electricity distribution businesses in developing economies, without considering the impact of decentralized generation.

building, reconfiguring, and investing in current electricity distribution
grids (Johansson et al., 2020; Perez et al., 2016; Ruester et al., 2014;
Simpson, 2017). The managerial challenges of integrating a funda-
mentally new and complex component into their operations require
long-term decisions. On the one hand, cost-intensive investments might
lead to lower network performance. On the other hand, moderniz-
ing the distribution grid, with advanced metering, enhanced steering
capabilities, and localized power generation could improve network
performance. Consequently, the impact of an increasing share of decen-
tralized power generation on DSOs’ costs and cost efficiencies remains
uncertain (Vesterberg et al., 2021).

The impact on firms’ costs and grid efficiencies also heavily re-
lies on geographical location (Johansson et al., 2020) and weather
conditions, which are beyond managerial control. Decentralized elec-
tricity flow is characterized by the variable nature of renewable power
sources (L’Abbate et al., 2008). The intermittent power output, such as
that from wind energy, poses challenges in instantly balancing energy
production and consumption, making larger reserve capacities essential
to mitigate energy production fluctuations.1
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Therefore, we argue that accounting for weather conditions is es-
sential when quantifying the impact of distributed generation on the
cost efficiency of DSOs as the grid layout and the decentralized power
production are incrementally related to weather conditions. This is
particularly true when weather conditions vary substantially within
ountries, whose electricity distribution companies might otherwise be
omparable (Anaya and Pollitt, 2017).2 Appendix A reveals a huge

variability in weather conditions in Sweden, both in terms of extremes
and averages. Weather conditions are typically not well represented
by simply classifying a region as ‘‘coastal’’. Overlooking this variability
may result in biased estimates.

This paper aims to analyze and quantify the impact of an increasing
roportion of decentralized generation on the cost efficiency of DSOs.
e provide empirical evidence from Sweden, a global leader in renew-

ble energy adoption, characterized by significant weather variability
cross its territory. Sweden’s energy market, striving for a 100 percent
enewable power system by 2040, has seen a substantial rise in small-

scale producers connected to the distribution grid from 2014 to 2019,
with the degree of decentralization increasing on average from 0.77 in
2014 to 0.84 in 2019.

We use various metrics to measure this impact. First, we test
hether an increase in the number of small and micro or medium-scale

feeders is associated with cost efficiency improvements (the infras-
tructure hypothesis). Second, we examine whether a higher degree of
decentralization in each electricity distribution area, defined as the
proportion of small and micro feeders to the total number of feeders,
contributes to more cost-efficient DSO operations (the decentralization
hypothesis).

Our empirical analysis relies on publicly available firm-level data
from the national energy market inspectorate, Energimarknadsinspek-
ionen (EI), covering the period from 2014 to 2019. This dataset

includes information on small- and micro-scale electricity production
across all 178 DSOs in Sweden. By integrating this firm-level data
with shapefiles that delineate the exact geographical boundaries of DSO
areas, we combine high-resolution weather data and regional statistics
to account for weather variability and a variety of characteristics of
distribution areas. Unlike previous studies that typically analyze factors
at the municipality level, we conduct precise regional mapping of
external influences at the network level.

Our analysis, hence, provides new insights into the impact of renew-
able energy feeders on the cost efficiency of DSOs from two perspec-
tives. First, we consider the number of small-and micro-scale feeders
using renewable resources. Second, we discuss the degree of decen-
tralization, while simultaneously accounting for weather conditions by
pplying geo-matched data from Swedish DSOs. The findings can be
ummarized as follows. First, we demonstrate that an increase in the

number of small-and micro-scale feeders enhances the cost efficiency of
DSOs, supporting the infrastructure hypothesis. Second, a higher degree
of decentralization correlates with greater cost efficiency, providing
evidence for the decentralization hypothesis. This is the first study
to account for significant weather heterogeneity when analyzing the
effect of decentralized generation on DSO efficiency. Third, we show
that DSOs have effectively adapted to weather variations over the long
term. Overall, our results indicate that DSOs have successfully inte-
grated renewable energy in existing grid networks. These insights are
relevant for European regulators and policymakers when facilitating
the transition toward a greenhouse gas-neutral, decentralized energy
system.

The structure of this paper is as follows: The next Section 2 provides
background information summarizing the existing literature and Sec-
tion 3 describes the electricity distribution sector in Sweden including
the challenges associated with integrating renewable energy resources.
Section 4 describes the data. Section 5 outlines the empirical strategy.
Section 6 discusses our results and Section 7 concludes.
2 
2. Related literature

In recent years, a substantial body of literature has emerged an-
alyzing the efficiency of electricity distribution at the level of DSOs.
Particularly in the context of increasingly incentive-based regulation
and the calculation of X-factors, numerous studies have investigated
the extent of inefficiency among DSOs worldwide, e.g. Filippini et al.
(2004) in Slovenia, Cullmann (2012) and v. Hirschhausen et al. (2006)
in Germany, Filippini and Wetzel (2014) in New Zealand, Giannakis
et al. (2005) in the UK, Farsi and Filippini (2004) in Switzerland,
Baǧdadioǧlu et al. (1996) in Turkey, and Campos et al. (2022) in
Brazil. Due to their leading role in implementing renewable energy
resources and their transparency in firm-level data provided by public
regulators, the Scandinavian energy market has attracted significant
research interest. Among others, Kuosmanen (2012), Kumbhakar and
Lien (2017), Kumbhakar et al. (2015) Kumbhakar et al. (2020), Bjørndal
et al. (2018), Kumbhakar and Hjalmarsson (1998), Musau et al. (2021),
nd Zeebari et al. (2023) conduct firm-level efficiency analysis of DSOs

in Finland, Norway and Sweden.
A limitation of these studies is their reliance on the assumption that

nefficiency is either time-variant (transient) or time-invariant (per-
istent). Transient inefficiency pertains to controllable non-systematic
anagement issues that can be mitigated within a short period (Filippini

and Greene, 2016). In contrast, persistent inefficiency is associated
with systematic differences between DSOs in their operational environ-
ments or managerial capabilities. Consequently, short-term and long-
term inefficiencies should be addressed through different management
strategies.

