
i

College of Engineering, Design and Physical Sciences

Department of Electronic and Computer Engineering

PhD Systems Engineering

Dissertation Title:

Enhancing Safety in Autonomous Driving through Reinforcement
Learning: A Comparative Study of Machine Learning Approaches

Author:

Farshad Mirzarazi

Supervisor: Prof. Alireza Mousavi

Submitted for examination

Submission Date: 30/01/2024

2

3

ABSTRACT

With the emergence of autonomous vehicles, the automotive industry promises to
revolutionize human mobility, offering many advantages such as increased driving
comfort, reduced congestion, and improved road safety. Despite significant
advancements in sensor technology and perception algorithms, ensuring the safety
of autonomous driving remains a critical challenge. This dissertation aims to explore
how reinforcement learning techniques can be leveraged to further enhance the
safety of autonomous driving systems.

The study presents an in-depth review of the vast landscape of deep neural network
and Reinforcement Learning (RL) methods, emphasizing their limitations in
applicability and functional safety. Various modifications to state-of-the-art DQN RL
algorithms are proposed, assessing their impact on training stability and agent
performance.

An essential contribution of this dissertation is the integration of profound safety body
of knowledge, in alignment with automotive safety standards, with advanced
machine learning expertise. This work extensively investigates the practical
implementation of deep neural network classifiers, identifies safety risks inherent in
every development phase, and puts forth both theoretical and practical solutions to
address and mitigate these risks.

A safety layer for RL agents, comprising eight key features, is introduced to enhance
autonomous driving safety. This includes methods to quantify and optimize
exploration behaviour in continuous state spaces. The safety layer integrates human
expert guidance, prevents unsafe actions, imposes safety constraints, dynamically
shapes rewards, introduces redundancy, and ensures a fail-safe strategy for
Operational Design Domain (ODD) violations. An additional method enhances RL
agent adaptability by emulating human drivers.

In the final chapter, the study utilizes the OPEN AI Gym environment for highway
driving experiments. Reinforcement learning-based agents are equipped with the
safety layer features to make real-time decisions in dynamic and varied driving
scenarios, and unexpected events. Quantitative comparisons of experimental results
are drawn to assess RL agent performance, safety KPIs, and other relevant metrics.

The findings of this dissertation contribute to the ongoing discourse on autonomous
vehicles, offering valuable insights into the capabilities and limitations of RL-based
autonomous driving systems. This work shall also increase awareness about the
criticality of safety in AI-based solutions and guide how such sophisticated solutions
comply with normative standards.

4

ACKNOWLEDGMENT

I would like to express my sincere appreciation to the following individuals for their
invaluable support and guidance throughout my Ph.D. journey:

My supervisor, Professor Ali Mousavi, for his trust, constructive feedback, and
exceptional mentorship at every stage of my Ph.D. journey, from day one to its
culmination.

The late Professor John Stonham and Dr. Hongying Meng for their encouragement
and valuable insights provided during numerous panel reviews.

Dr. Sebelan Danishvar for his collaborative efforts in our research activities.

My employer, Robert Bosch-Drive Assistant Systems, for the exceptional
opportunities and practical knowledge I acquired in the field of ADAS ECUs, which
played a pivotal role in shaping the foundation of my Ph.D. dissertation.

My special thanks also extend to the unnamed scientists and university professors
who generously share their knowledge, allowing everyone to benefit and learn from
their expertise.

DEDICATION

I dedicate this dissertation to my beloved family. I am deeply grateful for your
understanding and patience during the long hours when I was captivated by my
research and studies.

5

Table of Contents

ABSTRACT ... 3

ACKNOWLEDGMENT .. 4

Table of Contents .. 5

List of Abbreviations... 9

List of Figures ... 11

List of Tables ... 15

List of Algorithms .. 15

1 Chapter 1 - INTRODUCTION ... 16

Thesis structure .. 19

2 Chapter 2 - Data Driven Systems .. 22

2.1 Introduction .. 22

2.2 Shortcomings of Classic control theory .. 22

2.3 Data Preparation .. 23

2.4 Supervised Learning versus Unsupervised Learning ... 24

2.5 Regression vs Classification ... 25

2.6 Objective Functions ... 26

2.7 Convergence Criteria and Alternative Stopping Criteria .. 27

2.8 A Short Overview of Important Machine Learning Algorithms 28

2.8.1 Decision Trees .. 28

2.8.2 Random Forest ... 28

2.8.3 Support Vector Machine (SVM) ... 29

2.8.4 Neural Network ... 29

2.8.5 Reinforcement Learning .. 29

3 Chapter 3 - Neural Networks .. 30

3.1 Introduction to Neural Networks ... 30

3.2 Types of Neural Networks ... 30

3.2.1 Multi-Layer Perceptron (MLP) Neural Networks .. 31

3.2.2 Convolutional Neural Networks (CNN) ... 32

3.3 Training of Neural Networks - Backpropagation .. 34

3.3.1 Forward Pass .. 35

3.3.2 Backward pass: Gradient-Based optimization ... 35

3.3.3 Optimization Algorithms .. 36

3.4 Activation Functions ... 37

3.5 Challenges of Neural Networks.. 39

6

4 Chapter 4 – Reinforcement Learning Algorithms .. 41

4.1 Introduction to Reinforcement Learning .. 41

4.2 Markov Decision Process (MDP) ... 41

4.3 Fundamentals of Reinforcement Learning ... 44

4.3.1 RL Terminology and Definitions [1], [2], [5], [6] ... 44

4.3.2 The Bellman Equations ... 46

4.3.3 Challenges of Reinforcement learning .. 48

4.3.4 Exploration and Exploitation Dilemma .. 49

4.4 Taxonomy of RL Algorithms and Methods ... 52

4.5 Reinforcement Learning Tabular Methods ... 54

4.5.1 Model-based: Policy and Value based Iteration methods 54

4.5.2 Model-free: Monte Carlo Evaluation Method ... 55

4.5.3 Temporal Difference Learning .. 57

4.5.4 Temporal Difference Q-Learning and SARSA ... 57

4.6 Deep Q-Network (DQN) RL Algorithm .. 59

4.6.1 Key concepts ... 60

4.6.2 DQN Neural Network ... 61

4.6.3 Training of the DQN: .. 62

4.6.4 DQN Convergence criteria .. 64

4.6.5 Optimizing Safety in Autonomous Driving: Challenges and Potentials of DQN
RL 65

4.6.6 DQN Extensions ... 66

4.7 Policy Gradient Reinforcement Learning Methods ... 70

4.7.1 Key concepts ... 71

4.7.2 Vanilla Policy Gradient – REINFORCE... 75

4.7.3 REINFORCE algorithm with Baseline ... 77

4.7.4 Trust Region Policy Optimization (TRPO) .. 79

4.7.5 Proximal Policy Optimization (PPO) .. 83

4.7.6 Actor-Critic Reinforcement Learning Methods ... 88

4.7.7 Deep Deterministic Policy Gradient (DDPG) ... 94

4.7.8 Summary of policy gradient RL algorithms ... 95

5 Chapter 5 - Optimizing DQN Reinforcement Learning: A Comprehensive Study on the
Impact of Variations on performance and training stability .. 96

5.1 Implementation of DQN RL agent for Cartpole Control task 97

5.2 Evaluation of DQN Performance, Learning Dynamics and Convergence 104

5.3 DQN Variations ... 107

7

5.4 Conclusion ... 119

6 Chapter 6 - Safety Framework for ADAS Systems – Deep Neural Network Classifiers
 121

6.1 Introduction .. 121

6.2 Overview of Advanced Driver Assistance Systems (ADAS) in Automotive 122

6.2.1 ADAS Sensor Technologies ... 122

6.2.2 ADAS Functions ... 125

6.2.3 Machine learning solution in ADAS systems ... 126

6.3 SAE Levels of Autonomous Driving .. 127

6.4 Driving Scenarios ... 127

6.5 Automotive Safety Standards ... 128

6.5.1 International Organization for Standardization (ISO) 26262 128

6.5.2 SOTIF 21448 ... 128

6.5.3 ISO PAS 8800 ... 129

6.6 Safety Framework for Deep Neural Network (DNN) Classifiers 131

6.6.1 Review of related works .. 132

6.6.2 Risk Factors across Key Steps in DNN Classifier Development 134

6.6.3 Architectural Model Design of Deep Neural Network Classifiers 135

6.6.4 Training of Neural network .. 138

6.6.5 Implementation and Integration of DNN Classifiers .. 140

6.6.6 Verification and Validation Methods for DNN Classifiers 142

6.7 Conclusion ... 143

6.7.1 III.D. VERIFICATION AND VALIDATION METHODS FOR ML-BASED
AUTOMATED DRIVING SYSTEMS .. 144

7 Chapter 7 - Enhancing Safety in RL Agents: The 'Safety Override Layer' for
Autonomous Driving ... 145

7.1 Introduction .. 145

7.2 Safety Layer for Autonomous Driving RL Agent .. 145

7.2.1 Safety Layer- Enhance RL Training .. 147

7.2.2 Safety Layer- Protection of prior Knowledge ... 164

7.2.3 Safety Layer- Prevent Unsafe Actions .. 165

7.2.4 Safety Layer- Safety Dependent Policy Optimization ... 165

7.2.5 Safety Layer- Dynamic Reward Shaping .. 167

7.2.6 Safety Layer- Redundant RL Agents .. 168

7.2.7 Safety Layer- Human Driver in Loop (Human Imitation) 171

7.2.8 Safety Layer- Fail- Safe Strategy ... 173

7.3 Safety Layer- Safety Margin ... 174

8

7.3.1 Safety Key Performance Indicators(KPIs) .. 174

7.3.2 Safety goals ... 174

7.3.3 Safety margin scheme - Safety context versus RL context 175

8 Chapter 8 – Implementing, validating, and Verifying Safe Highway Driving RL agent with
a safety layer ... 177

8.1 Introduction .. 177

8.2 ‘Highway-env’ Simulation Environment .. 177

8.3 Training State-of-the-Art RL Agents on Highway-env .. 180

8.3.1 Highway-env: RL DQN Agent ... 181

8.3.2 Highway-env: RL PPO Agent ... 181

8.3.3 Highway-env: RL A2C Agent .. 181

8.3.4 Highway-env: RL DDPG Agent .. 181

8.3.5 Comparison of RL Agents’ Performance on Highway-Env Environment 182

8.4 Safety Layer-Safety Margin .. 185

8.4.1 Highway Driving Safety KPIs from Agent Observations 185

8.4.2 Implementation of Safety KPIs in Highway-Env .. 187

8.4.3 Analysing Driving Behaviour of RL Agents utilizing Safety KPIs 187

8.4.4 Safety Layer-RL vs Safety Context ... 189

8.5 RL- Safety Layer for Highway-env Environment ... 192

8.6 Safety Layer-Prevent Unsafe Actions ... 193

8.6.1 Algorithm Implementation and Experimental Setup .. 194

8.6.2 Analysing Experimentation Results: Crash Incidents and Action Overrides ... 194

8.7 Safety Layer-Redundant Agents .. 198

8.7.1 Algorithm Implementation and Experimental Setup .. 199

8.7.2 Analysing Experimentation Results: Redundant Agents and Safety Arbitration
 199

8.8 Safety Layer-Safety Dependent Policy Optimization .. 203

8.9 Conclusion ... 205

9 Chapter 9: Conclusion, Contributions, and Future Work ... 207

References .. 210

Chapter 2 ... 210

Chapter 3 ... 210

Chapter 4 and5 ... 211

Chapter 6 ... 215

Chapter 7 ... 217

Chapter 8 ... 219

9

List of Abbreviations
A2C = Advantage Actor-Critic

A3C = Asynchronous Advantage Actor-Critic

AC = Actor-Critic

AD = Autonomous Driving

AdaDelta = Adaptive Delta

Adagrad = Adaptive Gradient Algorithm

ADAM = Adaptive Moment Estimation

ADAS = Advanced Driver Assistance Systems

ADAS = Advanced Driver Assistance System

AI = Artificial Intelligence

ANN = Artificial Neural Networks

AV = Autonomous Vehicle

CNN = Convolutional Neural Networks

ConvNet = Convolutional Neural Network

CPU = Central Processing Unit

DDPG = Deep Deterministic Policy Gradient

DL = Deep Learning

DNN = Deep Neural Network

DOI = Digital Object Identifier

DP = Dynamic Programming

DQN = Deep Q-Network

DT = Decision Tree

ECU = Electronic Control Unit

EM = Exploration Metric

FC Networks = Fully Connected Networks

FN = False Negative

FP = False Positive

FTTI = Fault Tolerance Time Intervals

10

HAD = Highly Automated Driving

HAZOP = Hazard and Operability

HIL = Hardware-in-the-Loop

ISO = International Organization for Standardization

KL = Kullback-Leibler Divergence

KPI = Key Performance Indicator

Lat = Lateral

LC = Lane Centre

LD = Lateral Deviation

LIDAR = Light Detection and Ranging

LKAS = Lane Keeping Assist system

Long = Longitudinal

LSTM = Long Short-Term Memory networks

MAE = Mean Absolute Error

MARL = Multi-Agent Reinforcement Learning

MC = Monte Carlo

MDP = Markov Decision Process

MIMO = Multi-Input and Multi-Output

ML = Machine Learning

MLP = Multilayer Perceptrons

MNIST = Modified National Institute of Standards and Technology database

MSBE = Mean Squared Bellman Error

MSE = Mean Squared Error

ODD = Operation Design Domain

OEM = Original Equipment Manufacturers

PAS = Publicly Available Specification

PCA = Principal Component Analysis

PER = Prioritized Experience Replay

POMDP = Partially Observable Markov Decision Process

PPO = Proximal Policy Optimization

11

REINFORCE = REward Increment Factor Offset Reinforcement

ReLU = Rectified Linear Unit

RL = Reinforcement Learning

RMSprop = Root Mean Squared Propagation

RN = Random Number

RNN = Recurrent Neural Networks.

SAE = Society of Automotive Engineers

SARSA = State-Action-Reward-State-Action

SB3 = Stable-baseline3

SGD = Stochastic Gradient Descent

SiL = Software in the Loop

SL = Safety Layer

SISO = Single-Input and Single-Output

SLP = Single-Layer Perceptron.

SOTIF = Safety Of The Intended Functionality

SP = Safety Penalty

SVM = Support Vector Machine

Tanh = Hyperbolic Tangent

TB = Tensorboard

TD = Temporal Difference

TN = True Negative

TP = True Positive

TRPO = Trust Region Policy Optimization

TS = Thompson Sampling

UCB = The Upper Confidence Bound

List of Figures
Fig. 3.1: A Single-layer Perceptron Network

Fig. 3.2: A Multi-Layer Perceptron Network with 2 hidden layer

Fig. 3.3: Architecture diagram of a Convolutional Neural Network

Fig. 3.4: Commonly used Activation functions. (a) Sigmoid, (b) Tanh, (c) ReLU, and
(d) Leaky ReLU

12

Fig. 4.1: An example of a MDP process

Fig. 4.2: Interaction of an RL agent with environment

Fig. 4.3: A Taxonomy of RL Learning algorithms

Fig. 4.4: Comparison of the DQN agent with the best reinforcement learning methods
in the literature. [9]

Fig. 4.5: The schematic of a neural network in Deep Q-network reinforcement
learning

Fig. 4.6: value estimates by DQN (orange) and Double DQN (blue) on six Atari
games [12]

Fig. 4.7: Median human-normalized performance across 57 Atari games [11]

Fig. 4.8: Key Aspects of Policy Gradient Reinforcement Learning methods

Fig. 4.9: Adding a baseline to REINFORCE can make it learn much faster [1]

Fig. 4.10: Intersection of Policy-Based and Value-Based RL: Actor-Critic Approach

Fig. 4.11: The Actor (policy) and Critic (value function) networks.

Fig. 4.12: The architecture of Actor-Critic Reinforcement Learning

Fig. 5.1: Gym CartPole-v1 Environment

Fig. 5.2: Neural Network Architecture for DQN Agent with Three FC Hidden Layers
(Policy and Target Networks)

Fig. 5.3: Storage of agent experience in replay memory and creation of mini-batch
for training

Fig. 5.4: DQN Training Performance: Total Reward Dynamics Over Episodes

Fig. 5.5 (a): DQN Training Performance: example of early convergence

Fig. 5.5 (b): DQN Training Performance: example of non-convergence

Fig. 5.6: DQN Training Performance: all 1000 episodes played

Fig. 5.7: DQN Training Performance: Optimization ADAM vs RMSProp; LR = 0.0001

Fig. 5.8: DQN Training Performance: Optimization ADAM vs RMSProp; LR = 25 e^-4

Fig. 5.9: DQN Training Performance: Target Network update. (a) hard-update, (b)
soft-update

Fig. 5.10: DQN Training Performance: Gradient Clipping. (a) w/o (b) with moderate
Gradient Clipping, (c) with intense Gradient Clipping

Fig. 5.11: DQN Training Performance: Effect of Neural Network Initialization

Fig. 5.12: DQN Training Performance: Policy/Target Networks with 2 hidden layers

13

Fig. 5.13: DQN Training Performance: impact of Learning rate on training. (a) LR =
0.01, (b) LR = 0.001, (c) LR = 0.0008, (d) LR = 0.00005

Fig. 5.14: DQN Training Performance: impact of Discount factor on training. (a)
gamma = 0.9, (b) LR = 0.05

Fig. 5.15: DQN Training Performance: mini-batch size reduction from 256 to 56
samples

Fig. 6.1: Technical Specification of a Long Range Radar ECU (source:
https://www.bosch-mobility.com/)

Fig. 6.2: Technical Specification of a Multi-Purpose Camera ECU (source:
https://www.bosch-mobility.com/)

Fig. 6.3: Technical Specification of a Central ADAS fusion ECU (source:
https://www.bosch-mobility.com/)

Fig. 6.4: The significance of accurate object classification for ADAS Lane-Keeping
Assistant systems

Fig. 6.5: Variations and Risk Factors across Key Steps in DNN Classifier
Development

Fig. 6.6: Architectural components of a Deep Neural Network Classifiers for ADAS
functions

Fig. 6.7: The training process of a DNN network

Fig. 6.8: Implementation of DNN in python and conversion to C/C++

Fig. 7.1: Proposed RL agent safety layer with 8 key elements

Fig. 7.2: Conversion of a x-dimensional continuous state space into a sequentially
segmented discretized state space

Fig. 7.3: Quantifying and visualizing of the Exploration behaviour of an RL Agent

Fig. 7.4: Quantifying and visualizing of the visited segment of an RL Agent w/o
Maximization (a,b,c,d)

Fig. 7.5: Quantifying and visualizing of the Exploration behaviour of an RL Agent with
Maximization (a,b,c,d)

Fig. 7.6: Quantifying and visualizing of the visited segment of an RL Agent with
Maximization

Fig. 7.7: Human Guidance in RL Training: Policy Initialization & Shaping
Environment Feedback

Fig. 7.8: Reward Shaping by RL Safety layer based on safety KPIs

Fig. 7.9: Safety Arbitration between two RL agents considering safety KPIs for
driving scenarios

14

Fig. 7.10: Safety Arbitration between two RL agents for lane change or lane follow
scenarios

Fig. 7.11: Comprehensive Safety Margin Scheme and Types of Safety Layer
Interventions

Fig. 8.1: Highway-Env Simulation - Configured for Highway Driving

Fig. 8.2: RL agent in Highway-Env Simulation – States and Actions

Fig. 8.3(a): Highway-Env - Agent Training (PPO, DQN, A2C, DDPG) - Average
Episode Reward

Fig. 8.3(b): Highway-Env - Agent Training (PPO, DQN, A2C, DDPG) - Average
Episode length

Fig. 8.4: Highway-Env - Agent Performance (PPO, DQN, A2C) - Reward (a) and
Episode Lengths (b)

Fig. 8.5: Highway-env - Definition of Lateral and Longitudinal Distance Arrays

Fig. 8.6: Highway Driving - A2C Performance: Safety KPIs (a), (b), Crash
Incidents(c)

Fig. 8.7: Highway Driving - DQN and PPO Performance: Safety KPIs (a), (b), Crash
Incidents(c)

Fig. 8.8 (a): In-Depth Debugging: Safety KPIs and SM_safetyContext Calculations of
Highway-Env

Fig. 8.8 (b): In-Depth Debugging: Safety KPIs and SM_safetyContext Calculations of
Highway-Env

Fig. 8.9: Highway Driving with Prevention of Unsafe Actions - Safety KPIs of DQN
Agent in

Fig. 8.10: Highway Driving with Prevention of Unsafe Actions - Total Reward and
Episode Length of DQN Agent in

Fig. 8.11: Highway Driving with Prevention of Unsafe Actions - Crash Incidents and
Action Override of DQN Agent in

Fig. 8.12: Highway Driving with Prevention of Unsafe Actions - Ego vs Target
Vehicles at Crash Incident 1

Fig. 8.13: Highway Driving with Redundant Agents - Safety KPIs (a), (b), Action
Overrides (c)

Fig. 8.14: Highway Driving with Redundant Agents - Average Reward (a) and
Episode Length (b)

Fig. 8.15: Highway Driving Redundant Agents -100 Episode- Safety KPIs (a), (b),
Action Overrides (c)

15

Fig. 8.16: Highway Driving PPO Safety Dependent Policy Update -30 Episode-
Reward (a) and Ep. Length (b) Safety KPIs (c)

List of Tables
Table.4.1: Value-Iteration vs Policy-Iteration Methods

Table 4.2: Summary of Policy Gradient RL Algorithms

Table 5.1: Action and state spaces of Gym CartPole-v1 Environment

Table 6.1: A list of safety hazards with respect to ADAS functions: AEB, ACC, and
LKAS

Table 6.2: SAE’s Autonomous Driving Levels

Table 6.3: Mapping of proposed methods to automotive safety standards ISO26262,
PAS 8800 Normative Demands

Table 8.1: An example of highway-env observations in (a) absolute or (b) relative
configuration

Table 8.2: Rewards in Highway-Env Highway driving scenario

Table 8.3: Rule-based strategy for prevention of unsafe action in Highway-env
driving

Table 8.4. Rule-Based Safety Arbitration Between Two Redundant Agents in the
Highway-env Environment

List of Algorithms
Algorithm 7.2.1.1 Epsilon-greedy-with-Exploration Maximization

Algorithm 7.2.1.2 Human Guidance Force Action Policy

Algorithm 7.2.1.3 Human Guidance Avoid Action Policy

Algorithm 7.2.2.1 Protection of prior Knowledge

Algorithm 7.2.6.1 Safety Arbitration between Redundant Agents

16

1 Chapter 1 - INTRODUCTION

Motivation

In recent years, the automotive industry has undergone a significant transformation,
transitioning from conventional driver assistance systems to fully autonomous driving
(AD). This transformation is primarily attributed to substantial advancements in
computer and sensor technologies, as well as the valuable contributions of
academics to the field of machine learning. Combining a background in electrical
engineering (BSc, MSc) and over a decade of experience in automotive industry this
thesis embarks on a challenge to improve the performance of autonomous vehicles
on roads. The focus of this thesis is to contribute to the rapidly evolving area of
autonomous driving technology.

Identification of gaps

Substantial progress has been achieved in the control systems of autonomous
driving; however, there is a noticeable gap in the suitability of autonomous driving
systems for practical applications, particularly in terms of safety and reliability.

Despite the fact that cutting-edge technologies have been used to realize these
solutions, there have been documented instances of accidents resulting in
catastrophic consequences, even when operating under favourable weather
conditions, with valid sensor data, and within routine driving scenarios. These
incidents are characterized by the system's failure to accurately perceive critical
factors such as the vehicle's surroundings, obstacles, and right of way. Furthermore,
there have been instances where the system has misinterpreted the driver's
readiness to resume control.

Deep Learning (DL) solutions are considered state-of-the-art in autonomous driving
(AD) systems. However, it is essential to acknowledge the inherent safety risks
associated with this technology preference. These risks encompass issues such as a
limited capacity for adaptability in unforeseen driving scenarios, a heavy reliance on
labelled data for training, and unsafe behaviour when encountering unseen or
unexpected driving situations. In addition, the complexity of deep learning
architecture, along with substantial design variations, presents significant challenges
in ensuring systematic verification, validation, and compliance with regulatory
standards.1

Research Questions

To enhance the safety of autonomous driving control systems, addressing these
gaps is important. Consequently, the following research questions are formulated to
specifically target and address the gaps:

1 Chapter 4 of this dissertation thoroughly explores these risks and offers potential solutions.

17

1. To what extent are state-of-the-art systems autonomous driving systems suitable
for real-world applications, considering factors such as safety, reliability, and
regulatory standards?

2. What steps are required to enhance the safety and maturity level of these
systems, and how can these improvements be practically implemented?

3. Which Machine Learning Approach is most suitable for safety of Autonomous
Driving Systems?

4. Can alternative ML method (e.g. Reinforcement Learning (RL) address the
challenges of Outperform Deep Learning in Autonomous Driving?

The aim and objectives of the thesis

To answer these research questions, the primary aim of this study is defined as:

Explore and propose a novel and safe Artificial intelligent-driven solution to
solve the safety challenges of autonomous vehicle control driving on public
roads.

To accomplish the stated goal, the following objectives have been set:

1. Explore to acquire the necessary subject area knowledge.

2. Develop suitable methods for evaluating and identifying gaps in the current
state-of-the-art (comparative analysis).

3. Create an experimental and analytical framework, including a simulation
environment, for implementing the proposed methodologies and solutions.

4. Conduct tests and evaluations of the proposed solution in comparison to
state-of-the-art and practical implementations.

Hypothesis

The hypothesis of this doctoral dissertation asserts that Reinforcement Learning
(RL), when employed as an autonomous driving control solution, can provide
significant advantages compared to other machine learning (ML) methods.
Reinforcement learning techniques have demonstrated their effectiveness across a
wide range of applications, from outperforming even the most skilled human players
in games like chess to managing complex industrial systems.

A prominent attribute of RL methods is their remarkable data efficiency, allowing
them to learn from limited real-world data and progressively enrich their knowledge
base through interaction with their environment. Consequently, RL methods exhibit
reduced dependence on expensive labelled data for all possible dynamic driving
situations.

In accordance with the paramount principle of prioritizing safety, often referred to as
"safety first," this dissertation postulates that the integration of a safety layer into RL-
based decision-making agents has the potential to substantially enhance the safety
margin of autonomous driving systems, particularly concerning factors like distance
and velocity control.

18

Methodology:

To accomplish each of the objectives of the thesis, following methods are pursued:

Objective 1: Acquiring Subject Area Knowledge

A comprehensive literature review was conducted to deepen the understanding of
the subject area. The review covers:

1. Fundamentals of Advanced Driver Assistance System (ADAS) systems and
autonomous driving (Chapter 6)

2. Automotive safety standards such as ISO 26262, SOTIF 21448, and ISO PAS
8800 (Chapter 6) consequently mapping the standard with existing body of
knowledge and transpose this relationship with the gap in the state-of-the-art
and devise a solution to go beyond the state-of-the-art.

3. Fundamentals of machine learning techniques, including SVM, Neural
Networks, and Reinforcement Learning (see Chapters 2, 3, 4)

Objective 2: Gaps in state-of-the-art solutions (comparative analysis)

Employ a comparative analysis approach with particular focus on identifying safety
risks associated with state-of-the-art Deep Neural Network classifiers. This analysis
considered mandatory safety standards, proposing measures to bridge gaps and
mitigate risks (see Chapter 6).

Objective 3: Creating Experimental Framework

To fulfil this objective, the necessary experimental frameworks were developed using
Python, OPEN AI Gym Environments, and relevant PyTorch machine learning
libraries. These frameworks are used to numerically evaluate proposed
Reinforcement Learning algorithms based on criteria including training time, stability,
agent performance in terms of total rewards, and resource consumption (runtime,
memory, etc.) (see Chapters 3 and 5).

Objective 4: Conducting Tests and Evaluations

Tests and evaluations were conducted using the simulation environment, practical
implementations, and state-of-the-art systems. Both quantitative and qualitative data
were collected and analysed to assess the performance, safety, and reliability of the
proposed solutions (see Chapter 7). The principle of software in the loop (SiL) are
deployed to validate and verify the contribution in the subject area.

19

Thesis structure
Chapter 1 – Introduction

Chapter 2 – Data-Driven Systems

The chapter will serve as an essential entry point into the world of machine learning.
Within this chapter, the fundamental concepts of data-driven systems and machine
learning algorithms that form the basis for the research will be explored. The chapter
provides a brief analysis of classical control systems' limitations and emphasizes the
notable advantages offered by contemporary data-driven solutions. Additionally, the
distinctions between classification and regression and supervised vs unsupervised
learning are reviewed.

Furthermore, the chapter delves into the intricate realm of objective functions,
investigating the advantages and disadvantages of widely used loss functions such
as Mean Squared Error (MSE), Cross-Entropy Loss, Kullback-Leibler Divergence,
and Huber Loss. The significance of these functions as fundamental design
variations for effective machine learning models is elucidated.

The chapter culminates with a concise overview of machine learning algorithms
beyond the scope of reinforcement learning and neural networks, providing insights
into support vector machines, decision trees, and other relevant methodologies.

Chapter 3 Neural Networks

This chapter presents a concise yet informative literature review of neural network
fundamentals, covering essential aspects such as types of neural networks, training
methodologies, and activation functions. It is important to note that this review does
not aim to provide an exhaustive, in-depth review but rather a review from a practical
point of view.

The primary objective of this review is to acquire a comprehensive understanding of
neural networks, serving as a foundational basis for identifying their inherent
shortcomings and safety risks. Within this context, Chapter 6 focuses on the
identification of safety gaps in neural network applications, thereby contributing to
the broader body of knowledge.

Additionally, it is essential to gain foundational knowledge about neural networks for
two specific contributions in this dissertation. In Chapter 5, novel variations of the
DQN (Deep Q-Network) algorithm will be developed, and in Chapter 7, new
reinforcement learning agents will be introduced to address complex highway driving
scenarios. The effective development and implementation of these innovations relies
on a solid understanding of the foundational principles of neural networks.

20

Chapter 4 Fundamentals of Reinforcement Learning

This chapter provides a comprehensive literature review of reinforcement learning
(RL) methods, which stands as a fundamental component within the context of this
doctoral research. A profound understanding of this field of study is an essential step
toward accomplishing the objectives of the Ph.D., as objectives, as various RL
algorithms will be utilized throughout this dissertation.

In the subsequent subchapters, the wide landscape of RL algorithms will be
explored, encompassing their underlying principles, mathematical foundations, and
applicability in intelligent systems such as autonomous driving. In this context,
various RL algorithms will be discussed, including Q-learning, SARSA, policy
gradients, and deep reinforcement learning. In addition, key scientific papers and
prominent textbooks relevant to this field will be examined. The strengths and
limitations of these methods will be highlighted, with a focus on aspects including
sample efficiency, ease of implementation, training stability, and more.

Chapter 5 Optimizing DQN Reinforcement Learning: A Comprehensive Study on the
Impact of Variations on performance and training stability

This chapter presents novel adaptations of DQN Reinforcement learning, providing
experimental assessments of these adaptations and benchmarking of the impact of
these adaptations. The study encompasses variations in the architecture of the
neural network integrated into DQN, hyperparameter variations, as well as the
examination of different Replay Buffer Sizes. The research extensively investigates
and discusses the impact of these variations on the performance of RL agents
operating under comparable conditions.

Chapter 6 - Safety Framework for ADAS Systems – Deep Neural Network Classifiers

In this chapter, an intensive exploration unfolds into the safety landscape linked with
the integration of state-of-the-art deep neural network (DNN) classifiers within
Advanced Driver Assistance System (ADAS) systems. The chapter makes a
distinctive contribution by meticulously identifying safety risks inherent in the
integration of DNNs within ADAS systems. It presents a novel comparative analysis
between DNN classifiers and the mandatory requirements of automotive safety
standards, aiming to shed light on unaddressed gaps and provide actionable
measures.

After presenting a short overview of ADAS systems,5 levels of autonomous driving,
and automotive safety standards such as ISO26262 and SOTIF 21448, a review of
influential papers in this field is conducted.

Subsequently, a safety framework for DNN classifiers is introduced. It involves the
identification of safety risks across the design, development, and implementation
lifecycle, as well as the proposal of instrumental solutions for risk mitigation and
compliance with the safety standards.

21

By presenting this comprehensive safety framework and proposing practical
solutions, it contributes to a better estimation of unresolved remaining risks in the
deployment of DNN solutions in ADAS systems.

Chapter 7 – Enhancing Safety in RL Agents: The 'Safety Override Layer' for
Autonomous Driving

This pivotal chapter introduces a significant development in autonomous driving
through the incorporation of a dedicated "Safety Override Layer" with eight key
features. Seamlessly integrated into a Reinforcement Learning (RL) agent tailored
for enhanced safety, this innovative safety framework strategically maximizes RL
training efficacy. It safeguards the agent's valuable prior knowledge, proactively
prevents unsafe actions, and significantly increases the safety margin.

Beyond these features, the safety layer actively influences the decision-making
process of the RL agent, imposing a safety constraint on agent policy optimization,
dynamically shaping rewards based on the safe margins of automated driving,
introducing redundant agents, and upholding a fail-safe strategy.

Chapter 8 – Implementing, validating, and Verifying Safe Highway Driving RL agent
with a safety layer

The experimentation framework focuses on integrating the Safety Layer (SL) into
state-of-the-art Reinforcement Learning (RL) agents—specifically, DQN, PPO, A2C,
and DDPG—within the customized Highway-Env environment, with a particular
emphasis on highway driving scenarios.

Two safety Key Performance Indicators (KPIs), aligned with the safety margin
scheme introduced in Chapter 7, Section 7.3, are established as crucial metrics for
evaluating safety performance in different highway driving scenarios and analysing
crash incidents caused by RL agents.

The analysis explores the impact on safety metrics when activating specific Safety
Layer features, such as SL-Redundant RL agents, SL-Safety Dependent Policy
Optimization, and SL-Prevent Unsafe Actions, providing empirical insights into the
advantages of each feature in enhancing the safety aspects of autonomous driving.

Chapter 9 – Conclusion, Contributions, and Future Work

This final chapter provides a conclusive summary of the dissertation, highlighting key
contributions and findings. It also outlines potential avenues for future research and
development in the field.

22

2 Chapter 2 - Data Driven Systems
2.1 Introduction
Data-driven systems generally refer to intelligent computer-based systems and
models that rely on data to make informed decisions. Data-driven approaches range
from simple data analysis, visualization, and statistical methods to complex systems
that utilize machine learning techniques for classification or regression tasks.

As computational capabilities advanced, data-driven systems began to extend their
applicability in real world applications. Some clear examples are autonomous vehicle
driving, advanced high-precision automated manufacturing, robotics, and software-
oriented adaptive solutions (e.g. satellite navigation systems, text, and image
processing). This growth was boosted further when access to large volumes of data,
often known as "big data," was made possible by new data acquisition and sensor
technologies.

The captured data, large in size and complexity, must be refined to convert to
information and knowledge to be useful for data-driven systems. Data mining is the
process of applying computer-based technologies to mine information and
knowledge out of raw data [1]. The process begins with data pre-processing, where
raw data is collected, cleaned, and pre-processed to ensure its quality and relevance
(section 2.3). Once prepared, data is extracted, often involving data mining
techniques to uncover patterns and correlations.

Machine learning techniques, such as supervised and unsupervised learning (as
discussed in Section 2.4), are then employed to develop models that can learn from
the data and make predictions (regression) or classifications (as discussed in
Section 2.5) based on patterns they have discovered. In the post-processing phase,
these models are continuously refined and improved as more data becomes
available.

As systems grow in complexity, there is a shift in the paradigm from classical control
methods to data-driven approaches for revealing the governing equations of these
systems [2].

2.2 Shortcomings of Classic control theory
With the advancement of technology and imposition of further complexity and
demand on artefacts/man-made systems, it seems classical model oriented monitor
and control solutions are struggling to find accurate, integrated, and reliable control
and optimum solutions.

One of the primary challenges of classical control models is that real-world systems
are generally nonlinear and multi-dimensional [2]. Classical control systems are best
suited for single-input and single-output (SISO) system design and, without
neglecting the interactions between variables, may struggle to effectively manage
multi-input and multi-output (MIMO) systems, which are more prevalent in real-world
applications.

23

The nonlinearity of systems is also resolved in classical control approaches through
ideal approximation and the derivation of simple differential equations [2], indicating
another key challenge of classical control methods: their lack of adaptability to
unknown dynamics. As a result, tuning of the controller parameters may not be
robust to all dynamics, uncertainties and disturbances.

Another challenge of Classical control models, which might be even more difficult to
tackle, is that some of the real-world systems are of unknown dynamics, there is a
basic lack of known physical law to model the system behaviour [2]. Fields such as
neuroscience, epidemiology, and ecology are examples of such systems [2].

2.3 Data Preparation
Data preparation is a crucial phase in the data-driven system's pipeline, as it directly
impacts the quality and reliability of the results obtained through data analysis and
machine learning. In data processing for data-driven systems, various challenges
may arise, including issues like noise, outliers/anomalies, missing values, duplicate
data, incorrect data recording, expired data, sensor errors, and more. This section
briefly presents solutions and techniques to effectively address these challenges.

noisy data

The presence of noise refers to the distortions of true values caused by random
disturbances. To address this issue in signal processing, a range of filtering
techniques is employed to remove or reduce the effect of these distortions. In signal
processing electronic (hard) filters and mathematical (soft) filters can be utilized for
this purpose. The latter category, composed of mathematical algorithms, is
specifically designed to manipulate the harmonic components of the signal.
Examples of mathematical soft filters include the moving average filter and the
Fourier filter [3].

extreme values – outliers -

Extreme values are those values that significantly deviate from the average value of
data. To reduce the effect of extreme values, two potential approaches can be taken.
One approach involves their removal from the dataset. Alternatively, algorithmic
filters or adjustments to model parameters can be employed to reduce the model's
sensitivity to outliers [3].

missing values

The issue of missing values frequently arises in data mining, attributed to various
underlying factors. In response to this circumstance, several strategies can be
employed, including the removal of data objects with missing values, estimation of
missing values, their replacement with other available values (e.g., mean, median,
potentially weighted), or, when feasible, disregarding them during the analysis [3].

duplicate data

In scenarios involving duplicate data, one potential approach is the consideration of
duplicate removal [3]. The existence of duplicate data might be even harmful for the

24

training of data-driven systems, particularly when a maximum number of training
iterations (epochs) is planned to train the model.

high-dimensional data

Data size reduction is another form of data pre-processing, often necessary to make
it compatible with the signal processing unit. For example, the input layer of a neural
network may have limitations on the maximum image size it can handle.

In the context of data pre-processing for data-driven systems, the choice of suitable
data pre-processing procedures depends on the unique demands of the application.
These procedures may include various techniques, such as data aggregation, data
sampling, dimensionality reduction, feature creation and selection, as well as data
discretization and binarization, each chosen in accordance with the unique requirements of
the task at hand [3].

2.4 Supervised Learning versus Unsupervised Learning
Supervised learning and unsupervised learning along with reinforcement learning are
the key machine learning techniques used in data mining. “Supervised and
unsupervised learning methods aim to create algorithms for classification, clustering,
or regression” [3].

Supervised Learning

The primary goal of supervised learning is to predict the value (output) of the function
for any new object (input) once the model has been trained and learned from the
labelled data [3]. Supervised data mining algorithms operate on datasets that have
been annotated with labels. In such datasets, each input is associated with a known
output or target, which is provided by a domain expert. This data, which is observed
and labelled, represents the past experience of the model [2].

The machine learning model is subsequently trained on this labelled data, and during
this training process, the model's parameters are updated by minimizing the
prediction error on labelled data. The resulting model is then applied for regression
or classification tasks when presented with new, and unseen data.

Supervised learning is the most common technique for training for neutral networks
and decision trees.

According to [4] the most important supervised algorithms are:

- K-nears neighbours
- Linear regression
- Neural networks
- Support vector machines
- Logistic regression
- Decision trees and random forests

Unsupervised Learning

Unlike supervised learning, in unsupervised learning algorithms, labelled data is not
available and the model is adapted to its observations to find patterns in the data in
order to determine how to cluster and classify new data [2]. Clustering algorithms,

User
Typewriter
neural networks for two specific contributions in this disse

25

e.g. k-means clustering, are counted as classical examples of unsupervised learning
[3].

Solving classification and clustering tasks in high-dimensional spaces is inherently
complex [2]. Dimensionality reduction techniques aid unsupervised learning models
in uncovering hidden patterns and grouping within the data.

The most important unsupervised algorithms according to [4] are:

- Clustering: k-means, hierarchical cluster analysis
- Association rule learning: Eclat, apriori
- Visualization and dimensionality reduction: kernel PCA, t-distributed

2.5 Regression vs Classification
Classification and regression are two fundamental techniques in machine learning
and statistics, each with distinct purposes and characteristics. Classification is used
to categorize data points into predefined discrete classes of objects. For example, it
can be employed to determine whether an email is spam or not, detected object on
the road is a motorcycle or a car. The key aspect of classification is that it deals with
discrete and categorical outcomes.

On the other hand, regression is used to predict continuous numerical values or
outcomes. Regression models find their roots in the pioneering work of the Sir
Francis Galton (1822-1911) on "regression towards the mean" [3]. Regression
models establish the relationship between input features and a continuous target
variable, enabling the model to make quantitative predictions. For example,
regression models are used to forecast prices or predict the longitudinal distance of
a car to an obstacle.

