
Research article

Training stiff neural ordinary differential equations in data-driven
wastewater process modelling

Xiangjun Huang a,* , Kyriakos Kandris b , Evina Katsou b

a Department of Civil and Environmental Engineering, Brunel University London, UK
b Department of Civil and Environmental Engineering, Imperial College London, UK

1. Introduction

Neural ordinary differential equations (NODEs) have emerged as a
powerful tool for data-driven modelling of dynamical systems (R. Chen
et al., 2018). Unlike traditional machine learning methods such as
multilayer perceptrons and recurrent neural network operate in discrete
time steps, NODEs excel in learning underlying complex dynamics
evolving over continuous time and extracting mechanistic insights from
monitoring data, even when the data are irregular. They have shown
advantages in various tasks, including prediction (Dupont et al., 2019;
Kidger et al., 2020; Núñez et al., 2023), kinetic parameter estimation
(Bradley and Boukouvala, 2021; Kong et al., 2022), hybrid modelling
(Quaghebeur et al., 2022), optimal control (Böttcher and Asikis, 2022;
Sandoval et al., 2022), and physics-informed neural networks (PINN)
(Cuomo et al., 2022; Gusmão et al., 2022; Karniadakis et al., 2021; Xue
et al., 2021).

Despite these advancements, the application of NODEs in wastewater
modelling remains limited. Effective training of NODEs using moni-
toring data is crucial for successful implementation. Our attempts to
apply standard NODEs to the activated sludge model no.1 (ASM1)
resulted in failed training (see Figs. 6 and 7). Similar challenges were
faced when modelling N2O in MATLAB (The MathWorks Inc, 2023) (see
Figs. 15 and 16). Stiffness in the system, identified as a key issue (Kim
et al., 2021), complicates the training process.

While some studies propose methods to stabilise the training process
of stiff NODEs, such as equation scaling along with stabilised gradient
calculation (Kim et al., 2021), our experiments with these approaches
frequently encountered underflow errors, leading to premature termi-
nation. The stiffness, arising from the presence of widely disparate time
scales in the dynamics, necessitates small time steps for numerical sta-
bility and can lead to pathological gradients, hindering training
convergence.

Our work aims to address this issue in data-driven wastewater
modelling with NODEs by proposing two methods.

1) Normalisation method: We adapt normalisation techniques from
conventional machine learning (Shanker M et al., 1996), to wrap a
pair of state normalisation and derivative de-normalisation layers
around neural network to scale the state inputs and derivative out-
puts, alleviating the burden on the ODE solver, and improving the
training efficiency.

2) Collocationmethod: By employing collocation techniques, we bypass
the need for ODE solvers, directly interpolating and regressing de-
rivatives at desired points for a faster solution.

We also propose an incremental strategy that starts with the collo-
cation method for initial training, followed by NODEs training with
normalisation. This strategy stabilises the learning process, saves time,
and refines results more effectively than using either method alone.

Our experiments demonstrate the successful implementation of these
methods in modelling the ASM1 and ASM2d-N2O models using NODEs.
As the concept of NODEs is relatively new, we first introduce their
methodologies in the following section.

2. Background

2.1. Neural ordinary differential equations

Wastewater process models, such as the activated sludge model se-
ries, employ a set of ordinary differential equation systems to describe
the dynamics of biochemical reactions between biomass and substrate.
(Mogens et al., 2000a,b). Mathematically, they generalise mechanistic
relationships between fractionated components and their derivatives
with respect to the independent variable, time (t).

dS(t)
dt

= f(S(t), t) Equation 2-1

where S(t) denotes variables of fractionised wastewater components,
such as readily biodegradable substrate (SS), active heterotrophic

* Corresponding author.
E-mail address: xiangjun.huang@brunel.ac.uk (X. Huang).

Contents lists available at ScienceDirect

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

https://doi.org/10.1016/j.jenvman.2024.123870
Received 31 July 2024; Received in revised form 9 November 2024; Accepted 23 December 2024

Journal of Environmental Management 373 (2025) 123870

Available online 30 December 2024
0301-4797/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0001-9020-3490
https://orcid.org/0000-0003-4173-955X
https://orcid.org/0000-0001-9020-3490
https://orcid.org/0000-0003-4173-955X
mailto:xiangjun.huang@brunel.ac.uk
www.sciencedirect.com/science/journal/03014797
https://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2024.123870
https://doi.org/10.1016/j.jenvman.2024.123870
https://doi.org/10.1016/j.jenvman.2024.123870
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvman.2024.123870&domain=pdf
http://creativecommons.org/licenses/by/4.0/

biomass (XBH), or particulate biodegradable organic nitrogen (XND) etc.,
presenting the states. The function f is the core demanding extensive
domain expertise and testing to formulate (Tchobanoglous et al., 2014).

NODEs offer a new opportunity to reveal the function f based on
observed data. Drawing upon the universal approximation theorem
(Elbrächter et al., 2019; Pinkus, 1999), NODEs construct a neural
network that approximates f:

dS(t)
dt

=NN(S(t), t, θ) Equation 2-2

where NN denotes the neural network with the weight and bias pa-
rameters represented by θ.

Training of theNN in NODEs is then designed to bemade bymeans of
integration of the ODEs with only state component data through time
steps from initial condition Y (t0), e.g., at the time when influent enters
bioreactor, to the final condition at the anticipated time step tn, e.g., the
hydraulic retention time (HRT) when the flow leaves the reactor as
effluent.

S(tn)=S(t0) +
∫tn

t0

NN(S(t))dt=ODESolver(NN,S(t0), (t0, tn), θ)

Equation 2-3

The loss function L(θ) can be defined using the mean absolute error
(MAE):

Building upon the above loss function, gradient descent algorithms
can then be employed to iteratively update and optimise the weights and
biases of NN until the desired level of accuracy is attained.

As a remedy to high memory usage and additional numerical errors
by forward pass differentiation, the adjoint sensitivity method is pro-
posed for NODEs training (R. Chen et al., 2018). by introducing the
hidden states h(t) and the adjoint a(t), which is the gradient of the loss
with respect to the hidden state:

a(t)=
∂L

∂h(t) Equation 2-5

So, θ, the weight and bias of the NN can be optimised by computing
the gradient through integration of h(t) and a(t):

dL
dθ

=

∫ t0

tn
a(t)T

∂NN(h(t), t, θ)
∂θ

dt Equation 2-6

However, in practice, the numerical errors from reversing ODE
solver can propagate and amplify into gradient flow, rending it ill-
conditioned. Even a minuscule error in the forward pass can lead to a
pronounced deviation in the reversing solution (Kim et al., 2021). This
situation deteriorates when stiffness issue already exists in the studied
systems.

2.2. Stiff ODE systems in wastewater

Most real-world systems of ODEs require numerical methods, as
analytical solutions are often unavailable or impractical. Stiffness arises
when certain numerical methods fail to provide stable solutions unless
the step size to be taken is extremely small (Hairer and Wanner, 1996a).
This phenomenon is surprisingly common in many real-life problems

(Kushnir and Rokhlin, 2012). Despite its prevalence, a rigorous mathe-
matical definition for stiffness remains undetermined (Kushnir and
Rokhlin, 2012).