Recently developed Stochastic Frontier models enable the esti-
mation of firms’ production (or cost) functions while decomposing
the error term into noise, DSO-specific effects, and the persistent
nd transient inefficiency components, known as the four-component

model (Colombi, 2010; Colombi et al., 2011, 2014; Tsionas and Kumb-
akar, 2014; Filippini and Greene, 2016). Filippini et al. (2016) apply

this model to disentangle persistent and transient efficiency for net-
work infrastructures, specifically DSOs in New Zealand, to explore
the implications of distinguishing these two types of efficiency for
price cap regulation. Badunenko and Kumbhakar (2017) extend the
Stochastic frontier model in the sense that factors explaining variations
in persistent and transient inefficiency can be identified, and their
impact (marginal effects) on output (cost) can be estimated. Badunenko
t al. (2021) evaluate the efficiency of German DSO using the four-

component stochastic frontier model, identifying the German reunifi-
cation as a determinant of persistent inefficiency, after controlling for
firm heterogeneity and random noise.

Empirical research demonstrates that various external factors–those
beyond managerial control–significantly influence both cost structures
and the efficiency of electricity distribution operations. Weather in-
dicators have recently garnered considerable attention among these
external factors, particularly in countries with substantial variations in
weather conditions (Anaya and Pollitt, 2017). DSOs must adapt their
etworks to these specific conditions to mitigate the risk of system
ailures and enhance distribution system reliability.

Further studies highlight the importance of accounting for weather
conditions to achieve robust efficiency estimates (Growitsch et al.,
2010; Jamasb et al., 2012; Llorca et al., 2016). Some empirical studies,
however, find that weather does not significantly affect efficiency
Korhonen and Syrjänen, 2003; Nillesen and Pollitt, 2010), while other

studies suggest that specific variables may serve as proxies for weather’s
impact on efficiency (Yu et al., 2009). Additionally, some countries
ave incorporated weather variables into the regulatory evaluation of

DSOs. For instance, the Norwegian Water Resources and Energy Direc-
torate initially included snow and coastal variables in their DEA mod-
els, later expanding to factors such as snow, wind, ice, and temperature
in subsequent regulatory periods.
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Few empirical studies consider distributed generation when es-
timating the efficiency of DSOs. Vesterberg et al. (2021), using a
onparametric DEA framework in a study on Sweden, found no neg-
tive effect on efficiency, suggesting that the increasing number of
ecentralized energy resources does not lead to inefficiencies in dis-
ribution and supports the goal of a more sustainable energy system.
imilarly, Agrell and Brea-Solís (2017) accounted for distributed gen-

eration in their cost function analysis and found no significant effect
on cost differences for Swedish DSOs.

Our empirical approach differs notably from previous efficiency
tudies. Based on the parametric stochastic frontier analysis our analy-

sis provides new insights into the impact of renewable energy feeders
on DSOs’ transient and persistent cost inefficiencies while accounting
simultaneously for weather conditions using very detailed firm-level
and regional information.

3. DSOs and distributed generation in Sweden

The Swedish electricity grid is structured into three distinct tiers:
the national grid, and the regional and local grids. The national grid,
managed by the transmission system operator Svenska kraftnät, is
responsible for transmitting electricity over long distances and operates
at high voltage levels of 220–400 kilovolts. This grid tier connects only
large-scale power generation sources such as nuclear and hydropower
plants, as well as substantial wind farms with capacities exceeding 300
megawatts (Johansson et al., 2020). Meanwhile, the regional and local
grids distribute electricity to consumers, ensuring that power reaches
homes and businesses.

The regional grids, operating at voltage levels of 20–130 kilovolts,
ransmit power from the national grid to the local grids and supply
nergy to high-demand industrial consumers such as smelting plants,
efineries, and mines. Medium-sized generation units, including smaller
ind power parks with capacities between 15 megawatts and 300
egawatts, are typically connected to the regional grids. The local

grids, operating at voltage levels of 0.4–20 kilovolts, distribute electric-
ity to households and businesses and connect to generation units with
capacities of less than 15 megawatts. Distributed energy resources, such
as small-scale solar plants, individual wind turbines, and very small
bioenergy and hydropower plants, therefore feed into the local grids

anaged by DSOs (IVA, 2017).
DSOs operate as natural monopolies within their respective regions,

hus they are regulated by the Swedish energy market inspectorate,
Energimarknadsinspektionen (EI).

The expansion and integration of decentralized generation offer
substantial opportunities, enabling DSOs to adopt a more active role
s system operators (Johansson et al., 2020). However, this shift also

presents significant challenges, including technological complexities
and associated costs, as well as changes in both short-term and long-
erm distribution network management (Adefarati and Bansal, 2016;

Jenkins and Perez-Arriaga, 2017; Cossent et al., 2009; Iweh et al.,
2021). The integration of decentralized generation requires grid oper-
ators to manage a two-way flow of electricity. Consumers are increas-
ingly becoming prosumers, feeding power back into the network. To
support this bidirectional flow, operators must develop the necessary
infrastructure while maintaining the balance between electricity supply
and demand.3

Robust connectivity and communication systems are crucial for
oordinating distributed generation. Renewable sources like solar and
ind cause voltage and frequency disruptions, affecting grid stabil-

ity (Iweh et al., 2021; Adefarati and Bansal, 2016). Advanced control
systems are needed for real-time adjustments. High levels of distributed

3 This involves e.g., addressing new technical challenges such as voltage
luctuations, reverse power flow, network capacity and congestion, losses,

short circuit currents (L’Abbate et al., 2008; Iweh et al., 2021).
 g

3 
generation lead to voltage fluctuations and grid congestion (Mateo
et al., 2017). Local solutions and complementary technologies are
required to manage these issues. Smart grid technology improves grid
reliability, efficiency, and sustainability through advanced digital com-

unication and control (Johansson et al., 2020).

4. Data and descriptives

To assess the cost efficiency of DSOs in Sweden, we compile panel
data by matching three data types: firm-level data, geo-referenced
weather data, and regional data, all sourced from public statistics and
data providers. It is worth noting that one novelty of our data is that
each piece of information is geographically aligned with the specific
operating area of each DSO.

4.1. Firm-level DSO data

The EI provides firm-level data including information on revenue,
ost structures, and various indicators relevant to the operations and

infrastructure of individual DSOs. Additionally, the dataset contains
details on small- and micro-scale electricity production units connected
to the grid. This information is used to evaluate the extent of local
renewable energy production in the DSOs’ operational areas. The data
utilized in this study is publicly available through the regulatory body’s
website (Swedish Energy Market Inspectorate, accessible at www.ei.se),
nd encompasses data on all (N = 155) Swedish DSOs.

Subject to data availability, our sample includes 129 DSOs (out of a
otal of 155) operating across Sweden, observed over six years (2014–
019), resulting in 736 observations. The panel is unbalanced due to

mergers and restructuring of some DSOs and their respective grids. We
implemented data cleaning procedures, removing missing or anomalous
observations, and retained only those DSOs that were observed for
at least three periods. Table 1 provides the summary statistics of the
ariables in the final dataset. The comparison of mean values with
tandard deviations, along with the coefficient of variation, underscores
he heterogeneity among firms and their operating environments.