According to [3], several commonly used classification algorithms in real-world
applications include:

- Decision trees
- Bayesian classifiers/Naive Bayes classifiers
- Neural networks
- Genetic algorithms
- k-nearest neighbour classifier
- Support vector machines

Similarly, several commonly used regression algorithms include:

- Linear Regression
- Polynomial Regression
- Support Vector Regression
- Decision Trees for Regression
- Random Forest Regression

The theory of regression and classification models is incredibly rich and has a solid
mathematical foundation, offering deep insights into data analysis and pattern
recognition. Moreover, key aspects such as feature selection, model evaluation, and
ensemble methods are very interesting related topics, but they are beyond the scope

26

of this dissertation. Interested readers are encouraged to explore these topics further
in relevant literature and resources.

2.6 Objective Functions
“An objective function is either a loss or gain function (in specific domains, variously
called a reward function, a profit function, a utility function, a fitness function, etc.), in
which case it is to be maximized.” [5]

Depending on the mathematical optimization task, an objective function is called a
loss function or cost function, a utility function or in fitness function [6].

For example, in neural network supervised learning, when the objective function
quantifies the prediction error (e.g., mean squared error), it is referred to as a loss
function, and the goal is to either globally or locally minimize it. In gradient-based
reinforcement learning (as discussed in section 3.10), the objective function
embodies the agent's expected reward, and the objective is to maximize it.

Objective functions stand as a fundamental concept in optimization theory. The
optimization process culminates when the model's parameters are updated in a
manner that leads to the local maximization or minimization of the objective function.

The significance of choosing appropriate objective functions depends on the target
tasks and availability of computation resources.

Here are some examples of objective functions of different types and domains:

1. Classification:

- Classification accuracy: The proportion of correct predictions.
2. Regression and NN supervised learning:

- Mean squared error (MSE): The average squared difference between the
predicted values and the actual values.

- Mean absolute error (MAE): The average absolute difference between the
predicted values and the actual values.

3. Reinforcement learning:

- Cumulative reward: The total reward the RL agent receives in one episode.
(See section 4.3.1)

The choice of algorithm to minimize or maximize the objective function depends on
the nature of the objective function itself. The most commonly used algorithms are:

- Gradient descent, (section 3.3.2) or gradient ascent
- Backpropagation (section 3.3)
- and genetic algorithms

27

2.7 Convergence Criteria and Alternative Stopping Criteria
Convergence criteria are essential in iterative numerical methods, ensuring that the
iterative training process reaches a stable and accurate results in terms of model
parameters. These criteria determine when to stop the training based on a
predefined tolerance level, usually linked to the fulfilment of an objective function.

Certain training algorithms are guaranteed to converge by satisfying the objective
function and their convergence can be mathematically, often referred to as
convergence theorem, proven. See for example the perceptron convergence
theorem in [7]. Nevertheless, this is not always the scenario, and in such cases,
monitoring the model's convergence behaviour in terms of its rate or stability or
examining the changes in model parameters may suggest alternative, more suitable
stopping criteria [7].

For example, the authors in [7] propose an alternative convergence criterion for a
backpropagation algorithm:
“The back-propagation algorithm is considered to have converged when the absolute
rate of change in the average squared error per epoch is sufficiently small.”

However, they also advise that utilizing such a stopping criterion may lead to
premature termination of the training process, potentially before the model
parameters have been fully optimized.

To summarize, here are some commonly used convergence or stopping criteria:

- Objective function criterion met (achievement of local or global optima points).
- A predefined maximum number of iterations or epochs is reached
- The improvement in the objective function becomes negligible.
- The change in model parameters falls below a specified threshold.
- A time limit for training is exceeded.
- The Reinforcement Learning agent accumulated a minimum level of rewards.
- The Reinforcement Learning agent completed a specified number of

episodes.

28

2.8 A Short Overview of Important Machine Learning Algorithms
2.8.1 Decision Trees
Decision trees serve as hierarchical models in supervised learning, applicable to
both classification and regression tasks. They are composed of nodes, categorized
into decision nodes and leaf nodes, interconnected by branches. Decision nodes act
as decision points, initiating data splits based on specific attributes and their
corresponding decision rules. In contrast, leaf nodes act as endpoints, delivering the
final decision or prediction. The branches connecting these nodes symbolize the
potential outcomes leading to subsequent nodes or ultimate predictions [1].

Decision trees are straightforward and efficient in computation compared to other
machine learning methods. The challenges in decision tree modelling include finding
optimal rules and avoiding overly complex sizes to prevent overfitting. Given their
inherent simplicity, decision trees may face performance issues, particularly with
complex regression problems [8].

2.8.2 Random Forest
The Random Forest algorithm, introduced by L. Breiman in 2001, is an ensemble
learning method commonly used for both classification and regression tasks [9]. It
operates by constructing a large number of individual decision trees during training
and outputs the mode of the classes for classification tasks or the mean prediction
for regression tasks [1].

A key aspect of the Random Forest methodology involves the inclusion of
bootstrapping and aggregation tasks. In the bootstrapping phase, the algorithm
randomly selects subsets from the training data points and features, enabling each
tree to be trained on a diverse set of examples. In the subsequent aggregation step,
the algorithm combines predictions from multiple trees by averaging results, aiming
to improve overall predictive accuracy and strengthen generalization capabilities [1].

The randomness in both the selection of data points and the features considered at
each split enhances the model's robustness and generalization [1]. However, a
primary limitation of the algorithm is that, similar to the trees they are made of, it
tends to have a tendency to overfit [8].

The Random Forest algorithm finds applications in the classification of traffic signs
[10], as well as in medical, finance, and other industrial domains.

Interested readers can refer to the original paper [9] and related resources to gain
insights into the Random Forest algorithm.

29

2.8.3 Support Vector Machine (SVM)
Developed by Vladimir Vapnik and his colleagues in the 1960s and later popularized
in the 1990s, Support Vector Machine (SVM) algorithm has become a fundamental
algorithm widely employed in pattern classification problems and non-linear
regression [3]. SVM algorithm exhibits strong generalization performance in pattern
recognition without requiring explicit domain knowledge [3].

The key concept behind SVM is to find the optimal hyperplane that maximally and
non-linearly separates different classes in the feature space. This hyperplane is
determined by support vectors, which are the data points that are closest to the
decision boundary.

The ‘kernel trick’ is a technique in SVM for addressing non-linear separation
problems by mapping points into a higher-dimensional space. This transformation
enables linear classification in the new space, equivalent to non-linear classification
in the original space.

An illustrative example of a higher-dimensional space is a circular space defined by
its x1 and x2 components where two classes of data are classified. One class of data
is located inside the circle of equation 𝑥ଵ

ଶ + 𝑥ଶ
ଶ = 1 and the other class of data which

is located outside the circle. [3]

SVM models have demonstrated efficacy in various applications, including their use
in autonomous driving, such as the classification of road severity and the detection of
road bumpiness [11].

SVMs are one of the most popular machine learning techniques known for high
efficiency and good performance. They exhibit slightly better results compared to
deep learning neural networks in domains with limited input training data for
supervised learning [7]. However, its application in the context of autonomous driving
is beyond the scope of this dissertation. Interested readers can refer to related
resources to gain insights into the algorithm.

2.8.4 Neural Network
Please refer to chapter 3.

2.8.5 Reinforcement Learning
Please refer to chapter 4.

30

3 Chapter 3 - Neural Networks
3.1 Introduction to Neural Networks
Artificial Neural Networks (ANNs), initially proposed in the 1940s and 1950s by
pioneers like Warren McCulloch and Walter Pitts, experienced a decline due to
various factors, notably hardware limitations and insufficient data availability.
However, in the 2000s, there was a renewed interest in neural networks, leading to
the rise of "deep learning," which has since emerged as a highly dynamic and
influential field driving advancements in modern machine learning [1].

Neural networks are categorized as supervised learning algorithms and can be used
for both classifications and regression tasks. They have found extensive practical
application in various domains, including industrial and automotive sectors. In
healthcare, they are utilized for medical image analysis, enabling the early detection
of diseases. In the financial sector, they enhance fraud detection systems by
identifying irregular transaction patterns.

In the automotive sector, neural networks have been widely employed in Advanced
Driver Assistance Systems (ADAS) to enhance driving comfort and safety. They
significantly contribute to features such as adaptive cruise control, lane-keeping
assistance, and traffic sign recognition [2].

With access to high-performance hardware, it has become feasible to implement
deep learning networks which are state-of-the-art machine learning algorithms for
regression and classification [3] with large-scale hidden layers. This unlocks their
potential to handle large training datasets and complex tasks.

3.2 Types of Neural Networks
Warren McCulloch and Walter Pitts (1943) introduced the simplest of the neural
network models, the Single-Layer Perceptron (SLP), in their seminal paper titled "A
Logical Calculus of Ideas Immanent in Nervous Activity".

The SLP is acknowledged by machine learning scientists as a source of inspiration
for the development of all types of artificial neural networks [4]. See Figure 3.1.

Fig. 3.1: A Single-layer Perceptron Network

A Single Layer Perceptron is a simple binary classification algorithm that can
separate two classes of data (like dog or cat) using a linear decision boundary. It
consists of input features, weights, and an activation function that produces an
output, typically 1 or -1, based on whether the input falls above or below a certain
threshold.

Activation Function

𝐼ଵ

𝐼ଶ

𝐼ଷ

𝐼ସ

𝑤ସ

𝑤ଵ

𝑤ଶ

𝑤ଷ 〈+1 𝑜𝑟 − 1〉

O(X) = sign(WX)

31

The Single Layer Perceptron (SLP) is considered overly simplistic for extracting
complex features and is associated with several limitations. One major constraint is
its inability to address problems that demand non-linear decision boundaries, as
demonstrated by its incapability to solve the exclusive OR (XOR) classification
problem [4].

Artificial Neural Networks (ANN) come in various types of architecture, each
designed for specific tasks and applications. Some of the most common types of
ANNs include:

- Multilayer Perceptron’s (MLP) or Fully connected (FC) Networks
o Commonly used for tasks like image classification and regression.

- Convolutional Neural Networks (CNN)
o Primarily employed in computer vision tasks such as image recognition

and object detection.
- Recurrent Neural Networks (RNN)

o RNN networks are a type of neural networks that make use of
sequential data streams. Sequential data is commonly found in
applications like speech recognition, where sentences and phrases
exhibit distinct temporal structures to generate meaningful outputs [3].

- Long Short-Term Memory networks (LSTM)
o LSTMs are a subset of RNNs and used for sequential data processing

tasks such as speech recognition [3] and time series prediction [4]
(finance forecasting, anomaly prediction, …)

- Transformers
o Transformers are a type of neural network architecture that utilizes self-

attention mechanisms, eliminating the need for recurrent or
convolutional structures, originally designed for natural language
processing. [5] but successfully utilized in image and video processing
[6].

- Deep Learning
o while not a specific network type, deep learning encompasses a wide

range of neural network architectures with multiple layers [4]. Fully
connected (FC) and convolutional neural networks (CNN) are among
few others the most common types of hidden layers used in deep
neural networks.

Preliminary analyses revealed that CNNs and MLPs are most relevant to this
dissertation. They will be discussed in more detail in the following sections of this
review.

3.2.1 Multi-Layer Perceptron (MLP) Neural Networks
MLPs (Multi-Layer Perceptron): feed-forward neural networks, also known as the
multilayer perceptron (MLP) are the most basic form of neural networks. MLPs are
used for a wide range of tasks, including regression and classification, and have
been enhanced with innovations in training techniques like Batch Normalization [7]
and ReLU activations [8] but they don't have built-in mechanisms for handling grid-
like data images.

32

MLP networks consist of input layers, one or more hidden layers with densely
connected neurons, and an output layer. Figure 3.2 shows a Multi-Layer Perceptron
Network featuring 2 hidden layers.

Fig. 3.2: A Multi-Layer Perceptron Network with 2 hidden layer

MLP networks are distinguished by a notable characteristic—the high degree of
connectivity between their layers [9]. A Multilayer Perceptron model consists of
multiple layers intricately interconnected to form a feed-forward neural network. In
this architecture, each neuron within a given layer establishes direct connections
with neurons in a distinct layer, allowing for the transmission of information in a
forward direction through the network [4]. Due to this characteristic, MLPs are
inherently a kind of fully connected (FC) neural network.

In MLP networks, connections between neurons include weighting factors, denoted
as 𝑤௜௝, for strength, and each neuron has a bias term denoted as 𝑏௜, for non-linear
adaptability. These factors contribute to the model's ability to learn complex patterns
during training. See section 3.4.

3.2.2 Convolutional Neural Networks (CNN)
Convolutional Neural Networks, abbreviated as ConvNets or CNNs, are comprised
of a series of filter layers that are applied to an input image or feature map to extract
features. ConvNets are well-suited for image recognition tasks, such as object
classification for autonomous driving. They work by extracting features from images
using a series of convolution and pooling layers [10].

Fig. 3.3: Architecture diagram of a Convolutional Neural Network

Source: https://developersbreach.com/convolution-neural-network-deep-learning/

Figure 3.3 depicts the architecture diagram of a convolutional neural network. The
network comprises convolutional, pooling, activation functions, and flatten layers. It

1st Hidden Layer
Input Layer

2nd Hidden Layer
Output Layer

Output signals Input signals

33

also illustrates that a fully connected layer might be employed for classification by
flatten layer.

 “ConvNets have neurons arranged in three dimensions: width, height, and depth.
The neurons in a given layer are only connected to a small region of the prior layer”
[4] as illustrated with dotted lines in Figure 3.3.

ConvNets have an advantage over Fully Connected Networks by modelling
effectively without the high neuron count typical in FC networks [11].

Convolution layer:

Convolutional filtering involves sliding a filter (kernel) over an input image data to
extract features. For example, consider a 4x4 input matrix:

Input Grayscale Image = [[120, 125, 130, 135], [110, 115, 120, 125], [100, 105, 110,
115], [90, 95, 100, 105]]

Filter with Weights = [[0.5, 0.5], [0.5, 0.5]]

The 2x2 filter is applied to the grayscale image to produce a feature map by
computing the weighted sum of the corresponding elements.

(120 * 0.5) + (125 * 0.5) + (110 * 0.5) + (115 * 0.5) = 77.5 and so on.

Resulting Feature Map = [[77.5, 82.5], [67.5, 72.5]]

Pooling layer:

In the pooling layer, following convolution layer, local pixel pooling is performed to
extract information. The primary objective is to reduce feature map dimensionality,
often referred to as downsampling. The downsampling factor, known as stride,
determines the extent of downsampling.

For instance, applying a stride of 2 to vectors x1 and x2 below: [11]

x1 = [1, 10, 8, 2, 3, 6, 7, 0, 5, 4, 9, 2]

x2 = [1, 100, 8, 20, 3, 60, 7, 0, 5, 40, 9, 20]

with stride s = 2, the downsampling operation selects every second element from the
input will both produce: [1, 8, 3, 7, 5, 9].

This illustrates while downsampling aids in dimensionality reduction, it may discard
essential information, especially when representing distinct input states. [11]

Another widely used pooling operation is called Max-Pooling, which selects the
maximum value in a window.
For example, applying Max-Pooling to the matrix: x1 = [[5, 7], [3, 8]]
will result in [5, 8], where each element represents the maximum value in its
respective window.

34

3.3 Training of Neural Networks - Backpropagation
The training of neural networks, particularly Multilayer Perceptron (MLPs), is
categorized as supervised learning and involves an iterative optimization process
with the objective of minimizing an error function [12].

At the core of this process is the backpropagation algorithm, a fundamental
technique introduced by Rumelhart et al. in 19862. It is employed to compute the
gradient of the network's prediction error function, which is then used to update the

network parameters, specifically the weighting factors and biases denoted by [𝑤ሬሬ⃗ , 𝑏ሬ⃗]
in an iterative manner.

Backpropagation starts with initialization of the network parameters by drawing
random numbers from a normal (Gaussian) distribution [12]. It encompasses two
phases: the forward pass and the backward pass.

In the forward pass of the backpropagation algorithm, input data from the training
dataset is propagated through the neural network, passing through each layer's
neurons. The weighted sum of inputs, combined with activation functions, yields the
network output. The error value, representing the difference between the actual
value and the network output value, is used to update the error function (objective
function) and its derivative.

In the backward pass, the backpropagation algorithm employs an optimization
method such as gradient descent to adjust network parameters based on the
derivative of the error function.

The algorithm iterates through successive forward and backward passes until the
network training converges, signified by the minimization of the error function to a
predefined threshold.

Backpropagation in Convolution Neural Networks [11]

Backpropagation algorithm for Convolution Neural Networks is slightly different. To
train a convolutional layer, it is essential to compute the gradients with respect to
both its parameters and inputs. Pooling layers lack trainable parameters. Their
gradients are computed with respect to the preceding layer.

The training process of a neural network is computationally expensive [3] and faces
challenges such as gradient vanishing, network overfitting, and other issues, as
discussed in Section 3.6.

2 Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations by
backpropagating errors.” Cognitive Modeling 5.3 (1988)

35

3.3.1 Forward Pass

Computation of network output using the current network parameters [𝑤ሬሬ⃗ , 𝑏ሬ⃗] is
formulated as:

yො௞(𝑡) = ෍ 𝑤௞ . 𝑋௞ + 𝑏௞

௞

 (3.3.1)

Where X is the input data from the dataset, w represents the weighting factors, and b
represents the bias vector.

The Cost function (error function) is defined as:

𝐸(𝑡) =
1

𝑘
෍(𝑦௞(𝑡) − yො௞(𝑡))ଶ (3.3.2)

௞ୀଵ

Which is a mean squared error objective function. The training aims to minimize this
function. The error function represents the network performance as it measures the
distance of the neural network output from the expected value.

The error function is zero when the network makes a perfect prediction on every
training sample [1].

3.3.2 Backward pass: Gradient-Based optimization
In the backpropagation algorithm, the objective is to minimize the error by iteratively
adjusting the weights during the backward pass. This involves updating the weights
in the opposite direction of the gradient (negative gradient) to reach the minimum of
the error function. If the gradient is positive, then the weights must be decremented
and vice versa.

For this purpose, gradient descent, a widely employed optimization algorithm,
iteratively adjusts model parameters in the steepest descent direction of the
objective function [4].

Gradient descent:

The partial derivative of the error function with respect to the weights of the neural

network డா

డௐ
 , also called the gradient, represents the sensitivity of the error to

changes in the weights. It indicates how much the error would change if we make
small adjustments to a specific weight.

So the Gradient Descent update rule for the networks weights is defined as:

𝑁𝑒𝑤 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑂𝑙𝑑 𝑊𝑒𝑖𝑔ℎ𝑡 − 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 ×
𝜕𝐸

𝜕𝑊

⇒ 𝑊௜ାଵ = 𝑊௜ − η ×
𝜕𝐸

𝜕𝑊
 (3.3.3)

36

Where 𝑊௜ is the ith weighting factor parameter of the network η is the learning rate,

and
డா

డௐ
 is the partial derivative of the cost function E with respect to 𝑊௜.

The learning rate (η) significantly influences the training speed of neural networks.
Reducing the learning rate leads to more careful training, while higher rates may
overlook optimal weight settings. Although a lower learning rate tends to yield better
results, it can substantially increase training time. The recommendation is to lower
the learning rate during training, considering its impact alongside batch size and data
sampling [3].

3.3.3 Optimization Algorithms
Optimization, a critical aspect of neural network training, refers to fine-tuning network
parameters to minimize the loss function within the backpropagation algorithm.

Gradient-based methods stand out as the most commonly used techniques for
training neural networks, while non-gradient-based optimization methods like genetic
algorithms and particle swarm optimization are typically employed for optimizing
simpler functions [11].

Among the commonly employed optimization algorithms, gradient descent, as briefly
introduced in 3.3.2, plays a prominent role. Beyond gradient descent, various
optimizers offer distinct advantages. Notable examples include the Adagrad,
RMSprop, and Adam optimizers. The Adam optimizer, widely embraced in deep
learning, presents a compelling fusion of the strengths exhibited by both Adagrad
and RMSprop optimizers, making it a prominent choice in the optimization
landscape.

Adam stands for Adaptive Moment Estimation. The algorithm computes the adaptive
learning rates for each parameter and uses the first and second moments of the
gradients to adapt the learning rate. This helps in providing a different learning rate
for each parameter and hence more precise parameter updates [13].

37

3.4 Activation Functions
Activation functions are an essential component of the neural network architecture
as they shape the output of neurons [14] and enable the neural network to map non-
linear input-output relations, provided that the network has enough neurons and
layers [11].

This non-linearity allows neural networks to approximate sophisticated nonlinear
systems, model complex relationships in data, and enables them to learn and adapt
to various patterns, and perform complex decision making.

The choice of activation function impacts the network's learning capacity, and
selecting the appropriate function is crucial for successful training and performance.
Common activation functions include the sigmoid, hyperbolic tangent (Tanh),
Softmax, rectified linear unit (ReLU), and Leaky rectified linear unit (Leaky ReLU).

Fig. 3.4: Commonly used Activation functions. (a) Sigmoid, (b) Tanh, (c) ReLU, and (d) Leaky
ReLU

Sigmoid function

The sigmoid function, often denoted as the logistic function, is a mathematical curve
that takes any number as input and squashes it to an output value between 0 and 1.
The slope of the sigmoid function is determined by its time constant τ.

Mathematically, the sigmoid function is represented as:

Sigmoid (x) =
ଵ

ଵା௘షഓ
 (3.4.1)

38

The sigmoid function smoothly transforms inputs to binary outputs and hence is a
suitable choice for binary classification tasks. However, being a squashing function
makes it prone to the vanishing gradient problem (see section 3.5), where gradient
values become small, potentially causing the network to stop learning [11].

The second problem of the sigmoid function is that the output of the sigmoid is not
zero-centred (refer to Figure 3.4 (a)) and therefore, the outputs are consistently
positive or negative.

This can lead to a situation where the gradients during backpropagation are also
consistently in one direction, either all positive or all negative. This can cause
optimization algorithms, like stochastic gradient descent (SGD), to update the
weights in a way that results in slow or inefficient convergence.

While sigmoid functions are commonly used, they are not optimal for the reasons
mentioned. ReLU and Tanh are typically preferred choices due to their superior
performance in various scenarios [14].

Hyperbolic tangent (Tanh) function

The hyperbolic tangent function, abbreviated as Tanh, is a rescaled version of the
sigmoid function but unlike sigmoid its output is zero-centred between -1 and +1. As
a result, it does not have the optimization problem as for sigmoid function [11].

The Tanh activation function is mathematically expressed as:

Tanh (x) =
ଶ

ଵା௘షమೣ -1 (3.4.2)

The hyperbolic tangent function closely resembles the identity function near the
origin (refer to Figure 3.4 (b)), indicating that for small input values (close to zero),
the output is approximately equal to the input. This feature is advantageous in neural
networks as it helps retain information of small input values during calculations and
hence increases the speed of the gradient descend algorithm [11]. Because of this
characteristic the Tanh activation function is preferred over the sigmoid function but it
similarly suffers from the gradient vanishing problem [11].

Rectified Linear Unit (ReLU) function

The sigmoid and hyperbolic tangent activation functions are suitable for shallow neural
networks with a limited number of layers, encountering challenges in deep neural
networks primarily due to the gradient vanishing problem [11]

Nair et al. (2010) introduced the Rectified Linear Unit (ReLU) activation function as
an alternative to address the gradient vanishing problem [8]. Unlike sigmoid and
hyperbolic tangent, ReLU overcomes this limitation and has become a popular
choice in deep neural networks. It does not include any complex and expensive
operation like exponential operation and is computationally efficient [11].

The ReLU activation function is mathematically expressed as:
ReLU (x) = max(0, 𝑥) (3.4.3)

39

ReLU is a non-linear, non-saturating activation function that outputs zero for negative
inputs and has a linear slope of 1 for inputs greater than or equal to zero (see Figure
3.4(c)). ReLU has gained a lot of popularity in recent years and apart from simplicity
of implementation it is claimed that “networks with ReLUs consistently learn several
times faster than equivalents with saturating neurons” [15]. Due to its superior
training performance, ReLU is commonly used in hidden layers of neural networks,
while either softmax or linear activations are applied to the output layer [13].

Dying ReLU is a significant issue for ReLU activation function and can cause some
neurons to die and become useless in a multi-layer neural network. This occurs
when a ReLU neuron is stuck in the negative side and its output is always zero [11].

Leaky ReLU function

Leaky ReLU is a variant of the ReLU activation function designed (Maas et al. 2013)
to address the "dying ReLU" problem. Unlike traditional ReLU, Leaky ReLU allows a
small, non-zero gradient for negative inputs, preventing neurons from becoming
completely inactive during training. Refer to Figure 3.4(d).

The Leaky ReLU activation function is mathematically expressed as:

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = ቄ
𝑎𝑥, 𝑥 < 0

𝑥, 𝑥 ≥ 0
 (3.4.4)

Where, a is the hyperparameter determining the slope of the function for negative
inputs.

This simple modification enhances the robustness of the activation function, making it
a popular choice in deep neural networks. In practical application, ReLU and Leaky
ReLU often yield comparable results [11].

3.5 Challenges of Neural Networks
Neural networks encounter several challenges despite their capabilities. Some of the
well-known challenges include the struggle to find global optima during optimization,
managing model complexity, and network overfitting—where models excel on
training data but underperform with new inputs. Additionally, the vanishing gradient
problem presents a significant challenge to effective training in deep networks.

It is important to note that these challenges represent only a subset, and various
other hurdles exist in the complex landscape of neural network development.

Local Optima Instead of Global Optima in Backpropagation

In the training of neural networks, the optimization of a non-linear model often
involves utilizing the back-propagation algorithm. The challenge lies in achieving
convergence toward a global optimum, introducing the complication of multiple local
minima. This complexity can be misleading, making a solution seem effective while
failing to reach the global minimum [4]. As a result, the model is trained to a sub-
optimal solution only.

Complexity of NN models

40

Model complexity and a high number of hyperparameters pose serious challenge in
artificial neural networks. For instance, in a scenario where data from the MNIST
database3 is processed through a neural network with two hidden layers of 30
neurons each, and a final softmax layer with 10 neurons, the total number of
parameters reaches almost 25,000 [1]. This highlights the trade-off between the
complexity and simplicity of neural network models.

Vanishing Gradient

In a gradient based learning procedure of a neural network with backpropagation
method partial derivatives of the error function is fed back to the network to update
the weighting vector. The network learns the new values of weights by analysing
how much changes they caused. It is often observed that due to non-optimized
initialization of the weights or big jumps in input values or too high learning rate or
wrong selection of the activation function the gradients of the error with respect to
weights become extremely small and in the continuation of the learning have no
influence on updating the weights. This leads to the case where weights are not
updated anymore even though learning is not completed and network has not
converged yet [4].

Overfitting (overtraining) problem

Overfitting in neural networks occurs, when the model performs well on training data
but fails to generalize to new, unseen data. The presence of random noise and
outliers poses a risk, potentially causing the model to memorize specific patterns
during training, resulting in suboptimal generalization to new data [14].

Overfit models exhibit significant errors when extrapolating. Employing cross-
validation techniques is a strategy to mitigate the detrimental impacts of overfitting
[3].

3 The MNIST database is a collection of 28x28 pixel grayscale images of handwritten digits (0 to 9)

41

4 Chapter 4 – Reinforcement Learning Algorithms
4.1 Introduction to Reinforcement Learning
Within this chapter, an in-depth exploration is conducted into the mathematical and
theoretical foundations of reinforcement learning. It must be noted that, in the context
of this dissertation, the reinforcement learning algorithms and their foundational
formulas are adapted to align with the specific requirements of the study.

Reinforcement Learning (RL) is a remarkable foundation within the field of artificial
intelligence, distinguished by its unique and interesting attributes. Unlike other
paradigms of machine learning, such as supervised and unsupervised learning, RL
replicates the core principles of learning through the direct interaction of an agent
with its environment.

Reinforcement learning techniques have demonstrated their effectiveness in a wide
range of applications, from outperforming even the most skilled human players in
games like chess to managing complex industrial systems.

RL enjoys a solid and well-established mathematical background, providing a
rigorous framework for modelling decision-making processes in both stochastic and
deterministic scenarios.

Labelled supervised learning as it is being practiced in Deep learning solutions, is
known for its rigidity, relying on predefined training data and labels. These solutions
can be less adaptable to dynamic and unpredictable real-world scenarios. In
contrast, reinforcement learning performs well in these contexts due to its inherent
adaptability. RL agent’s interaction with the environment enables it to handle
dynamic use cases and applications with changing conditions, uncertainties, and
unforeseen challenges. This adaptability empowers RL to find optimal solutions in
real-time.

When RL techniques combined with other effective machine learning techniques,
such as deep reinforcement learning, they can handle high-dimensional and complex
data, making it a valuable choice for dynamic, decision-making tasks in fields
ranging from autonomous vehicles to robotics and industrial control systems.

4.2 Markov Decision Process (MDP)
Markov Decision Process (MDP) is a mathematical framework for modelling and
analysing sequential decision-making problems in stochastic environments. MDPs
are widely used in the field of reinforcement learning because they offer a rigorous
basis for understanding an agent’s interaction and decision-making in uncertain and
dynamic environments. Figure 4.1 illustrates an example of an MDP process.

 S5

 S1 S2

 S3

 S4

𝑝3

𝑝2

𝑝1
𝑝6

𝑝7

𝑝4

𝑝5

42

Fig. 4.1: An example of a MDP process

An MDP is defined by following MDP components: [4]

 State space (S):
All possible states ∀𝑠 ∈ 𝑆 that the system can take is called the state space.
This includes the inclusion of an initial state (s0), as well as one or more
terminal states.

 Action space (A):
All possible actions ∀𝑎 ∈ 𝐴 that the system can choose in any state: s is called
the action space. Actions represent the decisions or moves the agent can
make to transit from one state to another.

 State Transition Probabilities (P): transition-function/model/dynamics
The MDP defines the probability of transitioning from one state to another
when an action is taken i.e. 𝑝(𝑠௧ାଵ|𝑠௧ , 𝑎௧). These transition probabilities
characterize the dynamics of the environment.
State transition matrix P defines transition probabilities from all states s to all
successor states s’.
PSS′=𝑝[𝑠௧ାଵ = 𝑠ᇱ|𝑠௧ = 𝑠] (4.1.1)

𝑃 = ൥

𝑝ଵଵ ⋯ 𝑝ଵ௡

⋮ ⋱ ⋮
𝑝௡ଵ ⋯ 𝑝௡௡

൩ (4.1.2)

 A Reward (Cost) function (R):

For every state-action combination, there exists a reward signal that offers
prompt feedback to the agent. The reward reflects how attractive the action
taken by the agent is within a specific state. The objective of the agent is to
maximize the total rewards it receives over a sequence of actions.

 Policy (π):
A policy defines the behaviour of an agent. More specifically, a policy
determines how the agent should make action selections within each state.

In stochastic environment the policy is defined by a probability distribution of
selecting an action when the environment is in state: s.
𝐴 = 𝜋(𝑎|𝑠) = 𝜋൫𝑃(𝑎|𝑠)൯ = 𝑃(𝐴௧ = 𝑎|𝑆௧ = 𝑠] (4.1.3)
In deterministic environments the policy is a set of pre-defined rules that

directly maps each state to a specific action: 𝐴 = 𝜋(𝑠) (4.1.4)

43

Markov property:

MDPs adhere to the Markov property. The Markov property states that in a Markov
process, the future state of a system depends only on the current state and is
independent of the sequence of events that preceded it [3]. This inherent
independence simplifies the modelling of dynamic systems.

A simplified Example of Markov Decision Process in Autonomous Driving:

To illustrate the Markov Decision Process (MDP) in the context of autonomous
driving, consider the following simplified example: the environment consists of a road
and an autonomous vehicle, and the state is determined based on the position of the
ego vehicle, distance to obstacles, and velocity of the vehicle as:

S [0]: the longitudinal distance between the ego vehicle and obstacles on the road

S [1]: the lateral deviation from the lane centre

S [2]: the longitudinal velocity of the ego vehicle

All state variables are derived from sensor inputs.

The autonomous vehicle, acting as the agent, follows its policy and takes actions
such as accelerating, braking, or steering.

The objective is to maximize cumulative rewards over time, where positive rewards
are earned for the vehicle driving safely without accidents. Negative rewards are
incurred if the safety margin decreases, emphasizing the importance of cautious
behaviour.

44

4.3 Fundamentals of Reinforcement Learning
In Reinforcement learning the interaction of the agent with the environment can be
summarized as follows: See Figure 4.2.

Observation: The agent observes the current state of the environment, which
provides information about the operating condition and situation of the controlled
system.

Action: The agent follows its current policy and takes an action from a set of
available actions.

Environment response: After the agent takes the action, the environment responds
by transitioning to a new state and providing a numerical reward signal.

Learning: The agent uses the observed state, the selected action, and the received
reward to update its policy for making better decisions in future.

Fig. 4.2: Interaction of an RL agent with environment

4.3.1 RL Terminology and Definitions [1], [2], [5], [6]
Agent: The entity or system that interacts with an environment and actively selects
actions and learns from the environment feedback signal to achieve predefined
goals.

Environment: The external system with which the agent interacts. It includes the
state, actions, and rewards that the agent perceives and can be either stochastic or
deterministic.

State (S): see 4.2

Action (A): see 4.2

Reward (R): see 4.2

Policy (π): see 4.2.

Trajectory or Episode(𝜏): A sequence of states, actions, and rewards that an agent
experiences during a particular interaction with the environment.

𝜏 = (𝑠଴, 𝑎଴, 𝑟଴, 𝑠ଵ, 𝑎ଵ, 𝑟ଵ, …) (4.1.5)

It begins with the initial state-action-reward tuple (𝑠଴, 𝑎଴, 𝑟଴)and continues to capture
subsequent transitions (𝑠ଵ, 𝑎ଵ, 𝑟ଵ) and so on.

𝑆𝑡𝑎𝑡𝑒 𝑆௞
𝐴𝑐𝑡𝑖𝑜𝑛 𝐴௞ Reinforcement Learning

Agent

Environment

𝑅𝑒𝑤𝑎𝑟𝑑 𝑅௞

45

RL tasks can be categorized as either episodic, where the task terminates in a
defined terminal state, or continuing, where the task has no natural endpoint and
continues indefinitely.

Horizon - Episode Length (H): The number of time steps or interactions between the
agent and the environment within a single episode. Episodes in RL can have varying
lengths depending on the specific task. The horizon H can be finite or infinite.

Discount Factor (γ): A hyper parameter, called gamma; 0 ≤ 𝛾 ≤ 1, used to discount
future rewards in RL to give less importance to distant rewards in the decision-
making process.

Return (𝐺௧): The cumulative sum of rewards obtained by the agent, throughout an
episode. It is a measure of the total reward received by the agent starting at time
step t (0 ≤ 𝑡 ≤ 𝐻 − 1) up to the horizon H where the episode ends.

𝐺௧ = 𝑟௧ + 𝛾𝑟௧ାଵ + 𝛾ଶ𝑟௧ାଶ + 𝛾ଷ𝑟௧ାଷ + ⋯ + 𝛾ுିଵ𝑟ுିଵ = ෍ 𝛾௜ି௧ . 𝑟௜

ுିଵ

௜ୀ௧

 (4.1.6)

State Value Function (Vπ(s)): The state-value function estimates the expected
cumulative reward (return) that the agent can achieve starting from state: s, and then
following policy π.

𝑣஠(𝑠) = 𝐸஠[𝐺௧|𝑆௧ = 𝑠] = 𝐸஠ [෍ 𝛾௞𝑅௞ା௧ାଵ |𝑆௧ = 𝑠]

ஶ

௞ୀ଴

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 (4.1.7)

The action-value function Q (s, a):

The action-value function, denoted as 𝑄గ(𝑠, 𝑎), is the expected return starting from

state: s, taking action a, and then following policy π.

𝑄గ(𝑠, 𝑎) = 𝐸గ[𝐺௧|𝑆௧ = 𝑠, 𝐴௧ = 𝑎] = 𝐸గ [෍ 𝛾௞𝑅௞ା௧ାଵ |𝑆௧ = 𝑠, 𝐴௧ = 𝑎]

ஶ

௞ୀ଴

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 (4.1.8)

Greedy Policy: A greedy policy selects actions which maximizes the expected return
based on current value estimates. It tends to exploit the agent's current knowledge.

𝐴௧ = argmax Q
π

(𝑠, 𝑎)
𝑎𝜖𝐴(𝑠)

 (4.1.9)

Policy Evaluation: The process of assessing the quality of a policy by estimating the
expected return it can achieve.

Policy Improvement: The process of refining a policy to make it better in terms of
maximizing expected return.

Exploration vs. Exploitation: The trade-off between exploring new random actions
irrespective of expected reward and exploiting known best actions to achieve the
most possible long-term rewards. See 4.4

46

Temporal Difference (TD) Error: The difference between the estimated value of a
state or state-action pair and the value obtained from the actual reward signal is
called the temporal difference error.

Convergence: In the context of RL algorithms, convergence refers to the process of
the agent's value function (V(s)) or policy (π(s)) becomes progressively more stable
over time, ultimately reaching a point of equilibrium, signifying that the agent has
learned an optimal or sub-optimal strategy. This plateau indicates that further training
or interaction does not yield substantial improvements.

4.3.2 The Bellman Equations
Dynamic programming (DP):

Dynamic programming is a mathematical optimisation approach and an algorithmic

paradigm for solving problems by breaking them down into smaller sub-problems

and solving them recursively [7].

Richard Bellman (1957), a pioneering mathematician published his influential book

“Dynamic Programming “. In this work, he made significant contributions to the field

of dynamic programming, particularly in optimizing decision-making in Markov

Decision Processes (MDPs).

He derived the Bellman expectation equation and the Bellman optimality equation,

which are widely used in Reinforcement learning.

At their core, Bellman equations express the value of a state or state-action pair in

terms of the expected cumulative reward that can be obtained from state or state-

action pair in a recursive manner [1].

4.3.2.1 Bellman Expectation Equation:

The Bellman expectation equation states that the value function of a state can be

decomposed into immediate reward plus discounted value of successor state. [1]

Bellman expectation equation for state-value function 𝑉(𝑠) ∶

The state-value function can again be decomposed into immediate reward plus

discounted value of successor state.

𝑣గ(𝑠) = 𝐸(𝑅௧ାଵ + 𝛾𝑣గ(𝑆௧ାଵ)|𝑆௧ = 𝑠] = 𝑟௧ାଵ + 𝛾 ෍ 𝑝(𝑠ᇱ|𝑠, 𝑎)

௦ᇲ∈ௌ

𝑣గ(𝑠ᇱ) (4.1.10)

Where, 𝑣గ(𝑠) represents the value of a state s. 𝑟௧ାଵ is the immediate reward obtained

in state: s. γ is the discount factor, and P(s' | s, a) is the transition probability from

state: s to next state: s' when action a is taken.

Bellman expectation equation for action-value function 𝑄(𝑠, 𝑎) ∶

𝑄గ(𝑠, 𝑎) = 𝐸(𝑅௧ାଵ + 𝛾𝑄గ(𝑆௧ାଵ, 𝐴௧ାଵ)|𝑆௧ = 𝑠, 𝐴௧ = 𝑎]

47

 = 𝛾 ෍ 𝑝(𝑠ᇱ|𝑠, 𝑎)

௦ᇲ∈ௌ

෍ 𝜋(𝑎′|𝑠′)𝑞గ(𝑠′, 𝑎′)

௔ᇲ∈஺

 (4.1.11)

𝛴 𝜋(𝑎′ | 𝑠′) denotes the sum over all possible actions a' in state: s' according to the

policy.
4.3.2.2 Bellman optimality equation
The Bellman optimality equation is an extension of the Bellman expectation equation
and is used to find the optimal value function and policy by following an optimal
policy.

Optimal Value Functions:

The optimal state-value function, denoted as 𝑉∗(𝑠), is defined as the maximum state-

value function over all policies:
 𝑉∗(𝑠) = max

గ
𝑣గ(𝑠). (4.1.12)

Similarly, the optimal action-value function, denoted as 𝑄∗(𝑠, 𝑎), is defined as the

maximum action-value function over all policies:
𝑄∗(𝑠, 𝑎) = max

గ
𝑞గ(𝑠, 𝑎) = max

గ
𝐸[𝑅௧│𝑠௧ = 𝑠, 𝑎௧ = 𝑎, 𝜋] (4.1.13)

A Markov Decision Process (MDP) is “solved” when the optimal value function is

known.

The Bellman optimality equation expresses that the value of a state under an optimal
policy must equal the expected return for the best action from that state [1]

Bellman optimality equation for state-value function 𝑉∗(𝑠) ∶

𝑉∗(𝑠) = max
௔

 𝐸[𝑅௧ାଵ + 𝛾𝑣∗(𝑆௧ାଵ)|𝑆௧ = 𝑠, 𝐴௧ = 𝑎]

 = max
௔

෍ 𝑝(𝑠ᇱ, 𝑟|𝑠, 𝑎)൫𝑟 + 𝛾𝑣∗(𝑠ᇱ)൯ (4.1.14)

௦ᇲ,௥

The Bellman optimality equation for action-value function 𝑄∗(𝑠, 𝑎) :

𝑄∗(𝑠, 𝑎) = 𝐸 ቂ𝑅௧ାଵ + 𝛾 max
௔

 𝑄∗(𝑆௧ାଵ, 𝑎ᇱ)ቚ𝑆௧ = 𝑠, 𝐴௧ = 𝑎ቃ

 = ෍ 𝑝(𝑠ᇱ, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾max
௔ᇲ

 𝑄∗(𝑠ᇱ, 𝑎′))

௦ᇲ,௥

 (4.1.15)

𝑄∗(𝑠, 𝑎) represents the optimal action-value function for state-action pair (s, a).

max
௔ᇲ

 𝑄∗(𝑠ᇱ, 𝑎′) denotes the maximum value over all possible actions a' in the next

state: s'.