The “stiffness ratio” is sometimes utilised to quantify system stiff-
ness, defined as the product of the time span and the ratio of the real part
of the fastest eigenvalue (λ) and slowest eigenvalue (λ) of the ODE sys-
tem’s Jacobian:

Stiffness Ratio=
|Re(λ)|
|Re(λ)|

(t1 − t0) Equation 2-7

Empirically, stiff systems often exhibit significant disparities in the
rate of change among various components. This disparity manifests as
one component evolving slowly over time while another undergoes
abrupt or swift changes, attributable to the system’s distinctive chemical
or biological kinetics. Apparently, the time span plays a crucial role in
the issue. For long-time simulations, the issue can become severely
problematic.

Wastewater processes exemplify these differences in scales and
evolving dynamics. They involve components with high concentrations
changing slowly (e.g., heterogeneous biomass) and transient compo-
nents or intermediate products with low concentrations changing
rapidly (e.g., dissolved oxygen, soluble substrate, hydroxylamine). With
hydraulic retention time (HRT) of bioreactor typically ranging from 4 to
20 h, stiffness becomes evident.

Given an example from the ASM1 model, to obtain a stable solution

within acceptable tolerances, it is advised (Mogens et al., 2000a,b) that
when applying numerical methods to the model implementation, the
maximum time step size should be less than:

Δt<
Vk Ck i

Ok i+Kk i
= θk i Equation 2-8

Where Vk is the volume of reactor compartment k . Ck i , Οk i , and Kk i are
the concentration, output transport terms, and consumption terms of
component i in reactor compartment k respectively. The term θk i is the
mean residence time of component i in compartment k at steady state.
With default values, θk i is of the order of 10 min for XBH, XBA, XP, XS and
XND, of 1 min for SS, SND, SNH, SALK but of 1 s for So (Mogens et al., 2000a,
b). The time step adopted in ODE solver typically ranges from 5 to 20%
of the advised maximum step for a trade-off between sufficient accuracy
and acceptable computational cost. If it is large than θk i , the correctness
of the results cannot be guaranteed.

Fig. 1 illustrates a continuous stirred-tank reactor (CSTR) example
modelled using ASM1, evolving from an initial concentration (see Sup-
plement Table 2) over 6 h, with consistent dissolved oxygen (DO) con-
trol at 2 mg/l. It demonstrates the rapid evolution of various
components and their first-order derivatives with rates of change
ranging from approximately − 0.02 mg/(l⋅d) to 8000 mg/(l⋅d). Addi-
tionally, the figure highlights the asynchronous occurrence of steep and
flat segments for each component curve, indicating differing temporal
dynamics.

The stiffness issue can be further intensified in more complex models,
such as the ASM2d-N2O model (Massara et al., 2018), which encom-
passes more volatile and intermediate components and more intricate
reactions. For instance, the consumption rate of fermentable substrate
(Sf), can rapidly decline from 9000 mg/(l⋅d) to nearly zero within 1 min,
while oxygen uptake rate (OUR) may fluctuate around 6000 mg/(l⋅d). In
contrast, nitric oxide (SNO) evolves considerably slowly, ranging

L(θ)=
1
n
∑n

i=1

⃒
⃒S(ti)NN − S(ti)observation

⃒
⃒=

1
n
∑n

i=1

⃒
⃒ODESolver(NN, S(t0), (t0, ti), θ) − S(ti)observation

⃒
⃒ Equation 2-4

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

2

between 0 and 5 × 10− 4 mg/l throughout the entire period.
Differential algebraic equations (DAEs) present another source of

stiffness. In wastewater modelling, process controls, such as aeration
and external carbon input, are often expressed in algebraic form, making
DAEs inevitable. DAEs are considered a form of infinite stiffness (Hairer
andWanner, 1996b; Linda, 1982) and some ODEs are incompatible with
them.

Stiffness remains a significant challenge in numerical analysis of
differential equations (Postawa et al., 2020). While the advancement of
specialised algorithms offers promising solutions, the effectiveness of
solvers varies greatly. Some solvers employing adaptive or implicit
methods can effectively tackle stiff ODEs. However, others may struggle
or fail entirely when applied to the stiff systems. This highlights that
there is no single “best” algorithm for all stiff problems (Kushnir and
Rokhlin, 2012). Instead, suitability of a solver depends on the specific
characteristics of the system. Consequently, researchers often resort to
trial-and-error method to identify an appropriate solution based on
solver features and the studied system’s behaviour.

2.3. Training of stiff NODEs

Despite employing carefully selected solvers, known to be effective
for stiff mechanistic ODEs, training of the corresponding NODEs with
the same solvers remains a challenging task. This discrepancy stems
from the differences in stiffness between NODEs and their mechanistic
counterparts.

In mechanistic ODE systems, stiffness is inherent in the mathematical
formulation of the problem. Instead, stiffness in NODEs emerges from
the learned underlying dynamics, influenced by factors such as the
neural network’s architecture, randomness in initialization and updat-
ing, and noise or uncertainty in the training data. Deep neural networks
in NODEs, initialized with random weights and biases, can lead to re-
gions with vastly different rates of change, especially without adequate
regularization. This can exacerbate stiffness. During training, the
constantly evolving neural network function, due to gradient descent
optimisation, introduces variations and randomness into the Jacobian of
the approximated ODEs. This dynamic nature can amplify stiffness,

potentially causing instability and hindering convergence.
Furthermore, real-world measurement data inevitably contains

noise, which disrupts smoothness and amplifies errors in derivatives.
Slight deviations in an ODE’s initial state can result in significant di-
vergences over time due to the accumulation of truncation and round-off
errors (Gear, 1981; Hairer and Wanner, 1996a). In the context of
NODEs, noise introduced by the data can behave similarly, with tiny
errors propagating and amplifying through future steps, potentially
causing the model to derail after a certain period. Consequently, training
stiff NODEs with noisy data presents an additional challenge.

In summary, NODEs can exhibit more stiffness compared to the
mechanistic ODE systems, unless specific techniques are employed to
handle it (Fronk and Petzold, 2024).

2.3.1. Stiffness-induced numerical errors
Numerical errors are inevitable in solving real-world problems. It is

not a concern if they can be controlled within the tolerance in the so-
lution. The real concern in stiff NODEs is the accumulation and ampli-
fication of these errors to a significant level during numerical integration
(Zhu et al., 2022). For example, the adjoint method, commonly used for
backpropagation in NODEs, requiring double times calls of ODE solver,
may encounter exponentially amplification of errors into the adjoint
calculations, potentially leading to numerical blow-up (Kim et al.,
2021).