Following the literature which we discuss in the data section, for our
nalysis, we employ three input variables: the total installed capacity

of substations measured in megavolt amperes (capacity), physical labor
measured in hours worked (labor),4 and annual distribution power
losses are measured in megawatt hours (losses) to control for quality.5

As output variables, we utilize the total number of household and in-
ustrial customer connections (customers) and the total amount of en-

ergy delivered, including both low- and high-voltage energy, measured
in megawatt hours (electricity).

Additionally, the length of mains, defined as the sum of insulated
and non-insulated overhead lines and cables across all operated voltage
evels measured in kilometers (length), is taken into account. In our
nalysis, we regard length of mains as a quasi-fixed input, mean-
ng it cannot be easily altered in the short term. Consequently, it is
ncorporated into our model specification as an output variable.

Fig. 1 illustrates a substantial rise in small- and micro-scale power
generation facilities throughout the period under consideration. Al-
though the trend suggests a transition from large centralized power

4 We derive the unit price of labor following Agrell and Brea-Solís (2017).
Labor expenses are adjusted using the labor cost index for manual workers in
the private sector and divided by the average hourly wage for manual workers
n the energy and environmental sector (NACE code D+E). This data is sourced

from the Swedish Bureau for Statistics.
5 Grid losses, particularly in distribution networks, comprise technical

and non-technical components, which may be beyond management control.
However, IVA (2017) indicates that losses can vary significantly year by
ear based on consumption patterns and operational conditions, with voltage
egulation and reactive power compensation being key factors in mitigating
rid losses (Anaya and Pollitt, 2017).

http://www.ei.se
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Table 1
Summary statistics.

Variable Mean Standard Coefficient of Percentiles

deviation variation 5th 95th

Capacity 180 240 1.33 16.00 647
Labor 141 612 398 700 2.82 8342 445 021
Losses 12 782 17 499 1.37 1134 54 563
Customers 18 480 23 721 1.28 1543 63 655
Electricity 358 657 449 550 1.25 20 372 1429849
Length 1737 3014 1.74 206 6198
Feeder 52.81 134 2.54 0 204
Decentralization 0.7974 0.3413 0.4280 0 1
ShrpopA 0.2315 0.2636 1.14 0.0012 0.8841
ShrpopB 0.0924 0.1649 1.79 0 0.4168
Min temp −15.70 6.32 0.4025 −29.28 −7.03
Max temp 29.25 2.44 0.0835 24.91 32.88
Min wind 0.0410 0.0154 0.3745 0.0218 0.0703
Max wind 11.79 2.70 0.2292 8.63 16.96
Min temp, CV −0.2064 0.0787 0.3814 −0.3408 −0.0607
Max temp, CV 0.0793 0.0170 0.2147 0.0526 0.1077
Min wind, CV 0.2151 0.1049 0.4878 0.0906 0.4414
Max wind, CV 0.1162 0.0409 0.3520 0.0521 0.1898
Temp, range 48.54 5.64 0.1161 40.87 60.38
Wind, range 12.26 2.53 0.2064 9.21 17.25
Population 32 907 42 953 1.31 1874 126 625
Population density, aggregate 0.1441 0.2088 1.45 0.0018 0.5370
Fig. 1. Small and Micro Power-Generating Facilities connected to Swedish Distribution Grid 2014–2019.
s
p

plants to distributed renewable energy sources (Dalheim et al., 2023),
there exists considerable variation among companies in terms of their
grid integration. We use the number of small-scale power feeders
connected to grids operated by the DSOs (feeders) to capture this
development.

For testing the hypothesis that decentralization is beneficial for
DSOs, we generate a measure decentralization, which is calculated as the
proportion of feeders that are decentralized. Specifically, we divide the
number of high- and low-voltage local feeders by the total number of
feeders. Due to data availability, the number of observations is reduced
rom 736 to 681. Fig. 2 presents the distribution of this measure.

4.2. Geo-referenced weather data

The Swedish regulator supplied us with shapefiles containing pre-
cise geographical boundaries of the DSO operating areas, allowing us
to integrate high-resolution GIS weather data.

Sweden extends over a considerable distance from north to south,
xhibiting diverse landscapes and altitudes across its eastern and west-
rn regions. To account for this diversity, we acquire high-resolution

hourly GRIB2 weather data from the Swedish Meteorological and Hy-
rological Institute (SMHI) using the MESAN model for the years

2015–2019 (2.5 km × 2.5 km raster), limiting the data to Sweden’s
boundaries to streamline computational processing.
 i

4 
Every point represents an hourly observation for a 2.5 by 2.5 km
raster, enabling precise weather variables even for the smallest DSOs
(Fig. 3). We conduct the matching in three consecutive steps:

1. Temporal analysis of high-resolution data: Computation of aver-
age, maximum and minimum values per point-data data point
for a year.

2. Geographical matching with DSO areas: Matching point data
with DSO areas using DSO GIS boundaries from shapefiles pro-
vided by the regulator.

3. Aggregating data per DSO area: Computing average, minimum
and maximum values per DSO from analyzed point data to
produce panel input data.

The result of this matching procedure is shown in Figs. 14 and 15
in Appendix A.

In our analysis, we compute various aggregated metrics, such as
the annual minimum and maximum wind speeds (minwind, maxwind)
and temperatures (mintemp, maxtemp), as well as their respective
annual ranges (wind range, temp range). Figs. 8–13 in Appendix A
show these metrics aggregating them over all years and demonstrating
ignificant variability across the country. Our focus on wind and tem-
erature stems from their well-documented physical correlations with
nfrastructure (see, e.g., L’Abbate et al., 2008; Tennet and 50 Hertz
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Fig. 2. Decentralization measure.
Fig. 3. MESAN point data resolution.
and Amprion and TransnetBW, 2021) and the availability of natural
renewable resources.6

6 Furthermore, we gathered data on variables such as snow, cloud coverage,
and precipitation, among others, and incorporated them into alternative spec-
ifications. However, due to their high correlation with wind and temperature,
we did not gain any additional insights. Consequently, we have opted against
delving deeper into these variables within the scope of this paper.
5 
4.3. Regional statistics

To create variables that capture the population and settlement
structures within the operating network areas of DSOs, we use geo-
referenced statistics provided by the Swedish Bureau for Statistics
(SCB). Nationwide data are available for Demographic Statistical Ar-
eas (DeSOs), which are stable over time and can be matched to the
geo-referenced shapefiles of the operating network areas. Similar to
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Fig. 4. DeSOs in Kalix.
weather data, this allows for well-defined measurements.7 Moreover,
this approach prevents us from using the grid connections provided in
the regulatory dataset as both output and control variables.