These equations provide a recursive and iterative approach to solving reinforcement
learning problems. By starting with initial value estimates and iteratively updating
them using the Bellman equations, an agent can learn an optimal policy that
maximizes its expected cumulative reward over time. Value iteration and policy

48

iteration are common algorithms that leverage the Bellman equations to solve MDPs
and derive optimal policies.

4.3.3 Challenges of Reinforcement learning
While reinforcement learning offers promising solutions, it is essential to recognize
the associated challenges. Several notable challenges include:

Exploration vs exploitation Dilemma:
Balancing the exploration of new actions and the exploitation of known, high-reward
actions is a fundamental challenge in reinforcement learning. [1] (see 4.3.4)

Delayed reward:
One of the challenge in reinforcement learning is the delayed nature of rewards,
where the outcomes of an agent's actions are not immediately evident. This delay
can hinder the learning process, as the agent may find it challenging to associate its
decisions with their respective consequences in a timely manner. To mitigate this
challenge, various workarounds have been proposed, as discussed in reference [8].

Temporal credit assignment in reinforcement learning
Temporal Credit Assignment refers to the challenge of Reinforcement Learning
agents in associating actions with their long-term consequences. This challenge
becomes more of a serious challenge specially if the reward signal is noisy or
delayed and can negatively influence the training process [30].

Partial Observability:
In partially observable Markov decision process (POMDP) environments, the agent
does not have full observability of the environment, making it challenging to
accurately estimating the state of the environment becomes difficult. Consequently,
the agent can only select suboptimal actions. A POMDP is an MDP environment
without the Markov property. Playing Cards with RL agent is an example of a
POMDP because the RL agent cannot see the opponent’s cards [2].

Addressing RL Challenges for Enhanced Safety in Autonomous Driving

In the context of autonomous driving, these challenges may significantly impede both
the training and performance of an RL agent.

If the agent has not sufficiently explored the environment, it may miss out on
discovering potentially safer or more efficient driving strategies. Conversely, if the
agent over explores, it may struggle to develop a reliable decision-making policy for
dynamic driving conditions.

The delayed reward and credit assignment problem present challenges when an RL
autonomous driving agent makes a series of correct and accurate decisions in
navigating through traffic, but it receives its rewards only at the end of the journey.

Researchers have explored these challenges and proposed solutions to address
them. (see for example [30]). However, given the significant impact of these
challenges on self-driving car agents, the primary emphasis should be on minimizing
their occurrence.

49

Reward shaping emerges as a suitable approach, leveraging the vehicle's sensors to
accurately perceive driving conditions and shaping the reward accordingly.

This approach suggests a promising strategy for efficiently addressing challenges
such as delayed rewards, credit assignment problems, and partial observability,
offering a valuable concept for further investigation.

4.3.4 Exploration and Exploitation Dilemma
Reinforcement learning (RL) agents must keep the balance between two competing
goals: exploration and exploitation. In the literature of RL, exploration refers to the
process of trying new random actions in order to learn about the environment and
discover new rewards. Exploitation on the other hand is the process of selecting the
best actions known to the agent in order to maximize immediate reward.

The exploration-exploitation dilemma is a challenge because neither exploration nor
exploitation can be pursued exclusively without failing at the task [1]. If the agent
explores too much, it will not accumulate enough reward to learn. If the agent
exploits too much, it will miss out on opportunities to discover actions that may even
lead to higher rewards.

The exploration-exploitation trade-off is a dilemma because the agent must choose
between exploring the environment to discover new rewards and exploiting its
current knowledge to maximize immediate reward.

The exploitation is represented by the argmax function. It basically means that the

agent takes the only action which maximizes the total reward. 𝐴(𝑡) =
𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑡)

𝑎 ∈ 𝐴

Example: 𝐴(𝑡) = ௔௥௚௠௔௫
௔∈஺

ቌ ൭
0.2
0.8
0.1

൱ቍ = 𝑎2

This dilemma has been a subject of intense study by mathematicians and
researchers for many decades, but as of now, there is no definitive solution [1].
However, a variety of methods, such as epsilon-greedy exploration, Optimistic Initial
Value, Upper Confidence Bound (UCB) exploration, Softmax exploration, and
Thompson sampling have been proposed to enhance the balance between
exploration and exploitation for RL agents.

4.3.4.1 Action selection: Epsilon-greedy algorithm
The epsilon-greedy algorithm is one of the most widely used strategies for balancing
exploration and exploitation in reinforcement learning. The agent selects the best-
known action with probability 1-ε (exploitation) and explores a random action with
probability ε (exploration).

Epsilon is a hyperparameter that represents the exploration rate. For example, with ε
= 0.9, the agent would 90% of the time explore randomly and 10% of its time choose
the best-known action.

The value of epsilon (ε) dynamically adjusted over time through a decaying
mechanism. The purpose of this decay is to gradually reduce the exploration rate as

50

the agent gains more experience and its estimates of action values become more
accurate.

Linear or exponential decay methods are popular strategies for decaying epsilon.

Implementation of the algorithm:

At each time step, the algorithm generates a random number (RN) between 0 and 1.
If the generated number is less than or equal to ε, the agent chooses a random
action from its action space(exploration). Otherwise, it selects the best known action
with highest Q value (exploitation) [5].

𝜋(𝑎|𝑠) = ൝
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛; 𝑖𝑓 𝑅𝑁 ≤ 𝜖 (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎 ∈ 𝐴
𝑄(𝑠, 𝑎); 𝑖𝑓 𝑅𝑁 > 𝜖 (𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

 (4.1.16)

Epsilon decaying:

Linear decaying: 𝜖(𝑡) = 𝜖௠௔௫ − 𝑘. 𝑡 or Exponential decaying: 𝜖(𝑡) = 𝜖௠௔௫ . 𝑒ି௞.௧ (4.1.17)

Where ε(t) is the exploration rate at time step t, 𝜖௠௔௫ is the initial exploration rate, k is
a decay rate parameter, and t is the current time step.

4.3.4.2 Action selection: Softmax exploration
Softmax action selection, rooted in the Gibbs or Boltzmann distribution, serves as a
technique in Reinforcement Learning enabling agents to make informed choices
within uncertain environments. It functions by assigning weights to actions based on
their estimated values, leading to a preference for actions perceived as more
advantageous.

Let 𝑄௧(𝑎) be the action-value estimate of action 𝐴௧ = 𝑎 in a specific state at time step
t. Then the probability of selecting action a using softmax is defined as:

 𝑃{𝐴௧ = 𝑎} =
௘

ೂ೟(ೌ)

ഓ

∑ ௘
ೂ೟(್)

ഓ೙
್సభ

 (4.1.18)

In this approach, the RL agent computes the probability of choosing each action
through a softmax function. This function normalizes the exponentials of action
values by a temperature parameter 𝜏, which, in turn, regulates the magnitude of the
weights and, consequently, influences the agent's exploratory behaviour. A higher
temperature weakens the impact of the action value estimate, promoting exploration,
while a lower temperature amplifies this impact, favouring exploitation.

Notably, the action probabilities sum to 1, ensuring the accuracy of the selection
process.

4.3.4.3 Action selection: Upper confidence bound (UCB)
The Upper Confidence Bound (UCB) algorithm was first developed by Auer, Cesa-
Bianchi and Fischer (2002) The algorithm selects the action with the highest upper
confidence bound and is stated as follows:

51

Confidence bound (uncertainty term) = 𝑐ට
୪୬ (ே೟೚೟ೌ೗)

ே(௔)
 (4.1.19)

𝐴(𝑡) =
𝑚𝑎𝑥

𝑎
[𝑄(𝑡) + 𝑐ට

୪୬ (ே೟೚೟ೌ೗)

ே(௔)
] (4.1.20)

Where c > 0 is a parameter that controls the level of exploration, and N(a) represents
the number of times an action has been selected.

The UCB algorithm encourages exploration by adding a term that depends on the
number of times an action has been selected and the total number of actions taken.
As the action is selected more often, the uncertainty term decreases, leading to more
exploitation of actions with higher estimated rewards.

4.3.4.4 Action selection: Thompson Sampling (TS) algorithm
Thompson Sampling (TS) is another notable technique for addressing exploration-
exploitation trade-offs and action selection in reinforcement learning. However, this
algorithm is not covered in this dissertation. Interested readers can refer to related
resources and literature to gain insights into the Thompson Sampling algorithm.

52

4.4 Taxonomy of RL Algorithms and Methods
In the context of solving reinforcement learning problems and finding the policy,
value function V(s), or action-value function Q (s, a) all RL methods are often
classified into 3 major categories: [2], [6].

- Model-based or model-free
In Model-Based RL, agents build an internal environment model for action
selection, while Model-Free RL learns directly from interactions without explicit
environment modelling.

- Value-based or policy-based
Value-Based RL estimates the value function for decision-making, while Policy-
Based RL directly seeks the optimal policy without necessarily estimating value
functions.

- On-policy or off-policy
On-Policy RL uses one current policy for action selection and updates it based on
experiences. Off-Policy RL separates the target policy for updates from the
behaviour policy used for action selection.

This dissertation categorizes RL methods based on their training and update
mechanisms, and to visually represent these categories, it introduces Figure 4.3's
taxonomy diagram. This visual representation provides a structured overview of the
diverse approaches employed in the study.

Fig. 4.3: A Taxonomy of RL Learning algorithms

Model-Based Methods: Policy Iteration, Value Iteration
Characteristics: Rely on an available model of the environment, including transition
probabilities and rewards. See 4.5.1.

Reinforcement
Learning
Algorithms

Model-Based

Model-free

Value-Based

Policy-Based

Off-Policy

Gradient - free Cross-Entropy

Policy iteration

Value iteration

SARSA

Deterministic Policy Gradient
DPG

Trust Region Policy Optimization
TRPO

Proximal Policy Optimization
PPO

Actor-Critic (AC, A2C, A3C)
Actor part

Deep Deterministic Policy Gradient
DDPG

Deep Q-Network
DQN

DQN Extensions
E.g. Double DQN

Actor-Critic (AC, A2C, A3C)
Critic part

Q-Learning

On-Policy

Gradient-Based

Monte Carlo

53

Model-Free Methods:
Characteristics: Do not rely on an explicit model of the environment.

Model-Free Monte Carlo Methods:
Characteristics: Estimate values through sampling episodes, model-free. See 4.5.2.

Model-Free Temporal Difference Methods:
Examples: SARSA, Q-Learning
Characteristics: Estimate values through bootstrapping from current estimates,
model-free. See 4.5.3.

Policy Approximation Methods:
Example: Deep Q-Network (DQN)
Characteristics: Approximate the optimal policy using function approximation,
typically neural networks. See 4.6.

Policy Gradient Methods:
Examples: REINFORCE, TRPO, PPO, etc.
Characteristics: Optimize the policy directly using gradient-based methods. See 4.7.

54

4.5 Reinforcement Learning Tabular Methods
4.5.1 Model-based: Policy and Value based Iteration methods
Policy Iteration:

Policy Iteration, known for its effectiveness, is an iterative strategy used to compute
the optimal policy for a Markov Decision Process (MDP). This method combines
policy evaluation and improvement in each iteration.

The Model-based Policy Iteration Algorithm follows these steps:4

Training Algorithm of the Model-based Policy Iteration
- The algorithm starts by choosing an arbitrary policy.

𝜋 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎 𝑝𝑜𝑙𝑖𝑐𝑦 𝜋 ∈ Π

- In an iteration loop:
- Under policy π, in state: s, select an action: a using e.g. Epsilon-greedy method

Formula: (4.1.16)
- Evaluate the current policy by calculating the state value function V(s) based on

Bellman’s expectation equation see (4.1.10).

𝑣గ(𝑠) = 𝑟௧ାଵ + 𝛾 ෍ 𝑝(𝑠ᇱ|𝑠, 𝑎)

௦ᇲ∈ௌ

𝑣గ(𝑠ᇱ)

- update the policy (policy improvement) estimates for each state with the largest
state-action value based on Bellman’s expectation equation see (4.1.12).

𝜋∗(𝑠) = max
௔

෍ 𝑝(𝑠ᇱ, 𝑟|𝑠, 𝑎)൫𝑟 + 𝛾𝑉(𝑠ᇱ)൯

௦ᇲ,௥

- The iteration loop is terminated when the agent’s policy converges to its optimal
value.

𝑖𝑓(𝜋∗(𝑠) == 𝜋(𝑠)) 𝑡ℎ𝑒𝑛

𝑏𝑟𝑒𝑎𝑘; 𝑝𝑜𝑙𝑖𝑐𝑦 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑!

𝑒𝑙𝑠𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 ∶ 𝜋 ← 𝜋∗

Value Iteration:
Value Iteration, known for its implementation simplicity, is an iterative algorithm used
to find the optimal value function for a Markov Decision Process (MDP).

The goal of Value Iteration is to determine the best possible cumulative reward an
agent can achieve from a given state, considering the environment's dynamics and
the agent's actions. Similarly, the Model-based Value Iteration Algorithm follows
these steps:

- The algorithm starts with initialization of the state value functions.
- In an iteration loop it updates the value estimates for each state with the largest

state-action value.
- The iteration loop is terminated when state values converge to the optimal

values.

4 Adapted from [5]. The algorithm adaptation presented in this dissertation offers a more
straightforward implementation.

55

Table 4.1 compares the value-iteration and policy-iteration methods in reinforcement
learning.
 Value Iteration Policy Iteration
Initialization random value function random policy
Algorithm complexity Simple Complex
Computation cost More expensive Cheap
No. Of iteration to
converge

takes significantly more
iteration to converge

takes fewer iteration to
converge

Convergence guarantee yes yes
Table.4.1 value-iteration vs policy-iteration methods

4.5.2 Model-free: Monte Carlo Evaluation Method
In reinforcement learning, specifically Monte Carlo (MC) methods, such as first-visit
MC and every-visit MC, serve as model-free techniques for estimating state
values, 𝑉గ(𝑠), or state-action functions, 𝑄గ(𝑠, 𝑎), under a given policy π. The
estimation process involves computing the average returns 𝐺௧ for each episode and
updating the estimates at the end of each episode using the Monte Carlo RL Update
rule [1].

Monte Carlo RL Update rule: [1]

𝑉(𝑆௧) ← 𝑉(𝑆௧) + 𝛼[𝐺௧ − 𝑉(𝑆௧)] (4.1.21)

or similarly, for state-action function: 𝑄(𝑆௧, 𝐴௧) ← 𝑄(𝑆௧, 𝐴௧) + 𝛼[𝐺௧ − 𝑄(𝑆௧, 𝐴௧)]

where 𝐺௧ = 𝑅௧ାଵ + 𝑅௧ାଶ + 𝑅௧ାଷ + ⋯ + 𝑅் and 𝛼 is the time-step constant parameter.

This iterative process refines our understanding of state values and contributes to
policy improvement over multiple episodes.

First-visit vs every-visit MC:

Each occurrence of state: s in an episode is called a visit to s. The first-visit MC
method computes vπ(s) as the average of returns following the first visits to s, while
the every-visit MC method averages returns following all visits to s.

56

The Model-free Monte Carlo Reinforcement Learning Algorithm follows these steps:5

Training Algorithm of the Model-free First-visit Monte Carlo
- State-action function and returns are initialized to zero.

𝑄(𝑆௧, 𝐴௧) ← 0, 𝐺௧ ← 0; ∀𝑠, 𝑎

- Initialize the count of first-visits to each state-action pair to zero.

𝑁(𝑠, 𝑎) ← 0

- In an iteration loop and for each time-step in the episode:
- Under Policy π, in state: s, select an action: a using e.g. Epsilon-greedy

method Formula: (4.1.x)
- If this is a first visit:

increment the first-visit count, append Returns, and update state-action
function.

𝑖𝑓(𝑆௧, 𝐴௧) 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑣𝑖𝑠𝑖𝑡 𝑡ℎ𝑒𝑛

𝑁(𝑆௧, 𝐴௧) ← 𝑁(𝑆௧, 𝐴௧) + 1

𝐺௧ ← 𝐺௧ + 𝑅௧

Variant 1: 𝑄(𝑆௧, 𝐴௧) ←
ீ೟

ே(ௌ೟,஺೟)
 Simple averaging of Returns

Or

Variant 2: 𝑄(𝑆௧, 𝐴௧) ← 𝑄(𝑆௧, 𝐴௧) +
ீ೟

ே(ௌ೟,஺೟)
[𝐺௧ − 𝑄(𝑆௧, 𝐴௧)] with

importance sampling

- The iteration loop is terminated when the state-action function converges to its
optimal value. (e.g.

In Monte Carlo (MC) reinforcement learning, the episode must finish for calculating
the return 𝐺௧, which serves as the estimate for action values. Hence, the update of
value function in MC learning occurs exclusively at the end of the episode [5].

5 Adapted from [5]. The algorithm adaptation presented in this dissertation offers a more accessible
and straightforward implementation.

57

4.5.3 Temporal Difference Learning
Bootstrapping Technique in Reinforcement Learning:

Bootstrapping in Reinforcement Learning involves updating state value estimates
𝑉(𝑆௧) based on the values of successor states 𝑉(𝑆௧ାଵ), utilizing one or more estimated
values in the update step for the same kind of value. This general idea is referred to
as bootstrapping [1].

One notable disadvantage of bootstrapping in reinforcement learning is the risk of
introducing bias into value estimates due to the iterative updating process and
dependency on the estimate of the next state [5].

Temporal Difference (TD) learning:

Previous sections have delved into Dynamic Programming (DP) techniques using
the Bellman equations, and Monte Carlo (MC) Methods. Another method, often seen
as a combination of DP and MC approaches, is temporal difference learning [1]. The
temporal difference learning utilizes the bootstrapping technique to estimate the next
value function [5] as stated below:

Temporal Difference RL update rule:

New estimate  Old estimate + step size [Target – Old estimate]

𝑉(𝑆௧) ← 𝑉(𝑆௧) + 𝛼 ൥𝑅௧ାଵ + 𝛾𝑉(𝑆௧ାଵ)ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
்௥௔௚௘௧

 − 𝑉(𝑆௧)ᇣᇤᇥ
ை௟ௗ ௘௦௧௜௠௔௧௘

൩ (4.1.22)

In most Temporal-Difference (TD) update rules, the TD target is an estimate for the
true value of V(s), and also called the TD target.

Temporal difference error estimation is then defined as: TD Target – Old Estimate

 𝜎௧ ≐ 𝑅௧ାଵ + 𝛾𝑉(𝑆௧ାଵ) − 𝑉(𝑆௧) (4.1.23)

In temporal difference reinforcement learning unlike Monte Carlo method, the
updating of Value function and Q function occurs during the same episode.

4.5.4 Temporal Difference Q-Learning and SARSA
Temporal Difference learning serves as the foundation from which Q-learning and
SARSA (State-Action-Reward-State-Action) algorithms are derived in reinforcement
learning. Both Q-learning and SARSA are instances of TD learning, sharing the
common framework of updating value functions based on the difference between the
current estimate and a bootstrapped estimate of the future value [5].

Q-learning emphasizes off-policy learning, allowing the agent to learn a policy
different from the one it employs for action selections in training, while SARSA
embodies on-policy learning, adjusting its policy during learning. Refer to the
taxonomy in Figure 4.3 for further clarification.

Update Rule for Q-Learning and SARSA: [5]

Temporal difference:

58

New estimate  Old estimate + step size [Target – Old estimate]

Q-learning (Off-policy TD learning):

The Target value for Q-learning is the reward plus the discounted maximum Q-value
of the next state, expressed as: 𝑟௧ + 𝛾 ௠௔௫

௔
𝑄(𝑠௧ାଵ, 𝑎)

The update rule for Q-learning is:
𝑄(𝑠௧, 𝑎௧) ← 𝑄(𝑠௧ , 𝑎௧) + 𝛼(𝑟௧ + 𝛾 ௠௔௫

௔
𝑄(𝑠௧ାଵ, 𝑎) − 𝑄(𝑠௧ , 𝑎௧)) (4.1.24)

SARSA (On-policy TD learning):

The Target value for SARSA is the reward plus the discounted estimated Q-value of
the next state-action pair, expressed as: 𝑟௧ + 𝛾𝑄(𝑠௧ାଵ, 𝑎௧ାଵ)

The update rule for SARSA is:

𝑄(𝑠௧, 𝑎௧) ← 𝑄(𝑠௧ , 𝑎௧) + 𝛼(𝑟௧ + 𝛾𝑄(𝑠௧ାଵ, 𝑎௧ାଵ) − 𝑄(𝑠௧ , 𝑎௧)) (4.1.25)

Here, 𝛼 is the step size (learning rate), 𝛾is the discount factor, 𝑟௧ is the reward
received at time-step t, 𝑠௧ and 𝑎௧ are the state and action at time t.

The training algorithms of TD learning, Q-learning, and SARSA are similar to those
covered in the previous section for policy iteration and Monte Carlo learning, with the
exception of the update rule. Readers seeking a detailed explanation of these
training algorithms can refer to relevant sources.

59

4.6 Deep Q-Network (DQN) RL Algorithm
Dynamic programming and tabular based reinforcement learning methods such as
Mont Carlo, policy iteration, Temporal differences, SARSA, and Q-learning (Watkins,
1989) all suffer from the curse of dimensionality [1].

Tabular reinforcement learning methods are a class of reinforcement learning
algorithms that use a table to store the value function for each state-action pair. They
are simple and efficient for problems with small state and action spaces, but it
becomes intractable as the size of the state space grows.

Real-world complex tasks have more dynamic environments with a very high-
dimensional state and action spaces. As the size of the state and action space grows
the training of the RL agent becomes computationally expensive resulting in low
training speed and very likely leading to only a suboptimal policy. Additionally,
tabular methods are sensitive to the order of training and therefore these methods
are not suitable to scale to real-world problems.

The paper "Human-level Control Through Deep Reinforcement Learning" by Mnih et
al. (2015) from Google DeepMind presents a significant advancement in
reinforcement learning using a novel technique called Deep Q-Networks (DQN).

Deep Q-Networks (DQN) RL was a valuable contribution to the field of reinforcement
learning. They demonstrated the remarkable performance of DQN on a variety of
Atari games and achieved human-level performance. See Figure 4.4.

Fig. 4.4: Comparison of the DQN agent with the best reinforcement learning methods in the literature [9]
100% represents a professional human games tester

DQN uses a neural network as a nonlinear function approximation to estimate the
state-action value function (Q-function) to handle high-dimensional state spaces
more efficiently [9].

60

4.6.1 Key concepts
DQN RL algorithm is a model-free, value-based, off-policy reinforcement learning
method that uses a deep convolutional neural network to approximate the optimal
action-value function.

 Q Update Rule for Policy network using the Bellman equation

𝑄(𝑠, 𝑎, 𝜃) = 𝑅(𝑎) + 𝛾
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎 ∈ 𝐴
𝑄෠(𝑠ᇱ, 𝑎ᇱ, 𝜃෠) (4.6.1)

where Q is the policy Q Network (or alternatively called online network), R is
the current reward, 𝛾 is the discount factor, s’ is the next state, a’ is the next
best action in order to maximize the expected accumulated reward.

𝑄෠ represents the Target Q Network which is functionally approximated by a
neural network with weighting factor 𝜃෠.

Stability issue:

In their seminal work, Mnih et al. [9] address the issue of instability in Reinforcement
Learning (RL). They highlighted two key causes contributing to this problem.

Firstly, RL often involves dealing with correlated observations in the sequence of
data. These correlations can lead to difficulties in learning an optimal policy as they
introduce noise and bias into the learning process. Secondly, small updates to the Q-
values, which are essential for determining the action-value function, can have a
substantial impact on the policy and consequently alter the data distribution.

The authors [9] suggest solutions to address the instability problem in deep RL.

 Experience replay Buffer: All iterations of the agent’s experiences in the form
of state, action, reward, and next state tuples:

 𝑒௧ = (𝑠௧, 𝑎௧, 𝑟௧ , 𝑠௧ାଵ) (4.6.2)

in dealing with the environment within each episode are stored in a Replay
buffer. Later a randomized sample(mini-batch) of this replay buffer is used to
de-correlate sequential experiences for the training of the online Q network.

 Online network: Online network is the main neural network in DQN that is
intended to approximates the optimal action-value function. It is used to
interact with the environment and select actions. Its weights get updated
through backpropagation.

 Target network: Target network is a copy of the online Q network and is used
to compute the output of the network when we compute the loss value. The
target network is updated at a lower rate of (c) from the online Q network,
which helps to prevent the Q-values of the main Q network from fluctuating
too much around the optimal and hence stabilizes the Q-values.

 Reward clipping: Reward clipping is used to prevent the Q-values from
becoming too large or too small and limits the scale of the error derivative.
This helps to prevent the agent from overvaluing or undervaluing certain
actions.

61

Scalability aspect:

One of the key presumption of the DQN is that the neural network architecture is
general enough to be trained for a variety of applications and this is a huge
scalability advantage of DQN solutions.

The authors [9] used a single neural network architecture with the given hyper-
parameters as the deep Q-network, to learn successful policies for various Atari
games.

4.6.2 DQN Neural Network
As mentioned before, the optimal action-value function 𝑄∗ in reinforcement learning
is approximated using a neural network model called online network Q (s, a 𝜃).

In DQN RL algorithm a copy of the online network, called target network 𝑄෠(s, a 𝜃),
with the identical NN architecture, weighting factors and biases is used to stabilize
the learning process. The target network is used to generate the target values for the
Q-learning update.

Fig. 4.5: The schematic of a neural network in Deep Q-network reinforcement learning

The inputs to a DQN neural network are the state or observation of the environment.
This could be a vector of numerical values representing different aspects of the
environment, such as the position of objects, velocities, or any other relevant
information. The output of the DQN neural network is the vector of the estimated
action-values for each possible action in the given state.

As a result, the input layer of the DQN has as many neurons as we have possible
states and the output layer of DQN has as many neurons as we have possible
actions.

Architecture of the DQN hidden layer:

The architecture of DQNs consists of multiple hidden layers which can be
convolutional or fully connected layers. Using fully connected layers might be
advantageous compared to convolutional networks because their dense connectivity
allows the DQN network to learn complex relationships between features in the input
data. For instance, in radar object detection, fully connected layers can capture
intricate dependencies among characteristics such as the location, size, and velocity
of the detected object.

DQN

…

𝑄(𝑠ଵ, 𝑎ଵ)

𝑄(𝑠ଵ, 𝑎ଶ)

𝑄(𝑠ଵ, 𝑎௠)

Output
layer

Q
values

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝜽 𝒉𝟏 𝒉𝒏 Input
layer

States

Hidden layer

𝑠ଵ

…
𝑠௡

62

The number of hidden layers and the number of neurons in each hidden layer are
design hyperparameters and can vary depending on the complexity of the
application and the available computation resources for training.

The model DeepMind authors utilized for all experienced Atari games consists of
three convolutional layers, succeeded by two fully connected layers [9].

Here are details of their neural network architecture and the hyperparameters they
used throughout in all experiments:

RL discount factor 𝛾 = 0.99, Neural network learning rate 𝛼 = 0.00025
Update rate of the target network 𝐶 𝑒𝑣𝑒𝑟𝑦 10,000 𝑡𝑖𝑚𝑒𝑠,
The episode length for training = 50 M steps Neural network learning rate 𝛼 = 0.00025
The size of the experience replay memory is 1𝑀 𝑡𝑢𝑝𝑙𝑒𝑠.
The mini-batches size = 32 𝑡𝑢𝑝𝑙𝑒𝑠. The replay memory gets sampled every 4 𝑠𝑡𝑒𝑝𝑠.
ϵ linearly decaying from 1 (100 % random action) to 0.1 (10% random action) over 1𝑀 𝑠𝑡𝑒𝑝𝑠.

4.6.3 Training of the DQN
The main goal of DQN training is to enable the agent to update its online neural
network and ensuring the convergence and robustness of the learning.

During the training loop, the DQN agent interacts with the environment by playing a
high number of episodes. It obtains the feedback from the environment in the form of
the next state and the reward received after taking an action in the current state. The
agent uses this feedback to learn from its experiences and train its Q network.

The DQN training loop typically follows these steps6:

Training Algorithm of the DQN

1. Environment initialization:
The environment is initialized and the DQN agent is forced to begin with state
s0.

2. Action Selection:
In an epsilon-greedy manner, the agent selects an action. The epsilon-greedy
method implies that with the probability of 𝜖 < 1 the agent selects a random
action (exploration); otherwise, it chooses the action with the highest Q-value
(A(t) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑠, 𝑎))7 from the online network (exploitation).

In epsilon-greedy algorithm the epsilon is decayed to a minimum, causing the
agent to take maximum exploration in the beginning and maximum
exploitation in the end phase of the training. This ensures that the efficiency of
training the Q (s, a) approximation has reached an appropriate maturity level.

3. Environment Interaction:
The agent takes the chosen action (a) and observes the environment’s
response in terms of the next state (s’) and the reward (r) received from the
environment.

6 Adapted from [2,3,4,5]. The algorithm adaptation presented in this dissertation offers a more
accessible and straightforward implementation.
7 argmax: the action with the highest Q value, given the current state is selected

63

4. Experience Replay

The agent stores the environment's response in the experience replay buffer
for later use. The experience replay buffer is a data structure that stores a
history of transitions. See Formula 4.6.2.

5. Batch Sampling:
A batch is a small set of transitions that are randomly sampled from the
experience replay buffer to train the Q Network. The batch size is a
hyperparameter.

6. DQN Forward Pass:
The forward pass in deep learning is the process of computing the output,
which, in DQN reinforcement learning, represents the expected total reward
for a given state.

For each iteration through the batch data, the target Q-value 𝑄෠(𝑠ᇱ, 𝑎ᇱ, 𝜃෠) is
calculated for the next state (s’), best possible action (a’) using neural network
parameters 𝜃෠.

𝑦 = 𝑅(𝑎) + 𝛾
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎 ∈ 𝐴
𝑄෠(𝑠ᇱ, 𝑎ᇱ, 𝜃෠) (4.6.3)

7. Online Q-Value Estimation:

The optimal Q-Value is estimated from the online network: 𝑄 (𝑠, 𝑎, 𝜃)

8. Loss Computation:
The temporal difference (or the Bellman error) is defined as the difference
between two Q values:

𝜎 =̇ (𝑄(𝑠, 𝑎, 𝜃) − 𝑦) = 𝑄(𝑠, 𝑎, 𝜃) − ቂ𝑅(𝑎) + 𝛾
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎 ∈ 𝐴
𝑄෠൫𝑠ᇱ, 𝑎ᇱ, 𝜃෠൯ቃ (4.6.4)

The aim of the DQN is to minimize the temporal difference.
Google DeepMind authors chose a simple form of Mean Square Error [2] of
the temporal difference as the loss function.

𝑀𝑆𝐸 =̇ ቀ𝑄(𝑠, 𝑎, 𝜃) − ቂ𝑅(𝑎) + 𝛾
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎 ∈ 𝐴
𝑄෠(𝑠ᇱ, 𝑎ᇱ, 𝜃)ቃቁ

ଶ

 (4.6.5)

In practice, others like Pytorch RL experts [10] alternatively applied the Huber
loss instead of MSE as the loss function and obtained good results.

9. DQN Backward Pass: Backpropagation:
The weighting factors of the online neural network will be updated by the
stochastic gradient descent (SGD) of the loss function (5) and the loss is
continuously minimized.

In the original DQN paper [9], the authors used RMSProp optimizer to update
the weights of the neural network. They found that RMSProp was more
effective than other SGD variants, such as AdaGrad and AdaDelta. However,

64

the Adam optimizer8 is becoming a more popular choice [36] for training deep
neural networks, including DQNs- for instance Google DeepMind used it in
their AlphaGo algorithm, due to its better optimization performance and its
faster convergence speed [11], [12].

10. Target Network Update
To stabilize the learning process in DQN the Target neural network which is
used for DQN forward pass (step 6) is updated at a slower rate directly from
the online network. The Target network's parameters are updated with the
online neural network's parameters.

Every C episodes reset 𝑄෠(𝑠ᇱ, 𝑎ᇱ, 𝜃෠) = 𝑄(𝑠, 𝑎, 𝜃) (4.6.6)
C is a hyperparameter of the DQN.

4.6.4 DQN Convergence criteria
In Deep Q-Network (DQN) and Reinforcement Learning (RL) algorithms,
convergence criteria refer to the conditions that determine when the function
approximation neural network has successfully learned an optimal or near-optimal
policy. After training, the RL agent is expected to interact with the environment at its
highest possible level and obtain the maximum possible total reward.

The choice of convergence criteria depends on the specific RL application and the
objectives of the training process. According to [1, 10, 16] some of the known and
most applied convergence criteria in DQN include:

1. Average Reward: One common convergence criterion is to monitor the
average reward achieved by the agent over a specific number of episodes. Once the
average reward stabilizes or reaches a satisfactory level, the training process is
considered to have converged.

2. Maximal Episode Length: In some cases, RL agents are trained to achieve a
goal within a specific number of time steps (episode length). When the agent
consistently achieves the goal within the predefined episode length, convergence is
achieved.

3. Exploration-Estimation Trade-off: DQN involves a trade-off between
exploration and exploitation. Convergence can be linked to finding the right balance
between exploration and exploitation to avoid under-exploration or over-exploration.

4. Stability of Loss Function: Monitoring the stability of the loss function during
training can be indicative of convergence. A decrease in the loss function indicates
the network is learning. Once the loss function reaches a minimum plateau and

8 Adam stands for Adaptive Moment Estimation and was introduced by Kingma and Ba (2014). The
Adam optimizer computes adaptive learning rates for each parameter by tracking the first and second
moments of the gradients. The first moment is the average of the gradients, and the second moment
is the variance of the gradients.

65

further iterations or epochs do not lead to significant changes in the loss value then
the network is considered to be trained.

Assuring DQN convergence to an optimal policy is not always an easy task. It is highly
dependent on the DQN hyperparameters, and any fluctuation of the average total reward or
the loss function can be a sign of training instability and divergence. Other challenges during
DQN training include slow convergence speed and the possibility of converging to a
suboptimal policy.

Zhikang T. Wang and Masahito Ueda (2021) [13] conducted an in-depth
investigation into the inefficiency of minimizing the mean squared Bellman error
(MSBE) within the deep Q network (DQN) algorithm. They argued that the DQN Q-
learning approach does not ensure convergence, and, therefore, its success is
largely based on empirical observations. Moreover, they highlighted that achieving
optimal performance in DQN heavily depends on meticulous hyperparameter tuning
and technical intricacies.

To overcome these problems, they proposed a minimally modified version of the
DQN algorithm called Convergent and Efficient Deep Q Network (C-DQN) that is
guaranteed to converge and can work with large discount factors (∼ 0:9998). They
found out that upon the update of target network (step 10 in prev. section) the loss
value significantly changes and makes the training instable. Their algorithm
constructs a loss function that does not increase upon the update of the target
network, and therefore, the algorithm converges in the sense that the loss
monotonically decreases.

4.6.5 Optimizing Safety in Autonomous Driving: Challenges and Potentials of DQN
RL

While Deep Q-Networks (DQN) have demonstrated remarkable success across
diverse domains, including classic board games, complex video games, robotics,
and finance, their application in autonomous driving introduces unique challenges
and promising potentials.

Computational Demands:

The training of DQN algorithms is inherently computationally demanding. Notably, it
often requires access to high-performance hardware such as Graphics Processing
Units (GPUs) and large amounts of memory to accelerate the learning process. Even
with hardware accelerators and large amounts of memory, the training of a DQN
agent can still be time-consuming, often taking days or even weeks to converge.
However, advancements in hardware technologies and ongoing algorithmic
optimizations hold promise for enhancing efficiency and reducing training times.

Potential in Autonomous Driving:

1. In the context of autonomous driving, one of the notable strengths of DQN
algorithm and its extensions lies in their ability of neural networks to model intricate

66

policy networks. This capability is crucial for ensuring that the DQN RL agent meet
the safety requirements of autonomous driving systems.

2. DQN offers a wide range of design and implementation variations, serving as a
versatile toolkit for fine-tuning in the context of autonomous driving. This adaptability
empowers researchers and practitioners to customize DQN algorithms to address
specific challenges and requirements presented by autonomous driving scenarios.
Chapter 5 of this thesis extensively explores these variations and evaluates their
impact on agent performance and training stability.

4.6.6 DQN Extensions
Deep Q-Network (DQN) was a major advancement in reinforcement learning (RL). It
was the first RL algorithm to achieve superhuman performance in Atari games. Since
then it has successfully paved its way into other complex domains such as finance,
and robotics. However, while DQN showcased its vast potential, reinforcement
learning researches unveiled certain limitations and imperfections in the algorithm.

The main issues such as overestimation bias of Q values, slow convergence,
instability in learning, and sensitivity to hyperparameters, etc. were identified as
obstacles that could hinder its effectiveness in real-world applications.

These limitations led to the development of several refinements and extensions to
improve DQN, seeking to enhance its performance, speed, stability and overcome
the observed issues.

In this section, an exploration of the motivations driving the three most notable
extensions to the DQN algorithm will be conducted, with an investigation into their
enhancements and observable improvements. These DQN extensions of the DQN
framework include:

 Double DQN – DDQN
 Prioritized experience replay
 Rainbow DQN

4.6.6.1 Double DQN (van Hasselt et al, Google DeepMind 2016)
Paper: "Deep Reinforcement Learning with Double Q-learning"

Deep Q-Networks (DQN) face challenges related to the overestimation bias inherent
in Q-learning due to bootstrapping.

The widely used Q-learning algorithm tends to overestimate action values in specific
conditions, attributed to the maximization step over estimated action values. If these
overestimations are unevenly distributed and not concentrated on states of interest,
they can adversely impact the resulting policy's quality.

67

Fig. 4.6: value estimates by DQN (orange) and Double DQN (blue) on six Atari games [14]

The Double Q-learning algorithm, introduced by van Hasselt in 2010 and initially
proposed in a tabular setting, has been successfully extended to accommodate
arbitrary function approximation, including the use of deep neural networks [14]. The
fundamental concept behind Double Q-learning involves mitigating overestimations
by breaking down the max operation in the target into action selection and action
evaluation.

To tackle the overestimation bias issue in Deep Q-Networks (DQNs), a second
network is employed to select the action during the Q-value estimation step. Double
DQNs have demonstrated enhanced stability and performance in addressing this
challenge.

4.6.6.2 Prioritized Replay Buffer
To enhance learning efficiency, Tom Schaul et al. (2016) proposed a framework for
prioritizing experiences, allowing the more frequent replay of crucial transitions [15].
The intuition behind the Prioritized Experience Replay (PER) mechanism is to assign
priorities to experiences based on their learning potential, determined by the
magnitude of the temporal difference (TD) error. Experiences with higher TD errors
indicate a larger discrepancy between predicted and actual outcomes, suggesting a
more significant contribution to the learning process.

The probability of sampling each transition is concretely defined using a
mathematical distribution formula provided by Schaul et al.

𝑃(𝑖) =
௉೔

ഀ

∑ ௉ೖ
ഀ

ೖ
 (4.6.7)

Where 𝑃௜> 0 is the priority of transition i. The exponent α determines how much
prioritization is used, with α = 0 corresponding to the uniform case.

This formula, which governs the sampling probabilities, ensures a targeted focus on
transitions with higher priorities.

By prioritizing the replay of high-priority experiences, PER aims to focus the learning
algorithm on the most informative and challenging samples, potentially accelerating
convergence and improving the overall performance of the reinforcement learning

68

system. This approach addresses issues related to the uniform random sampling
used in traditional experience replay.

The selective prioritization of experiences in Prioritized Experience Replay, when
compared to the baseline DQN, results in a more effective and targeted learning
mechanism. Prioritized Experience Replay DQN outperformed the baseline DQN in
41 out of 49 Atari games, reaching a new state-of-the-art level.

4.6.6.3 Rainbow DQN
Hessel et al. (2017) introduced a seminal contribution to the field of deep
reinforcement learning with their paper titled "Rainbow: Combining Improvements in
Deep Reinforcement Learning" ([16]).

This work presented a suite of six pivotal already existing extensions to the Deep Q
Network (DQN), including double Q-learning, prioritized experience replay, duelling
networks, distributional, and Noisy DQNs.

Through empirical experiments, the authors found that the combination of all
extensions yields state-of-the-art performance on the Atari 2600 benchmark, both in
terms of data efficiency and final performance.

In the course of their empirical investigations, the researchers faced the challenge of
optimizing a substantial number of hyperparameters and fine-tuning each
component. However, the study systematically explored various configurations of the
Rainbow architecture, selectively excluding specific enhancements, such as the
duelling network, to determine the contribution of each component to the overall
performance.

Fig. 4.7: Median human-normalized performance across 57 Atari games [16]

4.6.6.4 A summary of other DQN extensions:
Duelling network architecture

The duelling network architecture extends DQN by enhancing convergence speed
through a network architecture that closely represents the problem being addressed.

69

Separation of the Q-function into two streams:

one stream is for estimating the value function and the other is for estimating the
advantage function. This allows the network to learn the value of being in a certain
state regardless of the action and the advantage of taking different actions [17].

Noisy DQN

The NoisyNet DQN approach introduces parametric noise to the weights of a deep
reinforcement learning agent. This noise induces stochasticity in the agent's policy,
encouraging exploration in the action space without relying solely on epsilon-greedy
exploration.

The parameters of the noise are learned through gradient descent, alongside the
remaining network weights. NoisyNet is easy to implement and incurs minimal
computational overhead.

By replacing traditional exploration heuristics in A3C, DQN, and Duelling agents with
NoisyNet, the study demonstrates significantly improved performance, achieving
higher scores in various Atari games [18].