In the training of stiff NODEs, stiffness-induced numerical errors can
cause inaccurate gradients and unstable training. These errors can grow
exponentially over time, causing the training process fail to converge on
a meaningful solution. (Zhu et al., 2024). The amplified errors can also
result in poor generalization of the trained model as the model learns the
artifacts of the numerical errors rather than the actual dynamics of the
system. (Kim et al., 2021).

Researchers are dedicated to deal with numerical integration errors
for NODEs (Du et al., 2022; Fronk and Petzold, 2024; Zhu et al., 2022,
2024). They offer techniques for error estimation and analysis, which
can be helpful in understanding and mitigating stiffness-induced errors.

Fig. 1. Components (solid line) and its derivatives (dot line) in a CSTR of ASM1 model with constant DO control at 2 mg/l.

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

3

2.3.2. Stiffness-induced scale separation
More importantly, the randomness and amplified numerical errors

can intensify scale separation that already exists in stiff systems. Such
enlarged scale separation can lead to loss imbalance, causing the opti-
miser to prioritise updates for rapidly changing variables and neglect
slower ones. It can also cause vanishing or exploding gradients during
backpropagation.

In summary, training stiff NODEs is challenging due to several fac-
tors. Firstly, stiff systems involve processes with vastly different scales,
making it difficult for neural network training algorithms to learn both
fast and slow dynamics simultaneously. Secondly, standard gradient
descent methods can suffer from amplification of stiffness-induced nu-
merical errors and ill-conditioned gradients during backpropagation,
hindering effective weight adjustment. Thirdly, the use of multistep
methods in ODE solvers, which rely on past information, introduces
complexity and slows down training, especially when dealing with noisy
data.

3. Methods

Stiffness challenges in NODEs are often problem-specific, demanding
empirical solutions through experimentation. The key to successfully
training stiff NODEs lies in maintaining stable gradient computations,
avoiding ill-conditioning and balancing the loss contribution. We pro-
pose two methods and a strategy to tackle this issue in data-driven
modelling using NODEs.

1) Normalisation method: We propose a readily deployable normal-
isation pair within the NODEs neural network that effectively sta-
bilise the training process.

2) Collocation method: As an alternative, we present a collocation-
based approach that bypasses the need for an ODE solver entirely,
thereby circumventing stiffness problems.

3) Incremental training strategy: We introduce an incremental
strategy that leverages both collocation and direct NODE training
sequentially for a more efficient optimisation process when dealing
with stiff systems.

3.1. Normalisation method

In machine learning regression tasks, data transformation through
scaling is often imperative. This is because algorithms used in the
training process, such as gradient descent adopted in our NODEs
training, are sensitive to feature variance (Amari, 1993). Scaling or
normalisation transforms data to be dimensionless and/or have com-
parable distribution scales. Especially for the training data which exhibit
large feature variability, normalisation ensures each feature contributes
equally, and prevents features with higher magnitudes from dominating.
Empirical and theoretical evidence supports that normalisation can
reduce the risk of vanishing/exploding gradient problem, ensures a
well-conditioned optimisation, and accelerates convergence (Huang
et al., 2023).

Unnormalized data with large scale separation can cause steep os-
cillations in the cost function, obstructing the gradient descent optimi-
sation process. This hindrance can result in slow or failed convergence,
as gradient descent may struggle to find the optimal solution efficiently
(Bhanja and Das, 2018; Cabello-Solorzano et al., 2023).

In the context of stiff NODEs, which employ deep neural networks
and involve training data with high scale separation, normalisation is
therefore particularly beneficial. However, it is crucial to consider fea-
tures with physical meaning in wastewater system modelling, as their
scale or magnitude must be preserved.

In NODEs, the neural network maps input state variables (denoted as
X) to their time derivatives (X’). Our proposed normalisation method
employs a pair of state normalisation and derivative de-normalisation

layers to wrap the deep neural network (see Fig. 2). The normalisation
layer scales the input component concentration to a common range of
− 1 to 1, while the denormalization layer restores the reaction rate
(derivatives) from − 1 to 1 range to their normal scale. All these nor-
malisation operations are performed inside the approximated ODE
function unit, thereby not affecting the solver scales. In this way, the
proposed method ensures the underlying physical dynamics to be learnt
are not altered.

The normalisation layer is applied to the neural network input, using
standardisation (Z-score normalisation), a common technique in ma-
chine learning (Shanker M et al., 1996). This transforms the data to have
a zero mean and unit standard deviation.

X*
i =

Xi − μX
δX

Equation 3-1

where, μX and δX denote the mean and standard deviation of the
component state data sequence X, respectively.

The de-normalisation layer is then applied to the neural network
output to restore the state derivative data to its normal range.

Xʹ
i =X

ʹ
i
**δXʹ + μXʹ Equation 3-2

where, μX’ and δX’ denote the mean and standard deviation of the state
derivative data sequence X′, representing biokinetic rate.

It is crucial to note that the normalisation and de-normalisation
layers must be applied in pair within the ODE solver, wrapping the
neural network. Unlike conventional machine learning, where normal-
isation is often performed outside the training process, it cannot be
applied outside the solver. This is because the component states and
their derivatives carry physical meaning in the dynamics addressed by
the solver. Scaling the data outside the solver would skew the re-
lationships of the components, substantially distorting the dynamics to
be learned.

From Equations (3)–(1) and Equations (3)–(2), we can see that four
sets of mean value and standard deviation are required. The mean and
standard deviation for input can be calculated straightforwardly with
the monitored time-series component state data. However, the deriva-
tive data sequence X′ are not available explicitly. To estimate the mean
and standard deviation of X’, we can employ difference quotients
applied to the state data sequence X, such as the single-sided difference
method.

X’ = (x2 − x1, x3 − x2,…,xn − xn− 1)/Δt Equation 3-3

Or central difference:

Xʹ=(x2 − x1, (x3 − x2) /2,…, (xn − xn− 2) /2, (xn − xn− 1)) /Δt
Equation 3-4

Fig. 2. Illustration of NODEs normalisation pair layout.

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

4

Experiments show that single-sided and central differences yield
similar results (see Supplement Table 1). Although the approximation
tends to be more accurate with densely sampled state datasets, a rela-
tively small number of discretisation often suffices.

In practice, the mean and standard deviation of component reaction
rates can also be estimated or corrected by experienced operators from
other sources, such as routine operation records, site measurements,
established mechanistic models, and digital twin outputs.

Researchers have proposed equation scaling methods along with
stable gradient calculation, demonstrating their effectiveness on several
stiff systems of NODEs (Kim et al., 2021). However, when applied to our
wastewater systems, these methods proved insufficient. Our experi-
ments revealed that without our proposed normalisation method,
training even the simple ASM1 model using NODEs diverged.
Conversely, with our normalisation method, training the more complex
ASM2d-N2O model remained effective, even in the presence of noisy
data with up to 0.1 standard deviation (SD) amplitude.