The importance of integrating population metrics is widely recog-
nized in regulatory endeavors and frequently included in academic
analyses. Concerning sewerage, Urakami et al. (2021) emphasize that
not only population densities but also settlement structures (sparsity)
play crucial roles in evaluating the economics of network industries.
Expanding on this perspective, we establish three metrics: Firstly, we
consider the population residing in each operational network area
(population). Secondly, we define population density as the ratio of
inhabitants to the operational network area, measured in capita per
square kilometer (population density). This metric serves as a size
indicator external to the DSOs, thus lying beyond their control.

Third, through the utilization of the DeSO classification into distinct
settlement types denoted as A, B, and C, we ascertain the proportions
of the geographical network area covered by each category (shrpopA,
shrpopB, shrpopC). According to the SCB, a DeSO categorized as type A
is predominantly situated in areas outside of larger population concen-
trations or urban areas, indicating that type A areas are largely rural.
Type B DeSOs are primarily situated within population concentrations
or urban areas but not within the central town of the municipality. Cat-
egory C encompasses DeSOs predominantly located within the central
city of the municipality. In total, among the 5984 DeSOs, 18 percent
fall into Category A, 10 percent into Category B, and 72 percent into
Category C.

Kalix provides an illustrative example, comprising a total of 11
DeSOs. As depicted in Fig. 4, four DeSOs are classified as type A
(highlighted in green within blue boundaries), one falls into type B
(light pink), and the remaining six are categorized as type A (dark
purple). This information is utilized to determine the percentage of

7 For areas where the operating network area is partially overlapping with
the DeSOs, the percentage shares of the DeSOs population are used.
6 
the operating network area for each respective DSO characterized by
those types.8 It is apparent that the majority of DeSOs encompass
urban areas, consequently serving the largest portion of the population.
However, they occupy a relatively small geographical area. Addressing
diverse settlement structures may introduce additional complexities to
DSO operations, aspects not adequately captured by commonly used
measures of population density.

5. Empirical strategy

5.1. Stochastic frontier input distance function

We conceptualize the production process of the DSOs as a multi-
input multi-output production technology using a distance function.
Generally, an input-oriented (IO) inefficiency model is preferred when
inputs are treated as endogenous variables subject to choice, while
outputs, primarily services, are considered exogenous and determined
by demand. In input-based efficiency measurement, the input distance
function is defined as

𝐷𝐼 = max {𝜆 ∶ 𝒙∕𝜆 ∈ 𝐿(𝒚)} , (1)

where 𝐿(𝒚) is the input requirement set, i.e., a set of inputs such that
the inputs-outputs combination is technologically feasible. The input
distance function is thus a function of inputs and outputs,9 viz.,

𝐷𝐼 = 𝑓 (𝒙, 𝒚; 𝜷). (2)

Since the input distance function is homogeneous of degree 1 in feasible
input vector 𝒙, (2) can be rewritten as

𝐷𝐼𝑥−11 = 𝑓 (�̃�−1, 𝒚; 𝜷), (3)

8 In instances where multiple DSOs operate within the same DeSO, weights
are assigned based on the geographical share of areas.

9 𝜷 is a vector of parameters to be estimated once 𝑓 is specified.
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where �̃�−1 =
(

𝑥2∕𝑥1,… , 𝑥𝑁∕𝑥1
)

and 𝑁 is the number of inputs. Taking
he logs of both sides of (3) we obtain

− log 𝑥1 = log 𝑓 (�̃�−1, 𝒚; 𝜷) − log𝐷𝐼 . (4)

Denoting log𝐷𝐼 = 𝑢 ≥ 0 and adding a random error term to input
distance function in (4) to make it stochastic, we obtain a typical
composite error production stochastic frontier (SF hereafter) model

− log 𝑥1 = log 𝑓 (�̃�−1, 𝒚; 𝜷) − 𝑢 + 𝑣. (5)

The last formulation is surely recognized as stochastic input distance
IDF) function which can be estimated using stochastic frontier models.
he panel version of the IDF in (5) is given by

− log 𝑥1,𝑖𝑡 = log 𝑓 (�̃�−1,𝑖𝑡, 𝒚𝑖𝑡, 𝒛𝑖𝑡; 𝜷) − 𝑢𝑖𝑡 + 𝑣𝑖𝑡

where 𝑖 = 1,… , 𝑛 denotes the 𝑖th DSO and 𝑡 = 1,… , 𝑇𝑖 denotes the time
period in which DSO 𝑖 is observed, 𝑣𝑖𝑡 is the noise term and 𝑢𝑖𝑡 ≥ 0 is
time-varying technical inefficiency. This model can be further expanded
by decomposing the composite error term, −𝑢𝑖𝑡 + 𝑣𝑖𝑡, into four separate
components (Kumbhakar et al., 2014). The first component, 𝑣0𝑖, ac-
ounts for latent heterogeneity among firms (see Greene, 2005), and the

second component, 𝑢0𝑖, represents long-term or persistent inefficiency,
as described by Kumbhakar and Hjalmarsson (1995); both of these
components are constant over time. The third component, 𝑢𝑖𝑡, reflects
inefficiency that varies with time (see Kumbhakar, 1987), while the
fourth component, 𝑣𝑖𝑡, serves as the ordinary error term. Thus, the full

odel, incorporating all four components, can be formally represented
s follows:

− log 𝑥1,𝑖𝑡 = log 𝑓 (�̃�−1,𝑖𝑡, 𝒚𝑖𝑡, 𝒛𝑖𝑡; 𝜷) + 𝑣0𝑖 − 𝑢0𝑖 − 𝑢𝑖𝑡 + 𝑣𝑖𝑡, (6)

where 𝑢0𝑖 ≥ 0 and 𝑢𝑖𝑡 ≥ 0 represent persistent and time-varying inef-
ficiency, respectively, while 𝑣0𝑖 captures latent firm heterogeneity and
𝑖𝑡 is the classical random noise. In the homoscedastic four-component
odel, all the error components are independently and identically
istributed (i.i.d.) random variables. We will use the (Badunenko

and Kumbhakar, 2017) model to allow error components to be het-
eroskedastic by introducing their determinants.

5.2. Econometric specification

Our technology comprises three inputs (𝑥1, 𝑥2, 𝑥3), two outputs
(𝑦1, 𝑦2), and a quasi-fixed input represented as an output (𝑦3), along

ith 𝑅 time-varying external factors organized into vectors 𝒙, 𝒚, and
, respectively.10 We estimate the following translog input distance

function, which incorporates a linear time trend 𝑡 and square 𝑡2 to
account for nonlinear technological shifts.