Distributional DQN: The distributional DQN introduces a novel algorithm that
applies Bellman's equation to learn approximate value distributions. Instead of
predicting the Q-values directly, it estimates the probability distribution over possible
returns for each state-action pair. In an empirical evaluation carried out on the
Arcade Learning Environment's comprehensive game suite, the algorithm
demonstrates state-of-the-art results compared to the DQN baseline and DQN
extensions [19].

70

4.7 Policy Gradient Reinforcement Learning Methods
Policy gradient methods are a subset of reinforcement learning techniques falling
under the broader category of Policy-based RL. Unlike value-based methods, e.g.
DQN RL, that emphasize estimating the value of states V(s) or state-action value
function Q (s, a), policy gradient methods work by directly improving the agent's
policy to maximize cumulative rewards over time.

A policy in a stochastic environment is a probability distribution, whereas in a
deterministic environment, it is a mapping that the agent uses to select actions.

The policy π is parameterized by a vector of weights θ, and the goal is to find the
optimal weights that maximize the expected discounted sum of rewards over an
episode, which is denoted as expected return 𝐺௧. [1]

𝐺௧ = ෍ 𝛾௞𝑅௧ା௞ାଵ

ு

௞ୀ଴

 (4.7.1)

Where H is the length of the episode, 𝛾 is the discount factor, and 𝑅௧ is the reward at
time step t.

The idea of optimizing policies by gradient methods dates back to Bellman (1957),
but the first policy gradient algorithm for reinforcement learning was proposed by
Williams (1992). [1]
The gradient algorithms he originally developed were for discrete action spaces, but
in later variants have since been extended to continuous action spaces too.

Policy gradient methods have several advantages over value-based methods. They
can incorporate prior knowledge into the policy class, operate effectively in
stochastic environments, manage complex high-dimensional and continuous
state/action spaces, and ensure convergence to at least a local optimum [1].

However, they also have some drawbacks, such as being slow, sample-inefficient,
suffering from high variance in gradient estimates, and sensitive to hyperparameters,
converging to local optima only [1]. Furthermore, they might encounter difficulties in
off-policy settings, when the data distribution does not align with the current policy.

Due to their ability to optimize policies directly for complex tasks and handling
continuous state/action spaces, Policy gradient methods have been successfully
applied to various domains, such as robotics, game playing, natural language
processing, and computer vision, etc. [1], [21], [22], [23], [24]

Some of the major variants of policy gradient reinforcement learning methods that
have been developed to address different challenges and optimize learning
efficiency include:

 Vanilla Policy Gradient (REINFORCE): The classic policy gradient method
that updates policies based on the gradient of expected rewards, often
utilizing Monte Carlo sampling.

71

 Trust Region Policy Optimization (TRPO): Enforces a constraint on policy
updates to ensure stable learning while aiming to improve policy performance.

 Proximal Policy Optimization (PPO): Balances stability and sample efficiency
by using a clipped surrogate objective to prevent drastic policy updates.

 Actor-Critic Methods: Combine policy-based and value-based approaches by
having an actor (policy) and a critic (value function) work together to improve
learning stability.

 Deterministic Policy Optimization (DPO): Focuses on learning deterministic
policies for cases where deterministic actions are preferable or noise is
undesirable.

4.7.1 Key concepts
Depicting the core principles of policy gradient reinforcement learning methods, the
key concepts can be summarised as illustrated in Figure 4.8.

Fig. 4.8: Key Aspects of Policy Gradient Reinforcement Learning methods

4.7.1.1 Parameterized Policy Network
In Policy Gradient Reinforcement Learning, a parameterized policy network defines a
stochastic or deterministic policy, mapping states or observations from the
environment to actions that an agent can take. The term "parameterized" signifies
that the policy network is characterized by a set of learnable parameters θ, typically
represented by weights in a neural network architecture. During training, these
parameters are optimized through techniques such as gradient ascent to satisfy an
objective function that maximizes the expected cumulative rewards.

4.7.1.2 Function approximation
The goal of reinforcement learning is to find an optimal policy 𝜋∗(𝑠, 𝑎) that guides the
agent to consistently select the best possible action and maximize its total reward.

In Policy Gradient methods, this policy is approximated by a parameterized function
of actions and states, denoted as 𝜋ఏ

∗ (𝑠, 𝑎; 𝜃) , where 𝜃 ∈ 𝑅ௗ represents the learnable
parameters that are updated through gradient-based optimization techniques.

72

This function approximator can be mathematically formulated as: [1]

𝜋ఏ
∗ (𝑠, 𝑎; 𝜃) ≈ 𝜋ఏ(𝑠, 𝑎; 𝜃) = 𝜋ఏ(𝑎|𝑠; 𝜃) = Pr{𝐴௧ = 𝑎| 𝑆௧ = 𝑠, 𝜃௧ = 𝜃} (4.7.2)

The probability that agent takes action: a at time t given that the environment is at
state : s at time t with the parameter set 𝜃.

The function approximator receives environmental observations (states) as input and
generates actions chosen based on currently approximated policy with respect to θ.

The optimization of policy parameters aims to maximize the expected cumulative
rewards. This optimization process is driven by the Policy Gradient Theorem, which
provides a mathematical link between a policy performance metric and the gradient
of the expected reward with respect to policy parameters θ.

Sutton and Barto [1] argue in chapter “13.1 Policy Approximation and its
Advantages” that when the action space is discrete and not very large, an
exponential softmax distribution can be seen as a suitable natural approximation.

𝜋ఏ(𝑎|𝑠; 𝜃) =̇
௘೓(ೞ,ೌ,ഇ)

∑ ௘೓(ೞ,್,ഇ)
್

̇
 (4.7.3)

The rationale behind this is that the softmax function assigns a higher probability of
selection to an action with the highest preferences (function h). For continuous action
spaces, a Gaussian distribution can perform a similar role.

Alternatively, for environments with larger state/action spaces and more complex
dynamics the Policy can be approximated by an Artificial Neural Network ANN.

4.7.1.3 Policy Optimization process
Policy gradient methods in reinforcement learning utilize gradient-based
optimization. While they often involve derivatives of a performance measure (usually
called the "objective" or "loss" function), they don't always require "backpropagation"
in the same way as supervised learning does.

As usual in reinforcement learning, these methods face the challenge of the
exploration-exploitation dilemma, where the agent needs to balance between
selecting an action with the highest expected reward (exploitation) with selecting a
random action (exploration) to discover potentially higher rewards.

By iteratively computing gradients of the performance measure (objective function)
and updating the policy parameters through gradient ascent9, Policy gradient
methods refine their policy functions and converge towards policies that yield higher
rewards. The stability of the optimization process and convergence of the policy
parameters need to be taken care of. In the subsequent chapter, these techniques
will be covered in more detail.

9 The goal of the optimization is to increase the performance metric over time. Hence, we employ
gradient ascent, differing from gradient descent used to minimize loss functions.

73

4.7.1.4 Performance Measure J(θ)
The Performance measure is a quantitative metric used to evaluate how well a
particular policy is performing in a reinforcement learning task. It's a way of
quantifying the quality of the agent's decisions and actions based on the rewards it
receives over time.

The performance measure in policy gradient is defined as the expected discounted
return of a policy (formula (4.7.1)), serving as the objective function for iterative
maximization to enhance this measure.

The Policy Gradient Theorem states that by iteratively adjusting the policy
parameters θ along the direction of the gradient of J(θ), the policy can converge
towards one that yields the highest cumulative rewards.

Update rule:

𝜃௧ାଵ = 𝜃௧ + 𝛼𝛻𝐽(𝜃௧)෣ (4.7.4)

4.7.1.5 Policy Update Constraint
Policy Update Constraint is often essential for maintaining stability in learning,
preventing excessively large policy updates that could lead to divergence or poor
convergence.
Further details regarding the policy update constraint will be explored in the
subsequent chapters, particularly when we delve into Trust Region Policy
Optimization (TRPO) and Proximal Policy Optimization (PPO) reinforcement learning
methods in chapters 4.7.4 and 4.7.5.

4.7.1.6 Policy Gradient Theorem
The Policy Gradient Theorem provides the mathematical foundation for computing
the gradient of the expected rewards with respect to policy parameters θ in
reinforcement learning. It can be formulated as follows: [1]

Let 𝜋ఏ(𝑎|𝑠, 𝜃) be a parameterized policy that specifies the probability of taking action
"a" in state "s" with parameters θ.

Consider the objective function- Performance measure - J(θ) that represents the
expected cumulative reward that an agent can achieve from state s0 onwards under
policy 𝜋ఏ:

𝐽(𝜃) =̇ 𝑉𝜋ఏ(𝑠0) (4.7.5)

The Policy Gradient Theorem can be mathematically expressed as:

∇𝐽(𝜃) ∝ ∑ µ(𝑠) ∑ 𝑞గ(𝑠, 𝑎)௔௦ 𝛻𝜋ఏ(𝑎|𝑠, 𝜃) (4.7.6)

Where:

∇J(θ) represents the gradient of the expected cumulative reward.

μ(s) is the mean of the policy. It is the probability that the policy will take any action in
a given state.

q_π is the state-action value function under the given policy π.

74

𝛻𝜋ఏ(𝑎|𝑠, 𝜃) is the gradient of the policy's probability of selecting action "a" in state "s"
with respect to the policy parameters θ.

The proof can be found in Sutton & Barto [1].

The Policy Gradient Theorem states that the gradient of the expected cumulative
reward with respect to the policy parameters (J(θ)) will be proportional to the gradient
of the policy corresponding to parameter vector π_θ and we can optimize the policy
by adjusting θ in the direction that increases the probability of actions that lead to
higher rewards. The derivation of the formula is presented in the subsequent
chapter.

The policy gradient theorem is a powerful instrument for all gradient based
reinforcement learning methods. It allows us to directly optimize the policy, without
having to estimate the value function.

In the subsequent chapters, a few of the most important Policy Gradient algorithms,
including REINFORCE and Proximal Policy Optimization (PPO), will be covered,
utilizing the policy gradient theorem.

75

4.7.2 Vanilla Policy Gradient – REINFORCE
"REINFORCE" is an acronym that stands for "REward Increment = Nonnegative
Factor × Offset Reinforcement × Characteristic Eligibility." It is a policy gradient
algorithm commonly used in reinforcement learning and primarily introduced by
Williams [20] in 1992. The algorithm was later extended and improved by various
researchers, such as Sutton et al. (1999) and Peters and Schaal (2008).

REINFOECE, in its simplest form, is also called Vanilla REINFORCE.

The term "vanilla" is often used in the context of software development to refer to a
basic or standard version of a technology or framework. In the case of reinforcement
learning, "vanilla" refers to the simplest and most straightforward form of an
algorithm, without any additional modifications or enhancements.

Before delving into the details of the REINFORCE algorithm, let’s revisit the Policy
Gradient Theorem (PGT) because it provides the necessary groundwork for
understanding the formulation of the REINFORCE algorithm.

We recall from the PGT (4.7.6) that it gives an expression proportional to the
gradient:

∇𝐽(𝜃) ∝ ∑ µ(𝑠) ∑ 𝑞గ(𝑠, 𝑎)௔௦ 𝛻𝜋ఏ(𝑎|𝑠, 𝜃)

In order to change the proportionality to an equation and ease the implementation,
Sutton and Barto [2] modified the formula as:

∇𝐽(𝜃) = E[∑ 𝑞గ(𝑠௧ , 𝑎)𝛻𝜋ఏ(𝑎|𝑠௧ , 𝜃)௔] =E[∑ 𝛻𝜋ఏ(𝑎|𝑠௧ , 𝜃)𝑞గ(𝑠௧ , 𝑎) ௔] (4.7.7)

The rationale behind this modification is because the right hand side of PGT is a sum
over states weighted by how often the states occur under Policy π.

4.7.2.1 Derivation of the Gradient estimate and the update rule:

∇𝐽(𝜃) = E[∑ 𝑞గ(𝑠௧ , 𝑎)𝛻𝜋ఏ(𝑎|𝑠௧ , 𝜃)௔] = E[∑ 𝜋ఏ(𝑎|𝑠௧, 𝜃) 𝑞గ(𝑠௧ , 𝑎)
ఇగഇ൫𝑎ห𝑠௧ , 𝜃൯

గഇ൫𝑎ห𝑠௧ , 𝜃൯௔]

 = E ൤∑ 𝑞గ(𝑠௧ , 𝐴௧)
ఇగഇ൫𝑎ห𝑠௧ , 𝜃൯

గഇ൫𝑎ห𝑠௧, 𝜃൯௔ ൨ = E[∑ 𝐺௧గ

ఇగഇ൫𝑎௧ห𝑠௧ , 𝜃൯

గഇ൫𝑎௧ห𝑠௧ , 𝜃൯௔] (4.7.8)

Where 𝐺௧ is the return.

Hence, the REINFORCE gradient-based update rule for the parameter vector θ is
given by:

𝜃௧ାଵ =̇ 𝜃௧ + 𝛼 . 𝐺௧గ

ఇగഇ൫𝑎ห𝑠௧, 𝜃൯

గഇ൫𝑎௧ห𝑠௧, 𝜃൯
 (4.7.9)

In practice, there exist slightly modified versions of this formula that simplify gradient
computations at each step.

As we know from mathematics the logarithmic gradient is defined as:
∇௫

௫
= ∇ ln 𝑥

Therefore, we can express the update rule using the log probability of the policy
gradient. ∇𝐽(𝜃) = E[∑ 𝐺௧గ

∇log 𝜋ఏ(𝑎|𝑠, 𝜃)௔] (4.7.10)

76

By taking the logarithm of the policy gradient, the optimization problem becomes
more manageable, and the gradient computation often gains stability.

𝜃௧ାଵ = 𝜃௧ + 𝛼. 𝛻ఏ𝐿𝑜𝑔 𝜋ఏ(𝑎|𝑠, 𝜃). 𝐺௧ (4.7.11)

4.7.2.2 The REINFORCE Policy Gradient Algorithm
The REINFORCE Policy Gradient Algorithm has the following steps:

Training Algorithm of the REINFORCE Policy Gradient10
Initialization:
1. Initialize the policy parameters θ with random weights
2. Initialize the total cumulated reward to 0.
3. Roll out N full episodes - Sampling and collection of transition Data
4. For each episode:
5. Reset the environment to an initial state s0
6. Follow the stochastic policy π and select an action with the highest probability.
7. Take the action and observe the environment response.
8. Collect transitions samples (s, a, s’, r) and store them in memory.
9. Repeat until episode terminates
10. Training of the Policy Network Using Collected Transition Data based on the

Monte Carlo Method
11. Update the cumulative return: 𝐺௧+= 𝑟௧
12. Compute the gradient of performance measure (objective function) with

respect to the policy parameters for this sample
13. Perform stochastic gradient ascent on the objective function using the

computed gradients
14. Update the policy parameters θ in the direction that maximizes the expected

cumulative reward.
15. Repeat with the next episode until it converges

10 Adapted from [20]. The algorithm adaptation presented in this dissertation offers a more accessible
and straightforward implementation.

77

The REINFORCE Policy Gradient is a Monte Carlo sampling approach algorithm [1]
that operates without a bootstrapping technique.

This means that you collect multiple trajectories by interacting with the environment
and compute sample averages to estimate the expected gradient. In this case, the
“Expected Return” is approximated using sample averages

4.7.2.3 A brief comparison between REINFORCE Policy Gradient and the DQN:
In his book "Deep Reinforcement Learning Hands-On - 2020 – chapter 11" [2],
Lapan, M. brings attention to key differences between policy gradient reinforcement
learning methods and the value-based Reinforcement learning methods such as
DQN.

Unlike DQN, policy gradient methods do not explicitly require exploration through
random actions for environment understanding. Additionally, in their training process,
policy gradient methods do not need to have a replay buffer or a target network.

He then, implemented a REINFORCE and a DQN version of Reinforcement learning
and applied both solution to the identical environment (CartPole within the Gym
framework) and compared their convergence behaviour.

According to his benchmarking and by analysing their convergence patterns, he
concluded that REINFORCE converges faster and requires fewer training steps and
episodes to successfully solve the CartPole environment.

4.7.3 REINFORCE algorithm with Baseline
The conventional REINFORCE algorithm encounters challenges due to elevated
variances during training, resulting in instability and slow convergence behaviour. If
the learning process is unstable, the policy may not converge to an optimal solution.

As observed in equation (4.7.9) the gradient-based update rule of the REINFORCE
algorithm can be expressed as follows:

𝜃௧ାଵ =̇ 𝜃௧ + 𝛼 . 𝐺௧
ఇగഇ൫𝑎௧ห𝑠௧, 𝜃൯

గഇ൫𝑎௧ห𝑠௧, 𝜃൯
 (4.7.9)

However, the gradient estimate that relies on the cumulative reward,𝐺௧, frequently
experiences significant variances in the training loop leading to substantial instability
in the training process.

To mitigate the high variance associated with the policy gradient estimates and to
improve the stability of learning, Williams [20] introduced the REINFORCE Policy
Gradient with baseline.

4.7.3.1 Update Rule in REINFORCE algorithm with Baseline
In the Baseline Policy Gradient algorithm, the cumulated reward 𝐺௧ is subtracted by a
baseline value function b(s). This simple technique serves to reduce the variance of
the gradient estimates and improves the stability of the learning process.

∇J(θ) = E[∑
ఇగഇ൫𝑎௧ห𝑠௧ , 𝜃൯

గഇ൫𝑎௧ห𝑠௧, 𝜃൯௔ . (𝐺௧ గ
− 𝑏(𝑠௧))] (4.7.12)

78

If we rewrite 4.7.12 using logarithmic gradient
∇௫

௫
= ∇ ln 𝑥 then

∇𝐽(𝜃) = E[∑ 𝛻ఏ𝐿𝑜𝑔 𝜋ఏ(𝑎௧|𝑠௧, 𝜃)(𝐺௧గ
− 𝑏(𝑠௧))௔] (4.7.13)

Hence, the update rule is stated as:
𝜃௧ାଵ = 𝜃௧ + 𝛼. 𝛻ఏ𝐿𝑜𝑔 𝜋ఏ(𝑎௧|𝑠௧)(𝐺௧ − 𝑏(𝑠௧)) (4.7.14)

By subtracting the baseline, the variance of the gradient estimates is reduced,
making the learning process more stable and enabling the algorithm to learn more
efficiently.

The main idea behind using a baseline function, b(s), is to estimate the advantage of
each action, which is the difference between the observed cumulated reward 𝐺௧ and
an expected baseline value b(s).

The baseline function, b(s), can be any function, even a random variable as long as
it does not have any dependency on action a. [1] If b(s) = 0 then we have vanilla
REINFORCE algorithm again.

By combining the REINFORCE algorithm with a baseline the Policy Gradient Method
is able to minimizes the variance of the individual weight changes over time [20] and
stabilizes the learning process. The rest of the algorithm will remain the same as for
vanilla REINFORCE algorithm.

Sutton and Barto [1] demonstrated the advantage of the REINFORCE with baseline
variant over the conventional REINFORCE method.

Fig. 4.9: Adding a baseline to REINFORCE can make it learn much faster [1]

The total reward G0 exhibits reduced fluctuations and the algorithm learns faster.
See Figure 4.9.
4.7.3.2 Known Limitations of Vanilla REINFORCE and REINFORCE with Baseline

Methods
Both Vanilla REINFORCE and REINFORCE with Baseline encounter significant
challenges. They suffer from high variance in gradient estimates, leading to slow
convergence. Additionally, they can struggle with exploration difficulties and show
sensitivity to hyperparameters. They are also known to be sample inefficient and
prone to converge to local optima.

In the Theory of policy gradient methods, researchers have introduced advanced
alternatives to the REINFORCE and the baseline Policy gradient approaches. These
advanced and more complex methods that offer improved stability and enhanced
performance on a wide variety of applications. Among these alternatives, Trust-

79

region (TRPO) and Proximal Policy Optimization (PPO) stand out as the most
signification methods.

4.7.4 Trust Region Policy Optimization (TRPO)
To address several limitations of earlier gradient-based policy optimization methods,
such as sample inefficiency, high variance of gradients, and slow convergence,
researchers from Berkeley University introduced a novel policy gradient approach
known as Trust Region Policy Optimization (TRPO). This advancement was
presented in their 2015 paper titled "Trust Region Policy Optimization." [24]

TRPO is claimed to be similar to natural policy gradient methods and is effective for
optimizing large nonlinear policies and has a Robust performance on a wide variety
of tasks. [24]

Two major underlying factors contributing to these training challenges are:

 The Policy and the objective function are very complex and non-linear.
 High learning rates might lead to high rewards initially, but as the updates

become less reliable, they might ultimately result in dis-convergence or
sluggish convergence towards suboptimal policies.

The algorithm.

To enhance the efficiency and stability of the optimization process and to avoid
dealing with the complexity of policies, TRPO substitutes the original policy gradient
objective with a surrogate objective function.

The surrogate objective function is simpler and can be optimized more efficiently and
reliably with monotonic improvements. The update of the surrogate objective function
is limited within a trusted region.

4.7.4.1 TRPO Update rule
In TRPO, similar to all other gradient-based on-policy reinforcement learning
method, the objective is to find the optimal policy that maximizes the expected
cumulative reward.

The TRPO algorithm is frequently acknowledged for its mathematical intricacy.
Interested readers can refer to the original paper [24] and related textbooks for a
detailed derivation of the update rule.

𝜂(𝜋෤) = 𝜂(𝜋) + ∑ 𝜌గ෥(௦)௦ ∑ 𝜋෤(𝑎|𝑠)𝐴గ(𝑠, 𝑎)௔ (4.7.15)

Where: η(π) denotes the expected discounted rewards of policy π.

𝜋෤ represents the updated version of policy π at each time step. In TRPO 𝜋෤ must
adhere to a trust region constraint. See Trust region bound.

𝜌గ෥(𝑠)is the discounted state visitation frequency and is defined as:

𝜌గ෥(𝑠) =̇ 𝑃(𝑠0 = 𝑠) + 𝛾 𝑃(𝑠1 = 𝑠) + 𝛾ଶ𝑃(𝑠2 = 𝑠) + ⋯ (4.7.16)

𝐴గ(𝑠, 𝑎)is the advantage function which is defined as:

𝐴గ(𝑠, 𝑎) = 𝑄గ(𝑠, 𝑎) − 𝑉గ(𝑠) (4.7.17)

80

As a quick reminder, in a deterministic environment, 𝜋෤(𝑎|𝑠) is essentially the argmax

function that we have encountered frequently in the past. 𝜋(𝑎|𝑠) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎 ∈ 𝐴
𝑄(𝑠, 𝑎);

the function selects the action: a which in state: s returns the maximum cumulative
reward.

4.7.4.2 Surrogate Objective Function:
Due to the complex dependency of 𝜌గ෥(𝑠) on గ෥ the update rule of The objective
function in equation 4.7.15 is not directly computable [24]. To address this challenge,
the creators of TRPO propose specific approximations to 𝜂 that align with the
theoretically justified approach of optimizing policies through gradient-based
methods.

 𝐿గ(𝜋෤) = 𝜂(𝜋) + ∑ 𝜌గ(௦)௦ ∑ 𝜋෤(𝑎|𝑠)𝐴గ(𝑠, 𝑎)௔ (4.7.18)

The key point here is that the approximated objective function depends on visitation
frequency 𝜌గ rather than 𝜌గ෥ .

The distinctive property of TRPO is that it imposes a constraint on the policy update's
proximity to the current policy.

4.7.4.3 Trust Region Bound
Let 𝜋ఏ(𝑎|𝑠)be the agent’s parameterized policy to select an action. The trust region
can be defined with respect to θ or with respect to 𝜋ఏ as follows:11

1. Trust Region with Respect to θ:
𝑇𝑟𝑢𝑠𝑡 𝑅𝑒𝑔𝑖𝑜𝑛 =̇ { 𝜃ᇱ|𝐷(𝜃, 𝜃ᇱ) < 𝛿} (4.7.19)

Where, D (θ, θ') is a distance or dissimilarity measure between the current
parameter vector θ and the updated parameter vector θ' and δ is a positive
constant which represents the radius or size of the trust region.

The trust region here is defined directly in terms of the parameters θ. The idea
is to restrict how much the parameters can change from one iteration to the
next. The optimization algorithm ensures that the update to θ stays within a
certain region or neighbourhood.

When θ represents a vector of weight factors in a neural network or any other
complex function approximation, the trust region serves as a constraint to limit
how large these weights can be updated during the update process.

2. Trust Region with Respect to π:
𝑇𝑟𝑢𝑠𝑡 𝑅𝑒𝑔𝑖𝑜𝑛 =̇ { 𝜃ᇱ|𝐷(𝜋ఏ , 𝜋ఏᇱ) < 𝛿} (4.7.20)

In this formulation, the trust region is defined in terms of the policy function
π_θ. The policy is parameterized by θ, and the trust region constrains how
much the policy can change within each iteration.

11 Formulas adapted from [24] with simplified notations for improved clarity and ease of
implementation in the context of this dissertation.

81

The objective function is defined in terms of the policy's performance, such as
expected rewards in reinforcement learning.

If the trust region is determined with respect to the policy then the limited change in a
policy would usually correspond to a change in the probability of choosing some
action, and that will lead to a gradual change in the value function V(s). On the
contrary, if we select to determine the trust region with respect to the policy
parameter θ, then a limited change in the weighting factor of the network might result
in undesired large changes in the value function. [24]

4.7.4.4 KL Divergence
Kullback-Leibler (KL) divergence, also known as or relative entropy, is primarily used
to measure the difference or distance between two probability distributions or density
functions. It quantifies how one probability distribution differs from a reference or
target distribution. In reinforcement learning policies are also probability distribution
functions that describe the likelihood of choosing a specific action.

In the context of Trust Region Policy Optimization (TRPO), the fundamental principle
revolves around constraining the magnitude of policy updates with respect to the
previous policy. This essential constraint is achieved through the application of KL
divergence. The KL divergence is employed as a distance metric to quantitatively
regulate the distance between the old policy and the current policy for each state,
ensuring monotonic improvement in the policy updates and facilitating good
convergence.

4.7.4.5 The TRPO Surrogate Objective Function with the Region Policy Update
Constraint:

In TRPO, the surrogate objective is maximized subject to a constraint on the
magnitude of the policy update, as specified below:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝜃

𝐸෠௧[
గഇ൫𝑎௧ ห 𝑠௧൯

గഇ೚೗೏
൫𝑎௧ ห 𝑠௧൯

 𝐴መ௧] (4.7.21)

Subject to 𝐸෠௧[𝐾𝐿ൣ𝜋ఏ೚೗೏
(. |𝑠௧) , 𝜋ఏ(. |𝑠௧)൧] ≤ 𝛿 ; 𝑓𝑜𝑟 ∀𝑠௧ ∈ 𝑆 (4.7.22)

where 𝐴෡ ௧ represents the estimate of the advantage function at time step t and 𝐸෡ ௧is
the expectation operator over a finite batch of samples.

82

4.7.4.6 TRPO Algorithm
The Trust Region Policy Optimization Algorithm has the following steps12:

Training Algorithm of the TRPO
Initialization:
3. Initialize the policy parameters θ with random weights
4. Initialize the total cumulated reward to 0.
Roll out N full episodes - Sampling and collection of transition Data
For each episode i:
5. Reset the environment to an initial state s0
6. Follow the stochastic policy π and select an action with the highest probability.
7. Take the action and observe the environment response.
8. Collect transitions samples (s, a, s’, r)
9. Compute all advantage values 𝐴గ௜

(𝑠, 𝑎)

Policy Update
10. Solve the constrained optimization problem

𝜋௜ାଵ =
𝑎𝑟𝑔𝑚𝑎𝑥

𝜋
[𝐿గ೔

(𝜋) − 𝐶𝐷௄௅
௠௔௫(𝜋௜ , 𝜋)]

𝑤ℎ𝑒𝑟𝑒: 𝐶 =
4 𝛾௦,௔

௠௔௫|𝐴గ(𝑠, 𝑎)|

(1 − 𝛾)ଶ

11. Repeat with the next episode until it converges

4.7.4.7 Optimizing Safety in Autonomous Driving: Potentials of TRPO RL
In the context of autonomous vehicles, the trust region constraint within TRPO can
be customized to conform to defined safety criteria. This adaptation ensures that
policy updates are not only smooth but also exclusively adhere to the safety criteria,
emphasizing an approach that prioritizes the overall safety of the autonomous
system.

Moreover, TRPO's incorporation of KL divergence, assessing differences between
two policies, serves as a potential model for conducting safety arbitration in
scenarios involving two redundant agents.

12 Adapted from [24] and [26]. The algorithm adaptation presented in this dissertation offers a more
accessible and straightforward implementation.

83

4.7.5 Proximal Policy Optimization (PPO)
One of the most promising gradient-based policy optimization reinforcement learning
algorithms is called Proximal Policy Optimization (PPO), proposed by Schulman et al
at Open AI in 2017. [25]

PPO is considered to be an evolution of the Trust Region Policy Optimization
(TRPO) algorithm, and while TRPO applies a trust region constraint to the updated
policy, PPO uses a clipped objective function to enforce a more conservative policy
update. In PPO, the clipped objective function limits the change in the policy's
probability distribution, preventing it from straying too far from the previous policy in
each iteration. This controlled policy update strategy makes PPO more stable and
easier to implement than TRPO while still achieving competitive performance in
reinforcement learning tasks.

PPO often outperforms TRPO despite its relative simplicity of implementation.
Therefore, PPO is a popular choice for researchers and practitioners.

4.7.5.1 Stability in Training:
PPO uses a technique called proximal policy optimization to ensure that the updates
to the policy are not too large. This helps to prevent the policy from diverging too far
from the previous policy and enhances the training stability. [25]

4.7.5.2 Reduction of implementation complexity and hyperparameter sensitivity:
PPO is also relatively easy to implement and tune. One of its goals is to reduce
sensitivity to hyperparameters such as learning rates and initialization. This is
important because tuning of hyperparameters can be a very challenging task.

4.7.5.3 Sample Efficiency:
PPO addresses the problem of sample efficiency in reinforcement learning. It aims to
learn a good policy with fewer samples by utilizing the collected experience more
effectively. This is achieved by using each batch of experience for a single gradient
update and then discarding it.

4.7.5.4 PPO objective function
The TRPO surrogate objective function is maximized subject to the KL divergence
constraints between the current and old policies. This is shown in formulas 4.7.21
and 4.7.22.
The authors of PPO [21] argue that the theory justifying TRPO can also be used to
derive a penalty in the objective function instead of a constrained update of the
policy. This modification is presented below.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝜃
𝐸෠௧[

గഇ൫𝑎௧ ห 𝑠௧൯

గഇ೚೗೏
൫𝑎௧ ห 𝑠௧൯

 𝐴መ௧ − 𝛽𝐾𝐿[𝜋ఏ೚೗೏
(. | 𝑠௧), 𝜋ఏ(. | 𝑠௧)]] (4.7.23)

Where ß is a hyperparameter that controls the strength of the penalty term.

84

Their experiments showed that it is not enough to simply choose a fixed penalty
coefficient β and optimize the objective function with stochastic gradient descent. To
address this challenge and guarantee that the policy always improves, they
proposed the clipped surrogate objective function.

4.7.5.5 PPO Algorithm with the Clipped Surrogate Objective:
Schulman et al. at OPEN AI proposed the clipped surrogate objective, which is given
in formulas 4.7.24 and 4.7.26.

𝐿஼௅ூ௉(𝜃) = 𝐸෠௧[min (
గഇ൫𝑎௧ ห 𝑠௧൯

గഇ೚೗೏
൫𝑎௧ ห 𝑠௧൯

 𝐴መ௧ , 𝑐𝑙𝑖𝑝 (
గഇ൫𝑎௧ ห 𝑠௧൯

గഇ೚೗೏
൫𝑎௧ ห 𝑠௧൯

 , 1− ∈, 1+ ∈) 𝐴መ௧] (4.7.24)

At each time-step t, where epsilon is a hyperparameter, say, ε = 0.2 to define the
lower bound.
Let r(θ) denote the probability ratio between current and old policies and is defined
as:

𝑟(𝜃) =̇
గഇ൫𝑎௧ ห 𝑠௧൯

గഇ೚೗೏
൫𝑎௧ ห 𝑠௧൯

 (4.7.25)

Then the clipped surrogate objective function is formulated as:
𝐿஼௅ூ௉(𝜃) = 𝐸෠௧[min (𝑟(𝜃) 𝐴መ௧ , 𝑐𝑙𝑖𝑝 (𝑟(𝜃) , 1− ∈, 1+ ∈) 𝐴መ௧] (4.7.26)

It involves two terms. The first term calculates the advantage (𝐴௧) of the new policy
compared to the old policy. It measures how much better or worse the new policy is
expected to perform compared to the old policy.
The second term limits the policy updates if the policy change exceeds a specified
threshold. This clipping ensures that the policy doesn't deviate too far from its current
estimate and prevents training instability or divergence.

Mathematically the clipping function of the ratio can be represented as:

𝑐𝑙𝑖𝑝 (𝑟(𝜃) , 1− ∈, 1+ ∈) 𝐴መ௧ = ቊ
𝑟(𝜃) 𝑐𝑙𝑖𝑝𝑒𝑑 𝑎𝑡 1+ ∈ , 𝐴መ௧ > 0

𝑟(𝜃) 𝑐𝑙𝑖𝑝𝑒𝑑 𝑎𝑡 1− ∈ , 𝐴መ௧ < 0

The probability ratio r(θ) is clipped if it is less than (1 - ε) or larger than 1+ ε, else it is
left unchanged.

1 1+ ε

𝐿஼௅ூ௉

r0

A > 0

11- ε

𝐿஼௅ூ௉

r0

A < 0

User
Typewriter
neural networks for two specific contributions in this disse

85

4.7.5.6 PPO Algorithm with the adaptive KL Penalty coefficient
The clipped surrogate objective function enforces a lower bound on the KL divergence
between the old and new policies using a clip function. Schulman et al. [7] proposed an
alternative method called Adaptive KL Penalty Coefficient, which applies a penalty to the KL
divergence directly in the objective function. This method automatically adjusts the penalty
coefficient over the course of training to ensure that the KL divergence remains within a
desired range.

𝐿௄௅௉ாே = 𝐸෠௧[
గഇ൫𝑎௧ ห 𝑠௧൯

గഇ೚೗೏
൫𝑎௧ ห 𝑠௧൯

 𝐴መ௧ − 𝛽𝐾𝐿[𝜋ఏ೚೗೏
(. | 𝑠௧), 𝜋ఏ(. | 𝑠௧)]] (4.7.27)

The hyperparameter β, which controls the strength of the penalty, is not fixed. Instead, it is
adapted based on the value of the KL divergence, as shown below. This is why the method
is called Adaptive KL Penalty.

𝑑 =̇ 𝐸෠௧ ቂ𝐾𝐿ൣ𝜋ఏ೚೗೏
(. | 𝑠௧), 𝜋ఏ(. | 𝑠௧)൧ቃ (4.7.28)

 𝐼𝑓 𝑑 <
ௗ೟ೌೝ೒

ଵ.ହ
⇒ 𝛽 =

ఉ

ଶ

𝐼𝑓 𝑑 > 1.5 𝑑௧௔௥௚ ⇒ 𝛽 = 2𝛽

The hyperparameters 1.5 and 2 were chosen heuristically.

86

4.7.5.7 PPO Algorithms
The Proximal Policy Optimization (PPO) Algorithms have the following steps13:

Training Algorithm of the PPO clipped surrogate objective
Initialization:
1. Initialize the policy parameters θ with random weights
2. Initialize the clipping threshold ε.
Roll out N full episodes - Sampling and collection of transition Data
For each episode k:
3. Reset the environment to an initial state s0
4. Follow the current policy 𝜋௞(𝜃௞) and select an action with the highest probability.
5. Take the action and observe the environment response.
6. Collect transitions samples (s, a, s’, r) and accumulate it in partial trajectory 𝐷௞
7. Repeat steps 4...6 until the episode terminates; T = length of the trajectory in this

episode
8. Compute all advantage estimate values 𝐴መగ௞

(𝑠, 𝑎)

Policy Update
9. Compute the value of the constrained objective function:

𝐿ఏೖ

஼௅ூ௉(𝜃) = 𝐸෠௧[෍[min (𝑟௧(𝜃)𝐴መ௧ , 𝑐𝑙𝑖𝑝 ൫𝑟௧(𝜃) , 1− ∈, 1+ ∈) 𝐴መ௧൧

்

௧ୀ଴

]

10. Update policy

𝜃௞ାଵ =
𝑎𝑟𝑔𝑚𝑎𝑥

𝜃
𝐿ఏೖ

஼௅ூ௉(𝜃)

By taking K steps of mini-batch of trajectory 𝐷௞ using Stochastic Gradient Descent
(Adam optimizer)

11. 𝜃௢௟ௗ = 𝜃
12. Repeat with the next episode until it converges

Training Algorithm of the PPO adaptive KL Penalty coefficient

1. Initialize the policy parameters θ with random weights
2. Initialize the KL penalty 𝛽଴ and target KL divergence threshold δ.
Roll out N full episodes - Sampling and collection of transition Data
For each episode k:
3. Reset the environment to an initial state s0
4. Follow the current policy 𝜋௞(𝜃௞) and select an action with the highest probability.
5. Take the action and observe the environment response.
6. Collect transitions samples (s, a, s’, r) and accumulate it in partial trajectory 𝐷௞
7. Repeat steps 4...6 until the episode terminates; T = length of the trajectory in this

episode
8. Compute all advantage estimate values 𝐴መగ௞

(𝑠, 𝑎)

Policy Update
9. Compute the value of the constrained objective function:

𝐿ఏೖ

஼௅ூ௉(𝜃) = 𝐸෠௧[෍[min (𝑟௧(𝜃)𝐴መ௧ , 𝑐𝑙𝑖𝑝 ൫𝑟௧(𝜃) , 1− ∈, 1+ ∈) 𝐴መ௧൧

்

௧ୀ଴

]

10. Update policy

13Adapted from [27]. The algorithm adaptation presented in this dissertation offers a more accessible and
straightforward implementation.

87

𝜃௞ାଵ =
𝑎𝑟𝑔𝑚𝑎𝑥

𝜃
𝐿ఏೖ

(𝜃) − 𝛽௞𝐷௄௅(𝜃, 𝜃௞)

By taking K steps of mini-batch of Stochastic Gradient Descent (Adam optimizer)
11. 𝑖𝑓 𝐷௄௅(𝜃௞ାଵ, 𝜃௞) ≥ 1.5 𝛿 𝑡ℎ𝑒𝑛 𝛽௞ାଵ = 2𝛽௞

12. 𝑒𝑙𝑠𝑒 𝑖𝑓 𝐷௄௅(𝜃௞ାଵ, 𝜃௞) < 𝛿/1.5 𝑡ℎ𝑒𝑛 𝛽௞ାଵ =
ఉೖ

ଶ

13. 𝜃௢௟ௗ = 𝜃
14. Repeat with the next episode until it converges

4.7.5.8 Advantages of PPO algorithm in practice
- Stability and Robustness:

o PPO’s clipped objective function prevents large policy updates that can
cause training instability and divergence.

- Sample Efficiency:
o PPO is relatively sample-efficient compared to some other policy

gradient methods. It makes efficient use of collected experiences by
reusing them multiple times through several epochs of training.

- Compatibility with Continuous Action Spaces:
o PPO naturally handles continuous action spaces by parameterizing the

policy as a probability distribution over actions.
- Code Efficiency:

o PPO is designed with simplicity and ease of implementation in mind,
and it often requires relatively few lines of code changes when
compared to a vanilla policy gradient method like REINFORC. [25]

4.7.5.9 Optimizing Safety in Autonomous Driving: Potentials of PPO RL
PPO's inherent characteristics, including simplicity and computational efficiency,
make it a suitable candidate for enhancing safety measures in autonomous driving
scenarios.

In the context of autonomous vehicles, the PPO’s clipped objective function can be
customized to meet predefined safety criteria, preventing abrupt policy updates and
thereby ensuring a more stable learning process.

This potential is explored in Chapter 7's safety layer, specifically in the safety-
dependent policy optimization. A novel approach is proposed, incorporating a safety
penalty in the clipped objective function to further enhance autonomous driving
safety. For more details, please refer to section 7.2.4.

88

4.7.6 Actor-Critic Reinforcement Learning Methods
Policy gradient reinforcement methods primarily centre their agent training on
optimizing the parameterized policy, with less emphasis on estimating state values
or state-action values. Actor-Critic Reinforcement Learning represents a distinct
class of policy-gradient reinforcement learning methods, characterized by the
integration of both an actor network responsible for policy optimization and a critic
network dedicated to value estimation. Hence, Actor-Critic Reinforcement learning is
considered to be both policy-based and value-based learning. See Figure 4.10.

Fig. 4.10: Intersection of Policy-Based and Value-Based RL: Actor-Critic Approach

The idea of combining value-based and policy-based methods, which is fundamental
to actor-critic architectures, has been explored by multiple researchers over several
decades. Richard S. Sutton, a prominent figure in the field of reinforcement learning,
made significant contributions to the development of actor-critic methods, including
his work on temporal difference (TD) learning, which forms the foundation for the
critic network Chapter 13.5 [1].

Actor-critic methods are known for their sample efficiency and they have been
applied to a wide range of applications, including robotics, game playing,
autonomous vehicles, and more, due to their ability to handle both continuous action
spaces and large state spaces effectively. The Actor-Critic architecture comprises
two parameterized networks, often represented as neural networks with parameters
θ (for the actor) and φ (for the critic). The actor network is responsible for learning
the policy (policy-based), while the critic network is responsible for learning state-
values (value-based) based on the received rewards from the environment.

Fig. 4.11: The Actor (policy) and Critic (value function) networks.