Our method distinguishes itself not only by its comprehensive nor-
malisation of each feature, surpassing the “rough” equation scaling
approach based on max-min state values and time spans, but also by its
emphasis on the denormalization layer. We hypothesize that derivatives
are inherently more erratic and sensitive than state sequences. This
aligns well with the common focus on reaction rates (derivatives) in
wastewater treatment studies, such as OUR, biomass growth rate, and
substrate utilization rate. Normalizing these rates can leverage domain
knowledge and improve model performance.

As demonstrated in section 4, normalisation acts as a preconditioner
in NODEs, significantly improving training stability and efficiency. The
paired normalisation and de-normalisation layers balances loss contri-
bution and stabilise gradients, leading to faster convergence and
improved training smoothness and efficiency. Notably, the associated
computational overhead is minimal, even practically negligible.

3.2. Collocation method

While the aforementioned normalisation method utilises four pa-
rameters pre-obtained from the training dataset, the collocation method
employs the entire trajectory of the observational training dataset. It
estimates the complete trajectory of the corresponding derivatives using
traditional mathematical regression methods, then trains the neural
network against the collocated pairs of state input data and estimated
state derivatives. This approach eliminates the need for an ODE solver,
thereby avoiding the stiffness issue.

In NODEs, the direct approach calls out the ODE solver for derivative
calculations at every training step, with derivative computation
remaining implicit or hidden to users. Conversely, the collocation
method explicitly approximates all the derivatives using kernel func-
tions and interpolation/regression methods prior to the training pro-
cedure. Although both methods involve optimisation by gradient

descent, training of the neural network in collocation method is simpler
as it does not need to go through ODE solver at each step, while direct
approach must. Consequently, it can be extremely fast and robust to
noise. Fig. 3 illustrates the different strategies of these two methods.

The first step of collocationmethod entails estimating state variables,
let’s say X(t), and their derivatives, let’s say X′(t), from sampled obser-
vations (Y1, Y2, …, Yn), at the time points (t1, t2, …, tn), with measure-
ment errors (e1, e2, …, en), then we have:

Yi =X(ti)+ ei i=1,…,n Equation 3-5

To derive X(t) and X′(t) from Yi, a common practice is to use non-
parametric local linear regression for X(t), and local polynomial (often
quadratic) regression for X′(t). This approach is based on Talay’s form-
ular and criterion of minimizing locally weighted least-squares. Liang
andWu gave a complete deduction process in their paper (Liang andWu,
2008). We brief the results as follows.

X̂(t)= εT1
(
TT1,tWtT1,t

)− 1
TT1,tWtY Equation 3-6

X̂ʹ(t)= εT2
(
TT2,tWtT2,t

)− 1
TT2,tWtY Equation 3-7

Where,

ε1 =
[
1
0

]

ε2 =

⎡

⎣
0
1
0

⎤

⎦ Equation 3-8

T1,t =

⎡

⎢
⎣

1 t1 − t

1 t2 − t

⋮ ⋮

1 tn − t

⎤

⎥
⎦ T2,t =

⎡

⎢
⎢
⎣

1 t1 − t (t1 − t)2

1 t2 − t (t2 − t)2

⋮ ⋮ ⋮

1 tn − t (tn − t)2

⎤

⎥
⎥
⎦ Equation 3-9

Wt =

⎡

⎢
⎢
⎣

Kh(t1 − t) 0 ⋯ 0
0 Kh(t2 − t) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 0 Kh(tn − t)

⎤

⎥
⎥
⎦ Equation 3-10

Where K (⋅) is a symmetric kernel function. Given an example of Epa-
nechnikov kernel function, we can have:

Kh(ti − t)=K
(ti − t

h

)/
h Equation 3-11

Where h is a bandwidth:

h=

⎛

⎝n−
1
5

⎞

⎠

⎛

⎝n−
3
35

⎞

⎠

⎛

⎝(log(n))−
1
16

⎞

⎠ Equation 3-12

The choice of kernel function depends on the observation data
characteristics. For instance, cubic spline is preferred for less noisy or
relatively sparse data, while B-spline or Epanechnikov kernel is suitable
for noisier datasets.

Due to boundary restriction, derivative estimations at both ends are
often inaccurate. This can be mended by excluding data at both ends, to
achieve smoother results and reduce excessive changes at the
boundaries.

Proper data preprocessing can alleviate subsequent burdens and
minimise errors in the training process. To enhance the accuracy of
estimated X and X’, it is advisable to smooth the noisy observation Y
before applying the collocation method. This may involve outlier
detection, smoothing techniques and cross validation based on waste-
water system knowledge.

The next step involves training the neural network with the esti-
mated X(t) and X’(t) pairs. This process is straightforward, similar to
conventional machine learning. The MAE loss function can be

Fig. 3. Different training strategies by direct NODE and collocation method.

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

5

constructed as:

L(θ)=
1
n
∑n

i=1
|NNθ(X̂i) − X̂ʹ

i| Equation 3-13

The accuracy of the collocation method depends on the character-
istics of observational data and estimation methods. While it can be high
if the adopted methods and data align well, the results often require
further refinement using more elaborate algorithms.

3.3. Incremental strategy

In practice, the results from the collocation method are often “rough”
and not sufficiently accurate, although they may be close to the global
minima and less prone to local minimum (Rackauckas et al., 2020). To
improve the model fidelity to the optimal level, further training using
finer or more elaborate methods, such as local minimum algorithms or
direct NODEs approach, is expected. Since the collocation method pro-
vides a good initial result, subsequent optimisation will experience
reduced stiffness and increased effectiveness. In this way, the model
fidelity is incrementally improved.

We refer to this practice – applying a coarse method followed by a
finer method that builds upon the results of the previous method - as the
incremental strategy. The idea is to first provide a rough estimation
using the collocation method to narrow the approximated range for the
result, then refine it locally by the direct NODE method to achieve
higher fidelity.

4. Experiments and results

Data-driven modelling using NODEs primarily involves the repeated
solving of initial value problems (IVPs). To demonstrate the feasibility
and efficiency of the proposed methods in training NODEs models for
wastewater process modelling, we conducted two experimental studies
using models from ASM1 to ASM2d-N2O with increasing complexity but
different focuses. We use simpler ASM1 for 100-times efficiency test,
saving significant time. ASM2d-N2O is more complex. Adding noise with
level up to 0.1 standard deviation to increase the complexity will suffice
to show the effectiveness of our method under more challenging con-
ditions. Both models are used on an IVP in a CSTR.

For comparison purposes, we utilised simulated trajectory data
generated from these mathematical models to train the NODEs models.
This allows for a direct assessment of the NODEs’ performance against
well-established wastewater treatment models. All the code and results
can be found at https://github.com/Xiangjun-Huang/solving-stiffness
-of-NODE.