− log 𝑥1,𝑖𝑡 = 𝛽0 +
3
∑

𝑘=2
𝛽𝑥𝑘 log (𝑥𝑘,𝑖𝑡∕𝑥1,𝑖𝑡)

+
3
∑

𝑘=2

3
∑

𝑟=2
𝛽𝑥𝑘𝑟0.5[log (𝑥𝑘,𝑖𝑡∕𝑥1,𝑖𝑡)][log (𝑥𝑟,𝑖𝑡∕𝑥1,𝑖𝑡)]

+
3
∑

𝑚=1
𝛽𝑦𝑚 log (𝑦𝑚,𝑖𝑡) +

3
∑

𝑚=1

3
∑

𝑞=1
𝛽𝑦𝑚𝑞 0.5[log (𝑦𝑚,𝑖𝑡)][log (𝑦𝑞 ,𝑖𝑡)]

+ 𝛽𝑡𝑡 + 𝛽𝑡𝑡0.5𝑡2 + 𝑣0𝑖 − 𝑢0𝑖 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡, (7)

where 𝛽𝑥𝑘𝑟 = 𝛽𝑥𝑟𝑘 and 𝛽𝑦𝑚𝑞 = 𝛽𝑦𝑞 𝑚 .

10 Our technology modeling closely aligns with established academic and
regulatory frameworks concerning DSOs, particularly in Nordic countries and
Germany. For further exploration of applied methodologies in technology
modeling, readers are directed to the literature referenced in Section 1.
Recently, more data-driven approaches have been proposed (e.g., Duras et al.,
2023). Exploring those machine-learning methods in the context of regulation
n more depth could be an interesting subject of future research.
7 
The input variables vector includes transformer capacity (𝑥1) mea-
sured in megawatt hours (MWh). Capacity shows the installed power of
transformer stations in MVA. It also includes the total installed capacity
of substations (MVA). Additionally, labor (𝑥2) is included, quantified
y the total number of hours worked. Labor costs are specified for
ach DSO and adjusted using the labor cost index for manual workers
n the private sector, then divided by the average hourly pay for

manual workers in the energy and environmental sector (NACE code
+E). These definitions align closely with those outlined by Agrell and

Brea-Solís (2017). While acknowledging criticism regarding potential
distortion from outsourcing, notably the possibility of utility efficiency
improvement via switching from in-house production to outsourcing,
we note that there is no data available that would provide a closer
approximation. The third input is annual distribution power losses (𝑥3)
measured in MWh. Arguably, grid losses (especially in distribution
networks) include technical and non-technical components, which may
or may not be under the control of the management.

Outputs are the annual amount of electricity delivered (𝑦1) in MWh
and the number of connected customers (𝑦2). We further include a
quasi-fixed input that enters the specification as an output, i.e., the
network length (𝑦3) in kilometers (km).

5.3. Determinants of inefficiency

Our application focuses on the role of distributed generation and
weather conditions that are outside DSOs’ influences on efficiency. It
s informative to know what determines time-varying (and persistent)
nefficiency. Hence we use Badunenko and Kumbhakar (2017) model

to specify the effects of the determinants on both types of inefficiencies.
More precisely, the determinants of transient inefficiency are assumed
to follow a half-normal distribution with heteroskedastic variance:

𝑢𝑖𝑡 ∼ 𝑁+(0, 𝜎2𝑢𝑖𝑡 ), where 𝜎2𝑢𝑖𝑡 = exp
(

𝒛𝑢𝑖𝑡𝜸𝑢
)

, 𝑖 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇𝑖,
where 𝜎𝑢𝑖𝑡 is time-variant and 𝒛𝑢𝑖𝑡 denotes the vector of covariates that
explains time-varying inefficiency. In the context of electricity distribu-
ion, other than half-normal distributional assumptions have been made
n the literature (Campos et al., 2022). We model transient inefficiency

as being influenced by (1) distributed generation, (2) environmen-
tal conditions (regional characteristics), and (3) weather patterns. By
considering both high- and low-voltage feeders,11 we aim to test the
‘infrastructure’ hypothesis (model M1) thereby assessing whether the
restructuring of the electricity distribution sector is associated with
increased transient efficiency. For testing the ‘decentralization’ hypoth-
sis (model M2), we use the decentralization measure to explore if

relying less on centralized feeders improved transient efficiency. Addi-
tionally, we account for control variables such as sparsity,12 minimum
and maximum temperatures, and the intensity of wind, factors beyond
he direct control of DSOs.

Since the number of determinants is huge, one may be concerned
hat they are correlated and these correlations may introduce nuances
o the empirical results. Fig. 5 shows the histogram of 105 correlation

coefficients of inefficiency determinants.
Our analysis reveals a correlation between the lowest temperature

and the coefficient of variation in both the lowest temperature and tem-
perature range. Similarly, the strongest winds correlate with the range
of wind speeds. Most of the other correlations fall within the range of

11 We introduce them into the model in the logarithmic form to reduce the
effect of extreme values. For the small number of zeros, we add a small epsilon
before taking a log.

12 Share of network area covered by type of region: Geographic regions are
ategorized into three types: Type A, Type B, and Type C. These variables are
efined as the share of the geographical network area covered by each type

of region. It allows us to consider various settlement structures that may be
more relevant than population density
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Fig. 5. Histogram of correlation coefficients of inefficiency determinants.

(−0.5, 0.5). Given the importance of weather variables in controlling for
nvironmental severity, we included them in our baseline specification.
urther checks demonstrated the robustness of our main findings and
onclusions to variations in the specification of weather variables.13

Suppose 𝑧𝑢1,𝑖𝑡 is one of the variables in 𝒛𝑢𝑖𝑡 . The elasticity of ineffi-
ciency with respect to 𝑧𝑢1,𝑖𝑡 can be calculated as

𝜀𝑢,𝑧𝑢1,𝑖𝑡 =
𝜕 log 𝑢𝑖𝑡
𝜕 log 𝑧𝑢1,𝑖𝑡

≈
𝜕 𝐸(𝑢𝑖𝑡)
𝜕 𝑧𝑢1,𝑖𝑡

𝑧𝑢1,𝑖𝑡
𝐸(𝑢𝑖𝑡)

Since 𝑢𝑖𝑡 is half-normal, 𝐸(𝑢𝑖𝑡) =
√

(2∕𝜋)𝜎𝑢𝑖𝑡 =
√

(2∕𝜋) exp
(

1
2𝒛𝑢𝑖𝑡𝜸𝑢

)

and
ranted the specification log 𝜎2𝑢𝑖𝑡 = 𝒛𝑢𝑖𝑡𝜸𝑢, the elasticity is given by

𝜀𝑢,𝑧𝑢1,𝑖𝑡 =
exp

(

0.5𝒛𝑢𝑖𝑡𝜸𝑢
)