Policy-
based

RL

Value-
based

RL

Actor-
Critic
RL

𝑠
Output

layer

Actor Network𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝜽 𝒉𝟏 𝒉𝒏

Hidden layer

𝜋(𝑎|𝑠)
Input
layer

𝑠
Output

layer

Critic Network
𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝝋 𝒉𝟏 𝒉𝒎

Hidden layer

𝑉(𝑠)
Input
layer

89

4.7.6.1 The Architecture of Actor-Critic Method:

Fig. 4.12: The architecture of Actor-Critic Reinforcement Learning

 The actor-critic architecture and the concept of actor-critic reinforcement learning is
illustrated in Figure 4.12.

The Actor and Critic networks work in tandem.

 The Actor generates actions probabilistically (in the case of stochastic
policies) or deterministically (in the case of deterministic policies) based on
the current policy.

 The agent receives rewards and transitions to new states from the
environment.

 The critic network evaluates the reward and estimates the expected returns
and calculates the TD error.

 The TD error is then used as a feedback signal by the actor to calculate the
gradient estimate and update the actor's policy. If an action resulted in higher-
than-expected returns (positive TD error), the actor strengthens its policy to
favour similar actions in the same states. Conversely, if the returns were lower
than expected (negative TD error), the actor adjusts its policy to avoid such
actions in those states.

 This feedback loop continues iteratively, with the actor and critic networks
gradually updating their networks through reinforcement learning.

In Actor-Critic RL policy and the value function updates are de-coupled. The critic
network estimates state values or action values, allowing for online updates during
the trajectory.

This online update capability (on-policy) means that the agent doesn't have to wait
until the end of the trajectory to update its policy. It can adjust its policy continuously
as it interacts with the environment.

This is in contrast to some off-policy Policy Gradient algorithms (e.g., REINFORCE)
that collect a batch of experiences before updating the policy. [1]

Actor-Critic's online updates can lead to quicker policy improvements and more
sample-efficient learning.

4.7.6.2 Actor learning
The Actor objective function:

Actor
Policy Network

Critic
Value Network

Environment

action

reward

state

TD Error

90

In Actor-Critic reinforcement learning, the actor is a Policy Gradient REINFORCE
with baseline.

Let’s recap from section 4.7.2 three major steps of Policy gradient REINFORCE with
baseline learning:

1. Roll out N full episodes – run the current policy 𝜋ఏ(𝑎௧|𝑠௧); sample and collect
transition Data

2. Compute the gradient estimate as:
∇𝐽(𝜃) = E[∑ 𝛻ఏ𝐿𝑜𝑔 𝜋ఏ(𝑎௧|𝑠௧ , 𝜃)(𝐺௧ − 𝑏(𝑠௧))௔] (from 4.7.13)

3. Run the policy update rule:
𝜃௧ାଵ = 𝜃௧ + 𝛼𝛻𝐽(𝜃௧)෣ (from 4.7.4)

The baseline function 𝑏(𝑠௧) is as often set to the state value function of the current
state which is estimated by the critic network 𝑉(𝑠௧; 𝜙)

Now if we define the advantage function as the return term minus the baseline term
in 4.7.13 then:

𝐴(𝑎௧ , 𝑠௧) = ൫𝐺௧ − 𝑏(𝑠௧)൯ = (𝐺௧ − 𝑉(𝑠௧; 𝜙)) (4.7.29)

The Gradient of the objective function J(θ) with respect to the actor's parameters θ
can be formulated as:

∇𝐽(𝜃) = E[∑ 𝛻ఏ𝐿𝑜𝑔 𝜋ఏ(𝑎௧|𝑠௧ , 𝜃) A(a୲. 𝑠௧)௔] (4.7.30)

The expression ∇J(θ) is used in policy gradient methods to update the actor's
parameters θ based on 4.7.4 formula: 𝜃௧ାଵ = 𝜃௧ + 𝛼𝛻𝐽(𝜃௧)෣

4.7.6.3 Critic learning
The Critic Loss function:

In Actor-Critic reinforcement learning, the critic is a value-based temporal difference (TD) Q -
learning algorithm that estimates the expected return or value function for different
states or state-action pairs in order to guide the actor's policy improvement.

Temporal Difference (TD) Error: The TD error measures the difference between the
values of successive states. The Temporal difference (TD) error at time step t is
defined as:

𝑇𝐷(0) = 𝛿௧ = 𝑅௧ାଵ + 𝛾𝑉(𝑠௧ାଵ) − 𝑉(𝑠௧) (4.7.31)

𝑅௧ାଵ is the reward received at time t+1, γ is the discount factor, 𝑉(𝑠௧) is the estimated
value of the current state, and 𝑉(𝑠௧ାଵ) is the estimated value of the next state 𝑠௧ାଵ.

To create a loss function for the critic, the mean squared TD(0) error is used, which
penalizes the difference between the estimated state value (𝑉(𝑠௧)) and the target
value 𝑅௧ାଵ + 𝛾𝑉(𝑠௧ାଵ).

𝜆(𝜙) = 𝑑𝜙 = ∑ 𝛻థ
ே
௧ୀଵ ൫𝑅௧ାଵ + 𝛾𝑉(𝑠௧ାଵ; 𝜙) − 𝑉(𝑠௧; 𝜙)൯

ଶ
 (4.7.32)

91

The loss function is minimized by adjusting the critic network's weights to improve the value
prediction of the critic network. This is typically done using gradient descent.

The gradient of the critic loss with respect to the critic network parameters is used to update
the network. Hence, the update rule for the critic network weighting factors is:

𝜙௧ାଵ = 𝜙௧ + 𝛽𝑑𝜙 (4.7.33)

4.7.6.4 Actor-Critic Training Algorithm
Training Algorithm of the Actor-Critic Reinforcement Learning. Adapted from [29] 14.

Initialization:
1. Initialize the policy parameters θ of the Actor π (a|s; θ) with random weights
2. Initialize the value parameters ϕ of the Critic V(S; ϕ) with random weights
Roll out N full episodes - Sampling and collection of transition Data
For each episode step:
3. Reset the environment to an initial state s0
4. Follow the Actor network stochastic policy πఏ and select an action with the highest
probability.
5. Take the action and observe the environment response (s, a, s’, r).

Training of the Policy and Value Networks
6. Compute the actor loss based on the gradient of the expected return with
respect to the actor's policy.
7. Update the cumulative return: 𝐺௧ = 𝑅௧ାଵ + 𝛾𝑉(𝑠௧ାଵ; 𝜙)
8. Compute the advantage function 𝐴(𝑎௧ , 𝑠௧) = (𝐺௧ − 𝑉(𝑠௧; 𝜙)) based on the critic
estimated value function
Update the Actor Network (Policy) and the Critic Network (Value Function)
9. Compute the policy gradient of the actor network (Actor objective function) with
respect to the policy parameters for this sample 𝑑𝜃 =
∑ 𝛻ఏ𝐿𝑜𝑔 𝜋ఏ(𝑎௧|𝑠௧ , 𝜃) A(a୲. 𝑠௧)ே

௧ୀଵ
10. Compute the gradient of the critic network (Critic objective function) with
respect to the value parameters for this sample 𝑑𝜙 = ∑ 𝛻థ

ே
௧ୀଵ ൫𝑅௧ାଵ +

𝛾𝑉(𝑠௧ାଵ; 𝜙) − 𝑉(𝑠௧; 𝜙)൯
ଶ

11. Update the actor parameters by applying the gradients 𝜃௧ାଵ = 𝜃௧ + 𝛼𝑑𝜃
12. Update the critic parameters by applying the gradients 𝜙௧ାଵ = 𝜙௧ + 𝛽𝑑𝜙

13. Perform stochastic gradient ascent on the objective function using the
computed gradients
14. Update the policy parameters θ in the direction that maximizes the expected
cumulative reward.
15. Repeat with the next episode until it converges
16. Compute the gradients for the critic network by minimizing the mean squared
error loss between the estimated value function 𝑉(𝑠௧; 𝜙) and the cumulative return:
𝐺௧across all N experiences.

14 The algorithm adaptation presented in this dissertation offers a more accessible and straightforward
implementation.

92

4.7.6.5 Bootstrapping in Actor-Critic vs. Monte Carlo Approach in REINFORCE
Method

A fundamental distinction exists in the underlying methodology between the
REINFORCE algorithm and the Actor-Critic (AC) reinforcement learning framework.

The REINFORCE algorithm employs a Monte Carlo approach to estimate the policy
gradient. It gathers complete trajectories and adjusts the policy after an episode
concludes. This adjustment is based on the average cumulative returns observed
throughout those trajectories.

In contrast, the actor within actor-critic methods adopts a bootstrapping approach.
This approach empowers the actor to update its policy at every step of the episode,
facilitating a more continuous and dynamic learning process. [28]

4.7.6.6 Actor-Critic Extensions
Advantage Actor-Critic (A2C) and Asynchronous Advantage Actor-Critic (A3C)
represent notable extensions of the Actor-Critic framework, providing significant
advantages in terms of training efficiency, optimal sample utilization, and enhanced
scalability.

4.7.6.6.1 Advantage Actor-Critic (A2C)
A2C extends the AC framework by introducing the concept of the Advantage
function, which quantifies how much better or worse an action is compared to the
average action in a given state. The critic computes the advantage value A(a,s) =
Q(a,s) – v(s) and not the state value V(s)

Parallelization: A2C can be efficiently parallelized, allowing multiple agents to
interact with the environment and collect experience simultaneously. This
parallelization accelerates training and improves sample efficiency.

Synchronous Updates: In A2C, the updates to the actor's policy and the critic's value
function are done synchronously, meaning that they occur at the same time step.
This synchronous training can lead to more stable learning.

4.7.6.6.2 Asynchronous Advantage Actor-Critic (A3C)
Mnih et al. at DeepMind (2016) introduced Asynchronous Advantage Actor-Critic
(A3C) algorithm in paper “Asynchronous Methods for Deep Reinforcement Learning”
[31]. A3C maintains a policy 𝜋(𝑎௧|𝑠௧; 𝜃) and an estimate of the value function
𝑉 (𝑠௧; 𝜃௩). Both functions are updated after every 𝑡௠௔௫ actions. It is a popular variant
of actor-critic RL that uses multiple actor-learner threads to parallelize training,
enabling faster convergence and better performance.

Asynchronous Updates:

A3C extends the parallelization concept of Advantage Actor-Critic (A2C) by
introducing asynchronous updates. A3C agents run in parallel, independently
collecting experiences and updating their policy and value function asynchronously.
Actor threads in A3C follow distinct exploration policies, improving robustness and
performance through diversified exploration. The asynchronous updates in A3C
reduce sample correlation, leading to faster convergence [31].

93

Increased Scalability:

A3C with its parallel reinforcement learning paradigm promises high levels of
scalability and can efficiently utilize multi-core CPUs and distributed computing
environments. It's particularly effective for handling complex environments and large
state spaces.

A3C has been successfully applied in a variety of continuous motor control tasks,
demonstrating stable training of neural networks through reinforcement learning.
This success has been achieved using both value-based and policy-based methods,
as well as off-policy and on-policy methods, in both discrete and continuous domains
[31].

4.7.6.7 Optimizing Safety in Autonomous Driving: Potentials of Actor-critic Methods
Actor-critic RL methods can handle continuous action spaces, making them
applicable to tasks such as steering or acceleration ratio control in autonomous
vehicles. The use of A3C parallelism in training can accelerate learning by enabling
multiple agents to explore various aspects of the environment concurrently, which is
advantageous given the inherent dynamics in different driving scenarios.
Furthermore, the Actor-Critic framework shows potential in the passive monitoring of
human drivers, with the human acting as the actor. By employing the critic to
evaluate human actions, the framework can dynamically update its policy to align
with safer driving practices.

94

4.7.7 Deep Deterministic Policy Gradient (DDPG)
Lillicrap et al. at DeepMind (2016) introduced the Deep Deterministic Policy Gradient
(DDPG) algorithm in their influential paper, "Continuous control with Deep
Reinforcement Learning." DDPG is a model-free, off-policy, actor-critic algorithm
based on the deterministic policy gradient (DPG) designed for tasks with high-
dimensional continuous action spaces.

The algorithm combines the actor-critic approach with insights from the success of
Deep Q Network (DQN) (Mnih et al., 2015).

In DDPG, the actor network defines the optimal policy by mapping states to
continuous actions, while the critic network evaluates state-action pairs by estimating
Q-values.

The actor network is parameterized as 𝜇(𝑎௧|𝑠௧; 𝜃), representing the current policy,
and the critic network learns 𝑄(𝑎௧𝑠௧; 𝜑) using the Bellman equation from Q-learning.

The update rules for the actor and critic networks involve gradient ascent and
minimizing the temporal difference error, respectively. The loss functions and update
rules for the actor and critic networks are provided in [32]. Readers interested in
more details can refer to the paper for further information.

DDPG employs a straightforward actor-critic architecture with batch normalization
(Ioffe & Szegedy, 2015) applied to sampled experiences during training. Both the
actor and critic networks have target networks (off-policy), which are softly updated
at each time-step, enhancing stability and convergence during training.

In the DDPG algorithm, the target actor network (μ′) is initialized by adding noise to
the weights of the online actor network (μ).

𝜇ᇱ(𝑎௧|𝑠௧; 𝜃) ← 𝜇(𝑎௧|𝑠௧; 𝜃) + 𝑁 (4.7.34)

This initialization improves the exploration and helps prevent overestimation during
the early stages of training. [32]

The soft update and batch normalization methods are explained and implemented
for a DQN RL agent in Chapter 5, Sections 5.3.1.3 and 5.3.1.5, respectively.

4.7.7.1 Optimizing Safety in Autonomous Driving: Potentials of DDPG methods
DDPG is particularly well-suited for tasks with continuous action spaces, rendering it
applicable to critical functionalities such as steering and acceleration control in
autonomous vehicles (AVs). In the context of AV safety, DDPG is regarded as a
valuable choice because it can optimize policies for executing smooth and
continuous actions, thereby minimizing the risk associated with abrupt accelerations
or decelerations that might compromise safety.

95

4.7.8 Summary of policy gradient RL algorithms

Table 4.2: Summary of policy gradient RL algorithms

Algorithm
Name

Update Rule On/Off
-Policy

Use
Cases

Remarks

REINFORCE
𝜃௧ାଵ =̇ 𝜃௧ + 𝛼 . 𝐺௧గ

𝛻𝜋ఏ(𝑎|𝑠௧, 𝜃)

𝜋ఏ(𝑎௧|𝑠௧ , 𝜃)

On-
Policy

continuous
and discrete

sensitive to hyperparameters
and initial conditions
easy to implement

TRPO 𝜋௜ାଵ =
𝑎𝑟𝑔𝑚𝑎𝑥

𝜋
[𝐿గ೔

(𝜋) − 𝐶𝐷௄௅
௠௔௫(𝜋௜, 𝜋)]

On-
policy

continuous
and discrete

Stability
Complex algorithm

PPO 𝐿஼௅ூ௉(𝜃) = 𝐸෠௧[min (𝑟(𝜃) 𝐴መ௧ , 𝑐𝑙𝑖𝑝 (𝑟(𝜃) , 1− ∈, 1+ ∈) 𝐴መ௧] On-
policy

continuous
and discrete

Surrogate objective function
stability
Easy to implement

Actor-Critic ∇𝐽(𝜃) = E[෍ 𝛻ఏ𝐿𝑜𝑔 𝜋ఏ(𝑎௧|𝑠௧ , 𝜃) A(a୲. 𝑠௧)
௔

]

𝜆(𝜙) = 𝑑𝜙 = ∑ 𝛻థ
ே
௧ୀଵ ൫𝑅௧ାଵ + 𝛾𝑉(𝑠௧ାଵ; 𝜙) − 𝑉(𝑠௧; 𝜙)൯

ଶ

On or
off
Policy

continuous
and discrete

Parallelization of actor and critic
agents

DDPG Refer to [32] Off-
policy

Continuous
actions

Advantages of DQN and Actor-
critic architectures

96

5 Chapter 5 - Optimizing DQN Reinforcement Learning: A
Comprehensive Study on the Impact of Variations on
performance and training stability

The fundamentals of DQN and its extensions are reviewed in section 4.6.

This section delves into the optimization of a Deep Q-Network (DQN) RL agent
specifically employed for control in the CartPole Classic Control Environment.

Moreover, a comparative study explores the impact of convergence criteria, batch
size, neural network architecture, and replay memory size, etc. variations on both the
training dynamics and the maximum reward achieved by a DQN agent.

The classic control CartPole Gym environment [33] is a benchmark problem in
reinforcement learning designed to test the ability of an RL agent to balance a pole
on a moving cart. The CartPole Gym Environment is deterministic, and each state
(𝑠௧) in the state space consists of four elements: (See Figure 5.1)

 Cart position x (continuous): The horizontal position of the cart on the track.
 Cart velocity v (continuous): The rate at which the cart is moving horizontally.
 Pole angle θ (continuous): The angle of the pole with the vertical axis.
 Pole angular velocity θ’ (continuous): The rate at which the pole is swinging.

Fig. 5.1: Gym CartPole-v1 Environment

 The action space and state space of the environment are represented in tables
below.

Table 5.1: Action and state spaces of Gym CartPole-v1 Environment

The agent's goal is to apply forces to the cart, either left or right, to prevent the pole
from falling over. The task is considered successfully completed if the agent can
maintain the pole in an upright position for a specified duration.

A “episode” is considered to be terminated if the agent is unable to maintain the pole
angle below ±12° or keep the cart within ±2.4 units from the centre for consecutive
time steps, with the optimal position being at zero.

State Space State[x] Min Max
Cart Position (x) 𝑠௧ [0] -4.8 4.8
Cart Velocity (v) 𝑠௧ [1] -Inf Inf
Pole Angle (θ) 𝑠௧ [2] -24° 24°
Pole angular Velocity
(𝜽̇)

𝑠௧ [3] -Inf Inf
Action Space value
Push cart to the Left 0
Push cart to the
Right

1

x

a=1: Right a=0: Left

θ

v

97

The agent receives a reward of `+1` for each time step it successfully maintains the
pole upright.

Reinforcement learning agents, such as Deep Q Networks (DQN), are commonly
employed to learn optimal strategies through trial and error.

A wide-range of Deep Q-Network (DQN) variations is employed to solve the classic
control problem of CartPole. To comprehensively explore the efficacy and
robustness of the learning algorithm, the following variations are incorporated into
the experimentation framework:

- Convergence Criteria:
o all episodes played
o maximum rewards over a specified number of consecutive episodes

- Optimizers:
o Root Mean Square Propagation (RMSprop)
o Adaptive Moment Estimation (Adam)

- Target Network Update:
o Soft update
o Hard update

- Neural Network Architecture:
o with Neural Network Initialization
o with Batch Normalization Layers
o Reducing Number of hidden layer from 3 to 2

- Gradient Clipping:
o Without gradient clipping
o With gradient clipping

- Hyperparameter Tuning:
o Learning rate adjustment
o Gamma Discounting

- Replay Memory:
o Batch size
o Size of the replay memory

5.1 Implementation of DQN RL agent for Cartpole Control task
The implementation of the Deep Q-Network (DQN) algorithm is realized through the
utilization of key Python libraries, namely PyTorch [34] and Gym [33], [35].15,16,17
PyTorch, a powerful deep learning framework, is employed to construct and train the
neural network model, facilitating efficient computation of complex functions. Gym,
an open-source toolkit, provides standardized and customizable environments for
developing and testing reinforcement learning algorithms.

Importing requisite libraries:

15 The entire source code is provided as a supplementary document.
16 For extraction of “state” and “next_state” from a mini-batch, and calculation of “Q values” the
Python code from [36] was used and adapted.
17 For implementation of a circular buffer behaviour (overwriting old data) the Python code from
https://www.kaggle.com/code/dsxavier/dqn-openai-gym-cartpole-with-pytorch was used and adapted.

98

The requisite libraries, including PyTorch and Gym, are imported

"""
@author: Farshad Mirzarazi
DQN Reinforcement Learning CartPole Environment
Variations: Basic DQN, MSE/Hoss Loss function, 2 / 3 Hidden layer FC Network
Hard / soft update of target network, with or without gradient clipping, ...
"""
from collections import namedtuple, deque
import gymnasium as gym
import matplotlib.pyplot as plt
import math

import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

Installed Packages and Versions:
Python Version: 3.9.13 (collections, random, and math are standard libraries of
Python interpreter)

- gym==0.26.2
- gymnasium==0.29.1
- matplotlib==3.8.1
- numpy==1.26.2
- torch==2.1.0

Instantiation of the environment:

Step 1: Define the Gym environment
env = gym.make('CartPole-v1', render_mode="rgb_array")

Policy and target neural networks:

The policy and target neural networks (NN) are implemented with a three fully
connected (FC) hidden layer architecture. The input to the networks corresponds to
the state space, consisting of four elements: cart position (x), cart velocity (v), pole
angle (θ), and pole angular velocity (θ’). The output layer of both networks provides
state-action values for the two possible actions: pushing the cart to the left (action 0)
or to the right (action 1). See Figure 5.2.

Fig. 5.2: Neural Network Architecture for DQN Agent with Three FC Hidden Layers (Policy and
Target Networks)

Step 2: Define the DQN model
class DQN(nn.Module):
 def __init__(self, n_observations, n_actions):
 super(DQN, self).__init__()
 self.layer1 = nn.Linear(n_observations, 32)
 self.layer2 = nn.Linear(32, 64)

θ' Q (s, a = push left (0))

Q (s, a = push right (1))
θ'
θ
v
x

32 FC
Linear

ReLU
64 FC

Linear
ReLU

State [0]
Output
Layer

State [3]

State [1]
State [2]

32 64

x

θ

v

128
FC

Linear
ReLU 128

99

 self.layer3 = nn.Linear(64, 128)
 self.out = nn.Linear(128, n_actions)
 def forward(self, x):
 x = F.relu(self.layer1(x))
 x = F.relu(self.layer2(x))
 x = F.relu(self.layer3(x))
 return self.out(x)

Replay Memory:

Replay memory is an integral component of the DQN implementation, storing tuples
of agent experiences (s, a, s', r), where 's' represents the current state, 'a' is the
action taken, 's'' is the resulting state, and 'r' denotes the received reward. During the
training phase, a randomly selected set of previous experiences, called mini-batch, is
sampled from the replay buffer. See Figure 5.3. This mechanism enhances the
stability and efficiency of learning by breaking the temporal correlation between
consecutive experiences and allowing for more diverse and effective training.

Fig. 5.3: Storage of agent experience in replay memory and creation of mini-batch for training

Step 3: Define the Replay Memory
class ReplayMemeory:
 def __init__(self,capacity):
 self.BufferLimit = capacity
 # assign memory to the replay buffer
 self.memory = deque([], maxlen=capacity)
 self.storagecount = 0
 def storeExperiment(self, experience) -> None:
 if len(self.memory) < self.BufferLimit:
 self.memory.append(experience)
 else:
 self.memory[self.storagecount % self.BufferLimit] = experience
 self.storagecount += 1
 def CreateMiniBatch(self, batch_size: int):
 return random.sample(self.memory, batch_size)

Agent:
Deep Q-Network (DQN) agent class (DQNAgent) is initialized with input (4) for states
and output sizes (2) for actions, epsilon-greedy exploration parameters, and two
neural networks (policy_net and target_net).
The select_action method determines the agent's action based on the epsilon-
greedy strategy, and the update_target_model method updates the target network by
copying the weights from the policy network. The code also includes global variables
for epsilon decay and tracking the episode where epsilon crosses a certain
threshold.
Step 4: Define the DQN agent
class DQNAgent:
 def __init__(self, input_size, output_size, epsilon=1.0, epsilon_decay=0.995,
epsilon_min=0.01):
 self.input_size = input_size
 self.output_size = output_size
 self.epsilon = epsilon

Random sampling

Mini-Batch
(𝑠ଵ[0. .3], 𝑎ଵ, 𝑠ଶ[0. .3], 𝑟ଵ)

(𝑠ଶ[0. .3], 𝑎ଶ, 𝑠ଷ[0. .3], 𝑟ଶ)

…
(𝑠௡[0. .3], 𝑎௡, 𝑠௡ାଵ[0. .3], 𝑟௡)

(𝑠௫[0. .3], 𝑎௫, 𝑠௫ାଵ[0. .3], 𝑟௫)

…
(𝑠௬[0. .3], 𝑎௬ , 𝑠௬ାଵ[0. .3], 𝑟௬)

Replay Memory

100

 self.epsilon_decay = epsilon_decay
 self.epsilon_min = epsilon_min
 self.policy_net = DQN(input_size, output_size)
 self.target_net = DQN(input_size, output_size)
 self.target_net.load_state_dict(self.policy_net.state_dict())
 # self.optimizer = optim.Adam(self.policy_net.parameters(), lr=0.001)

 def select_action(self, state):
 # Decay epsilon
 global DecayCount
 global epsilon_crossed50Percent
 randNr = random.random()
 self.epsilon = EPS_END + (EPS_START - EPS_END) * math.exp(-1. * DecayCount /
EPS_DECAY)
 if self.epsilon <= 0.5 and epsilon_crossed50Percent is None:
 epsilon_crossed50Percent = episode
 DecayCount += 1
 if self.epsilon > randNr:
 return torch.tensor([[env.action_space.sample()]], device=device,
dtype=torch.long)
 else:
 with torch.no_grad():
 return self.policy_net(state).max(1)[1].view(1, 1)
 def update_target_model(self):
 model_state_dict = self.policy_net.state_dict()
 target_model_state_dict = {}
 for key, value in model_state_dict.items():
 # Convert numpy arrays to tensors
 if isinstance(value, np.ndarray):
 value = torch.from_numpy(value).float()
 target_model_state_dict[key] = value
 self.target_net.load_state_dict(target_model_state_dict)

Hyperparameters
"""
Hyperparameters:
"""
Size of mini-batch
batch_size =256
replayMem_size = 10000
update_rates of target network.
TAU_softUpdate = 0.05
TAU_hardUpdate = 10
Discount factor
gamma = 0.9
Epsilon greedy parameters
EPS_START = 1
EPS_END = 0.01
EPS_DECAY = 200
Optimizer learning rate
LearningRate = 0.0001
num_episodes = 1000
max_reward = 500

Training DQN Agent:
The training of the DQN agent involves several key steps, as outlined in section 4.6.
The agent undergoes training over a predefined number of episodes, each
comprising a maximum of 500 time-steps.
Step 5: Train the DQN agent
num_episodes = 1000
for episode in range(num_episodes):
reset the env.
initial state: s0 = initial position, velocity of Cart and Pole after reset
state, info = env.reset()
state = torch.tensor(state, dtype=torch.float32, device=device).unsqueeze(0)
total_reward = 0
for time_step in range(500): # number of time steps

101

At each time-step, the agent interacts with the CartPole environment, selecting
actions based on an epsilon-greedy strategy.

action = agent.select_action(state) # action selection 0: push left, 1: push right
observation, reward, terminated, truncated, _ = env.step(action.item())
reward = torch.tensor([reward], device=device)
total_reward += reward.item()

The resulting experiences (s, a, s', r) are stored in a replay memory, from which a
random mini-batch is sampled to create training data.

populate replay memory with agent observation: (state, action, next_state, reward)
ExperienceReplayBuffer.storeExperiment(Experience(state, action, next_state, reward))
########## Training loop - start ##########
if len(ExperienceReplayBuffer.memory) >= batch_size: # BatchSizeReached
 MiniBatch = ExperienceReplayBuffer.CreateMiniBatch(batch_size)
 batch = Experience(*zip(*MiniBatch))

 states= torch.cat(batch.state)
 actions = torch.cat(batch.action)
 rewards = torch.cat(batch.reward)
 next_states = torch.cat([s for s in batch.next_state
 if s is not None])

In the forward pass, the Q-values for the actions and current states within the mini-
batch are computed using the policy network. Simultaneously, the target Q-values
for the next states (s') are estimated, considering the Bellman optimality equation.
Refer to 4.3.2.2 and 4.6 for more details.
Compute Q (s_t, a) values for each batch state s_t - according to policy_net
q_values = agent.policy_net(states).gather(1, actions)

Compute Q(s_{t+1}) for all next states.
next_q_values = torch.zeros(batch_size, device=device)
with torch.no_grad():
 next_q_values[non_final_mask] = agent.policy_net(next_states).max(1)[0]

Compute the target Q-values using the Bellman equation
expected_state_action_values = (next_q_values * gamma) + rewards

In the backward pass, the loss function quantifies the difference between the
predicted and target Q-values. The chosen loss function (Huber or MSE) is then
optimized using the backpropagation process with an Adam optimizer to update the
policy network weights.

TODO Loss function variations
Compute loss function Var.1 Huber loss, Var.2 MSE
criterion = nn.SmoothL1Loss() # Huber loss
criterion = nn.MSELoss() # MSE
loss = criterion(q_values, expected_state_action_values.unsqueeze(1))

Optimize the model
agent.optimizer.zero_grad()
loss.backward()
TODO with or without gradient clipping
In-place gradient clipping
torch.nn.utils.clip_grad_value_(agent.policy_net.parameters(), 4)
agent.optimizer.step()
########## Training loop - End ##########

Target network:

102

The target network is updated through a soft or hard update mechanism with update
rate represented by hyperparameter Tau (𝜏).

Step 6: Update target network
TODO soft or hard update of target network
Soft update of the target network's weights
Var.1 Soft update
θ′ ← τ θ + (1 −τ)θ′
target_net_state_dict = agent.target_net.state_dict()
policy_net_state_dict = agent.policy_net.state_dict()
for key in policy_net_state_dict:
target_net_state_dict[key] = policy_net_state_dict[key] * TAU_softUpdate +
target_net_state_dict[key] * (1 - TAU_softUpdate)
agent.target_net.load_state_dict(target_net_state_dict)
Var. 2 Hard update
if episode % TAU_hardUpdate == 0:
 agent.target_net.load_state_dict(agent.policy_net.state_dict())

Save the model:

Upon completion of training, the trained model is saved for future use.

Step 7: Save the trained network
torch.save(agent.policy_net.state_dict(),
'F:\\Brunel\\02_SourceCodes\\DQNVariations\\online_model.pth')
print("Model saved.")

DQN Evaluation

After training the model, the next step is to evaluate its performance by running 100
episodes. The trained model is reloaded to assess its behaviour in different
scenarios. During these 100 episodes, the model's ability to achieve satisfactory
results will be observed and analysed.

Step 8: reload the trained network
agent.policy_net.load_state_dict(torch.load('F:\\Brunel\\02_SourceCodes\\DQNVariations\\online
_model.pth'))
print("Model loaded.")

Step 9: Performance evaluation of DQN Agent
total_reward = 0
for _ in range(100): # Run the environment 10 times for evaluation
 state, info = env.reset()
 state = torch.tensor(state, dtype=torch.float32, device=device).unsqueeze(0)
 for _ in range(500): # You can adjust the maximum number of time steps
 action = agent.select_action(state) # 100% exploitation
 observation, reward, terminated, truncated, _ = env.step(action.item())
 # reward = torch.tensor([reward], device=device)
 done = terminated or truncated
 if terminated:
 next_state = None
 else:
 next_state = torch.tensor(observation, dtype=torch.float32,
device=device).unsqueeze(0)
 total_reward += reward
 state = next_state
 if done:
 break
average_reward = total_reward / 100
print(f"Average Reward over 100 episodes: {average_reward}")

Results:

The training progress is visualized through plots of total rewards and epsilon values
over episodes, offering insights into the agent's learning dynamics and convergence.

103

Monitoring includes the visualization of total rewards and epsilon values over
episodes and time-steps.

Step 10: Plot the Results
def Plot_Result(episode_rewards, epsilon_values, epsilon_crossed50Percent, last_50_means,
episode_last_50_mean_gt_400, average_reward):
 if episode_rewards:
 episodes, rewards = zip(*episode_rewards)

 figsize = (12, 6) # Adjust the width and height as needed
 fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=figsize)
 ############ ax1 ############
 ax1.plot(episodes, rewards, label='Total Reward', color='green')
 ax1.axhline(y=max_reward, color='orange', linestyle='--', label='Max Reward')
 ax1.set_ylabel('Total Reward')
 ax1.grid(True)

 # Plot Last 50 Mean Reward with label
 ax1.plot(episodes[-len(last_50_means):], last_50_means, color='blue', label='Mean Last
50 Reward')
 ax1.legend(loc='upper left')
 # Add a vertical line at the episode where last_50_mean > 400
 if episode_last_50_mean_gt_400 is not None:
 ax1.axvline(x=episode_last_50_mean_gt_400, color='purple', linestyle='--',
label='Mean Last 50 Mean > 400')
 ax1.text(0.5, -0.1, f'Training stop at episode: {episode_last_50_mean_gt_400}',
transform=ax1.transAxes,
 fontsize=10, ha='center')
 ############ ax2 ############
 ax2.plot(episodes, epsilon_values, label='Epsilon', color='red')
 ax2.axvline(x=epsilon_crossed50Percent, color='gray', linestyle='--', label='Epsilon =
0.5')
 ax2.set_xlabel('Episode')
 ax2.set_ylabel('Epsilon')
 ax2.legend(loc='upper right')
 ax2.grid(True)
 ############ subplots and subtitle ############
 # Adjust the vertical position of the entire plot
 plt.subplots_adjust(left=0.06, bottom=0.12, right=0.97, top=0.95, wspace=0, hspace=.2)
 # Display average reward below ax2
 fig.text(0.5, 0.02, f'Average Reward of Trained model: {average_reward}', ha='center',
fontsize=10)
 plt.suptitle('DQN Training: Total Reward and Epsilon over Episodes')
 plt.show()
 else:
 print("No episode durations recorded. Cannot plot.")

And finally, the Gym environment is closed.

Step 11: Close the environment
env.close()

104

5.2 Evaluation of DQN Performance, Learning Dynamics and Convergence
The presented plots in this section, offer a comprehensive view of the training
progress for the Deep Q-Network (DQN) agent in the CartPole environment. The
visualization of crucial metrics across episodes and time-steps provides insights into
the learning dynamics and convergence behaviour of the agent.

Training Process Overview:

The training process is an iterative journey where the DQN agent refines its decision-
making abilities in the CartPole environment. This refinement occurs through a
series of episodes and time-steps, gradually enhancing the agent's understanding of
optimal actions and strategies.

Training Configuration:

The DQN agent undergoes training for 1000 episodes, each consisting of 500 time-
steps. The maximum achievable reward in a single episode is crapped at 500,
reflecting the duration the agent can successfully keep the cart and the pole within
the acceptable range.

Explanation of the result:

Fig. 5.4: DQN Training Performance: Total Reward Dynamics Over Episodes

Total Reward (AX1):

The first plot (AX1) depicts the total reward (green) achieved by the agent in each
episode. The total reward is indicative of how effectively the agent can maintain the
stability of the cart and the pole over time. The orange dashed line indicates the
maximum achievable reward of 500 in each episode.

The Last 50 Mean Reward, shown in blue, offers a filtered representation of the
agent's recent performance. Calculated by averaging the total reward across the last
50 episodes, this metric serves as a stable and informative measure for assessing

105

the training quality of the agent in the task. Notably, the Last 50 Mean Reward acts
as an alternative convergence criterion, leading to the termination of training once it
surpasses the threshold of 400.

The legend text, "Training stopped at episode: 501," below plot 1 indicates that the
agent has achieved a performance level where the Last 50 Mean Reward is greater
than or equal to 400.

Decayed Epsilon (AX2):

The second plot (AX2) illustrates the balance between exploration and exploitation
through the decayed epsilon values. Epsilon is a parameter controlling the agent's
exploration strategy.

The red line represents the decayed epsilon values over episodes. A higher epsilon
implies more exploration, allowing the agent to freely experience the environment
and discover optimal strategies.

The grey dashed line marks the episode at which epsilon crosses the 50% threshold.
This point signifies a transition in the agent's behaviour, balancing exploration and
exploitation. As epsilon decreases, the influence of Q-learning becomes more
noticeable, emphasizing the exploitation of learned knowledge.

The trained model undergoes an additional evaluation by executing 100 episodes
post-training, and its performance is assessed. The legend text, "Average Reward of
Trained model: 457.75” (out of a possible 500), situated below plot 2, serves as an
indicator of the agent's performance. In this instance, the rating is designated as
"very good" performance.

Observations:

1. Training stability - Volatility in Agent Performance:
The agent's performance exhibits frequent unexpected drops in total reward when
confronted with unseen or extreme data (e.g. at episodes: {102, 185,323,470,483}.

Recovery from such drops requires a substantial number of episodes (e.g. at
intervals: {[185-289], [324-433]}, highlighting the limitation of the neural network to
rapidly respond to significant loss values. This behaviour may be attributed to the
sophistication of the neural network's architecture or factors such as the learning
rate.

To address this stability issue, a close analysis of q-values and loss function values
can provide insights for effective resolution. However, it's important to note that a
comprehensive solution may go beyond what's covered in this section.

2. Steady Improvement of Mean-Last-50-Total-Reward Over Time
The Mean-Last-50-total-reward, on the other hand, demonstrates a consistent
upward trend over time (e.g. intervals {[287-333], [431-501]}), indicating an overall
improvement in the agent's performance.

3. Hyperparameter Sensitivity:

106

The agent's performance is highly sensitive to hyperparameters and their variations.
While adjusting hyperparameters may address specific training issues, it introduces
the challenge of potentially negligible negative impacts on other aspects of training.
More information will be provided in 5.3.1.6.

4. Transition from Exploration to Exploitation:
The total reward experiences a positive trend when the agent shifts from exploration
to exploitation (e.g., at episode 24, where the exploration rate is around 20%, and at
episode 75, where the exploration rate is almost 0%), showcasing the effectiveness
of Q-learning. However, the lack of sufficient experience becomes evident as the
agent struggles to control the cart and pole in subsequent episodes, leading to next
sudden drops in total reward.

5. Experiment Randomness:
The experiment exhibits a significant level of randomness, making it challenging to
achieve consistent reproducibility in results and trends. The outcomes vary, including
instances of early convergence, late convergence, and occasional non-convergence.
The performance of the trained model ranges from very good to poor, with the latter
being an infrequent occurrence.

Early convergence:

Fig. 5.5 (a): DQN Training Performance: example of early convergence

non-convergence:

Fig. 5.5 (b): DQN Training Performance: example of non-convergence

6. Correlation Between Average Reward and Total Reward:
The average reward of the trained agent is closely correlated with and reflective of
the total reward achieved before the training concludes. This correlation underscores

107

the significance of the total reward as a crucial metric for evaluating the agent's
training, indicating its capacity to achieve satisfactory performance. See 5.3.1.1.

5.3 DQN Variations
In this subsection, an array of variations is applied to the previously implemented
DQN for the CartPole environment. The impact of these variations on the learning
curve and overall performance is empirically examined. These variations include
convergence criteria, loss functions, optimizers, target network update, neural
network architecture, gradient clipping, hyperparameter tuning, and replay memory.

It is important to note that, due to the inherent randomness in the experiment,
achieving consistent reproducibility in results and trends proves challenging. Hence,
the subsequent analysis considers this challenge and provides a generalized
evaluation of the variations.

5.3.1.1 Convergence Criteria
- Variant 1: All Episodes played
- Variant 2: Maximum rewards over a specified number of consecutive

episodes
Utilizing Variant 1 implies that the training process continues until the agent has
experienced all episodes, ensuring a comprehensive exploration of the environment.
This may lead to a more exhaustive learning process.

Variant 2 is considered to be a more targeted approach. This method not only
reduces the training duration, but also minimizes the risk of overwriting better model
weights with potentially misleading data. However, it's important to note that Variant
2 comes with a potential risk of premature convergence when the maximum reward
is quickly reached. This may expose the agent to a significant amount of unseen
data, posing a challenge for robust generalization.

Fig. 5.6: DQN Training Performance: all 1000 episodes played

The DQN agent exhibits poor performance after training (average reward = 13.99 out
of 500) because the network weights are far from optimal values. Alternatively, the
agent could halt the training process at episode 807, where the mean last 50
rewards surpass the threshold of 400 rewards, potentially updating the model to
achieve significantly better performance.

108

5.3.1.2 Optimizers
- Variant 1: Root Mean Square Propagation (RMSprop)
- Variant 2: Adaptive Moment Estimation (Adam)

Optimization algorithms are briefly explained in 3.3.3. The most commonly used
optimizers in backpropagation process of neural networks include Gradient Descent,
Stochastic Gradient Descent (SGD), AdaGrad, RMSProp, and Adam [37]. RMSProp
(Tieleman & Hinton, 2012; Graves, 2013), and Adam (Kingma & Ba, 2015) are
considered to be advanced variants of optimizers as they adaptively adjust the
learning rate and incorporate momentum—exponentially weighted averages of past
gradients—into their optimization algorithms [38].

The advantage of RMSProp is that it reduces oscillations, enabling the potential for
higher learning rates or larger algorithm steps, which aids in convergence [39].
However, very large step sizes in RMSProp can be disadvantageous and often lead
to divergence [40]. Adam is known for its fast convergence and robustness to
different types of datasets and architectures. It demonstrates better convergence
than other methods [40].

Readers interested in a detailed explanation of both algorithms can refer to relevant
sources.

Code Snippet to select an optimizer variation:

TODO variation of agent optimizer
Instantiate the optimizers with learning rate
SGD optimizer
optimizer_sgd = optim.SGD(agent.policy_net.parameters(), lr=LearningRate)
Adam optimizer
optimizer_adam = optim.Adam(agent.policy_net.parameters(), lr=LearningRate)
RMSprop optimizer
optimizer_rmsprop = optim.RMSprop(agent.policy_net.parameters(), lr=LearningRate)
choose which optimizer to use
agent.optimizer = optimizer_sgd
agent.optimizer = optimizer_adam
agent.optimizer = optimizer_rmsprop

Empirical experimentation with the DQN Agent using LR = 0.001 and LR = 0.0025
(figures 5.7 and 5.8) shows that the Adam optimizer exhibits a faster convergence
behaviour.