4.1. ASM1 model

The ASM1 is one of the simplest models for wastewater biological
process modelling. Introduced in 1987 and revised over the years, it has
been widely for simulating organic matter and nitrogen removal in
wastewater treatment. The version we employed consists of 15 com-
ponents (including two additional components SN2 and Xinorg for N
balance and TSS calculation) and 8 reactions (Mogens et al., 2000a,b).
We used default values for stoichiometric and kinetic parameters. For

detailed model information, please refer to the cited document.
We generated trajectory data of 1000 points using the ASM1 math-

ematical model, simulating a CSTR from a defined initial state with a
fixed DO level of 2 mg O2/l over 6 h. The initial values (see Supplement
Table 2) were adapted from the steady state of the bioreactor in
benchmark simulation model no. 1 (BSM1) (Alex et al., 2018). Fig. 4
illustrate the maximum eigenvalues of the Jacobian over the IVP solu-
tion trajectory, showing peak stiffness at approximately 1.7 h.

4.1.1. Training options
We conducted experiments using Python 11 and the torchdiffeq

package (R. T. Q. Chen, 2018). After testing various solvers from both
torchdiffeq and the SciPy package (Virtanen et al., 2020), we selected
dopri5 for our experiments. Our tests revealed minimal differences be-
tween loss functions, with Huber loss performing slightly better. How-
ever, MAE was deemed sufficient for process modelling and thus
adopted in our experiments.

After testing structures with hidden layers from 2 to 6 and nodes
from 20 up to 200, the neural network for the NODEs was constructed as
a multilayer perceptron with four layers and 50 nodes in each hidden
layer, using activation functions between the layers. While Chen used
the Tanh activation function in most of his NODEs examples (R. Chen
et al., 2018), we also tested Gelu activation function. Gelu, a relatively
new function, bridges stochastic regularisers with non-linearities, dis-
tinguishing it from other activation functions (Hendrycks and Gimpel,
2016). It has demonstrated higher accuracy compared to ReLU, and ELU
(Devlin et al., 2019).

Our experiments showed that Gelu outperforms Relu and Tanh in
NODEs training for wastewater modelling. Fig. 5 compares Gelu and
Tanh functions in loss changes for the IVP trajectory training based on
ASM1 model, clearly indicating considerably enhanced performance
with Gelu. It is worth noting that despite nearly 102 orders of magnitude
loss decline activated by Gelu without normalisation as shown in Fig. 5,
the results remained unsatisfactory.

We trained the NODEs using the ADAM optimiser (Kingma and Ba,
2014) with a varying learning rate, as shown in Fig. 5. The training
began with a high learning rate 0.1 to harness speed advantages, then
switched to a lower rate 0.001 to refine results in response to loss
function changes. Training was conducted for 2000 iterations with a
sampling batch size of 512 and 16 steps of the interval calculated each
time by the solver. For brevity, three non-reactive components (Si, Xi,
Xinorg) and constant DO are not shown in the following results.

4.1.2. Normalisation
The efficacy of the proposed method is assessed by comparing the

trained model predictions against ground truth trajectories generated by
the mathematical model under identical initial conditions. Fig. 6 illus-
trates a representative training example without normalisation. The

Fig. 4. Maximum eigenvalues of the Jacobian over the IVP solution trajectory.
Fig. 5. Comparison in loss between Tanh and Gelu under normalised and
unnormalized conditions.

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

6

https://github.com/Xiangjun-Huang/solving-stiffness-of-NODE
https://github.com/Xiangjun-Huang/solving-stiffness-of-NODE

Fig. 6. NODE training without normalisation. Upper: training results; Lower left: loss; Lower right: grad norm.

Fig. 7. NODE training with normalisation Upper: training results; Lower left: loss; Lower right: grad norm.

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

7

results indicate that the neural network fails to effectively learn from the
data, as evidenced by the loss function plateauing after an initial rapid
decrease within the first few iterations. The gradient norm exhibits a
pathological pattern, remaining at a consistently low level, which re-
flects the stagnation of the loss throughout the training process.
Consequently, the predicted component curves do not align well with
the ground truth, resulting in a high overall root mean squared error
(RMSE) of 62.51.

The normalisation method is then applied with the estimated mean
and standard deviation of the derivatives sequence using single-sided
difference quotient. The neural network was wrapped by the normal-
isation and de-normalisation pair with the estimated parameters. As
illustrated in Fig. 7, this normalisation technique yields significant im-
provements. The predicted trajectory curves now closely align with the
ground truth, resulting in a substantially reduced overall RMSE of 1.73.
Moreover, the loss function exhibits a gradual decrease throughout the
training iterations, while the gradient norm demonstrates stable
behaviour.

4.1.3. Incremental strategy
The incremental strategy was implemented by first training the

normalised model using the collocation method, followed by direct
NODE training. Figs. 8 and 9 illustrate the results of the collocation
method utilising the Epanechnikov kernel function, comparing the
ground truth with the collocated trajectory and its derivatives. The
smoothed trajectory demonstrated a close fit to the ground truth, as
evidenced by a low RMSE of 6.39. However, the derivatives exhibited
significant disparity, with a high RMSE of 325.5, indicating challenges
in accurate estimation.

Fig. 10 illustrates a representative result from the collocation
training stage. As the number of iterations increases, the loss consis-
tently decreases, while the gradient norm remains stable. Despite this
apparent progress, the RMSE remains high at 31.44 after 2000 itera-
tions. This persistent discrepancy can be attributed to substantial errors
in derivative estimation using the collocation method.

Fig. 11 displays the results of the subsequent direct NODEs training
stage. Throughout this stage, the loss exhibits a generally consistent
decrease, while the gradient norm maintains stability at a relatively low
level compared to collocation training phase.

Due to the stochastic nature of neural networks, results may vary
slightly across different training runs. To assess efficiency, we conducted
100 trials of each training method, each comprising 2000 iterations
under identical conditions. The tests were performed on a computer
with an Intel® Core™ i7 CPU (2.8 GHz), 16 MB RAM, without a dedi-
cated GPU. The test program was executed within the VSCode IDE on a
Windows 10 64-bit operating system.

Fig. 12 presents the results of this efficiency test (detailed data
available on the project’s GitHub repository). The analysis reveals that

the incremental training strategy, compared to the NODE-only training,
consumes 24.3% less time on average and yields a 24.7% lower RMSE.
Notably, when collocation training precedes NODE training, the
resulting RMSE demonstrates a smaller standard deviation (1.2)
compared to the method without collocation integration (1.4), sug-
gesting enhanced training stability.

4.2. ASM2d-N2O model

The growing concern over climate change has intensified focus on
greenhouse gas emissions from wastewater treatment plants, particu-
larly nitrous oxide (N2O). Recent research (Ye et al., 2022) identifies
four potential pathways for N2O generation during biological nitrogen
removal in wastewater treatment: (i) hydroxylamine oxidation, (ii)
nitrifier denitrification, (iii) heterotrophic denitrification, and (iv)
abiotic reactions. While these pathways may coexist at varying ratios,
the significance of the fourth pathway remains under debate.

This experiment employs the ASM2d-N2O model, an extension of the
ASM2d model that incorporates N2O emissions. This comprehensive
model describes 40 reactions involving 24 fractionated components,
encompassing the biological removal of carbon, nitrogen, and phos-
phorus, including the three major N2O emission pathways. We utilised
the stoichiometric and kinetic parameters reported in the original paper
(Massara et al., 2018).