√

2𝜋

𝜕
(

𝒛𝑢𝑖𝑡𝜸𝑢
)

𝜕 𝑧𝑢1,𝑖𝑡
. (8)

Note that elasticities in (8) are both DSO and time specific.
Similarly, the determinants of persistent inefficiency are assumed to

ollow a half-normal distribution with heteroskedastic variance:

𝑢0𝑖 ∼ 𝑁+(0, 𝜎2𝑢0𝑖 ), where 𝜎2𝑢0𝑖 = exp
(

𝒛𝑢0𝑖𝜸𝑢
)

, 𝑖 = 1,… , 𝑛,
where 𝜎𝑢0𝑖 is time-constant and 𝒛𝑢0𝑖 denotes the vector of covariates that
xplains persistent inefficiency. To examine the hypothesis regarding
SOs’ capacity to adapt to annual weather variations, we incorporate

the coefficients of variation for minimum and maximum temperatures,
as well as for the weakest and strongest winds, alongside temperature
and wind strength ranges.

The model can be expanded to incorporate the heteroskedasticity
related to both firm effects and the noise terms, which can be consid-
red a production risk. While 𝑣0𝑖 is regarded as random firm effects, its

variance (the time-invariant component) can be seen as firm-specific
production risk. Likewise, the variance of the firm-specific and time-
varying shocks (𝑣𝑖𝑡) can be understood as production risk specific to
oth firm and time. We define them as

𝑣0𝑖 ∼ 𝑁(0, 𝜎2𝑣0𝑖 ), where 𝜎2𝑣0𝑖 = exp
(

𝒛𝑣0𝑖𝜸𝑣0
)

, 𝑖 = 1,… , 𝑛,

𝑣𝑖𝑡 ∼ 𝑁(0, 𝜎2𝑣𝑖𝑡 ), where 𝜎2𝑣𝑖𝑡 = exp
(

𝒛𝑣𝑖𝑡𝜸𝑣
)

, 𝑖 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇𝑖.
In this context, 𝒛𝑣0𝑖 represents the vector of constant covariates influ-
encing persistent production risk (the variance of random firm effects).
Likewise, 𝒛𝑣𝑖𝑡 represents the vector of factors affecting transient produc-
tion risk (the variance of both firm-specific and time-varying random
noise). In this specification, we maintain homoscedasticity for 𝜎2𝑣0𝑖 ,
whereas we parameterize 𝜎2𝑣𝑖𝑡 to be contingent on the population in
the area. This can be likened to clustering the standard errors or
adjusting for scale effects. The relationship between the risk factors
shows a correlation of 0.47, indicating a moderate correlation that is
oteworthy but not strong enough to raise concerns for the estimation.

13 The results are available upon request.
8 
6. Empirical results

6.1. DSO’s technology

Table 2 presents estimates of the frontier part of the input dis-
tance function specified in (7) to test the infrastructure hypothesis
model M1) and decentralization hypothesis (model M2). Drawing on
he duality between the IDF and the cost function (Färe and Pri-

mont, 1995), the cost elasticity of input 𝑥𝑚, 𝜀𝐶 ,𝑥𝑚 can be measured
by −𝜕 log 𝑥1∕𝜕 log(𝑥𝑚∕𝑥1). Note that variables were centered at their
means. This allows interpreting the first order term of log(𝑥𝑚∕𝑥1) as the
elasticity of input 𝑥𝑚 at the mean value of 𝑥𝑚.14 Conscious of space, we
discuss here only the M1 estimates noting that the frontier results of
M2 are very similar to those of M2. For an average DSO, the elasticity
of labor input stands at 0.037, indicating statistical significance but
with a relatively small impact. This small impact can be attributed
to the measurement of labor input in terms of hours worked rather
than the physical number of workers, such as full-time equivalents.
This distinction highlights that changes in hours worked do not trans-
late proportionally to changes in the number of employees, thereby
resulting in a seemingly low elasticity value.

Conversely, power losses exert a considerable burden on DSO costs,
with a 1% increase in losses leading to a 0.4% rise in costs on aver-
age. This could be caused by unpredictable consumption patterns and
operational conditions. It hints at the fact, that power loss mitigating
activities, such as voltage regulation and reactive power compensation,
are relatively costly. Further, it could be associated with a sub-optimal
location and capacity of the decentralized power generation (Iweh
et al., 2021). Utilizing the homogeneity of the IDF, the transformer
capacity elasticity of cost is 0.555, emerging as the most influential
factor in cost determination. Not surprisingly, the number of connected
customers contributes more to costs than the quantity of delivered elec-
tricity, with respective elasticities of 0.6 and 0.13 for an average DSO.
Considering that electricity distribution relies heavily on networks,
these estimates are reasonable and align with findings from similar
empirical studies, such as those conducted on German DSOs (e.g.,
Cullmann, 2012). This study reveals a nonlinear technological progres-
ion, with costs initially increasing over the first three years before
eclining in the subsequent three years, as indicated by the quadratic
pecification. This nonlinear pattern can be explained by the imple-
entation of more incentive-based regulatory regimes, which motivate

ompanies to adopt cost-reducing measures.

6.2. Inefficiencies, their determinants, and DSOs adaptation over time

Fig. 6 shows box plots of persistent and transient efficiencies.15 The
most right box plot takes all years into account, while the middle box
plots show transient efficiencies by year.

One notable point is the near absence of persistent inefficiency.
Few DSOs fail to achieve near-perfect efficiency over the long term.
The median transient efficiency stands at 0.96. The data indicates that
transient efficiency was initially (2014) below this value, gradually
increasing to a peak of 0.97 in 2017 before dropping to 0.95, which
is still relatively high. Only a small number of DSOs demonstrate
inefficiency in the short term.

14 Briefly, the derivative −𝜕 log 𝑥1∕𝜕 log(𝑥𝑚∕𝑥1) is equal to the coefficient at
the first order term plus coefficients at the second order terms multiplied by
log of the mean of 𝑥𝑚.

15 The efficiencies for M2 show the same pattern.



O. Badunenko et al.

T

D
i

i
c
h

Energy Economics 142 (2025) 108148 
Table 2
Stochastic Input Distance Function. Dependent variable: −log(capacity). 𝑝-values in parentheses.