In both cases, Adam converges faster, with LR = 1e-4 and LR = 25e-4, and its model
evaluation demonstrates good results. Increasing the learning rate to 25e-4 (25
times larger) results in divergence for DQN when using the RMSProp optimizer, as
demonstrated in the 2nd plot in Figure 5.8.

109

Fig. 5.7: DQN Training Performance: Optimization ADAM vs RMSProp; LR = 0.0001

Fig. 5.8: DQN Training Performance: Optimization ADAM vs RMSProp; LR = 25 e^-4

5.3.1.3 Target Network Update
- Variant 1: Hard update
- Variant 2: Soft update

110

In DQN (Deep Q-Network) training, the target network is employed at each time step
to estimate the expected action-state values. Continuous updates to the target
network are crucial for effective learning. Two prominent paradigms for updating the
target network are soft updates and hard updates, each providing distinct strategies
for synchronization with the policy network.

In their original work, DQN inventors - Minh et al. - applied a hard-update mechanism
every c steps to the target network [9]. See section 4.6.1. The hard update
mechanism copies the complete parameter set of the policy network to the target
network. In the current implementation, TAU_hardUpdate represents the frequency
of hard updates, meaning a hard update occurs every TAU_hardUpdate episodes.

In contrast, soft-update mechanism, proposed by Timothy P. Lillicrap, et al, blends
the parameters (θ) of the policy network (agent.policy_net) into the parameters of the
target network (agent.target_net) represented by θ’ in every time-step [41]. This
blending is controlled by the hyperparameter τ as follows:

𝜃ᇱ ← 𝜏𝜃 + (1 − 𝜏)𝜃ᇱ; with τ ≪ 1. (5.3.1)

Code snippet for soft / hard target network update:

TODO soft or hard update of target network
Soft update of the target network's weights
Var.1 Soft update
θ′ ← τ θ + (1 −τ)θ′
target_net_state_dict = agent.target_net.state_dict()
policy_net_state_dict = agent.policy_net.state_dict()
for key in policy_net_state_dict:
target_net_state_dict[key] = policy_net_state_dict[key] * TAU_softUpdate +
target_net_state_dict[key] * (1 - TAU_softUpdate)
agent.target_net.load_state_dict(target_net_state_dict)
Var. 2 Hard update
if episode % TAU_hardUpdate == 0:
 agent.target_net.load_state_dict(agent.policy_net.state_dict())

The authors in [42] argue that their soft-update mechanism significantly enhances
training stability, and they assert that any potential sluggishness in training is
negligible. In our experiments, while acknowledging the inherent randomness in
results, a similar trend was observed (see Figure 5.9): (a) hard-update, (b) soft-
update. Additionally, it was observed that the hard-update variation is more sensitive
to hyperparameters.

111

Fig. 5.9: DQN Training Performance: Target Network update. (a) hard-update, (b) soft-update

5.3.1.4 Gradient Clipping
- Variant 1: Without gradient clipping
- Variant 2: With gradient clipping (moderate, intense)

In DQN algorithm proposed by Mnih et al., the clipping of the temporal difference
(TD) error, which is used to calculate the loss, is recommended. The clipping is
typically applied to ensure that the magnitude of the TD error remains within a
certain range, often between -1 and 1 [9]. This helps to mitigate issues related to the
instability of training that may arise from large TD errors. They also suggested the
clipping of rewards to limit the impact of extreme values on the learning process.

Clipping of the gradient is considered good practice in various DQN variants, such as
[4], aiming to restrict aggressive gradient updates. While large gradients might
contribute to faster adaptation in the training process, they pose a potential risk of
instability.

Code snippet to apply gradient clipping:

Optimize the model
agent.optimizer.zero_grad()
loss.backward()
TODO with or without gradient clipping
In-place gradient clipping
torch.nn.utils.clip_grad_value_(agent.policy_net.parameters(), 40)
agent.optimizer.step()

112

Fig. 5.10: DQN Training Performance: Gradient Clipping. (a) w/o (b) with moderate Gradient
Clipping, (c) with intense Gradient Clipping

In the experimentation, the application of gradient clipping is observed to have a
favourable impact on the stability of training, as evidenced by Figure 5.10 (b) and (c).
However, this positive effect comes at the cost of a slower or non-convergent
training process. Notably, in scenario (a), where gradient clipping is not applied, the
training speed is faster, and the average reward successfully reaches the 400 level.

5.3.1.5 Neural Network Architecture
- Variant 1: with Neural Network Initialization
- Variant 2: with Batch Normalization Layers
- Variant 3: Reducing Number of hidden layer from 3 to 2

Neural Network Initialization

113

It has long been known that initialization of neural networks plays a crucial role in
determining the success of training. Inadequate or non-optimized initialization can
lead to issues such as the vanishing gradient problem, where the gradients during
backpropagation become extremely small, hindering the learning process. This
challenge is discussed in detail in Section 2.6, emphasizing its impact on the
convergence and effectiveness of neural networks.

To address initialization challenges, researchers have proposed various techniques,
and one notable advancement is He initialization, introduced by Kaiming He et al. He
initialization is specifically designed for rectified linear units (ReLUs) [42], which is
used activation function in our neural network.

Code snippet to initialized the neural network with He method:

def weights_init_he(m):
 if isinstance(m, nn.Linear):
 nn.init.kaiming_uniform_(m.weight.data, nonlinearity='relu')
 if m.bias is not None:
 nn.init.constant_(m.bias.data, 0)
class DQNAgent:
…….
 self.policy_net = DQN(input_size, output_size)
 self.policy_net.apply(weights_init_he) # Apply He initialization
 self.target_net = DQN(input_size, output_size)
 self._hard_update_target_net()

Fig. 5.11: DQN Training Performance: Effect of Neural Network Initialization

After applying the He Initialization scheme, a positive effect on the total reward
(green plot shifted upwards) was observed. Notably, after the exploration phase (see
Decayed Epsilon (AX2) in Figure 5.3), the neural network with this initialization
exhibits a rapid increase in total rewards.

Batch Normalization

Training Neural Networks is challenging due to the dynamic input distribution across
layers during training. This necessitates lower learning rates and meticulous
parameter initialization. In 2015, Google researchers (Ioffe and Szegedy) introduced
an innovative approach to enhance the training speed of feed-forward and
convolutional neural networks through batch normalization (BN), allowing for a
significant increase in the learning rate [43]. Batch normalization in training neural
networks involves normalizing the output of layers before they are fed into the

114

subsequent layer. One common normalization approach is adjusting each input
variable to have a zero mean and unit variance [1].

A batch normalization layer is commonly positioned between the fully
connected/convolution layer and its associated activation function.

Code snippet to add Batch Normalization to the network:

Step 2: Define the DQN model
class DQN_BN(nn.Module):
 def __init__(self, n_observations, n_actions):
 super(DQN, self).__init__()
 self.layer1 = nn.Linear(n_observations, 32)
 self.batch_norm1 = nn.BatchNorm1d(32)
 self.layer2 = nn.Linear(32, 64)
 self.batch_norm2 = nn.BatchNorm1d(64)
 self.layer3 = nn.Linear(64, 128)
 self.batch_norm3 = nn.BatchNorm1d(128)
 self.out = nn.Linear(128, n_actions)

 def forward(self, x):
 x = F.relu(self.batch_norm1(self.layer1(x)))
 x = F.relu(self.batch_norm2(self.layer2(x)))
 x = F.relu(self.batch_norm3(self.layer3(x)))
 return self.out(x)

After implementing batch normalization, the experiment did not exhibit improvement;
rather, it posed challenges for the DQN agent to converge and attain a satisfactory
level of rewards. Despite extensive efforts and thorough adjustment of
hyperparameters such as the learning rate, we encountered challenges in achieving
success in our experimentation. While batch normalization is considered
advantageous for training of neural networks, the lack of success in the experiments
may be attributed to our implementation and not proper use of the PyTorch library.

Number of hidden layer

Varying the number of hidden layers can impact the agent's ability to capture
complex relationships in the data, with deeper architectures potentially learning more
complex features. Different methods, such as those outlined in [44], aim to
standardize the selection of the optimal number of hidden layers for neural networks.
However, it's essential to note that the optimal number of hidden layers depends on
the objective of the application. Researchers in [45] explored how varying the
number of hidden layers affects the efficiency of neural networks in terms of time
complexity and accuracy. Their findings indicate that employing a large number of
hidden layers can slow down the training process, and unnecessary increases in
neurons or layers may lead to overfitting issues. Nevertheless, if model accuracy is a
priority, selection of a larger number of hidden layers is considered more suitable.

In this experiment, the number of hidden layers in the Policy and Target networks is
reduced from 3 layers to 2 layers by removing the last hidden layer in the current
implementation.

Code snippet to reduce the number of hidden layers from 3 to 2:

class DQN(nn.Module):
 def __init__(self, n_observations, n_actions):

115

 super(DQN, self).__init__()
 self.layer1 = nn.Linear(n_observations, 32)
 self.layer2 = nn.Linear(32, 64)
 #self.layer3 = nn.Linear(64, 128)
 self.out = nn.Linear(64, n_actions)

 # Returns tensor([[left0exp,right0exp]...]).
 def forward(self, x):
 x = F.relu(self.layer1(x))
 x = F.relu(self.layer2(x))
 #x = F.relu(self.layer3(x))
 return self.out(x)

Fig. 5.12: DQN Training Performance: Policy/Target Networks with 2 hidden layers

The decrease in model accuracy is evident in Figure 4.18 when using only 2 hidden
layers, as the agent fails to achieve the maximum reward (500, orange plot) in many
episodes, unlike its performance with 3 hidden layers.

5.3.1.6 Hyperparameter Tuning
- Variant 1: higher and lower Learning rates
- Variant 2: lower Gamma Discounting

In Section 3.3.2 of this dissertation, which delves into the influential role of the
learning rate (η) in neural network training, it is emphasized that tuning the learning
rate influences the step size during optimization and significantly affects the speed
and outcome of the training process. A lower learning rate enhances precision during
training, allowing for meticulous weight adjustments. Conversely, higher learning
rates may risk overlooking optimal weight settings.

The learning rate in this implementation has been fixed at a predefined value of LR =
0.0001. Figure 5.13 a, b, and c present experiments conducted with higher learning
rates—0.01, 0.001, and 0.0008, respectively. These rates are 100, 10, and 8 times
larger than our predefined LR. Additionally, Figure 5.13 (d) represents LR = 0.00005,
which is half of our predefined LR, demonstrating the impact of a lower learning rate
on training dynamics.

Despite their higher step sizes, agents with elevated learning rates (a) and (b)
struggle to efficiently update network weights and fail to achieve high rewards within
1000 episodes. This leads to evident training instability, resulting in consistently low
performance of the trained model. On the other hand, the agent with LR = 0.0008 (c)
performs better, converging at episode 671. However, repeated experiments at this

116

learning rate revealed a potential risk of premature convergence, leading to
suboptimal performance after training.

The agent with LR = 0.00005, half of the predefined LR, understandably takes more
time to offset smaller rewards given its reduced step size. However, no substantial
improvement in performance accuracy was observed with this lower learning rate.

117

Fig. 5.13: DQN Training Performance: impact of Learning rate on training. (a) LR = 0.01, (b) LR
= 0.001, (c) LR = 0.0008, (d) LR = 0.00005

The discount factor (gamma) in reinforcement learning plays a crucial role as a
hyperparameter, influencing how an agent values future rewards. It directly affects
the trade-off between immediate and future rewards in the agent's decision-making
process. As evident in formula 4.1.6 (section 4.3.1), this factor, ranging from 0 to 1,
determines the weight assigned to previous rewards. A higher gamma emphasizes
long-term consequences, encouraging actions that lead to greater cumulative
rewards, while a lower gamma reduces the impact of future rewards, focusing more
on immediate rewards.

The choice of the discount factor (gamma) depends on the specific characteristics of
the environment and the task. In this implementation, gamma is fixed at a predefined
value of 0.999 (almost 1). Adjusting gamma to lower values (0.9 and 0.5) allows
tailoring the agent's behaviour to prioritize immediate rewards more than previous
rewards.

118

Fig. 5.14: DQN Training Performance: impact of Discount factor on training. (a) gamma = 0.9,
(b) LR = 0.05

 Repeated iterations prioritizing immediate rewards with gamma set to 0.9
demonstrate a robust progressive trend. The DQN agent continuously learns and
exhibits better performance than with gamma = 0.99 (Figure 5.14 a). Further
reducing the discount factor to 0.5 devalues previous rewards, leading to increased
training instability, and the agent struggles to converge and achieve higher levels of
reward. (Figure 5.14 b)

5.3.1.7 Replay Memory:
- Variant 1: smaller Batch size
- Variant 2: smaller Size of the replay memory

Batch size

The intuition behind employing a randomly selected batch of past experiences in
DQN and its decorrelation effect on training stability were elaborated in section 4.6.1.
A reduction in batch size in DQN worsens the correlation between consecutive
experiences, leading to a higher dependency that impairs the learning process and
negatively impacts the model's generalization ability, thereby hindering overall DQN
performance. See Figure 5.15.

Fig. 5.15: DQN Training Performance: mini-batch size reduction from 256 to 56 samples

A larger batch size, on the other hand, can be computationally expensive due to the
increased computational workload in processing a higher amount of batch data
during both the forward and backward passes in each training iteration.

119

Replay memory

The latest experiences of the DQN agent are added to the end of the replay memory.

When the memory reaches its maximum capacity (replayMem_size = 10000), new
data will overwrite the oldest data in the memory (A circular buffer behaviour).

Reducing the replay memory size in a DQN implementation limits the total number of
experiences retained by the agent for sampling in the mini-batch. It can negatively
impact the diversity of experiences available for learning, potentially affecting the
agent's ability to effectively generalize from past interactions.

In our experiments, reducing the size of the replay memory from 10k to 5k and even
to 2k and 1k did not result in any noticeable negative impact on training dynamics
and agent performance. This could be attributed to the inherent simplicity and
efficiency of the CartPole task, which may not necessitate a larger replay memory to
adequately capture a diverse set of experiences for effective learning.

5.4 Conclusion
Various configurations and strategies in training Deep Q-Networks (DQN) for the
CartPole environment has been explored. Our experimentation covered diverse
aspects, including convergence criteria, optimizers, target network update
mechanisms, neural network architecture variations, gradient clipping,
hyperparameter tuning, and replay memory considerations.

Key Findings:

Mitigating Experiment Randomness: To address the inherent randomness in the
experiments, multiple iterations were conducted, ensuring the reliability and
consistency of results. This approach establishes a robust foundation for drawing
meaningful conclusions from the observed variations.

Algorithm Sophistication: Winning all episodes consistently often demands
sophisticated algorithms, nuanced training approaches, and carefully designed
architectures. Tweaking hyperparameters requires practical experience to achieve
optimal results, and identifying training issues is a challenging task that necessitates
intensive hands-on work.

Comparison with DeepMind's Approach: In a comparative context, it reveals that
DeepMind's training of DQN for Atari 2600 games involve extensive experience
totalling 50 million frames, a replay memory of 1 million most recent frames, and
specific hyperparameter settings. Such benchmarks provide a reference point for the
complexity and resources required in training sophisticated models.

Exploring Training Dynamics: For a deeper analysis of training dynamics and
insights into weight updates in neural networks, it is crucial to examine Q-values and
the gradient of the loss function. However, it's important to note that this aspect was
beyond the scope of the current experimentation.

Hyperparameter Sensitivity: DQN training exhibits extreme sensitivity to
hyperparameters and variations. While tweaking hyperparameters may positively

120

impact certain aspects of training, it can simultaneously introduce negligible negative
impacts on other facets. Maintaining a subtle equilibrium is a nuanced and continual
challenge.

Future Directions:

The results of the experiments can be used for future investigations. Potential
variations could include exploring different neural network types, experimenting with
alternative loss functions, adopting diverse action selection strategies (e.g.,
Thompson sampling or Upper confidence bound (UCB) methods), and implementing
learning rate annealing. Learning rate annealing, specifically, could enhance the fine-
tuning of the learning process over time.

121

6 Chapter 6 - Safety Framework for ADAS Systems – Deep
Neural Network Classifiers

6.1 Introduction
This chapter aims to provide a framework for mitigating safety risks associated with
the integration of state-of-the-art deep neural network (DNN) classifiers within
Advanced Driver Assistance System (ADAS) systems. Additionally, it proposes
actionable measures to ensure compliance with automotive safety standards set by
the International Organization for Standardization, including ISO 26262, Safety of the
Intended Functionality (SOTIF) ISO 21448, and ISO Publicly Available Specification
8800.

It introduces an innovative comparative analysis, contrasting DNN classifiers with the
obligatory prerequisites of automotive safety standards. The objective is to address
the gaps and propose practical measures for enhancement.

After presenting a short overview of ADAS systems,5 levels of autonomous driving,
and automotive safety standards such as ISO26262 and SOTIF 21448, a review of
influential papers in this field is conducted.

Subsequently, a safety framework for DNN classifiers is introduced. It involves the
identification of safety risks across the design, development, and implementation
lifecycle, as well as the proposal of instrumental solutions for risk mitigation and
compliance with the safety standards.

By presenting this comprehensive safety framework and proposing practical
solutions, it contributes to a better estimation of unresolved remaining risks in the
deployment of DNN solutions in ADAS systems.

122

6.2 Overview of Advanced Driver Assistance Systems (ADAS) in
Automotive

Autonomous driving has become one of the most important topics of research and
development in the automotive industry in recent years. Advanced Driver Assistance
Systems (ADAS) are the foundation for autonomous vehicles and are designed to
provide drivers with enhanced safety, comfort, and convenience, as well as reduce
the overall risk of accidents. ADAS encompass a wide range of features, including
lane keeping systems, adaptive cruise control, blind spot detection, emergency
braking, obstacle detection, and predictive navigation [1].

The challenge is to develop ADAS technologies that are robust and reliable enough
to safely handle complex driving scenarios [2].

For highly automated driving vehicles ADAS systems must integrate a large number
of intricate sensing components, from radar to optical sensors such as camera and
LIDAR sensors, with sophisticated algorithms in order to detect and respond to any
potential road hazards. This makes the development of ADAS systems challenging
for OEMs (Original Equipment Manufacturers) [2].

Furthermore, the development and deployment of ADAS systems require an
additional layer of design, namely the Operation Design Domain (ODD), which
defines the operational context of the system [3] in terms of boundaries and
constraints and its features.

The OEMs continue to face the challenge of developing reliable and cost-effective
systems that accurately detect and respond to any potential dangers on the road.
Despite the challenges, ADAS systems have become increasingly important to the
automotive industry, as they are seen as a critical step towards achieving full
autonomy. As the industry continues to focus on developing more sophisticated
systems, it is expected that more advanced technologies, such as artificial
intelligence and machine learning, will be incorporated into the design of these
systems [3].

Car manufacturers continue to face intensive challenges to develop safe and cost-
effective systems that can -in real time and under all circumstances- detect and
respond to any potential dangers on the road. In addition to the technological
challenges, OEMs must also contend with the various regulatory and safety
requirements that must be met for ADAS systems to be used in production vehicles.

6.2.1 ADAS Sensor Technologies

6.2.1.1 Long-range Front or near-range Corner Radar
Radar sensors play a crucial role in Advanced Driver Assistance Systems (ADAS)
and highly automated driving systems. These sensors use radio waves to detect the
presence and location of objects and pedestrians around the vehicle within a long-
range distance and an extensive field of view, ensuring comprehensive and precise
object detection in the vehicle's surroundings. In the example provided in Figure 6.1,
the radar sensor operates at a frequency range of 77 to 81 GHz, and exhibits an
impressive detection range of up to 391 meters, coupled with a broad field of view
covering +/-60 degrees horizontally and +/-15 degrees vertically.

123

Radar sensors in automotive are robust against many environmental factors,
including adverse weather conditions, low visibility scenarios, and interference from
other electronic devices. Radar sensors have extensive applicability in various ADAS
functions, including Automatic Emergency Braking (AEB), Adaptive Cruise Control
(ACC), Blind Spot Detection, and more.

Fig. 6.1: Technical Specification of a Long Range Radar ECU (source: https://www.bosch-
mobility.com/)

6.2.1.2 Camera sensors
Camera sensors are integral components in ADAS and highly automated driving
systems, playing a crucial role in enhancing vehicle perception. These sensors
employ optical technology to capture visual information, enabling the detection of
stationary and moving objects, lane markings, traffic signs, and pedestrians in the
vehicle's vicinity.

In the example depicted in Figure 6.2, the camera sensor features a field of view of
+/-50 degrees horizontally and 21 to 27 degrees vertically, with a resolution of 2.6
megapixels. This high resolution allows for detailed and accurate image processing,
contributing to the precision of object recognition and scene interpretation.

Operating within the visible spectrum, camera sensors excel in recognizing traffic
signs, classifying objects, and capturing intricate details of the road environment.

Camera sensors have extensive applicability in various ADAS functions, including
Automatic Emergency Braking (AEB), Adaptive Cruise Control (ACC), Lane Keeping
Assist System (LKAS), Traffic Sign Recognition (TSR), and more

124

Fig. 6.2: Technical Specification of a Multi-Purpose Camera ECU (source: https://www.bosch-
mobility.com/)

6.2.1.3 LIDAR
LIDAR (Light Detection and Ranging) sensors are integral components in ADAS
Systems, contributing to enhanced vehicle perception and safety. Operating on the
principle of emitting laser beams and measuring their reflections, LIDAR sensors
accurately map the surrounding environment in three dimensions.

6.2.1.4 ADAS Fusion ECU
The ADAS Fusion Electronic Control Unit (ECU) is at the forefront of advanced
automotive technology, integrating data from various sensor types through sensor
fusion. Through sensor fusion, this ECU combines information from diverse sensors,
employing sophisticated software algorithms to create a highly comprehensive and
accurate environmental model. By merging inputs from cameras, radar, LIDAR, and
other sensors, and utilizing powerful algorithms to handle this big amount of data the
ADAS Fusion ECU generates a comprehensive and accurate representation of the
vehicle's surroundings.

Additionally, the redundancy provided by multiple sensors contributes to an extra
layer of reliability. For instance, in scenarios of impaired visibility, where cameras
may falter, the ADAS fusion ECU leverages data from other sensor types to
compensate for these weaknesses.

This redundancy is a critical feature that further solidifies the ADAS Fusion ECU's
role in advancing the safety and efficiency of modern automotive technologies.

The ability of the ADAS fusion ECU to access data from various sensors ensures a
continuous and reliable flow of information and significantly enhances the safety of
ADAS and autonomous driving systems. Figure 6.3 presents an example of ADAS
fusion ECU system.

125

Fig. 6.3: Technical Specification of a Central ADAS fusion ECU (source: https://www.bosch-
mobility.com/)

6.2.2 ADAS Functions
ADAS systems offer a wide range of functions contributing to the comfort and safety
of driving in modern automotive technology. In this section, three key functions—
Automatic Emergency Braking (AEB), Adaptive Cruise Control (ACC), and Lane
Keeping Assist System (LKAS)—are briefly explained.

Automatic Emergency Braking (AEB)

Automatic Emergency Braking (AEB) is a sophisticated driver assistance feature
aimed at elevating vehicle safety. This technology employs a network of sensors,
such as radar and cameras, to monitor the surroundings for potential collision
threats. When a potential collision is detected, AEB autonomously applies the
brakes, mitigating or even preventing the impact. This vital Advanced Driver
Assistance System (ADAS) significantly enhances the overall safety of the vehicle by
providing an additional layer of protection against potential accidents.

Adaptive Cruise Control (ACC)

Adaptive Cruise Control (ACC) is a cutting-edge technology within the realm of
ADAS that optimizes driving comfort and safety. Using a combination of sensors,
including radar and cameras, ACC maintains a set speed while also adjusting the
vehicle's speed based on the distance to the vehicle ahead. This intelligent system
not only enhances convenience during highway driving but also contributes to overall
road safety by automatically adjusting the vehicle's speed to maintain a safe
following distance.

Lane Keeping Assistant (LKAS)

Lane Keeping Assist System (LKAS) is an advanced driver assistance technology
designed to enhance vehicle safety and stability. Utilizing a combination of cameras
and other Advanced Driver Assistance Systems (ADAS) sensors, LKAS is

126

engineered to detect lane markings on the road. Once engaged, this system actively
intervenes by steering the vehicle, ensuring it remains cantered within the
designated lane. LKAS is considered a function of highly autonomous driving at AD
Level 3 contributing to the safety of automated driving.

6.2.2.1 Summary of Safety Critical Hazards
Table 6.1 presents a list of safety hazards associated with ADAS functions: AEB,
ACC, and LKAS.18

ADAS Function Hazard

AEB Unintended Braking in non-critical situations
Intended but too weak/strong/late deceleration
Undetected obstacle in the vehicle's path
Complete or partial Loss of braking power

ACC Unintended activation of the function
Too high or low vehicle deceleration/ acceleration
Unintended modification of set speed
Not taking over driver’s command to override the set speed

LKAS Oversteering
Understeering
Misdetection or non-detection of lane markings
Unintended deactivation of the function

Table 6.1: A list of safety hazards with respect to ADAS functions: AEB, ACC, and LKAS

6.2.3 Machine learning solution in ADAS systems
In recent years, there has been a significant surge in the adoption of advanced
technologies, including machine learning (ML) and artificial intelligence (AI), within
the automotive industry [11]. While these advancements hold great promise, their
integration necessitates a careful consideration of safety concerns. The application
of machine learning in ADAS systems, encompassing perception and computer
vision, has transformed the vehicle's awareness of its surroundings. This section
explores the evolving landscape of machine learning solutions in ADAS, shedding
light on their potential benefits and the imperative need for a nuanced approach to
safety within this rapidly advancing technological domain.

Machine learning (ML) and artificial intelligence (AI) can significantly increase road
safety and traffic productivity through the exploitation of advanced driver assistance
systems (ADAS). These technologies enable vehicles to train from vast amounts of
data and make complex decisions in real time, allowing them to expect and respond
to various driving scenarios more adequately. However, the integration of ML and AI
also introduces new safety concerns and challenges that must be addressed
carefully. A deep understanding of the possible risks and strict adherence to safety
standards is essential for ensuring the safe and reliable operation of such systems.

Researchers and practitioners are working on new safety standards that specifically
address how ML and AI will be utilized in the automotive industry in order to
overcome these challenges.

18 This information is provided for general reference and is not intended to be exhaustive or comprehensive.

127

6.3 SAE Levels of Autonomous Driving
ADAS systems are typically classified into different levels according to the Society of
Automotive Engineers (SAE) International level of automation scale [4]. These levels
range from level 0, which is no automation, to level 5, which is full automation.
Automation levels 1 and 2 typically involve driver assistance systems such as
Adaptive Cruise Control or Lane Keeping Assist, while levels 3 and 4 are able to take
over most of the driving tasks and involve partial automation, and level 5 represents
full automation. See Table 6.2.

Level 0 No Automation
The driver is completely in control of the vehicle and all its functions.

Level 1 Driver Assistance
Certain functions of the vehicle are automated in specific situations, such as
adaptive cruise control and lane centring.

Level 2 Partial Automation
vehicle executes acceleration and braking, while the human driver is
responsible for steering.

Level 3 Conditional Automation
Vehicle is capable of performing all dynamic driving tasks, but the human driver
must be ready to take control when the system requests it.

Level 4 High Automation
Vehicle performs all dynamic driving tasks without the human driver. It will warn
the driver when it nears its operational limits. If the driver does not react, then it
brings the vehicle to a safe condition.

Level 5 Full Driving Automation
Vehicle monitors the driving surroundings without the human driver and
performs all dynamic driving tasks autonomously.

Table 6.2: SAE’s Autonomous Driving Levels

The automotive industry is quickly moving towards level 5 automation, and it is
expected that by 2030, the automotive industry will move towards level 4 and 5
automations [5].

6.4 Driving Scenarios
To gain a deeper understanding of the diverse challenges that autonomous driving
and ADAS system may face, some of the driving scenarios are elaborated here:

Highway: highway driving consists of long stretches of well-maintained roads with
high-speed traffic. Using long-range sensors (e.g., Radar), vehicles in this
environment must maintain a constant high speed, change lanes, and respond to
occasional traffic variations such as slowing down or overtaking vehicles.

Parking Lot: Parking lot scenarios include manoeuvring at low speed through tight
spaces, avoiding obstacles, and precise parking using high-precision and near-range
sensors.

Off-Road: Off-road driving means driving on rough and unpaved roads covered with
dirt or mud. ADAS systems must adapt to these unpredictable conditions to offer
robust off-road vehicle control and obstacle detection.

128

Stop and Go: Complex traffic patterns, frequent stops, and variable speeds
characterize city driving scenarios. ADAS systems must manage congestion,
navigate tight streets, and handle stop-and-go traffic, ensuring passenger safety and
efficient navigation.

Intersections and Roundabouts: Roundabouts are circular intersections where
vehicles must yield and merge. In navigating roundabouts, ADAS systems rely on
both front sensors as well as side and rear sensors to detect and respond to colliding
traffic and to ensure safe navigation.

6.5 Automotive Safety Standards
In the automotive industry, safety is of utmost importance. To ensure the safety of
road users and pedestrians, the International Organization for Standardization (ISO)
and the Special Interest Group for automotive safety have released safety standards
ISO26262 and ISO21448-SOTIF- [6].

These standards have been in place for a while now but they have evolved over time
to take into account the ever-changing demands of the automotive industry.

6.5.1 International Organization for Standardization (ISO) 26262
ISO 26262 is a normative guideline that provides a framework for the entire
development process of electrical and/or electronic systems that are installed in road
vehicles. It outlines specific approaches to identify and assess hazards related to
systematic failures as well as random Hardware (HW) malfunctions, and how to
mitigate the impact of the risks within the framework of the product lifecycle. This
includes the design, implementation, validation, and verification of safety-related
systems. ISO 26262 offers a comprehensive approach to the development of safety-
related systems, helping engineers to identify and reduce risks throughout the entire
development process.

6.5.2 SOTIF 21448
The ISO 21448 - Road vehicles — Safety of the intended functionality (SOTIF)
standard is a newer automotive safety standard and was released in 2019 as an
extension of ISO26262, aiming to address risks that are not covered by the original
standard. It provides guidance on how to ensure the safety of road vehicles when
they perform their intended functions without faults [7]. The standard focuses on
preventing unreasonable risks that may arise from functional limitations of the
intended functions or performance insufficiency of the system or from predictable
misuse by people or any environmental influences [8].

Some key aspects of the SOTIF standard are:

• The definition of intended function and malfunction.

• The identification and assessment of SOTIF scenarios and risks.

• The establishment of requirements and validation strategies for SOTIF.

• The documentation and traceability of the SOTIF process.

129

SOTIF validation strategy considers two types of hazards: known area hazards and
unknown area hazards. Known area refers to the set of scenarios where the
system’s behaviour is well-defined and predictable. Unknown hazard area refers to
the set of scenarios where the system’s behaviour is uncertain or unexpected due to
unforeseen situations or limitations [9].

For example, a lane keep assist function may work well in a known area where the
road markings are clear and visible, but it may fail in an unknown hazard area where
the road markings are faded or covered by snow [9]

SOTIF validation aims to identify and mitigate potential hazards in both known and
unknown areas by applying various methods such as functional specification,
functional hazard analysis, risk assessment, verification and validation [10]

6.5.3 ISO PAS 8800
Inadequacy of ISO26262 and SOTIF standards for Automated driving and ML
solutions

The ISO 26262 and 21448 (SOTIF) standards have been widely adopted in the
automotive industry for developing safety-critical systems. However, when it comes
to the development of Machine Learning (ML) solutions and autonomous driving,
these standards are inadequate.

This inadequacy is due to the fact that these standards are designed for
deterministic systems and not for ML applications with stochastic behaviour [12].
Furthermore, due to the unpredictable nature of ML and autonomous driving, it is
difficult to ensure safety in these systems using the existing safety standards [13].
Thus, it is important to develop safety standards that are specific to ML and
autonomous driving.

ISO PAS 8800 Road Vehicles – Safety and Artificial Intelligence [14] -drafted in
2022- is a publicly available specification for the safety assurance of automated
driving systems, providing compliance guidance on various aspects of safety
assurance for automated driving systems. These include safety requirements, safety
management, validation, and verification methods. It is intended to be used in
combination with existing safety standards, such as ISO 26262 and SOTIF, to
ensure the safety and reliability of automated driving systems.

Overall, the combination of these safety standards is essential to ensure the safety
and reliability of ML solutions in the automotive industry. They provide a common
framework for the development process of ML solutions, as well as guidance on how
to ensure safety and reliability in the development of autonomous driving systems.

ISO PAS 8800 is a proposed standard for road vehicles that define safety-related
properties and risk factors impacting the insufficient performance and malfunctioning
behaviour of artificial intelligence (AI) within a road vehicle context [14]. It is currently
under development by ISO/TC 22/SC 32/WG 14 “Safety and Artificial Intelligence”
and is expected to be published in 2023[15].

130

The motivation for developing ISO PAS 8800 is to address the challenges and gaps
that arise from applying AI systems in road vehicles, such as perception, decision-
making, learning, adaptation, etc.

ISO PAS 8800 aims to establish a common approach for developing and testing AI
systems that are used in road vehicles [16]. It will cover topics such as:

• Derivation of Safety requirements for AI systems

• Conducting Safety analysis methods for AI systems

• Verification and validation methods for AI systems

• Safety assurance cases for AI systems

• Safety management processes for AI systems

131

6.6 Safety Framework for Deep Neural Network (DNN) Classifiers
Deep neural networks (DNNs) are a type of machine learning model that can be
used to solve a variety of tasks, including object classification. In recent years, the
application of DNN classifiers has extended to ADAS functions which are an integral
component of Autonomous Driving systems. DNN enable ADAS functions to not only
detect but also classify the objects in the vehicle's vicinity. Accurate object
classification is necessary for the system to respond appropriately to potential
hazards, providing timely warnings or taking corrective actions. If the autonomous
system inaccurately classifies the drivability of an object or fails to recognize road
markings, it can pose serious safety risks and jeopardizes the lives of people.

The importance of accurate classification in LKA systems is illustrated in figure 6.4.

Fig. 6.4: The significance of accurate object classification for ADAS Lane-Keeping Assistant
systems

The ego vehicle is situated in lane 1, several hundred meters ahead lies a stationary
road closure obstacle. Lane 2 is currently unoccupied, while in lane 3, there is an
approaching vehicle. If the system misclassifies the drivability of these objects or
fails to recognize the road markings, it could result in incorrect lane-keeping
decisions, such as unnecessary lane changes or abrupt braking, potentially leading
to hazardous situations. Hence, in this particular driving context, the precision of
object classification, coupled with road marking identification, remains essential for
the Lane Keeping Assist system (LKAS) to operate safely and efficiently in the
presence of both stationary and moving obstacles.

Before delving into the specifics of our proposed safety framework for deep learning
classifiers, an initial step involves reviewing influential papers in this field.

132

6.6.1 Review of related works
Authors in [17] represent how crucial it is to develop methods for quantifying the risks
related to deep neural networks, especially as they become more prevalent in safety-
critical applications, such as medical diagnosis systems and autonomous vehicles.
They defined a new class of risk metric called “uncertainty example” based on a
probabilistic modelling approach and developed a framework which allows
quantification of both the likelihood and severity of safety-critical metrics in a
computationally effective algorithm. They evaluated the framework on several image
classification tasks and demonstrated its effectiveness in identifying safety risks
associated with specific neural network architectures and training procedures. They
also demonstrate how the framework can be used to guide the design of more robust
and reliable neural network systems. Their work has made a significant contribution
to quantifying safety risk metrics such as robustness, reachability, and uncertainty
metrics in DNNs. However, we believe that Quantitative risk assessment techniques
are often difficult to apply to deep neural networks (DNNs) due to their complex
architectures and a large variety of implementation algorithms. Therefore, a
quantitative computation of safety risk metrics of such DNN networks with a high
number of layers seems to be practically not feasible. Estimating the safety risks of
these networks can be done more effectively by analysing the performance of the
classifier through the metrics of false positives, true positives, false negatives, and
true negatives. Performance measurement can give a repetitive way of examining
the exactness of a classifier and spotting likely hazards in an economical and
immediate fashion.

The DDE process, proposed in the paper [18] offers a systematic V-Model
development process solution to ensure the quality and composition of data sets
used for ML. This process is compliant with the System Processes in Automotive
Engineering (ASPICE) standards, making it easy to integrate into existing
development processes and gain acceptance in automotive engineering. The
motivation of the authors to propose the DDE process is to address the challenges of
developing high-quality machine learning (ML)-based systems in the industry. The
authors recognize that the quality of ML-based systems depends on the quality of
the data used for training, verification and validation tests. They proposed the DDE
process as a systematic and structured approach to ensure that the generated data
sets are of high quality and meet the requirements of the operational design domain
(ODD). Despite its advantages, the DDE process does not cover other aspects of ML
such as model selection or hyperparameter tuning and does not offer a
comprehensive approach to functional safety.

The paper [19] provides an overview of available methods for supporting the safety
argumentation of machine learning solutions in safety-critical systems in accordance
with the ISO26262 safety standard. It identifies open challenges in this area and
argues that the development and certification of safety-critical software using
machine learning (ML) is different from traditional approaches. Since ML models are
data-driven and automated their design, verification, and validation require new
methods. To address this, the authors suggest that ISO 26262-part 6 processes for
software development can be applied, and the main focus must be placed on the

133

requirement engineering, development, verification, and validation parts. Regarding
requirement engineering, the authors emphasize that the incorporation of available
expert knowledge and experience into the formulation of use-case, system, and
function requirements should be expressed in specialized key performance
indicators (KPIs). To provide a proper safety argumentation for the design and
development part, they recommend that domain experts should reason all general
design choices -which are not specified in the requirements- related to NNs model
design and the training objectives. To enhance the robustness of the design, authors
believe that measures such as regularization and training data preparation might be
particularly useful.

The authors in [20] contend that conventional neural networks are generally trained
based on the principle of minimizing the training error without taking into account the

impact of outliers or misclassified samples. This can lead to high risk in real-world
applications, where the cost of misclassification can be noteworthy. To address this
issue, the authors propose a new training algorithm that speculates both the training
error and the risk associated with each sample. The proposed algorithm involves two
steps: first, the neural network is trained using the conventional approach to
minimize the training error. Then, the risk of misclassification for each sample is
calculated and used to adjust the weights of the neural network. This ensures that
the network is less likely to misclassify samples that are associated with higher risk.
The authors [20] evaluate the proposed algorithm on several datasets and
demonstrate that it outperforms conventional neural networks in terms of risk
reduction. The algorithm has proven to be robust against various types of noise and
outliers in the data. Overall, the paper presents a novel approach to pointing risk in
neural network classifiers, which can have remarkable inferences for real-world
applications where the cost of misclassification is high.

134

6.6.2 Risk Factors across Key Steps in DNN Classifier Development
This work introduces an illustration highlighting immediate risk factors and potentially
risky design variations in key stages of DNN design, training, and the implementation
of DNN classifiers within ADAS systems. The identified risks originate from direct
hands-on experiences in the domain, contributing to a distinctive and practical
perspective. See Figure 6.5.

Risk factors are marked in red and design variations are marked in blue.

It is crucial to emphasize that the careful selection of these design variations is
essential to minimize the risk of frequent misclassifications in real-world applications.

The subsequent sections will elaborate on the identified risks and propose methods
and solutions to mitigate the risk and comply with mandatory requirements of safety
standards.

Fig. 6.5: Variations and Risk Factors across Key Steps in DNN Classifier Development

Learning rate, Nr. Iterations, Batch size, …
Development of
DNN Classifiers

Architectural Model
Design of DNN Classifiers

Nr. Hidden layers

Training of DNN Classifiers

Implementation of DNN
Classifiers

Nr. Neurons of each Layer
Type of Hidden Layers
Type of Activation Functions

Size Reduction Layer

Initial values of weights & biases
Type of Loss Function
Type of Learning Optimizer

Training dataset not representative
Overfitting
Gradient Vanishing
Outliers in Training dataset

 Local minimum not global minimum
Python Code
ML Library

Risk Factor
Design Variation

135

6.6.3 Architectural Model Design of Deep Neural Network Classifiers

Fig. 6.6: Architectural components of a Deep Neural Network Classifiers for ADAS functions

An example of a neural network classifier consists of five functional layers: the input,
the hidden layer, the activation function, and the output layer is shown in Figure 6.6.
A DNN classifier may also utilize a size reduction layer, max pooling, and other
elements.

In a practical implementation for ADAS ECUs, such as Radar ECU or Video ECU,
the data acquisition process gathers image data from a camera or extracting object
information (distance, azimuth angle, and radial velocity) from a radar ECU. After
processing raw data and conducting related digital signal processing, the software's
perception algorithms further refine the acquired information, preparing it for the
subsequent classification task.

Neural Network Model:
The network design and architecture should be carefully chosen so that the model
does not over fit or under fit the data. It is critical to note that, as none of the
approaches offers an ideal solution, DNN architects have to trade-off between the
robustness and accuracy of their model and the implementation overheads. In the
context of autonomous driving, ConvNets, with their established success in image
classification, remain a robust choice. Therefore, the selection of the most
appropriate design and architecture largely depends on the specific application and
the resources available.

Input Layer:
The input layer in an ADAS system is responsible for taking in sensory data from
cameras, Lidar, or radar subsystems [21]. In the case of a camera image, the input
layer consists of pixels that are converted into grayscale values. The input layer can
also be used to process radar objects, such as obstacles or other vehicles. In this
case, the input layer takes the raw data from the radar and performs normalization
and feature extraction (the pre-processing steps).