The model’s complexity arises from its inclusion of greenhouse gas
emissions like N2O and other transient, low-concentration byproducts
such as nitric oxide (NO). Additionally, it represents intricate
biochemical reactions. These factors collectively contribute to a signif-
icant degree of stiffness in the system due to the vast differences in scales
and magnitudes between various components. This characteristic makes
the ASM2d-N2O model a suitable test case for evaluating the proposed
solutions.

We employed MATLAB as the programming language for this
experiment. The data originated from an ASM2d-N2O model simulation
of a CSTR for 6 h under constant dissolved oxygen control at 2 mg/L. The
simulation began from an initial condition detailed in Supplementary
Table 3. The generated trajectory data for the IVP was discretised into
1000 points.

To simulate the real situation and evaluate how the proposed
methods behave on noisy monitoring data, we prepared three datasets
for our experiment. One set contained the original, noise-free data. The
remaining two sets were corrupted with varying levels of white noise,
each with different SD amplitudes, 0.05, and 0.1. To mitigate the effect
of noise on training, we applied a Gaussian filter with a window size of
50 for smoothing before training the models.

4.2.1. Training options
MATLAB offers a comprehensive suite of ODE solvers, yet currently

Fig. 8. Comparison of collocated data and ground truth of the trajectory.

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

8

provides only one solver specifically designed for NODEs problems. This
limitation reflects the relative novelty of the NODE approach, under-
scoring the need for further development in this area. Despite the
dlode45 solver being documented for non-stiff problems (MATLAB,
2024), we employed it in our specific case for experimentation.

For the NODE model, we constructed a MLP architecture with four
hidden layers, each containing 50 nodes. The Gelu activation function
was employed between layers for improved performance. Xavier Glorot
initialization was utilised for the weight matrices within the neural
network to address vanishing/exploding gradients. The MAE served as
the loss function throughout our experiments, aiming to minimise the
absolute difference between predicted and ground truth values.

The NODEs were trained using the Adamupdate optimiser (Kingma

and Ba, 2014) with a gradient decay factor of 0.9, a squared gradient
decay factor of 0.999, and a global learning rate of 0.01. We imple-
mented custom loops to manage the training process. The collocation
training stage utilised 3000 iterations, followed by 1000 iterations for
direct NODE training. A batch size of 200 and time steps of 800 were
employed during training.

4.2.2. Normalisation
We initially evaluated the performance of direct NODE training

without normalisation. To validate the results, we compared the pre-
dictions from the trained model with solutions generated by the math-
ematical model for the same IVP. Fig. 13 presents a typical example of
training with data containing 0.05 SD noise and without normalisation.

Fig. 9. Comparison of collocated derivative and ground truth derivative.

Fig. 10. Collocation training stage by incremental strategy. Upper: training results; Lower left: loss; Lower right: grad norm.

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

9

Fig. 11. Direct NODE training stage by incremental strategy. Upper: training results; Lower left: loss; Lower right: grad norm.

Fig. 12. Distribution of time consumption and RMSE for 100 times running by different training methods. (I-Coll: Incremental collocation training part, I-NODE:
Incremental NODE training part).

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

10

While the model successfully describes the trajectory of most compo-
nents, it struggles to capture the trajectories of low-valued scaled com-
ponents, such as SNO, which have magnitudes on the order of 10− 4 mg/L.

Following this observation, we implemented the normalisation
method. Fig. 14 illustrates the results of direct NODE training with
normalisation-denormalization pair. For the normalisation layer, the
mean and standard deviation were directly calculated from the
smoothed component state data sequence. Differently, the denormali-
zation layer employed the differential quotient method to estimate the
mean and standard deviation of the derivative data sequence from the

smoothed dataset. Although some turbulences are still evident, the
predicted trajectory progressively improves in smoothness with
increasing training iterations. Importantly, the model now captures the
trajectories of low-valued scaled components like SNO, leading to more
satisfactory overall results.

Figure compares training losses between models with and without
normalisation, both scaled to the same range.

4.2.3. Incremental strategy
We evaluated the performance of incremental training strategies

Fig. 13. Result of training without normalisation with data containing 0.05 SD noise.

Fig. 14. Result of training with normalisation with data containing 0.05 SD noise.

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

11

using data corrupted with normally distributed noise at three SD levels
0.05, and 0.1. The training process consisted of two stages: first, the
model was trained using the collocation method, followed by further
training with the direct NODE method. The neural network employed Z-
score normalisation at the input layer and de-normalisation at the
output layer. An Epanechnikov kernel function was chosen for data
collocation.

The collocation training exhibited a fast and stable convergence
process, requiring 3000 iterations. Subsequent direct NODE training
also demonstrated good convergence, achieving satisfactory results with
only 300 iterations, although 1000 iterations were used for further
refinement.

As illustrated in Figs. 16, 17 and 17, the predictions were compared
to the observations after training with the same number of iterations on
data with noise levels of 0.05, and 0.1 SD, respectively. The results
clearly demonstrate that the accuracy deteriorates as the noise level

increases. Lower noise levels yield better results, as evidenced by the
RMSE values of 27.28 and 54.54 for noise levels of 0.05, and 0.1 SD,
respectively. This reinforces the importance of minimizing noise
through data smoothing techniques before training to avoid training
instability and ensure optimal performance.

Our comparison demonstrates that the incremental approach of
collocation training followed by the direct NODE method improved the
result and enhanced the training stability and speed. Regardless of the
chosen approach, normalisation remains crucial for successful training
of stiff neural ODE models for wastewater process modelling.

5. Discussion

The training of NODEs for data-driven wastewater processes
modelling is particularly challenging due to the inherent stiffness of the
underlying dynamics. This stiffness, exacerbated by amplification of
numerical errors and enlarged scale separations during optimisation,
can lead to unstable training and inaccurate prediction.

To address these challenges, we propose a novel normalisation pair
method that significantly enhances the stability and efficiency of NODE
training. By normalizing the state input and de-normalizing state de-
rivative output within the ODE solver, we effectively balance the opti-
misation across disparate scales, leading to smoother gradient flows and
reduced risk of gradient vanishing or explosion. This enables the
training of deeper and more complex NODEs models. Additionally, the
proposed method is simple to implement and can be readily applied to
various stiff NODE systems with minimal computational overhead.

To further enhance the training process, we explored an incremental
training strategy. By training a NODE model initially using a collocation
method and then refining it with a direct NODE approach, we were able
to bypass the initial stiffness hurdle and achieve improved efficiency and
accuracy. This combined strategy highlights the value of tailoring
training methods to specific problem stages.

However, it is important to note that increasing noise levels can
rapidly deteriorate the accuracy of NODE models due to heightened
derivative sensitivity. To mitigate this issue, pre-emptive data smooth-
ing is highly recommended to reduce noise amplification within the
neural network and promote a more stable training process.

Fig. 15. Comparison in training loss between models with and without
normalisation.