Variable M1 M2

Intercept 0.087 (<1e−9) 0.081 (<1e−9)
log(labor/capacity) 0.038 (<1e−9) 0.033 (<1e−9)
log(losses/capacity) 0.413 (<1e−9) 0.421 (<1e−9)
log(customers) −0.611 (0.001) −0.616 (0.001)
log(electricity) −0.127 (0.002) −0.143 (0.001)
log(length) −0.121 (0.057) −0.120 (0.065)
0.5*(log(labor/capacity)2) 0.015 (<1e−9) 0.014 (1e−4)
0.5*(log(losses/capacity)2) 1.211 (<1e−9) 1.325 (<1e−9)
0.5*(log(customers)2) 7.720 (0.561) 6.499 (0.627)
0.5*(log(electricity)2) −0.422 (0.368) −0.520 (0.363)
0.5*(log(length)2) −0.003 (0.995) 0.155 (0.782)
trend −0.026 (1e−4) −0.025 (2e−4)
0.5*trend2 0.007 (1e−4) 0.007 (2e−4)
log(labor/capacity)∗log(losses/capacity) −0.013 (0.726) −0.047 (0.195)
log(labor/capacity)∗log(customers) 0.087 (0.798) 0.210 (0.518)
log(labor/capacity)∗log(electricity) 0.147 (0.303) 0.056 (0.694)
log(labor/capacity)∗log(length) −0.794 (9e−4) −0.732 (0.002)
log(losses/capacity)∗log(customers) 4.809 (<1e−9) 4.050 (3e−4)
log(losses/capacity)∗log(electricity) −0.561 (0.119) −0.224 (0.552)
log(losses/capacity)∗log(length) −2.059 (0.008) −1.242 (0.238)
log(customers)∗log(electricity) 0.098 (0.967) 0.219 (0.947)
log(customers)∗log(length) −6.734 (0.251) −5.063 (0.404)
log(electricity)∗log(length) 1.521 (0.150) 1.117 (0.367)
Sample Characteristics

𝑁 129 125
∑𝑁

𝑖=1 𝑇𝑖 736 681
Sim. logL 1098.17 1037.80

Note: All variables were centered at their means.
Fig. 6. Box plot of persistent and transient efficiencies. The transient efficiency is shown overall and by years.
he blue dotted horizontal line shows the median value of transient efficiency in all years.
Still, even minor inefficiencies can result in significant costs for
SOs, underscoring the importance of analyzing the factors contribut-

ng to inefficiency. Table 3 displays the coefficients of the specifications
outlined in Section 5.3. Both noise components exhibit statistical signif-
cance, although the aggregate population density does not significantly
ontribute to explaining random effects. Its magnitude indicates that
igher density is associated with greater long-term risk.
 w

9 
The indication of minimal persistent inefficiency is evident from
Fig. 6. These minor inefficiencies cannot be attributed to long-term
weather conditions. The lack of significance in the aggregate weather
variables suggests that the Swedish DSOs have adapted to both extreme
weather conditions and weather fluctuations.

The segment labeled ‘‘4. Transient inefficiency component: log 𝜎2𝑢𝑖𝑡 ’’
ithin Table 3 merits particular consideration. It is important to note
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Table 3
Determinants of the error components. 𝑝-values in parentheses.

Variable M1 M2

1. Random effects component: log 𝜎2
𝑣0𝑖

Intercept −8.668 (0.002) −7.587 (2e−4)
Population density, aggregate 2.420 (0.394) 2.955 (0.271)

2. Persistent inefficiency component: log 𝜎2
𝑢0𝑖

Intercept 17.474 (0.522) −2.647 (0.928)
Min temp, CV −6.125 (0.704) −21.530 (0.515)
Max temp, CV 11.075 (0.883) 5.804 (0.964)
Min wind, CV −42.887 (0.097) −59.988 (0.179)
Max wind, CV −19.984 (0.491) −11.472 (0.671)
Temp, range −0.119 (0.751) 0.337 (0.642)
Wind, range −1.420 (0.061) −1.939 (0.160)

3. Random noise component: log 𝜎2
𝑣𝑖𝑡

Intercept −4.514 (<1e−9) −4.328 (<1e−9)
log(Population) −0.262 (1e−4) −0.284 (<1e−9)

4. Transient inefficiency component: log 𝜎2
𝑢𝑖𝑡

Intercept −20.972 (<1e−9) −21.516 (<1e−9)
log(Feeder) −0.048 (0.010)
Decentralization −0.429 (0.081)
log(shrpopA) −0.042 (0.286) −0.051 (0.233)
log(shrpopB) 0.012 (0.626) 0.031 (0.277)
Min temp −0.036 (0.030) −0.059 (0.003)
Max temp 0.374 (<1e−9) 0.382 (<1e−9)
Min wind 22.202 (8e−4) 39.368 (<1e−9)
Max wind 0.284 (<1e−9) 0.241 (<1e−9)
i

d

that given 𝐸(𝑢𝑖𝑡) =
√

(2∕𝜋)𝜎𝑢𝑖𝑡 , a higher variance signifies either greater
nefficiency or lesser inefficiency. Hence, the positive coefficient as-
ociated with the variable 𝑧𝑟,𝑖𝑡 in Table 3 suggests a lower level of

efficiency in this variable 𝑧𝑟,𝑖𝑡. This positive coefficient at variable 𝑧𝑞 ,𝑖𝑡
is conducive to enhancing efficiency when variable 𝑧𝑞 ,𝑖𝑡 increases.

Weather variables appear to influence efficiency in the short term.
Efficiency increases with lower minimum temperatures, likely because
DSOs face fewer challenges related to extreme cold weather. Con-
versely, efficiency decreases with higher maximum temperatures, sug-
gesting that milder temperatures are favorable to improved efficiency.
Both excessively low and high temperatures have a detrimental effect
on efficiency. These findings highlight the ongoing challenge DSOs
face in managing current weather conditions. However, it is important
to note that DSOs successfully undergo a process of adaptation to
weather conditions over the long term. Further, the coefficients for
both sparsity measures lack statistical significance, suggesting that, on
average, sparsity does not affect short-term efficiency.

The magnitudes of the coefficients in Table 3 are not informative.
This is because of the highly nonlinear nature of the determinants in
he model. Consider again that 𝑧𝑢1,𝑖𝑡 to be one of the variables in 𝒛𝑢𝑖𝑡 .

Eq. (8) has shown how to calculate elasticity 𝜀𝑢,𝑧𝑢1,𝑖𝑡 and hence provide
an informative interpretation of coefficients of the determinants within
ower panel of Table 3. Eq. (8) can also be used to calculate the cost
lasticity of 𝑧𝑢1,𝑖𝑡 since 𝐸(𝑢𝑖𝑡) ≠ 0. With specification (7), 𝜀𝐶 ,𝑧𝑢1,𝑖𝑡 =
𝜕 log 𝑓 (�̃�−1,𝑖𝑡, 𝒚𝑖𝑡, 𝒛𝑖𝑡; 𝜷)∕𝜕 log 𝑧𝑢1,𝑖𝑡 +𝜕 log 𝑢𝑖𝑡∕𝜕 log 𝑧𝑢1,𝑖𝑡 .