Size Reduction Layer:
The design decisions of DNN architect at this stage include choosing an appropriate
image resolution, colour space, and data format. For radar data, the design
decisions include choosing the appropriate data format and pre-processing

Camera/Radar
Object

Hidden layer

𝒉𝟏 𝒉𝟐 𝒉𝒏𝒃𝒊, 𝒘𝒊𝒋
Sigmoid

TanH

Leaky

ReLU

Softmax

Activation
Function

Output Input

Classified Object

Size reduction layer

136

techniques. If the input layer is too small, the model may not be able to feed
sufficient information to succeeding layers leading to misclassification. On the other
hand, if the input layer is too large, the model may overfit the training data, resulting
in poor classification of new data. The key aspects of the size reduction layer are
compression, resizing, cropping, and scaling. Compression reduces the size of a file
by removing redundant or unnecessary data.
Resizing changes, the dimensions of an image, allowing for changes in the aspect
ratio.
Cropping reduces the size of an image by removing certain segments. Scaling
adjusts the size of an image without changing its aspect ratio. While size reduction
layers can reduce the size of a file, they can also reduce the accuracy and quality of
the image. Compression, in particular, can reduce the detail and clarity of the image.
Additionally, resizing and cropping can cause distortion or blurriness. On the other
hand, scaling can be used to increase the size of an image without sacrificing
accuracy. It is important to carefully consider the accuracy and computational
requirements when selecting a size reduction layer.

Hidden Layer:
The hidden layers are responsible for transforming the input data into a more
meaningful representation. FC layers are prone to overfitting, as they can easily
learn redundant features. Additionally, they often require a lot of parameters to
model the data, which can lead to longer training times. Convolutional layers are
effective for image processing tasks, as they can easily extract features from
images. They are also more efficient than FC layers, as they share weights across
the input, reducing the number of parameters that need to be tuned. However,
convolutional layers are not efficient enough to model relationships between input
and output when they are highly complex. This would be a weakness for safety-
critical tasks. Additionally, they can require significant amounts of training data to
learn useful features.

Activation Function:
There are a variety of activation functions available for use in neural networks, each
with its own strengths and weaknesses. ReLU, Leaky ReLU, sigmoid, Tanh and
softmax are the most widely used activation functions.
ReLU (Rectified Linear Unit) is one of the most widely used activation functions in
deep learning. ReLU has the advantage of being non-saturating and has a non-zero
gradient, which allows for faster training of the network. However, it can suffer from
the “dying ReLU” problem where the neuron’s output is 0 and can no longer be
trained [22].

Leaky ReLU (LReLU) is an extension of ReLU that introduces a negative slope on
the left side of the activation function to alleviate the dying ReLU problem
by allowing for a small positive gradient for negative inputs. However, it can suffer
from
noisy gradients and can be difficult to tune [23].

137

Sigmoid is another popular activation function that has the advantage of introducing
non-linearity into the network and can be used to approximate an arbitrary function.
However, it can suffer from the “vanishing gradient problem” where the gradients
become very small, and the network is unable to learn [24].
Tanh (Hyperbolic Tangent) is similar to the sigmoid function with a single difference
in
that its output ranges between (-1,1). It is smooth and non-linear and has the
advantage of allowing for faster training compared to the sigmoid due to its centred
output. However, it can suffer from the same vanishing gradient problem as the
sigmoid [23].

In this section, the construction components of a typical neural network model have
been introduced, design diversity has been highlighted, and their strengths,
weaknesses, and safety risks have been discussed. The subsequent focus will be on
proposing architectural solutions to minimize risks and presenting systematic
approaches for compliance with automotive safety standards.

Architectural Solutions

Plausibility checks, Degradation strategy, Fusion:
Architects of DNNs can reduce the risk of wrong classifications in their architecture
design by incorporating plausibility checks, degradation, and fusion strategies.
Plausibility checks can help detect outliers and false positives, while degradation
strategies are needed to ensure that the model still performs safely in the face of
various levels of data corruption or perturbations.
Fusion of radar and camera sensors, i.e., associating radar and camera information
[25] in an Advanced Driver Assistance System (ADAS) decomposes the safety load
between available perception sensors and hence can drastically reduce the risk of
misclassification. A comprehensive guideline for data processing and fusion
methodologies for autonomous driving has been proposed in [26]. By combining the
data provided by redundant sensors, the system can take advantage of the
complementary information provided by each to reduce the uncertainty of any given
classification and better identify objects in the environment.

Software safety analysis, Review, Comprehensive documentation of design
decisions:
DNN models are highly complex algorithms, not intuitive for humans, and their output
may not be readily interpretable. Software safety analysis ISO 26262 is the
recommended method and aims to identify and mitigate potential hazards and risks
in software systems. These methods can be applied in a Hazard and Operability
(HAZOP) based cause-effect relationship by identifying the root causes of potential
safety-critical issues arising from these algorithms and implementing measures to
prevent or mitigate their effects. By analysing the potential causes of software
failures and their consequences, safety analysts can develop strategies to improve
the safety and reliability of software systems.
Comprehensive documentation of detailed design decisions is a crucial step when
designing DNN models for autonomous driving to ensure that the model is

138

reproducible and that its performance can be accurately assessed and tracked. This
documentation should include all decisions made during the design process of the
model architecture, the dataset used, the hyperparameters, and the training
procedure
6.6.4 Training of Neural network
The training of Deep Neural Network classifiers involves a process known as
supervised learning, where labelled data are used to train the model using a training
dataset. During this process, the objective is to determine the weighting factors and
biases of the network by iteratively adjusting them to minimize the loss function.

In the training phase the available labelled data is divided into two parts: the training
dataset and the test dataset.

The process involves systematically adjusting the network hyperparameters and
training the model on a training dataset to find the best configuration that minimizes
the loss function. These hyperparameters include learning rates, batch sizes, and
number of learning iterations, among others.

Fig. 6.7: The training process of a DNN network

Figure 6.7 shows the two-phase process of training Deep Neural Network (DNN)
classifiers. The first phase is the training phase, where a forward and a backward
pass are implemented. The forward pass processes input data to make predictions,
while the backward pass (backpropagation) adjusts network weights and biases to
minimize the prediction error, aligning them with the actual output.

The second phase involves testing the trained model on unseen data and assessing
its performance by measuring the accuracy of its predictions.

In the backpropagation phase, factors such as the learning rate, choice of loss
function, and optimizer are crucial. Now, the focus shifts to the exploration of design
variations and potential risks associated with these key training components.

The Learning rate:

The learning rate is one of the most important indicators of the performance and
stability of DNN. It has a direct relation with the ability of the Neural Network to learn

Training
Dataset

Batch size, Training iterations, …

Testing
Dataset

Test iterations

Max pooling, Hidden layers,
Activation Function

Forward pass
Computation of DNN Output

Learning rate, Loss function,
Optimizer

Backward pass
Computation of Loss function

Update of NN Model

Step1

DNN Classifier
(trained)

Step2

DNN Model
Performance Metrics

139

from the data and converge to an optimal solution. Learning rates determine the size
of the steps taken during the optimization process, as the model iteratively updates
its weights in order to minimize the loss function. A well-chosen learning rate
ensures that the model converges efficiently and effectively, without overshooting the
optimal solution or becoming stuck at local minima [27].

The choice of an appropriate learning rate is essential to strike the right balance
between the speed of convergence and the accuracy of the model. If the model
oscillates wildly around the optimal solution, a high learning rate may result in
unstable training and potentially poor performance. A low learning rate may, in
contrast, cause the model to converge very slowly, consuming considerable
computational resources and increasing the risk of over-fitting as the model spends
more time training on the same data. Therefore, DNN architects must carefully
choose and tune the learning rate based on the specific

application and available resources, often employing techniques such as learning
rate annealing or adaptive learning rate algorithms to optimize its value throughout
the training process [28].

The Optimizer:

Optimizers are responsible for adjusting the weights and biases of the network
during the training process to minimize the loss function. Different types of optimizers
exist, each with its own strengths and weaknesses. The most commonly used
optimizers include Gradient Descent, Stochastic Gradient Descent (SGD), AdaGrad,
RMSProp, and Adam [29].

Gradient Descent is an optimization algorithm in which the network parameters are
updated based on the steepest gradient of the loss function. In spite of its ability to
converge to the global minimum, this method is computationally expensive and slow,
especially when dealing with large datasets. Unlike Gradient Descent, the Stochastic
Gradient Descent (SGD) optimization approach is based on a subset of the dataset
randomly selected, which speeds up the training process. However, it can be less
stable and converge to the global minimum with more fluctuations.

The AdaGrad is an adaptive learning rate optimizer that assigns individual learning
rates to each parameter. It accelerates convergence in cases where the data is
sparse or has varying scales, but it can lead to premature convergence due to its
aggressive learning rate decay. The RMSProp addresses the limitations of AdaGrad.
It utilizes a moving average of squared gradients to adjust the learning rate, which
prevents the aggressive decay of the learning rate and leads to better convergence
properties. The Adam optimizer maintains separate moving averages for the
gradients and squared gradients, which allows for adaptive learning rates and
momentum. Adam is known for its fast convergence and robustness to different
types of datasets and architectures. The choice of an optimizer is essential for the
performance and efficiency of a DNN. Each optimizer has its own set of advantages
and disadvantages, and the choice depends on the specific application, dataset, and
resources available. By selecting an appropriate optimizer, DNN architects can strike
a balance between model robustness, accuracy, and implementation overheads.

140

The Loss function:

The loss function serves as a measure of how well the model performs during the
training phase. It provides a quantitative assessment of the discrepancy between
predicted and true outcomes. This assessment helps determine the most suitable
design and architecture. It allows DNN architects to fine-tune the model, and balance
the trade-offs between robustness, accuracy, and implementation overheads.

A loss function can take a variety of forms when applied to DNNs, catering to
different types of problems and objectives. Some commonly used loss functions are
Mean Squared Error (MSE) for regression tasks, Cross-Entropy Loss for
classification problems, and Hinge Loss for support vector machines, among others.
It is essential to carefully choose the appropriate loss function for the specific
application, as it directly influences the model’s learning process and the
optimization algorithm’s behaviour [30].

The role of the loss function goes beyond simply calculating a model’s performance.
During the training phase, it acts as a guide for the optimization algorithm, helping it
adjust the model’s parameters to minimize error. In essence, the optimization
process seeks to reduce the loss function’s value by locating the model’s optimal
configuration in the parameter space. This is typically done using gradient-based
methods like Stochastic Gradient Descent (SGD) or advanced variants such as
Adam and RMSProp [31].

Moreover, the loss function contributes to the prevention of overfitting or underfitting,
which are common challenges in DNNs. By incorporating regularization terms, the
loss function can penalize complex models that overfit the data or prevent models
that are too simplistic and underfit the data. This enables the model to achieve a
balance between fitting the training data and generalizing it to new, unseen data.

Some of known training challenges:
Deep learning training involves several significant challenges, as illustrated in Figure
6.5. These issues encompass unrepresentative training data, making it difficult to
accurately detect all classes. Gradient vanishing can hinder the model's weight
updates, while overfitting arises when models capture noise rather than genuine data
patterns. The presence of outliers in training datasets can lead to classification
inaccuracies, and there's the risk of training converging to local minimums instead of
reaching global optima. Addressing these known issues is crucial to ensure the
robustness and generalization of deep learning models.

6.6.5 Implementation and Integration of DNN Classifiers
Figure 6.8 illustrates how deep neural network (DNN) models are typically
implemented and deployed. Machine-learning developers use open-source machine-
learning libraries such as TensorFlow and PyTorch in their code to implement DNN
models.

141

Fig. 6.8: Implementation of DNN in python and conversion to C/C++

Whilst C and C++ are considered to be industry-standard, Python has become
increasingly popular for the development of DNN models in automotive applications.
To manage the coding complexity, ISO 26262 has several normative orders such as
having a specific coding guideline, avoiding dynamic memory allocation, using static
analysis tools, and following a consistent coding style. Coding complexity can be
measured using metrics such as cyclomatic complexity, nesting depth, and the
number of parameters [32]. Furthermore, advanced-level programming features such
as data structures, concurrency, polymorphism, global variables, and exception
handling must also be regulated to ensure high-quality code. By adhering to these
coding standards, developers can ensure their code is reliable, robust, and efficient.
Despite the fact that machine-learning libraries are widely used in automotive
engineering, it must be noted that they are general-purpose libraries and are not
designed to comply with ISO 26262 standard.

Python C/C++ Converter

DNN Code ML Library

ADAS ECU C/C++ Compiler

Rest Code C/C++ Code

142

6.6.6 Verification and Validation Methods for DNN Classifiers
Verification and validation are essential processes in developing deep neural
networks (DNNs) for autonomous driving. They help to identify errors in DNN
models, bugs in their implementation, or critical performance insufficiencies.

The Verification process ensures that the DNN model is correctly implemented and
meets the design specifications. The Validation process on the other hand ensures
that the DNN model is accurate and reliable in its predictions.

To ensure that DNNs are implemented and functioning correctly, several V&V
techniques are proposed. These include unit testing, endurance run tests, scenario-
based testing, fault injection with white noise on sensor data, adversarial attacks,
and FP/FN and TP/TN metrics benchmarking.

Unit Testing:

Unit design testing is an essential step for verifying the functioning of individual
components of a DNN model. By breaking down the system into smaller units,
engineers can thoroughly test each one separately and guarantee its performance
according to the specifications. Hardware-in-the-Loop (HIL) simulation is a great way
to conduct automated and cost-effective tests that are reproducible and can detect
any potential issues before deployment in the real world.

Endurance Run Testing:

This is one of the most common V&V techniques applied to automotive systems. In
this type of testing, a DNN model is tested for its ability to process sensor data in a
wide range of conditions over a long period of time. Endurance run tests help to
validate the robustness of the model and its performance under various conditions.

Scenario-based Testing:

Scenario-based testing focuses on exploring the behaviour and functionality of a
DNN model when presented with specific scenarios that an autonomous vehicle may
encounter in the real world. The model response under these scenarios is analysed
to assess its ability to detect overridable and non-overridable obstacles and take
appropriate decisions. This helps to guarantee that the model is able to handle
unforeseen circumstances in a safe manner, while accurately detecting and
responding to obstacles and other objects in its environment.

Fault Injection with White Noise on Sensor Data:

This is a technique used to evaluate the performance of a DNN model when it
receives noisy or corrupted sensor data. In this type of testing, noise is injected into
the system and the model robustness is tested to see how sensitive it is to its sensor
data quality. This kind of testing helps to identify any weaknesses in the model’s
ability to accurately process and interpret the data.

Adversarial Attacks:

143

Adversarial attacks are a type of attack that can be used to fool DNN models and
cause them to misclassify data or produce incorrect results. Some of examples of
Adversarial attacks are:

Adversarial patch attack: This type of attack involves adding a small patch to an
image that causes the DNN model to misclassify the image.

Adversarial perturbation attack: This type of attack involves adding small
perturbations to an image that are not visible to the human eye but cause the DNN
model to misclassify the image.

FP, FN, TP, TN benchmarking:

FP/FN, and TP/TN metrics are used to evaluate the accuracy of a DNN model when
it is tested on known testing data. False Positive (FP) and False Negative (FN)
metrics measure the number of incorrect predictions made by the model, while True
Positive (TP) and True Negative (TN) metrics measure the number of correct
predictions.

In 2019, some car manufacturers and Tier I suppliers released the white paper,
SAFETY FIRST FOR AUTOMATED DRIVING [33], which offers an in-depth analysis
of the verification and validation techniques for SAE L3 and L4 automated driving
from a practical perspective. They demonstrate the positive risk balance of
automated driving solutions compared to the average human driving performance
and also provide guidance for potential methods and considerations in the V&V of
Level 3 and 4 automated driving systems. However, it is not intended to serve as a
final statement or minimum or maximum guideline or standard for automated driving
systems.

6.7 Conclusion
An analysis of safety risks associated with deploying DNN classifiers in guiding
autonomous road vehicles, conducted in this chapter, has unveiled a spectrum of
safety risks. These risks are present in all development phases of the design,
training, implementation, and deployment of DNN classifiers. Addressing these risks
is crucial to ensure the safety of AI solutions. To mitigate these challenges, a set of
measures and their alignment with safety standards is proposed, as summarized in
Table 6.3.

Mapping Safety Measures to Safety Standard:

III.A ARCHITECTURAL MODEL DESIGN
Selecting suitable AI technology
DNN model, Activation function, etc.

ISO/AWI PAS 8800:2023
General requirements 7.4.1- 7.4.10

Function degradation
Plausibility checks

ISO/AWI PAS 8800:2023
12.5 Measures to assure safety of the AI system
during operation

System redundancy and fusion
strategies

ISO/AWI PAS 8800:2023
7.6.1 Measures for Architectural Redundancy

Safety Analysis ISO/AWI PAS 8800:2023
10.4 Safety analysis of the AI system

Comprehensive Review ISO/AWI PAS 8800:2023

144

11.5 Structuring Assurance Arguments for AI
Systems

III.B TRAINING OF DNN CLASSIFIERS
Hyperparameter tuning ISO/AWI PAS 8800:2023

7.6.4 Training safety measures
Dataset Safety Analysis ISO/AWI PAS 8800:2023

8.4.3 Dataset Safety Analysis
Adversarial attack testing

ISO/AWI PAS 8800:2023
7.6.4.2 Robust Learning

III.C IMPLEMENTATION AND INTEGRATION OF DNN ALGORITHM CLASSIFIERS
Qualification of ML libraries ISO 26262-8:2018

Software tool qualification report
Reinforcement of low complexity
Coding guideline

ISO 26262-6:2018
Table 1 — modelling and coding guidelines

6.7.1 III.D. VERIFICATION AND VALIDATION METHODS FOR ML-BASED
AUTOMATED DRIVING SYSTEMS

Static code analysis
Fault injection test
Unit/ scenario-based / endurance
testing

ISO 26262-6:2018
Table 10 — Methods for verification of software
integration

False Negative / Positive
benchmarking

ISO/AWI PAS 8800:2023
9.5.5.1 Performance evaluation methods

Table 6.3: Mapping of proposed methods to automotive safety standards ISO26262, PAS 8800 Normative Demands

145

7 Chapter 7 - Enhancing Safety in RL Agents: The 'Safety
Override Layer' for Autonomous Driving

7.1 Introduction
Ensuring the safety of Reinforcement Learning (RL) methods in the context of Highly
Automated Driving (HAD) is a paramount concern that demands innovative
solutions. In this chapter, a novel approach is delved into, addressing the intricacies
of safety within RL-based systems for highway driving. Beyond conventional
methodologies, a comprehensive safety layer, comprising eight key features
designed to enhance the safety of RL agents specifically for HAD, is introduced.

The first key feature of this safety layer is enhancing the training of RL agents,
particularly emphasizing the maximization of safe explorations. In this regard, a
methodology is proposed to quantify, visualize, and maximize the exploration
behaviour trend of the RL agent across the continuous state spaces of environments
such as autonomous driving.

Beyond this, the safety layer is designed to enable integrating guidance from human
expert, prevent unsafe actions, impose a safety constraint on agent policy
optimization, dynamically shape rewards based on the safe margins of automated
driving, introduce redundant agents, and uphold a fail-safe strategy for situations
where the Operational Design Domain (ODD) is violated, and safety cannot be
ensured by the reinforcement learning agent alone. Additionally, a methodology is
proposed to enhance the adaptability and safety of the RL agent by imitating the
decision-making processes of human drivers.

One notable aspect of the proposed safety layer involves the definition of the safety
margin scheme through the incorporation of key performance indicators (KPIs)
related to the safety of automated driving.

This chapter also presents details regarding the implementation of the proposed
algorithms, along with specifics of their realization within a software-in-the-loop
simulation framework.

7.2 Safety Layer for Autonomous Driving RL Agent
In the context of our autonomous driving system, the proposed safety override layer
in this dissertation serves as a crucial critical fail-proof support system for the RL
agent, ensuring not only optimal performance but also adherence to safety
standards. Eight key features for the proposed safety layer are suggested to
addresses various dimensions of safety, enabling the RL agent to navigate the
complex dynamics of real-world scenarios while prioritizing the safety of passengers,
pedestrians, and other traffic participants.

146

Fig. 7.1: Proposed RL agent safety layer with 8 key elements

- Enhance RL Training
o Maximizing exploration:

Encouraging max exploration of safe actions introducing exploration metric
o Integrating Human Guidance to Enhanced Initial RL Training Performance

- Protection of Prior Knowledge
o protection of Q-values and policy values

- Prevent Unsafe Actions
o Rule based logics to prevent unsafe actions in the safety context based on

safe margins during and after training phase.
- Safety Dependent Policy Optimization

o Safety penalty for policy update constraints to return to safe state
- Dynamic Reward Shaping

o Adjusting the reward based on driving conditions to influence the decision-
making of the agent.

- Redundant RL Agents
o Safety arbitration between two RL agents. E.g. (A3C, DDPG, Multi-agent,

DQN) Policy1 vs Policy 2
- Human Driver in Loop

o policy improvement after deployment: learning from human (monitoring
human driving, estimating q values and rewards, and safety KPIs) and
updating policy if human actions were safer

- Fail-Safe Strategy
o HW or communication failure, ODD violated, input sensor data or actuators

failed, …

Safety Margin
o Safety KPI, safety goals
o Safety margin, 2 levels of safety, road condition, vehicle control conditions,

sensor availability….
o Behaviour of the RL agent based on the safety margin

Safety Dependent
Policy Optimization

Redundant
RL Agents

Safety Layer of RL Agent
For AD

Enhance
RL Training

Prevent Unsafe
Actions

Dynamic Reward
Shaping

Protection of prior
Knowledge

Fail- Safe
Strategy

Human Imitation

1

2
3

4 5

6
7

8

147

7.2.1 Safety Layer- Enhance RL Training
The enhancement of RL training is accomplished by maximizing RL agent exploration and
integrating human expert guidance during the training phase.

7.2.1.1 Maximizing Exploration of Reinforcement Learning Agents during Training
The objective here is to maximize exploration rate of safe actions in reinforcement
learning. It includes the enforcement of robust policies so that the solution is able to
adapt to diverse scenarios. For example, the discovery of rarely encountered critical
states, addressing model inaccuracies, prevention of premature convergence to
suboptimal policies, enhancement of safety margins, and preparation for handling
unexpected scenarios, to name a few are the type of policies deployed.

7.2.1.1.1 Quantifying and Visualization of the RL Agent Exploration Metric in
Continuous Action/State Spaces

The "Exploration Rating" introduced in this dissertation aims to parametrise and
create relative quantification metric to measure the exploration trend of a learning
agent during training throughout continuous and contiguous (discretization) action
spaces. In the context of reinforcement learning, where agents must strike a delicate
balance between exploiting known strategies and exploring new possibilities, the
Exploration Rating reflects the agent's tendency to venture into various regions
space.

By discretizing a x-dimension continuous action space into manageable segments
and tracking the visit count and the taken actions for each segment, the Exploration
Rating provides a relative measure of how extensively the agent explores different
aspects of the action space with respect to events. A higher Exploration Rating
suggests that the agent is actively seeking novel strategies, which can be
advantageous for discovering optimal policies. In scenarios where exploration is not
excessively costly or risky, higher exploration allows the agent to uncover more
effective strategies, intelligent adaptation and robustness in handling diverse
environmental conditions.

The Exploration Rating serves as a valuable tool for promoting and maximizing
exploration, particularly in scenarios where random action selection is desired. By
effectively quantifying the agent's tendency to venture into diverse regions of the
action space, this metric contributes to the optimization of the learning process,
enhancing the efficiency and effectiveness of reinforcement learning algorithms.

7.2.1.1.2 Methodology for Computing and Visualizing the Exploration Rating
Assumption: A state is defined with x-dimensional continuous factors.

State Definition: A state, denoted as {s[1], s[2], ..., s[x]}, consists of x continuous
factors.

Discretizing the state spaces:19
In the presence of continuous action or state spaces within the environment,
discretization emerges as a practical solution for facilitating exploration in

19 Other resources such as [1] have addressed the topic from a distinct perspective. The methodology
proposed in this dissertation, however, takes a fundamentally different approach.

148

reinforcement learning. Continuous spaces, characterized by an infinite range of
possible actions or states, present computational challenges that can impede the
learning process. Discretization involves partitioning these continuous spaces into
discrete intervals or bins, rendering them more amenable to exploration by learning
agents. By transforming the continuous space into a finite set of well-defined
contiguous states or actions, discretization enables the agent to systematically
explore various possibilities, contributing to a more efficient learning process.

Uniform Discretization of State Space:

Each factor, s[i], is uniformly divided into 𝑛௜segments, where i varies from 1 to x.

For example, S[1] has segments : {1, 2, … , 𝑛ଵ} and S[x] has segments : {1,2, … , 𝑛௫}

Total number of segments:

The total number of segments in the discretized state space is calculated as follows:

𝑁்௢௧௔௟ = ෑ 𝑛௜

௫

௜ୀଵ

= 𝑛ଵ. 𝑛ଶ. … . 𝑛௫ (଻.ଶ.ଵ)

This discretization process enables the representation of continuous state factors in
a segmented form, forming the basis for computing the exploration metric.

A simplified example of the discretizing approach:
To elaborate on the discretization approach, two essential parameters in the
modelling of an autonomous vehicle (AV) within a possible scenario is given. The
distance to an obstacle and the velocity of the AV. The discretization process
involves the representation of these continuous parameters in segmented form to
facilitate a structured analysis of the environment.

The distance to the obstacle is characterized by a range spanning from 0 to 200
meters, simulating the capabilities of a long-range radar. Simultaneously, the AV's
velocity ranges from 0 to 100 km/h. To achieve a fine-grained discretization, the
approach employs 100 divisions for velocity, with each division representing a 1
km/h increment. Similarly, for distance, 200 divisions are utilized, and each division
corresponds to a 1-meter increment.

This meticulous division of the continuous range into discrete segments results in a
discretized grid comprising a total of 20,000 segments (100 by 200). Each segment
encapsulates a unique combination of distance and velocity, providing a structured
and comprehensive representation of the potential states within the given
environment. This discretization approach lays the foundation for further analysis
and the computation of the exploration metric.

149

7.2.1.1.3 Conversion of x-dimensional state space to segmented state space
The conversion of an x-dimensional continuous state space into a sequentially segmented
discretized state space is a crucial step in the exploration metric computation process.

Fig. 7.2: Conversion of a x-dimensional continuous state space into a sequentially
segmented discretized state space

By incorporating combinatorial principles, the methodology systematically arranges
segments of discretized factors next to each other - s[1], s[2],…, s[x] - to uniquely
transform discretized segments of the state space to a grid form, as depicted in
Figure 7.2. This transformation facilitates a more granular representation of the state
space, enabling a detailed analysis of the agent's exploration behaviour during the
training phase.

Segment 1: Represents the starting point of each x-factor within the discretized state
space.

Segment 𝑁௧௢௧௔௟ Corresponds to the end point of each x-factor within the discretized
state space.

Methodology to Compute Absolute Segment Number (seg. y)

1. Relative Position Calculation:
For each factor s[i], calculate the relative position (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛௜) within the
segmentation using the formula:

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛௜ = max (1, min ቀቔ
௦[௜]ି௦[௜]೘೔೙

௦[௜]೘ೌೣି ௦[௜]೘೔೙
× 𝑛௜ቕ + 1, n୧ቁ) (7.2.2)

Where, 𝑠[𝑖]௠௔௫ 𝑎𝑛𝑑 𝑠[𝑖]௠௜௡ denote the maximum and minimum values of the
continuous factor s[i] and n୧ represents the number of segments for factor s[i].

The symbol ⌊ ... ⌋ represents the floor function. The floor function takes a real number
as input and returns the largest integer that is less than or equal to that number.

The formula ensures that 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛௜ is always between 1 and n୧.

2. Absolute Segment Number Calculation

The Absolute Segment Number (y in Figure 7.2) is computed using the following formula:

𝑦 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛ଵ + 𝑛1 × (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛ଶ − 1) + 𝑛1 × 𝑛ଶ ×
(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛ଷ − 1) + ⋯ + 𝑛1 × 𝑛ଶ × … × 𝑛௫ିଵ × (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛௫ − 1) (7.2.3)

min

min

min max

max

𝑛௫

…

.

.

.

𝑛ଶ

𝑛ଵ

…

max
…

s[1]:

s[2]:

s[x]:
Seg.1 Seg.2 Seg.𝑁்௢௧௔௟ Seg. y

150

7.2.1.1.4 Data Structure to Store Taken Actions in State Space Segments:
In this section, the data structure designed for the storage of information regarding
actions taken within each segment of the state space is introduced.

It is assumed that the action space consists of M actions (or is equivalently
segmented into M segments).

For each segment x, denoted as Nr. Of Action 1, ..., Nr. Of Action M, a dedicated
array is established to track the number of times each action/event in the action
space (analysis span) has been taken during the training process. The structure of
each segment, represented as segment[i], takes the form:

𝑠𝑒𝑔𝑚𝑒𝑛𝑡[𝑖] = [𝑛௔ଵ, 𝑛௔ଶ, … , 𝑛௔ெ] (7.2.4)

Where i is varied from 1, … , 𝑁்௢௧௔௟ and 𝑛௔௝ signifies the number of times action 𝑎௝ (j=
1, …, M) has been taken within this specific segment.

7.2.1.1.5 Exploration Metric
The Exploration Metric (EM) is a metric employed to quantify the exploration
behaviour of a learning agent throughout the training process. The formulation and
incorporation of this metric in the dissertation offer a novel perspective on assessing
the exploration behaviour of a reinforcement learning agent.

The exploration metric is defined as the ratio of the number of taken actions to the
total number of possible actions, expressed as a percentage:

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑡𝑟𝑖𝑐 (𝐸𝑀1) =̇
ே௥. ௢௙ ௧௔௞௘௡ ஺௖௧௜௢௡௦

ே௥. ௢௙ ௔௟௟ ௣௢௦௦௜௕௟௘ ஺௖௧௜௢௡௦ ௜௡ ௔௟௟ ௦௘௚௠௘௡௧௦
 𝑥 100% (7.2.5)

Or alternatively:

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑡𝑟𝑖𝑐 (𝐸𝑀2) =̇
ே௥. ௢௙ ௧௔௞௘௡ ஺௖௧௜௢௡௦

ே௥. ௢௙ ௔௟௟ ௣௢௦௦௜௕௟௘ ஺௖௧௜௢௡௦ ௜௡ ௩௜௦௜௧௘ௗ ௦௘௚௠௘௡௧௦
 𝑥 100 (7.2.6)

The nominator and denominator components of the Exploration Metric are further
detailed as follows:

𝑁𝑟. 𝑜𝑓 𝑡𝑎𝑘𝑒𝑛 𝐴𝑐𝑡𝑖𝑜𝑛𝑠

= ෍ ෍ 𝑀𝑖𝑛(1, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡[𝑖][𝑗])

ெ

௝ୀଵ

 (7.2.7)

ே೅೚೟ೌ೗

௜ୀଵ

Here, segment [i] [j] denotes the count of action j in segment i, and the ‘min’ function
ensures that the action is considered in the metric computation only once.

𝑁𝑟. 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 𝑀 × 𝑁்௢௧௔௟ (7.2.8)

The total number of possible actions is calculated as the product of the number of
actions M and the total number of segments 𝑁்௢௧௔௟.

𝑁𝑟. 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 𝑀 × 𝑁௏௜௦௜௧௘ௗ (7.2.9)

The total number of possible actions is calculated as the product of the number of
actions M and the total number of visited segments 𝑁௏௜௦௜௧௘ௗ.

151

Segment i is considered visited if at least one of the actions in segment i has been
taken and 𝑛௔௑ > 0.

7.2.1.1.6 Implementation of the Simulation Framework for Quantifying and
Visualizing Proposed Exploration Metrics

The Software in the Loop (SiL) Simulation framework employs the Gym Cartpole
environment from Chapter 5 to quantify and visualize exploration metrics, as
proposed earlier in the previous section20. With four continuous factors for each
state, this framework provides an ideal platform for experimentation.

Discretization of the State Space:

Following the discretizing approach proposed in the previous section of this
dissertation, the 4-dimensional state space of the environment is transformed into a
segmented grid comprising 10,000 segments (10 x 10 x 10 x 10 for each factor) in
this implementation, enabling a detailed examination of the RL agent's exploration
behaviour. The action space is confined to two actions—pushing left or pushing right.

M = 2, 𝑁்௢௧௔௟ = 10k segments

The experiment involves running 20,000 episodes, each lasting 500 time steps,
resulting in a total of 10 million iterations. Notably, the early termination of training
based on the accumulated reward reaching a threshold is disabled in this
configuration.

The primary focus of this simulation is to study the exploration behaviour of the RL
agent, without considering its overall performance or design variations.

The chosen epsilon-greedy strategy is designed to promote exploration throughout
all episodes, starting with 100% exploration and gradually decreasing to 1% with an
exponential decay over 2000 episodes. Here is the corresponding code snippet:

Epsilon greedy parameters
EPS_START = 1
EPS_END = 0.01
EPS_DECAY = 2000

self.epsilon = EPS_END + (EPS_START - EPS_END) * math.exp(-1. * DecayCount /
EPS_DECAY)

Software implementation:

The code snippet to implement the action storage data-structure,
‘ActionStorage_DataStructure’, is as follows:

class ActionStorage_DataStructure:
 def __init__(self, num_segments, action_space):
 # Initialize the data structure with zeros
 self.segments = [[0] * len(action_space) for _ in range(num_segments)]
 self.action_space = action_space
 self.visited_segments = set() # Set to keep track of visited segments
 def record_action(self, segment_index, action):
 # Calculate the index of the action in the action_space array
 action_index = self.action_space.index(action)

20 The entire source code is provided as a supplementary document.

152

 # Increment the count for the specified action in the given segment
 self.segments[segment_index][action_index] += 1
 # Check if the segment has been visited before
 if segment_index not in self.visited_segments:
 # Add the segment to the set of visited segments
 self.visited_segments.add(segment_index)
 def get_segment_data(self, segment_index):
 # Retrieve the counts for all actions in the specified segment
 return self.segments[segment_index]
 # Return the count of visited segments
 def get_visited_segments_count(self):
 # Return the count of visited segments
 return len(self.visited_segments)
 def get_taken_actions_count(self):
 # Compute the total number of taken actions over visited segments
 total_actions_count = 0
 for segment_index in self.visited_segments:
 # Increment the count for each action in the current segment
 total_actions_count += sum(1 for action in self.action_space if
self.segments[segment_index][self.action_space.index(action)] > 0)
 return total_actions_count

This structure is employed to record visited segments and unique taken actions in
each segment, and retrieve all actions for a given segment.

The ‘get_visited_segments_count’ and ‘get_taken_actions_count’ methods provide
counts of visited segments and taken actions, respectively.

SegmentNr= compute_segment_number(state.squeeze().tolist())
action_data_structure.record_action(SegmentNr, action)

The code snippet ‘compute_segment_number’ calculates the current segment using
the four factors of the current state, based on the discretization approach as
proposed in formulas 7.1.2 and 7.1.3.

def compute_segment_number(current_state):
 """
 Compute the current segment number from the current state.
 Parameters:
 - current_state: List[float], representing the current state with 4 factors.
 Returns:
 - current segment number [int].
 """
 segment_counts = [10, 10, 10, 10] # Number of segments for each factor
 factor_ranges = [(-4.8, 4.8), (-5, 5), (-24, 24), (-5, 5)]
 relative_positions = [
 max(1, min(int((current_state[i] - min_value) / (max_value - min_value) *
segment_counts[i]) + 1, 10))
 for i, (min_value, max_value) in enumerate(factor_ranges)
]
 current_segment = (
 relative_positions[0] +
 (relative_positions[1] - 1) * segment_counts[0] +
 (relative_positions[2] - 1) * segment_counts[0] * segment_counts[1] +
 (relative_positions[3] - 1) * segment_counts[0] * segment_counts[1] *
segment_counts[2]
)
 return current_segment

Finally, the code snippet that calculates exploration metric 1 and metric 2 based on
formulas 7.1.5 to 7.1.9:

153

Append data to lists for plotting
exploration_metric1_list.append(100 * unique_actions_count / (NSegmentTotal *
action_space_size))
exploration_metric2_list.append(100 * unique_actions_count /
(visited_segments_count * action_space_size))

7.2.1.1.7 Evaluation of the Experiment Results
Utilizing the computational power of a high-speed system, the training process
efficiently concludes within a few hours of training. In the conducted training, no
optimization is applied to force the agent to explore new segments and actions.

The results of quantifying and visualizing exploration metrics using the discretizing
technique are presented in Figure 7.3 (a), (b), (c), (d) and Figure 7.4. This
visualization offers a comprehensive depiction of the exploration behaviour,
providing valuable insights into the agent's interactions with the environment.

Fig. 7.3: Quantifying and visualizing of the Exploration behaviour of an RL Agent (a) and (b)
w/o Maximization

Exploration Metric 1, as illustrated in Figure 7.3 (a), reveals a notable deficiency in
the agent's exploration behaviour, evident by a maximum exploration ratio of only
3.4%. This suboptimal performance persists despite the agent being compelled to
explore on most occasions. The limited exploration observed in the figure
underscores the challenge the agent faces in adequately exploring the environment.

154

Exploration Metric 1 exhibits a continually increasing ratio, as its denominator
remains constant, while the numerator is cumulative and consequently on the rise. In
contrast to Exploration Metric 1, Metric 2 has the capacity to both increase and
decrease. A decrease in Metric 2 (Figure 7.3 (b)) occurs when not all actions are
executed in newly visited segments.

Due to the limited size of the action space, which consists of only two actions, the
agent has a high chance of taking all available actions within the visited segments.
This factor is the primary cause behind the consistent display of high ratios in
Exploration Metric 2.

Fig. 7.3: Quantifying and visualizing of the Exploration behaviour of an RL Agent (c) and (d)
w/o Maximization

Figure 7.3 (c) illustrates both the number of visited segments and the number of
actions taken within those segments. A noteworthy observation in this quantification
is the significant number of segments that the agent does not explore at all. This
deficiency is further highlighted in Figure 7.4.

The exploration-exploitation trade-off configuration of the agent is shown in Figure
7.3 (d). In order to encourage the agent to exploit its policy less, the epsilon
hyperparameters are configured to transition from 100% exploration (representing
random actions) to 3% towards the end of the training.

155

Fig. 7.4: Quantifying and visualizing of the visited segment of an RL Agent w/o Maximization

The distribution of visited segments across the segment spectrum is visualized in the
bar chart plot in Figure 7.4. The RL DQN agent aims to maintain the cart and the
pole at the centre of their trajectories. This objective is evident in the observation that
segments around 5000 (out of 10000), where all four continuous factors fall within
the middle of their respective ranges, are the most frequently visited segments.
Quantifying and visualizing the exploration behaviour of the DQN agent highlights
that a few segments are frequently visited, such as segment 4457, which was visited
over 170k times, while many segments (10000 - 371) are never visited. This reveals
a significant percentage of the environment remains unexplored during the training of
the RL agent, 𝑁௏௜௦௜௧௘ௗ ≪ 𝑁்௢௧௔௟. This may indicate that the deployed agent could
lack robustness in handling a broad range of scenarios, potentially affecting its
performance in real-world applications where comprehensive training is crucial.

156

7.2.1.1.8 Algorithm: Epsilon-Greedy-with-Exploration Maximization
The novel approach of state space segmentation proposed in this dissertation
provides the agent with the ability to evaluate whether an action has been taken in
the current segment, thus facilitating more informed decision-making during
exploration.

The exploration maximization algorithm is integrated with the epsilon-greedy
algorithm during the training phase, providing the agent with more intelligent action
selection strategies. Its underlying principle prompts the agent to take actions that
haven't been executed before, maximizing exploration. This algorithm does not
disrupt the exploration-exploitation trade-off; rather, it becomes specifically active
when exploration is needed, exclusively during phases when a random action is
desired.

The incorporation of exploration maximization enhances the agent's adaptability and
encourages a comprehensive exploration of the environment.

The pseudo code of the algorithm is presented below:

Algorithm 7.2.1.1 Epsilon-greedy-with-Exploration Maximization

1. function select_action (current_State, current_segment):
2. # Input: current_State, current_segment
3. # Output: action, Replace_Action_Count
4. If Epsilon > RandomNumber # exploration desired
5. action = Select a random action from action space
6. If Action already taken in current_segment
7. If any Action available in current_segment # not taken before
8. # action is replaced!!
9. action = Select a random action from available in current_segment
10. # increment the action_replacement counter!!
11. Replace_Action_Count ++
12. Else
13. action = Policy_Net[current_state] # exploitation
14. return (action, Replace_Action_Count)

The code snippet to implement the exploration maximization algorithm is as follows:

def select_action(self, state, current_segment):
 global action_replacement_count
 randNr = random.random()

 if self.epsilon > randNr:
 # Exploration: Randomly select an action
 selected_action = env.action_space.sample()

 # Check if the selected action has been taken before
 if current_segment[selected_action] > 0:
 available_actions = [action for action in range(env.action_space.n) if
current_segment[action] == 0]
 if available_actions:
 selected_action = random.choice(available_actions)
 action_replacement_count += 1
 else:

157

 with torch.no_grad(): # Exploitation from the policy network
 selected_action = self.policy_net(state).max(1)[1].item()

 return torch.tensor([[selected_action]], device=device, dtype=torch.long)

7.2.1.1.9 Exploration Maximization Algorithm Experimentation
Continuing under the same experimental conditions, the simulation is reiterated with
the incorporation of the exploration maximization. This innovative approach, added
to the epsilon-greedy strategy, aims to further enhance the RL agent's exploration
behaviour.