Fig. 16. Validation of model trained by incremental strategy with data containing 0.05 SD noise.

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

12

We hypothesize that this normalisation technique may not be
optimal for datasets exhibiting minor scale separations, limited feature
variability, or high feature correlation. Further investigation can be
made to determine an appropriate normalisation parameter for
component that simultaneously undergo both reactions of generation
from some components and consumption by others. Additionally, the
potential of collocation methods can be explored with more sophisti-
cated techniques to enhance accuracy.

6. Conclusion

In conclusion, the proposed normalisation method and incremental
training strategy provide a robust and efficient framework for training
stiff NODEs in data-driven wastewater modelling. These techniques
offer significant advantages in mitigating the numerical stability issues
and accelerating the training process. We anticipate that this innovative
approach will be validated through further practical applications and
pave the way for the widespread adoption of NODEs in various fields,
leading to more efficient data-driven management strategies. Beyond
wastewater modelling, the proposed normalisation method has the po-
tential to be applied to other fields characterised by stiff ODE systems,
noisy data, and complex nonlinear dynamics. Specific applications may
include reaction kinetics modelling in chemical engineering, physio-
logical system simulations in biomedical processes, and climate
modelling or pollutant dispersion predications in environmental
science.

CRediT authorship contribution statement

Xiangjun Huang:Writing – original draft, Visualization, Validation,
Software, Methodology, Investigation, Formal analysis, Data curation.
Kyriakos Kandris: Writing – review & editing, Supervision, Project
administration, Investigation. Evina Katsou: Writing – review & edit-
ing, Supervision, Resources, Project administration, Funding acquisi-
tion, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The work was supported by the CRONUS project (grant agreement
ID: 101084405) funded by the European Union under Horizon Europe
Research and Innovation Action scheme.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jenvman.2024.123870.

Data availability

I have shared the link of my data/code in the manuscript uploaded

References

Alex, J., Benedetti, L., Copp, J., Gernaey, K.V., Jeppsson, U., Nopens, I., Pons, M.N.,
Steyer, J.P., Vanrolleghem, P., 2018. Benchmark simulation model, 1 (BSM1).

Amari, S. ichi, 1993. Backpropagation and stochastic gradient descent method.
Neurocomputing 5 (4–5), 185–196. https://doi.org/10.1016/0925-2312(93)90006-
O.

Bhanja, S., Das, A., 2018. Impact of Data Normalization on Deep Neural Network for
Time Series Forecasting.

Böttcher, L., Asikis, T., 2022. Near-optimal control of dynamical systems with neural
ordinary differential equations. Mach. Learn.: Sci. Technol. 3 (4). https://doi.org/
10.1088/2632-2153/ac92c3.

Bradley, W., Boukouvala, F., 2021. Two-stage approach to parameter estimation of
differential equations using neural ODEs. Ind. Eng. Chem. Res. 60 (45),
16330–16344. https://doi.org/10.1021/acs.iecr.1c00552.

Cabello-Solorzano, K., Ortigosa de Araujo, I., Peña, M., Correia, L., J Tallón-
Ballesteros, A., 2023. The Impact of data normalization on the accuracy of machine
learning algorithms: a comparative analysis. In: García Bringas, P., Pérez García, H.,
Martínez de Pisón, F.J., Martínez Álvarez, F., Troncoso Lora, A., Herrero, Á., Calvo
Rolle, J.L., Quintián, H., Corchado, E. (Eds.), 18th International Conference on Soft
Computing Models in Industrial and Environmental Applications (SOCO 2023).
Springer, Nature Switzerland, pp. 344–353.

Fig. 17. Validation of model trained by incremental strategy with data containing 0.1 SD noise.

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

13

https://doi.org/10.1016/j.jenvman.2024.123870
https://doi.org/10.1016/j.jenvman.2024.123870
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref1
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref1
https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/10.1016/0925-2312(93)90006-O
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref3
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref3
https://doi.org/10.1088/2632-2153/ac92c3
https://doi.org/10.1088/2632-2153/ac92c3
https://doi.org/10.1021/acs.iecr.1c00552
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref6
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref6
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref6
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref6
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref6
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref6
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref6

Chen, R., Rubanova, Y., Bettencourt, J., Duvenaud, D., 2018. Neural Ordinary
Differential Equations.

Chen, R.T.Q., 2018. torchdiffeq. Github. https://github.com/rtqichen/torchdiffeq.
Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F., 2022.

Scientific machine learning through physics–informed neural networks: where we
are and what’s next. J. Sci. Comput. 92 (3). https://doi.org/10.1007/s10915-022-
01939-z.

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. North American Chapter of
the Association for Computational Linguistics. https://api.semanticscholar.org/Corp
usID:52967399.

Du, Q., Gu, Y., Yang, H., Zhou, C., 2022. The discovery of dynamics via linear multistep
methods and deep learning: error estimation. SIAM J. Numer. Anal. 60 (4),
2014–2045.

Dupont, E., Doucet, A., Teh, Y.W., 2019. Augmented neural ODEs. http://arxiv.
org/abs/1904.01681.

Elbrächter, D., Perekrestenko, D., Grohs, P., Bölcskei, H., 2019. Deep neural network
approximation theory. http://arxiv.org/abs/1901.02220.

Fronk, C., Petzold, L., 2024. Training stiff neural ordinary differential equations with
implicit single-step methods. ArXiv. https://arxiv.org/abs/2410.05592.

Gear, C.W., 1981. Numerical solution of ordinary differential equations: is there anything
left to do? SIAM Rev. 23 (1), 10–24. https://doi.org/10.1137/1023002.

Gusmão, G.S., Retnanto, A.P., Cunha, S. C. da, Medford, A.J., 2022. Kinetics-informed
neural networks. Catal. Today. https://doi.org/10.1016/j.cattod.2022.04.002.

Hairer, E., Wanner, G., 1996a. Solving Ordinary Differential Equations II, second ed.
Hairer, E., Wanner, G., 1996b. Solving Ordinary Differential Equations II - Stiff and

Differential Algebraic Problems, vol. 375. Springer.
Hendrycks, D., Gimpel, K., 2016. Gaussian error linear units (GELUs). http://arxiv.

org/abs/1606.08415.
Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., Shao, L., 2023. Normalization techniques in

training dnns: Methodology, analysis and application. IEEE Trans. Pattern Anal.
Mach. Intell. 45 (8), 10173–10196.

Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L., 2021.
Physics-informed machine learning. Nat. Rev. Phy. 3 (6), 422–440. https://doi.org/
10.1038/s42254-021-00314-5.

Kidger, P., Morrill, J., Foster, J., Lyons, T., 2020. Neural controlled differential equations
for irregular time series. http://arxiv.org/abs/2005.08926.

Kim, S., Ji, W., Deng, S., Ma, Y., Rackauckas, C., 2021. Stiff neural ordinary differential
equations. https://doi.org/10.1063/5.0060697.

Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic Optimization. http://arxiv.
org/abs/1412.6980.