16 If 𝑧𝑢1,𝑖𝑡 does not

16 The derivation is more involved than this formula. First, the Lagrangian
or the cost minimization as in Färe and Primont (1995), p.51 or Karagiannis

et al. (2004), p.1047 needs to be set. Then, the envelope theorem needs to be
applied to the Lagrangian with respect to the distance function determinant.
Finally, the relationship of elasticity is derived analogously to Färe et al.
(1986).
10 
Fig. 7. Histogram of inefficiency elasticity of decentralization.

enter the technology,17

𝜀𝐶 ,𝑧𝑢1,𝑖𝑡 = 𝜀𝑢,𝑧𝑢1,𝑖𝑡 . (9)

Because feeder is specified in logarithmic form, the inefficiency
elasticity remains constant at −0.02, with a corresponding elasticity of
zero for DSOs where the feed is zero. The cost elasticity of feeders
equals to inefficiency elasticity due to (9). An increase in the number
of small-scale feeders enhances DSO cost efficiency, supporting the
nfrastructure hypothesis.

Fig. 7 shows the histogram of inefficiency elasticity of decentral-
ization. The mean value is −0.17 implying that becoming 1% more
ecentralized reduces inefficiency by 0.17%.

17 The frontier should not include 𝒛𝑢0𝑖 or 𝒛𝑢𝑖𝑡 to avoid endogeneity-related
issues. An additional condition for equality to hold is no allocative inefficiency.
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Thus, a higher level of decentralization is linked to greater cost
efficiency, offering empirical support for the decentralization hypoth-
esis. These findings, along with the dynamics of small-scale feeders,
provide compelling evidence that Sweden is succeeding in both (i) tran-
itioning to renewable energy distribution and (ii) enhancing network
erformance in terms of operational costs.

7. Conclusion

In this paper, we explore the performance of electricity distribution
companies in Sweden, particularly focusing on the effects of integrating
decentralized generation into existing grid networks. Current European
legislation and geopolitical developments put increasing pressure on
European countries to transform fossil-based energy systems toward
low-carbon technologies. The ongoing energy transition has important
implications not only for DSOs but also for policymakers, regulators,
and consumers.

Against this background, it is important to understand how the in-
egration of decentralized power generation impacts the cost efficiency
f network operators and how innovatively obtained geo-referenced,

spatial information can inform the discussion. Sweden serves as an
xcellent case to explore this empirically due to its progressive climate

targets, its advanced integration of renewable energy sources, and
ultimately, due to its great variety of environmental characteristics.

In this regard, our empirical analysis provides valuable insights.
ontrary to common concerns that decentralized generation might ex-
ggerate the costs of operating distribution grid networks, our findings
rovide evidence for the decentralization hypothesis, that is, a positive
ffect of decentralization on cost efficiency. We strengthen these results
y employing alternative measures of decentralized power generation
nd accounting for multiple factors that are beyond the control of
SOs but are closely related to grid layouts and power earnings from

mall and micro-scale production units, i.e., weather conditions and
ettlement structures of the population to be supplied. Consequently,
ur findings can alleviate the concerns about increases in prices due
o decentralized generation. However, this issue must be separately

analyzed in each specific regulatory environment.
We further show that, on average, weather conditions hardly affect

he long-term (persistent) cost efficiency of DSOs. However, temper-
ature and wind speed indeed influence short-term (transient) cost
efficiencies. These findings indicate that experienced system operators
have adapted their operation management well to acclimatize to ex-
treme weather conditions but still face difficulties with unpredictable
immediate circumstances. Advances in weather forecasting and addi-
tional storage capacities might help reduce those inefficiencies in the
future.

More broadly speaking, our findings support policies that favor
ecentralized power generation. In Sweden but also other European
ountries, the expansion of decentralized energy production is a topic
f considerable debate. Especially the fluctuations in renewable energy
ources combined with the asynchronous supply and demand raise
oubts about the stability of energy provision. This became partic-
larly noticeable in Sweden during the winter of 2021 when the
lectricity demand was higher than usual and electricity shortages were
xpected. However, additional electricity demand is not limited to
easonal weather phenomena but is also associated with the ongoing
lectrification of the mobility and industry sector across Europe. Thor-
ugh analyses of decentralized energy systems will, therefore, remain
 necessary task in the future.

Our analysis further demonstrates that relatively simple procedures
can be applied to extract valuable and publicly available data to
reate innovative geo-referenced metrics. We argue that such metrics
an significantly support and even enhance regulatory benchmarking
xercises.

Firstly, the availability of shapefiles and the improved access to
geo-referenced data allow for the exploitation of information that has
 a

11 
not been commonly included in regulatory data before. An example
of this would be the information about settlement structures, which
might be very important in other studies, even if we could not identify
a statistically significant effect in this analysis. Another example would
be weather conditions, for which we illustrate the huge variability and
find significant effects. Future research could further exploit existing
data sources and methods, such as geoAI and simulation techniques, to
enhance the set of available variables.

Secondly, matching information, e.g., about weather conditions and
settlement structures with network boundaries (instead of administra-
ive boundaries) makes the comparison of DSOs more accurate. This

becomes especially relevant in areas where more than one DSO is active
n a municipality and/or in cases where operating areas are widely

spread.
In countries where such procedures and metrics have not yet been

sed for regulatory purposes, regulators should consider taking advan-
age of such opportunities. In addition to the informational benefits
iscussed above, the ability to use (publicly available) geo-information

potentially reduces the burden of data provision for DSOs. For smaller
companies in particular, the collection and delivery of data require
considerable capacity. Focusing on the collection of truly company-
pecific data could even improve the quality of data delivery. A further
enefit may be that regulators can independently validate the required
ata if its provision is not solely dependent on the regulated entities.

In summary, our study contributes to the understanding of the
elationship between decentralized generation and cost efficiency, em-

ploying advanced econometric models that account for persistent and
transient inefficiencies. These findings offer important insights for reg-
ulators navigating the complexities of the energy landscape, ultimately
aiming to optimize cost efficiency while ensuring sustainability and
affordability for consumers.
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Fig. 8. Minimum temperature, averaged over all years.
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Fig. 9. Mean temperature, averaged over all years.
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Fig. 10. Maximum temperature, averaged over all years.
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Fig. 11. Minimum wind speed, averaged over all years.
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Fig. 12. Mean wind speed, averaged over all years.
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Fig. 13. Maximum wind speed, averaged over all years.
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Fig. 14. Aggregation of temperature at the distribution level.
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Fig. 15. Aggregation of wind speed at the distribution level.
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