Kong, X., Yamashita, K., Foggo, B., Yu, N., 2022. Dynamic Parameter Estimation with
Physics-based Neural Ordinary Differential Equations.

Kushnir, D., Rokhlin, V., 2012. A highly accurate solver for stiff ordinary differential
equations. SIAM J. Sci. Comput. 34 (3), A1296–A1315. https://doi.org/10.1137/
100810216.

Liang, H., Wu, H., 2008. Parameter estimation for differential equation models using a
framework of measurement error in regression models. J. Am. Stat. Assoc. 103 (484),
1570–1583. https://doi.org/10.1198/016214508000000797.

Linda, P., 1982. Differential/Algebraic Equations are not ODE’s. SIAM J. Sci. Stat.
Comput.

Massara, T.M., Solís, B., Guisasola, A., Katsou, E., Baeza, J.A., 2018. Development of an
ASM2d-N2O model to describe nitrous oxide emissions in municipal WWTPs under
dynamic conditions. Chem. Eng. J. 335, 185–196. https://doi.org/10.1016/j.
cej.2017.10.119.

MATLAB, 2024. Documentation: dlode45 function. https://uk.mathworks.com/help/d
eeplearning/ref/dlarray.dlode45.html.

Mogens, H., Willi, G., Takashi, M., Mark, van L., 2000a. Activated Sludge Models ASM1,
ASM2, ASM2d, and ASM3. IWA Publishing.

Mogens, H., Willi, G., Takashi, M., van, Loosdrecht Mark, 2000b. Activated Sludge
Models ASM1,ASM2, ASM2d, and ASM3. IWA Publishing.

Núñez, M., Barreiro, N.L., Barrio, R.A., Rackauckas, C., 2023. Forecasting virus outbreaks
with social media data via neural ordinary differential equations. Sci. Rep. 13 (1).
https://doi.org/10.1038/s41598-023-37118-9.

Pinkus, A., 1999. Approximation theory of the MLP model in neural networks. Acta
Numer. 8, 143–195. https://doi.org/10.1017/S0962492900002919.

Quaghebeur, W., Torfs, E., Baets, B. De, Nopens, I., 2022. Hybrid differential equations:
integrating mechanistic and data-driven techniques for modelling of water systems.
Water Res. 213. https://doi.org/10.1016/j.watres.2022.118166.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D.,
Ramadhan, A., Edelman, A., 2020. Universal differential equations for scientific
machine learning. ArXiv Preprint ArXiv:2001.04385.

Sandoval, I.O., Petsagkourakis, P., del Rio-Chanona, E.A., 2022. Neural ODEs as feedback
policies for nonlinear optimal control. http://arxiv.org/abs/2210.11245.

Shanker, M., Hu, M.Y., Hung, M.S., 1996. Effect of data standardization on neural
network training. Int. J. Mgmt Sci 24 (Issue 4).

Tchobanoglous, G., Stensel, H.D., Tsuchihashi, R., Burton, F., 2014. Wastewater
Engineering: Treatment and Resource Recovery (5th Intern). McGraw-Hill Education.

The MathWorks Inc, 2023. Dynamical system modeling using neural ODE. https://uk.
mathworks.com/help/deeplearning/ug/dynamical-system-modeling-using-neural
-ode.html.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M.,
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E.,
SciPy 1.0 Contributors, 2020. SciPy 1.0: Fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272. https://doi.org/10.1038/s41592-
019-0686-2.

Xue, Y., Nasim, M., Zhang, M., Fan, C., Zhang, X., El-Azab, A., 2021. Physics Knowledge
Discovery via Neural Differential Equation Embedding.

Ye, L., Porro, J., Nopens, I., 2022. Quantification and Modelling of Fugitive Greenhouse
Gas Emissions from Urban Water Systems, first ed. IWA Publishing.

Zhu, A., Jin, P., Zhu, B., Tang, Y., 2022. On numerical integration in neural ordinary
differential equations. In: International Conference on Machine Learning,
pp. 27527–27547.

Zhu, A., Wu, S., Tang, Y., 2024. Error analysis based on inverse modified differential
equations for discovery of dynamics using linear multistep methods and deep
learning. SIAM J. Numer. Anal. 62 (5), 2087–2120.

X. Huang et al. Journal of Environmental Management 373 (2025) 123870

14

http://refhub.elsevier.com/S0301-4797(24)03857-X/sref7
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref7
https://github.com/rtqichen/torchdiffeq
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1007/s10915-022-01939-z
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref11
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref11
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref11
http://arxiv.org/abs/1904.01681
http://arxiv.org/abs/1904.01681
http://arxiv.org/abs/1901.02220
https://arxiv.org/abs/2410.05592
https://doi.org/10.1137/1023002
https://doi.org/10.1016/j.cattod.2022.04.002
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref17
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref18
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref18
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref20
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref20
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref20
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
http://arxiv.org/abs/2005.08926
https://doi.org/10.1063/5.0060697
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref25
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref25
https://doi.org/10.1137/100810216
https://doi.org/10.1137/100810216
https://doi.org/10.1198/016214508000000797
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref28
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref28
https://doi.org/10.1016/j.cej.2017.10.119
https://doi.org/10.1016/j.cej.2017.10.119
https://uk.mathworks.com/help/deeplearning/ref/dlarray.dlode45.html
https://uk.mathworks.com/help/deeplearning/ref/dlarray.dlode45.html
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref31
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref31
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref32
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref32
https://doi.org/10.1038/s41598-023-37118-9
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1016/j.watres.2022.118166
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref36
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref36
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref36
http://arxiv.org/abs/2210.11245
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref38
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref38
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref39
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref39
https://uk.mathworks.com/help/deeplearning/ug/dynamical-system-modeling-using-neural-ode.html
https://uk.mathworks.com/help/deeplearning/ug/dynamical-system-modeling-using-neural-ode.html
https://uk.mathworks.com/help/deeplearning/ug/dynamical-system-modeling-using-neural-ode.html
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref42
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref42
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref43
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref43
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref44
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref44
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref44
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref45
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref45
http://refhub.elsevier.com/S0301-4797(24)03857-X/sref45

	Training stiff neural ordinary differential equations in data-driven wastewater process modelling
	1 Introduction
	2 Background
	2.1 Neural ordinary differential equations
	2.2 Stiff ODE systems in wastewater
	2.3 Training of stiff NODEs
	2.3.1 Stiffness-induced numerical errors
	2.3.2 Stiffness-induced scale separation

	3 Methods
	3.1 Normalisation method
	3.2 Collocation method
	3.3 Incremental strategy

	4 Experiments and results
	4.1 ASM1 model
	4.1.1 Training options
	4.1.2 Normalisation
	4.1.3 Incremental strategy

	4.2 ASM2d-N2O model
	4.2.1 Training options
	4.2.2 Normalisation
	4.2.3 Incremental strategy

	5 Discussion
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	Data availability
	References