As in the previous setup, the experiment spans 20,000 episodes, each lasting 500
time steps, totalling 10 million iterations.

The experiment outcomes depicted in Figure 7.5 (a) and (b) reveal a subtle
improvement in the exploration metrics. Specifically, there is an enhancement of
0.06% (3.46% - 3.4%) in the first metric and a slightly more significant improvement
of 0.08% (96.82% - 95.74%) in the second metric.

In Figure 7.5 (c), it is evident that the algorithm effectively substituted 95 random
actions to augment the agent's exploration during training and prioritize actions it had
not previously undertaken. While it's conceivable that the agent might have
eventually taken some of these actions in subsequent iterations even without this
method, the exploration maximization algorithm ensures their immediate
consideration, contributing to a more proactive exploration strategy.

Figure 7.5 (d) is presented to demonstrate that the exploration-exploitation strategy
remains consistent with the experiment conducted without the exploration
maximization algorithm.

Figure 7.6 illustrates comparable results to the previous findings, underscoring that a
significant portion of the state space segments remains unexplored even after
extensive training. This emphasizes the persistent challenge of achieving
comprehensive exploration within the RL agent's environment.

158

Fig. 7.5: Quantifying and visualizing of the Exploration behaviour of an RL Agent with
Maximization (a) and (b)

159

Fig. 7.5: Quantifying and visualizing of the Exploration behaviour of an RL Agent with
Maximization (c) and (d)

Fig. 7.6: Quantifying and visualizing of the visited segment of an RL Agent with Maximization

160

7.2.1.1.10 Conclusion
The employed proposed and implemented methodology of state space segmentation
to quantify metrics and visualize exploration, as outlined in this dissertation, proves
to be an effective approach, and seems to successfully provide detailed perspectives
on the agent's learning dynamics.

The observed subtle improvements in exploration metrics underscore the ability of
the algorithm to actively substitute random actions, enhancing the agent's proactive
exploration during training.

It's noteworthy that this approach, while impactful in a smaller action space (limited
to two actions in this experiment), holds promising potential for real-world
applications with larger action space sizes. For instance, in scenarios like
autonomous driving, where actions such as steering wheel or acceleration ratio are
continuous and can be discretized into a larger number of segments, the exploration
maximization algorithm is likely to offer even more substantial benefits. The
adaptability of this algorithm to higher action space sizes could contribute
significantly to the efficacy of training in complex, real-world environments.

The outcomes of this experiment, revealing the ongoing challenges in achieving
thorough exploration, pave the way for future enhancements and diverse
applications of the exploration maximization algorithm.

161

7.2.1.2 Integrating Human Guidance to Enhance RL Training21
Integrating human guidance in reinforcement learning involves leveraging the
expertise of human experts to enhance the training process of RL algorithms. This
collaborative approach introduces valuable insights and domain knowledge that may
be challenging for algorithms to acquire independently. Additionally, integrating
human guidance enhances safety by incorporating real-world expertise to mitigate
risks and improve the robustness of the trained algorithms.

In this dissertation, three key strategies are proposed to harness the valuable
insights from human experts, shaping the learning process of reinforcement learning
agents.

- Targeted Policy or state-action Q-Values Initialization
- Forcing certain training patterns by Shaping Environment feedback

(observation, state, reward)
- Forcing RL agent to always / never take certain actions in certain states

7.2.1.2.1 Targeted Policy or State-Action Q-Values Initialization:
Recalling RL training algorithms (tabular 4.3.3, DQN 4.5.2, or Policy Gradient
4.7.2.2), where policy networks are typically initialized with random weights and Q-
values initialized with zero.

In the experimentation detailed in chapter 5.3.1.5, the weighting factors of the policy
neural network was initialized using the HE initialization method, resulting in a rapid
increase in the total reward of the agent.

Contrary to HE initialization or similar methods, which primarily address training
challenges or generalization issues, the Human-shaped initialization method
proposed here involves initializing the agent's policy or state-action Q-Values to
prioritize specific decision-making by the agent.

It particularly involves initializing the policy network to output specific Q-values (in the
case of DQN RL) or actions (in the case of policy gradient RL) during its forward
propagation pass.

Forward Pass:

𝑄(𝑠, 𝑎) = 𝑓ఏ (𝑠) (7.2.10)

For a known state: s and desired known action: a, the weighting factors of the policy
neural network can be determined.

As an example of such targeted policy initialization, consider a scenario where the
autonomous vehicle exhibits a lateral deviation of 50 cm to the left. A proper
initialization of the network would compel the agent to turn the steering wheel by 15
degrees to the right, promptly correcting the deviation. Without such a targeted

21 Other resources such as [2] and [3] have addressed the topic from a distinct perspective. The
methodology proposed in this dissertation, however, takes a fundamentally different approach.

162

initialization, it would take the agent significantly longer or potentially result in
suboptimal manoeuvres to rectify the lateral deviation.

7.2.1.2.2 Forcing certain training patterns by Shaping Environment feedback
(observation, state, reward)

To further enhance the training of RL agents, leveraging the expertise of human
professionals with domain knowledge, this section introduces a proposed method for
shaping environment feedback.

The strategy involves deliberate manipulation of observations, state representations,
and rewards during training. This intentional shaping of the environment feedback, in
terms of state, action, and observations, aims to guide the RL agent toward
unexplored areas of the state space, expose the agent to unforeseen and
unexpected situations, facilitate safe behaviours in individual scenarios, and
ultimately improve its adaptability and generalization.

- 𝑠௧ାଵ ← 𝑠ு௨௠௔௡
- 𝑟௧ ← 𝑟ு௨௠௔௡
- 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛௧ାଵ ← 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛ு௨௠௔௡

Fig. 7.7: Human Guidance in RL Training: Policy Initialization & Shaping Environment
Feedback

Examples of state shaping in the context of AD:
For instance, simulating a slippery road by reducing the distance to an already seen
obstacle after braking, longitudinal distance to target vehicle 50 [m], lateral distance
to road boundaries [30cm, 70cm], vehicle speed at: 100 km/h, …

Examples of reward shaping in the context of AD:
A reward of +10 or a penalty of -20 for the last taken action to influence the q-
learning or policy update of the agent.

Examples of observation shaping in the context of AD:
A curvy road ahead, battery charge level at 30%, detours, or roadwork in 5 km,
heavy rain expected, …

𝑠ு௨௠௔௡

𝑎𝑐𝑡𝑖𝑜𝑛 𝑎௞

Environment

 𝑟ு௨௠௔௡
RL Agent

initialization

Human
Expert

O
ut
p
ut

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝜽 I
n
p
u
t Policy Net

163

7.2.1.2.3 Forcing RL agent to always or never take certain actions in certain states
A crucial aspect of enhancing RL training involves instructing the agent to
consistently adopt or avoid specific actions in specified states. The human expert
with domain knowledge can compel the agent during training to always take or never
take an action in certain states (override). This strategy aims to enforce decision-
making patterns that align with safety requirements. By compelling the RL agent to
exhibit particular actions under specific conditions, the training process is steered
toward a safer performance.

This section delves into the methodology of instructing the RL agent to always or
never take certain actions in predefined states.

The pseudo code of the algorithm to force an action is presented below:

Algorithm 7.2.1.2 Human Guidance Force Action Policy

1. function select_Action (current_state):
2. # Input: current_state, Output: action
3. # Set of states where action A should be taken
4. setOfStatesToAlwaysTakeActionA = {state1, state2, state3, ...}
5. if current_state belongs to setOfStatesToAlwaysTakeActionA:
6. return action: A
7. else:
8. # Use another method or policy for action selection
9. # For example, exploit the action from the policy network
10. return Policy_Net[current_state] # exploitation
The state, in this context, comprises signals that indicate the safe margin (see
section 7.3). Thus, the proposed method can compel specific actions in certain
states or when any of the comprising signals indicate that the safety margin has
been reduced. In such cases, the pseudo code in line 5 can tackles the condition:

current_state[x]: comprising signal in current_state

if safetyMargin (current_state[x]) < threshold

similarly, the pseudo code for the algorithm to avoid an action is presented below:

Algorithm 7.2.1.3 Human Guidance Avoid Action Policy

1. function select_Action (current_state):
2. # Input: current_state, Output: action
3. # Set of states where action A should be avoided
4. setOfStatesToAlwaysAvoidActionA = {state1, state2, state3, ...}
5. if current_state belongs to setOfStatesToAlwaysAvoidActionA:
6. return chooseAlternativeAction (ActionA)
7. else:
8. # Use another method or policy for action selection
9. # For example, exploit the action from the policy network
10. return Policy Net[current_state] # exploitation

164

7.2.2 Safety Layer- Protection of prior Knowledge
In Reinforcement Learning, the agent's knowledge resides in its state-action values,
often denoted as Q-values. These Q-values encapsulate the agent's learned
expectations of the cumulative rewards associated with specific actions in particular
states. The Q-update rule in DQN and tabular Q-learning, utilizing a bootstrapping
technique, is expressed as follows:

𝑄(𝑠௧, 𝑎௧) ← 𝑄(𝑠௧ , 𝑎௧) + 𝛼(𝑟௧ + 𝛾 ௠௔௫
௔

𝑄(𝑠௧ାଵ, 𝑎) − 𝑄(𝑠௧ , 𝑎௧))

Refer to Formula 4.1.24 in Chapter 4 for details.

This technique involves estimating the value of the current state-action pair based on
the expected rewards of the subsequent state-action pair. While effective for iterative
learning, an overreliance on bootstrapping and the estimate of the Q-value of the
next state, 𝑄(𝑠௧ାଵ, 𝑎) in Q-learning can inadvertently erase or distort the agent's
previously acquired knowledge. Thus, safeguarding this acquired knowledge
becomes necessary to ensure the safety of RL training.

The method proposed in this thesis for preserving prior knowledge encoded in Q-
values involves selectively blocking updates to the agent within predefined states. In
this context, the state comprises signals that indicate the safe margin (see section
7.3). Therefore, the proposed method can block Q-updates in certain states or when
any of the comprising signals indicate that the safety margin has been reduced.

The pseudo code for the algorithm to block Q-updates in certain states is presented
below:

Algorithm 7.2.2.1 Protection of prior Knowledge

1. function QValueUpdate (current reward, current_state, q_value, next_q_value):
2. # Input: current reward, current_state, q_value, next_q_value
3. # Output: Q-values
4. # Set of states where Q update must be blocked
5. setOfStatesToBlockQUpdates = {state1, state2, state3, ...}
6. if current_state belongs to setOfStatesToBlockQUpdates:
7. # Block Q-update in current states and return current q_value
8. return q_value
9. else:
10. # Continue with Q-update rule
11. return q_value + alpha * (reward + gamma *

 max_next_q_value(next_q_value) - q_value)

The proposed method in this section effectively blocks updates to Q-values in
specific states to safeguard prior knowledge. Similarly, it can be applied to policy
gradient RL methods, blocking policy updates in the same manner.

165

7.2.3 Safety Layer- Prevent Unsafe Actions22
Unsafe actions that lead to catastrophic events must be prevented during training
and after deployment. Given the paramount importance of safety in autonomous
driving (AD), this thesis adopts a solution that promptly intervenes to block the
actions of the reinforcement learning (RL) agent. This intervention directly overrides
the RL agent's policy when safety Key Performance Indicators (KPIs), and the safety
margin identify unsafe regions within the state space.

The state space is classified into safe and unsafe regions, differentiating between
the safety context and the RL context, as outlined in safety margin scheme 7.3.

Following this safety margin scheme, the management of unsafe regions is
exclusively conducted within the safety context, entirely bypassing the RL context.
The proposed solution in this thesis includes a rule-based strategy within the safety
context, integrating clear logic for signals contributing to safety KPIs and relevant
threshold parameters. This approach ensures immediate corrective actions to
enhance the safety margin in real-time, independent of reliance on the agent's policy,
thereby prioritizing effective safety responses.

Examples of rule-based logics to prevent unsafe actions within the safety context:

- If Ego-Target Distance: (d1) <= d1_threshold, then throttle pedal ratio = 0
unsafe action of accelerating the vehicle is prevented

- If Ego-Lane Distance:(d3) <= d3_threshold, then steering angle = +20 degree
unsafe action of over/understeering to the right or steering to the left is
prevented

- If throttle pedal pressed AND brake pedal pressed, then throttle pedal ratio =
0
When the brake override system detects that both the brake and throttle
pedals are engaged simultaneously, it gives priority to the brake command.

7.2.4 Safety Layer- Safety Dependent Policy Optimization
Enhancing the safety of RL agents often involves adopting a constrained policy
optimization approach. Rather than allowing unrestricted updates to the policy
network, the implementation of constraints on policy updates is a common practice.
This technique is notably employed in RL methods such as Proximal Policy
Optimization (PPO) (refer to Section 4.7.5) to ensure training stability and promote a
more robust learning process.

The original PPO RL method is based on the divergence between the old and new
policies. The methodology proposed in this dissertation enhances this constraint by
introducing a safety aspect.23 The safety margin-dependent constraint is designed to
dynamically adjust the constraining clipping of the policy update based on the safety
margins (see section 7.3) of the RL agent.

22 Other resources such as [4], [5], and [6] have addressed the topic from a distinct perspective. The
methodology proposed in this dissertation, however, takes a fundamentally different approach.
23 Other resources such as [7], [8], and [9] have addressed the topic from a distinct perspective. The
methodology proposed in this dissertation, however, takes a fundamentally different approach.

166

The main intuition is to encourage the agent to promptly return to a safer state as the
safety margin diminishes, achieved by minimizing the impact of the update
constraint.

The original PPO clipped surrogate objective function:

𝐿஼௅ூ௉(𝜃) = 𝐸෠௧[min (
గഇ൫𝑎௧ ห 𝑠௧൯

గഇ೚೗೏
൫𝑎௧ ห 𝑠௧൯

 𝐴መ௧ , 𝑐𝑙𝑖𝑝 (
గഇ൫𝑎௧ ห 𝑠௧൯

గഇ೚೗೏
൫𝑎௧ ห 𝑠௧൯

 , 1− ∈, 1+ ∈) 𝐴መ௧]

Where 𝐴መ௧ is the advantage function at time-step t for the taken action and the
hyperparameter ∈ controlling the size of the clip for the policy update.
Refer to Formula 4.7.24 in chapter 4 for details.

Incorporating safety penalty to the clipped surrogate objective function:
Let M(s) be the penalty function that represents the safety margin of the agent in state: s

For example, if the distance of the ego-vehicle to the nearest obstacle is below a safe
threshold, impose a penalty; otherwise, the penalty is zero. Safety KPIs and safety margins
in the context of autonomous driving in this dissertation are elaborated in defined in section
7.2.1.

The safety-aware advantage function A (s, a) considering the penalty term: Penalty(M(s)) is
defined as:
𝐴(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) – 𝜆 . 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑀(𝑠) (7.2.11)
𝑅(𝑠, 𝑎) is the reward of action: a in state: s and λ is a hyperparameter controlling the strength
of the safety penalty.

Adjusting the advantage based on the safety margin encourages actions that maintain or
increase the safety margin.
Hence, the safety-margin-dependent surrogate objective function of an PPO RL agent in the
context of autonomous driving can be defined as:

𝐿஼௅ூ௉(𝜃) = 𝐸෠௧[min (
𝜋ఏ(𝑎௧ | 𝑠௧)

𝜋ఏ೚೗೏
(𝑎௧ | 𝑠௧)

 ൫𝑅(𝑠, 𝑎)– 𝜆 . 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑀(𝑠)൯,

𝑐𝑙𝑖𝑝 (
గഇ൫𝑎௧ ห 𝑠௧൯

గഇ೚೗೏
൫𝑎௧ ห 𝑠௧൯

 , 1− ∈, 1+ ∈)(𝑅(𝑠, 𝑎) – 𝜆 . 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑀(𝑠))] (7.2.12)

167

7.2.5 Safety Layer- Dynamic Reward Shaping
Reward shaping in Reinforcement Learning (RL) refers to the process of modifying
and optimizing the rewards received from the environment to guide the agent,
improving the agent's decision-making capabilities and overall performance across
various environments.

Raw Reward from the environment is shaped by a reward function. Researchers
have proposed numerous reward functions in this area of research, as exemplified in
[3], [4], [10]. In their study [1] a linear reward function grounded in the error signal
and the authors in [11] developed a reward function based on human preferences
and subsequently optimized it to achieve optimal results.

The raw reward obtained from the environment, 𝑟௞, is generally a straightforward
function, not necessarily complex. For instance, a reward of +1 might be assigned if,
in the current time step, the autonomous driving (AD) vehicle is navigating without
encountering any accidents.

The reward shaping approach in this dissertation adopts a distinctive methodology
based on the safety Key Performance Indicators (KPIs) of autonomous driving, as
proposed in Section 7.3. Refer to Figure 7.8 for visual representation.

Fig. 7.8: Reward Shaping by RL Safety layer based on safety KPIs

Specifically, the safety layer of the Autonomous Driving (AD) agent imposes a
negative reward (penalty) offset to the raw reward based on safety Key Performance
Indicators (KPIs). This reward function aims to proactively prevent accidents and
facilitate rapid transitions to safer driving states.

𝑟௞ ← 𝑟௞ + 𝑅𝑒𝑤𝑎𝑟𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑠𝑎𝑓𝑒𝑡𝑦 𝐾𝑃𝐼𝑠) (7.2.13)

The reward function for safety KPI: Ego-Lane Distance, defined in section 7.3, is
proposed as follows:

Reward shaping for lane keeping assist system (LKAS):

Lateral Deviation: The lateral deviation(LD) is the horizontal distance between the
centre of the vehicle and the centre of the lane. This deviation is measured
perpendicular to the direction of the lane. If the vehicle is perfectly cantered, the
lateral deviation is zero.

𝑆𝑡𝑎𝑡𝑒 𝑆௞

𝐴𝑐𝑡𝑖𝑜𝑛 𝐴௞

Environment

Safety
KPIs

Dynamic
Reward Shaping 𝑟𝑒𝑤𝑎𝑟𝑑 𝑟௞

RL Agent

Safety Layer

168

Mathematically, if 𝑃௩௘௛ is the position of the vehicle and 𝑃௅஼ is the centre of the lane
(LC), the lateral deviation (LD) can be expressed as:
𝑑௅஽ = 𝑃௩௘௛ − 𝑃௅஼ (7.2.14)
A reduced form of the state in the context of a lane-keeping system can be
represented by a combination of the lateral deviation (𝑑௅஽)and the yaw rate (ψ).

This forms the input observation vector: state= [𝑑௅஽ , 𝜓]

A reward function that encourages the agent to minimize lateral deviation while
maintaining a reasonable yaw rate can be defined as:
𝑅𝑒𝑤𝑎𝑟𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐸𝑔𝑜 − 𝐿𝑎𝑛𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)=̇ −∝ 𝑑௅஽

ଶ − 𝛽(𝜓௔௖௧௨௔௟ − 𝜓௧௔௥௚௘௧)ଶ (7.2.15)

Here, α and β are weighting factors, and ψ is the actual Yaw Rate. This reward
function penalizes large lateral and yaw rate deviations.

7.2.6 Safety Layer- Redundant RL Agents
Multi-Agent Reinforcement Learning (MARL) is a subfield of reinforcement learning
where multiple agents interact with an environment simultaneously. It is categorized
into competitive versus cooperative and centralized versus decentralized, along with
their hybrid variants [12]. A comprehensive overview of the applications, safety
considerations, robustness, and generalization aspects of multi-agent reinforcement
learning can be found in [13]. MARL methods have been successfully applied to a
variety of safety-critical autonomous driving systems, including traffic light control
[14], and lane change [15]. Authors in [16] introduce a multi-agent reinforcement
learning model with hard constraints to ensure the functional safety of autonomous
driving.

Building upon the foundation of MARL methods, this dissertation proposes a new
reinforcement learning setting termed 'Redundant RL agents' to enhance the
redundancy and safety of autonomous driving.

In the 'Redundant RL agents' setting, two RL agents with distinct RL algorithms, but
identical tasks, state space, and action space function independently from each
other and interact with the autonomous driving environment. This collaborative
approach between the two agents can significantly enhance autonomous driving
safety.

Safety Arbitration between two redundant RL agents:

In real-world driving scenarios, misalignments between two agents may arise due to
various factors, including but not limited to differences in RL algorithms, policy
networks, or training methodologies.

Safe Action
𝑎1 = 𝜋௔௚௘௡௧ଵ

𝑎2 = 𝜋௔௚௘௡௧ଶ
Safety Arbitration

169

Fig. 7.9: Safety Arbitration between two RL agents considering safety KPIs for driving
scenarios

Utilizing system redundancy, the safety arbitration method proposed here aims to
resolve misalignments between the two redundant agents, ensuring the safety of
decision-making. See Figure 7.9.

This is achieved by employing a predefined arbitration strategy that systematically
evaluates Safety KPI metrics (refer to 7.3) and reconciles differences in the agents'
outputs. The arbitration strategy is designed to prioritize safety-critical decisions,
promoting a cohesive and reliable decision-making process in the autonomous
driving environment.

Pre-established priority between the agents:

In a simplified model of autonomous driving with only actuators as: accelerator pedal
brake pedal, steering wheel a pre-established safety arbitration mechanism can be
defined as follows:

𝑎1 = 𝜋௔௚௘ = acceleration ratio = A1%, 𝑎2 = 𝜋௔௚௘௡ = acceleration ratio = A2%

Safety arbitration (A1%, A2%) = min (A1%, A2%)

𝑎1 = 𝜋௔௚௘௡௧ଵ = braking ratio = B1%, 𝑎2 = 𝜋௔௚௘௡ = braking ratio = B2%

Safety arbitration (B1%, B2%) = max (A1%, A2%)

Fig. 7.10: Safety Arbitration between two RL agents for lane change or lane follow scenarios

𝑎1 = 𝜋௔௚௘௡௧ଵ = lane change, 𝑎2 = 𝜋௔௚௘௡ = follow lane and slow down

Safety arbitration (lane change, follow lane and slow down) = follow lane and slow
down

Algorithm 7.2.6.1 Safety Arbitration between Redundant Agents

1. function safety-arbitration (current_state, AgentPolicy1, AgentPolicy2):
2. # Input: current_state, AgentPolicy1, AgentPolicy2
3. # Output: Action selected by the safety arbitration
4. # Check if safety KPIs exceed safety threshold 1
5. if safetyKPIs(current_state) > safety_threshold_1:

170

6. # Check if the policies of Agent 1 and Agent 2 differ for the current state
7. if AgentPolicy1(current_state)! = AgentPolicy2(current_state):
8. # Arbitrate actions for continuous actions (e.g., throttle and brake)
9. arbitrated_throttle = min (AgentPolicy1.throttle(current_state),

AgentPolicy2.throttle(current_state))
10. arbitrated_brake = max (AgentPolicy1.brake(current_state),

AgentPolicy2.brake(current_state))24
11. # Arbitrate actions for discrete actions (e.g., steering)
12. # Compute lateral deviation
13. lateral_deviation = compute_lateral_deviation(current_state)
14. # Arbitrate actions for steering based on lateral deviation
15. if lateral_deviation >= 0:
16. arbitrated_steering = min (AgentPolicy1.steering(current_state),

AgentPolicy2.steering(current_state))
17. elif lateral_deviation < 0:
18. arbitrated_steering = max (AgentPolicy1.steering(current_state),

AgentPolicy2.steering(current_state))
19. # Output the arbitrated actions
20. return (arbitrated_throttle, arbitrated_brake, arbitrated_steering)
21. # If safety KPIs are at risk, no arbitration is performed
22. return None

24 In some driving scenarios unintended braking might pose a safety threat, and therefore, maximizing
brake is not the safest action.

171

7.2.7 Safety Layer- Human Driver in Loop (Human Imitation)
There is25 extensive research dedicated to this subject area; however, the testing
and implementation of this specific safety feature is beyond the scope of this thesis.
In the future, the author intends to extend the capabilities of the proposed solution,
by practically deploying this feature as an important factor for practical solutions
provided in this domain to industry.

In the context of autonomous driving, integrating human imitation into reinforcement
learning (RL) presents a valuable avenue for improving the capabilities of RL agents.
Post-deployment, the agent's policy must be adaptable and subject to continuous
updates due to various factors such as the aging of the vehicle, variations in road
conditions, changes in vehicle components like tires, braking systems, and
suspension. In such cases, the agent should learn from human drivers, particularly
when their decisions prove superior to the pre-existing policies stored by the agent.

The presented approach involves the RL agent entering a silent mode when a
human driver assumes control. In this mode, the RL agent functions as a passive
observer of the environment and human's actions.

To learn effectively from human drivers, it is essential to assess the merit of updating
an agent's policy with human actions. If the reward received for the human's action is
notably positive and the safety KPIs are improved by the action, the policy
parameters are adjusted to align the agent's actions in the corresponding state.

The policy update occurs under the following conditions:

- The human's action differs from the agent's action.
- The reward received for the human's action surpasses a predefined threshold.
- Safety Key Performance Indicators (KPIs) show improvement.

Policy update for a DQN agent based on the reward from the human's action:

The Q-update, utilizing the Bellman Equation and Q-Learning principles (see formula
(4.1.24) in chapter 4), ensures that the agent captures the impact of proper human
actions in the long term:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑅ு௨௠௔௡ + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) (7.2.16)

Where, 𝑅ு௨௠௔௡ represents the reward to the human’s action.

Similarly, in policy gradient-based RL, the policy network is updated to align the
agent's action with the human's action for the same state.

25 Other resources such as [1], [11], [17...19] have addressed the topic from a distinct perspective.
The methodology proposed in this dissertation, however, takes a fundamentally different approach.

172

Policy update for a PPO agent based on the reward from the human's action:

In the PPO update equation, the adjustment of the policy parameters 𝑟௧(θ) is guided
by the comparison of the current policy's probability to the old policy's probability (for
the taken action. The update rule, as detailed in formula (4.7.26) in Chapter 4, is
mathematically expressed as:

𝐿஼௅ூ௉(𝜃) = 𝐸෠௧[min (𝑟(𝜃) 𝐴መ௧ , 𝑐𝑙𝑖𝑝 (𝑟(𝜃) , 1− ∈, 1+ ∈) 𝐴መ௧]

The key factor influencing this adjustment is the advantage function (𝐴௧), which
reflects how much better or worse the current action is compared to the average
action in a given state.

To include a signal from the human in the PPO update, the algorithm can be
modified to incorporate the reward term specific to the human's action.

The approach that is proposed in this dissertation is to directly add the observed
rewards as a signal to the advantage function as:

𝐴௧ = 𝑄௧(𝑠, 𝑎) − 𝑉௧(𝑠) + 𝜆 ⋅ 𝑅ு௨௠௔௡ (7.2.17)

Here, 𝑅ு௨௠௔௡ is the reward obtained by the human's action and λ is a weighting
factor.

This modification directly adds the reward for the human's action to the advantage
function. In practical terms, this means that the advantage of the human's action will
be adjusted by the additional reward (𝑅ு௨௠௔௡).

Consequently, during the PPO update, the policy will be adjusted to maximize the
advantage, considering the specific reward associated with the human's actions.

173

7.2.8 Safety Layer- Fail- Safe Strategy
Ensuring safety in a self-driving car system, particularly in a fail-safe scenario where
the Operational Design Domain (ODD) is not maintained, or there are hardware
(HW) or communication failures, impaired sensor data, etc., poses a critical
challenge that demands an effective fail-safe strategy.

The following is a non-exhaustive list of risks that an RL agent in the context of
autonomous driving may encounter:

- HW failure in the system (ISO26262 safety standard)
- Communication failures (ISO26262 safety standard)
- Unavailable or impaired sensor data (performance deficiency in SOTIF

ISO21448 safety standard)
- impaired actuator functionality (performance deficiency in SOTIF ISO21448

safety standard)
- Detection of unknown driving scenarios (SOTIF ISO21448 safety standard)
- Inability to verify the presence of a human driver (misuse in SOTIF ISO21448

safety standard)
- Operational Design Domain (ODD) conditions are not met
- Safety KPIs reaching a non-compensable level (RL agent failed to maintain a

safe margin for the Ego vehicle)
- …

Considering the severity and potential catastrophic consequences of such system
failures, this thesis advocates for a practical approach to handling fail scenarios
within the safety context, entirely bypassing the RL context (see 7.3) to avoid an
irrational reliance on the RL decision-making capability in the presence of a system
failure.

This approach involves following clear logical operations and immediately
transitioning the system to a predefined safe state within individual fault tolerance
time intervals (FTTI).

Cyclic and real-time plausibility checks of input data, along with the continuous
monitoring of ODD conditions and Safety Key Performance Indicators (KPIs), are
prerequisite conditions for the success of the fail-safe strategy, enhancing the
system's reliability and responsiveness.

Furthermore, the fail-safe strategy must strictly adhere to the relevant normative
requirements of automotive safety standards26. It should include an appropriate
strategy for promptly and effectively involving the human driver, ensuring a smooth
and safe degradation of autonomous driving.

26 Chapter 6 of this dissertation introduces a safety framework detailing how ML solutions can comply with
automotive safety standards.

174

7.3 Safety Layer- Safety Margin
7.3.1 Safety Key Performance Indicators(KPIs)
The safety layer of the RL agent determines the safety margin by constantly
assessing the environment based on five key performance indicators (KPIs)for
safety. These metrics define the distance relationships and reaction capabilities
critical for preventing accidents and ensuring the overall safety of the RL agent's
operation.

Ego-Target Distance: (d1)

The space maintained between the autonomous vehicle and the vehicle in front
(target vehicle). A smaller safety margin here could indicate a higher risk of collisions
(unsafe).

Ego-Target Distance can be computed using sensor data such as radar or LIDAR,
providing real-time distance information.

Ego-Obstacle Distance: (d2)

The minimum distance maintained from stationary obstacles, such as parked cars,
barriers, or roadside objects. A smaller safety margin in this metric indicates an
increased risk of collisions with nearby objects.

Ego-Lane Distance:(d3)

Evaluates the lateral space maintained within the lane. A narrower margin increases
the likelihood of unintended lane departures, posing a safety risk.

Determining the Ego-Lane Distance is performed by analysing the vehicle's position
in relation to the lane boundaries identified by camera-based Electronic Control Units
(ECUs).

Reaction Time Buffer: (t1)

Reflects the time it takes for the RL agent to react to a perceived threat, unexpected
events or changing situation. A reduced buffer may compromise the agent's ability to
respond promptly to emerging risks.

Severity of a Potential Accident: (s1)

Quantifies the potential severity of an accident based on the relative speeds, angle
of collision, and mass of the vehicles involved. This metric considers the
consequences of various safety-related scenarios.

7.3.2 Safety goals
In alignment with the defined safety KPIs, the following safety goals are set for the
autonomous driving (AD) agent.

Collision Avoidance:

Safety Goal: The autonomous driving (AD) agent must avoid collisions with other
vehicles, pedestrians, and obstacles by maintaining a safe distance to other vehicles
(d1) and stationary obstacles (d2).

175

Lane-Keeping and Steering Control:

Safety Goal: The AD agent should maintain accurate and safe control over the
vehicle's steering, ensuring it stays within designated lanes and avoids unintended
lane departures. The system must respond appropriately to sudden changes in road
curvature and unexpected obstacles.

Speed Management:

Safety Goal: The AD agent must adhere to posted speed limits and adjust the
vehicle's speed according to traffic conditions and road characteristics. It should
prioritize smooth acceleration and deceleration to prevent abrupt manoeuvres that
could lead to accidents (t1).

Adaptive Driving Behaviour:

Safety Goal: The AD agent should adapt its driving behaviour to the prevailing traffic
conditions, weather, and road circumstances. It should avoid aggressive driving,
tailgating, and other behaviours that may compromise safety (s1).

Emergency Braking:

Safety Goal: The AD agent should be capable of recognizing imminent collision
scenarios and engage emergency braking when necessary. This ensures the vehicle
can rapidly decelerate or stop to avoid or mitigate the severity of potential accidents
(t1).

7.3.3 Safety margin scheme - Safety context versus RL context27
In the proposed safety margin scheme within the RL agent's safety layer, the
autonomous driving agent continuously monitors safety key performance indicators
(KPIs) and determines the safety criticality of the autonomous driving. The
assessment of safety criticality is based on predefined individual thresholds for each
of the five safety metrics, referred to as Threshold1 and Threshold2.

Fig. 7.11: Comprehensive Safety Margin Scheme and Types of Safety Layer Interventions

Safety Enhancement within the Reinforcement Learning (RL) Context:

27 An example of safety and RL context implementation is presented in Chapter 8, Section 8.4.

 SL- Fail-Safe

 SL- Prevent Unsafe
Actions

 SL- Reward Shaping

 SL- Safety Arbitration Red. Agents

 SL- No Override

 S

af
et

y
C

ri
ti

ca
li

ty

HW/Comm. Failure, ODD violated,
sensor impaired, unknown driving scenario

Safety KPIs > Threshold1

Safety
context

RL
context SL- Dependent Policy Optimization

Threshold2 < Safety KPIs < Threshold1

Safety KPIs < Threshold2

176

In the context of reinforcement learning (RL), when safety KPIs are larger than their
Threshold1, the reinforcement learning (RL) agent avoid executing any safety
interventions. Alternatively, when any safety KPI falls between defined Threshold1
and Threshold2, the RL agent dynamically engages at least one of the proposed
safety-layer measures. These measures include safety arbitration between two
agents, application of reward shaping, or dependent policy optimization, as detailed
in Section 7.2. The choice of safety-layer measure depends on the applied RL
method and the current status of autonomous driving. See Figure 7.11.

Mathematically, this condition can be expressed as follows:

𝑆𝑀_𝑅𝐿𝐶𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑆𝑎𝑓𝑒𝑡𝑦௄௉ூ௜) ≥ 𝑆𝑀_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2௜ (7.3.1)

𝑖 = 1, … , 𝑁 where N is the number of relevant KPIs

Safety Enhancement within the Safety Context:

In the safety context of the proposed safety margin scheme, if any of the safety KPIs
falls below a non-compensable Threshold2, signalling an increased safety risk, the
safety layer takes immediate control to prevent unsafe actions.

Mathematically, this condition can be expressed as follows:

𝑆𝑀_𝑆𝑎𝑓𝑒𝑡𝑦𝐶𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑆𝑎𝑓𝑒𝑡𝑦௄௉ூ௜) < 𝑆𝑀_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2௜ (7.3.2)

𝑖 = 1, … , 𝑁 where N is the number of relevant KPIs

Moreover, in cases of hardware or communication failures, violations of Operational
Design Domain (ODD), sensor impairments, or encountering unknown driving
scenarios, a fail-safe strategy is promptly implemented, leading to the degradation of
the autonomous driving system to ensure heightened safety measures. See Figure
7.11.

The safety margin scheme presented in this thesis guarantees a transparent strategy
for autonomous driving safety. It places a high priority on accident prevention while
ensuring optimal operational safety.

177

8 Chapter 8 – Implementing, validating, and Verifying Safe
Highway Driving RL agent with a safety layer

8.1 Introduction
Chapter 8 outlines the experimentation framework for integrating the proposed
Safety Layer (SL) into state-of-the-art Reinforcement Learning (RL) agents (DQN,
PPO, A2C, and DDPG) within the customized Highway-Env environment, focusing
on highway driving scenarios. The process involves training RL agents initially
without safety layer features. Following the training phase, a systematic quantitative
comparison is conducted. In addition to simulating SL-Enhanced training in chapter
7, three further key features of the safety layer, namely ‘SL-Redundant RL Agents’,
‘SL-Prevent Unsafe Actions’ and ‘SL-Safety Dependent Policy Optimization’ are
demonstrated in this chapter. These features are suggested and the algorithms
created in Chapter 7. The results of this chapter, successfully demonstrate that the
selected safety features enforced make huge impact on the enhancement of
autonomous driving safety.

Two safety Key Performance Indicators (KPIs) are established, aligning with the
safety margin scheme proposed in Chapter 7 (Section 7.3). These KPIs serve as
crucial metrics for evaluating the safety performance of RL agents in different driving
scenarios. The analysis explores the impact on safety metrics when specific Safety
Layer features are either activated or deactivated. This chapter intends to validate
and evaluate the proposed solution by experiment, analysing the impact on
autonomous driving safety influenced by the activation or deactivation of Safety
Layer features. Insights derived contribute to ongoing efforts aimed at enhancing
autonomous driving safety.

This chapter wraps up by summarizing findings and outlining potential avenues for
future research and development within the domain of autonomous driving safety.

8.2 ‘Highway-env’ Simulation Environment
‘Highway-Env’28[1] is an open-source Python reinforcement learning environment
designed for training and testing autonomous vehicles in various traffic scenarios.
The environment provides a framework for creating diverse driving scenarios
including Intersection, Lane Keeping, Roundabout, Parking, Highway, and more.

In this chapter of the dissertation, the ‘highway-env’ environment is employed to
simulate highway driving scenarios. See Figure 8.1.

28 Citation: @misc {highway-env, author = {Leurent, Edouard}, title = {An Environment for
Autonomous Driving Decision-Making}, year = {2018}, publisher = {GitHub}, journal = {GitHub
repository}, howpublished = {\url{https://github.com/eleurent/highway-env}},}

178

Fig. 8.1: Highway-Env Simulation - Configured for Highway Driving

Figure 8.1. presents a snapshot of the highway-env environment specifically
configured for highway driving. The simulation environment consists of three lanes,
with the ego vehicle highlighted in green, representing the autonomous vehicle under
study. Additionally, four target vehicles, denoted by the blue markings, populate the
highway.

Action Space:

The environment can be customized to have either continuous and discrete action
spaces. In the context of this dissertation, the environment is configured with a
discrete action space.

Actions: = ["lane left", " lane right", " faster’", " slower’", " idle"]

State (Observation) Space:

The observation provided by the highway-env environment is structured as an
occupancy grid, incorporating specific features that denote the presence, position,
and velocity of both the ego vehicle and other target vehicles.

The Observation is a VxF (vehicle, feature) array that describes a list of V nearby
vehicles by a set of features of size F, listed in the "features" configuration field.

Features: = ["presence", "x [m]", "y[m]", "vx [m/s^2]", "vy[m/s^2]"]

The observation info with respect to the ego-vehicle is always described in the first
row of the array. The coordinates of the Ego vehicle are always absolute.

The observation information for target vehicles can be configured either as absolute
values or relative to the ego vehicle. When configured with normalized=True
(default), the observation is normalized within a fixed range for each coordinate.
Refer to Table 8.1 (a) and (b).

Vehicle x y vx vy
ego-
vehicle 5.0 4.0 15.0 0

vehicle 1 -10.0 4.0 12.0 0
vehicle 2 13.0 8.0 13.5 0
….
Vehicle V 22.2 10.5 18.0 0.5

Or

Vehicle x y Vx vy

ego-
vehicle 0.05 0.04 0.75 0

vehicle 1 -0.1 0.04 0.6 0
vehicle 2 0.13 0.08 0.68 0
….
Vehicle V 0.22 0.11 0.9 0.03

Table 8.1: An example of highway-env observations in (a) absolute or (b) relative
configuration

179

In summary, the RL agent observes the state regarding the coordinates of Ego and
target vehicles and takes actions as illustrated in Figure 8.2.

Fig. 8.2: RL agent in Highway-Env Simulation – States and Actions

Reward Function:

The reward function of the Highway-env environment is designed to encourage the
agent to drive faster on the road and avoid collisions. The reward is the sum of the
following reward values:

Rewards: = ["Collision Reward” (-1), " Right Lane Reward" (0.1), " High Speed
Reward” (0.4), "Lane Change Reward" (0)]

Reward Value Explanation
Collision Reward -1 The reward received when colliding with a vehicle.
Right Lane Reward

0.1
The reward received when driving on the right-most lanes, linearly mapped to
zero for other lanes

High Speed Reward
0.4

The reward received when driving at full speed, linearly mapped to zero for
lower speeds

Lane Change Reward 0 The reward received at each lane change action

Table 8.2: Rewards in Highway-Env Highway driving scenario

Environment Configuration:

Highway-env is highly customizable and offers a wide range of configuration
parameters. Interested readers can refer to the highway-env documentation for more
insights. In the context of this dissertation, default configurations are utilized. Some
of the highlighted configurations include:

Action type: Discrete Action, road type: straight, episode duration: 40 [s], Vehicle
length: 5.0 [m], Vehicle width= 2.0 [m], MAX_SPEED = 40.0 [m/ s^2], …

𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝐸𝐺𝑂 (𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦)

𝑇𝑎𝑟𝑔𝑒𝑡(𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦)

𝐻𝑖𝑔ℎ𝑤𝑎𝑦

− 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒

𝐵𝑟𝑎𝑘𝑒

180

8.3 Training State-of-the-Art RL Agents on Highway-env
The training of various state-of-the-art Reinforcement Learning (RL) agents, namely
DQN, A2C, PPO, and DDPG, using the highway-fast-v0 environment under identical
conditions are discussed. The focus is on assessing their performance, saving the
trained models, and generating Tensorboard reports for further analysis.
For the implementation of the RL agents Stable-baseline3 (SB3) library [2] is used.
Stable-baseline3 (SB3) library is a set of reliable implementations of reinforcement
learning algorithms in PyTorch.
GitHub repository: https://github.com/DLR-RM/stable-baselines3

Training Setup
The training process involves executing these RL agents on the highway-fast-v0
environment, capturing default settings for thorough comparison. Models are saved
periodically, and Tensorboard reports are generated every 20,000 training time
steps. These saved models and Tensorboard reports are revisited to monitor the
agents learning progress and efficiency of the training process.

Configuration Parameters
To ensure a meaningful basis for comparison, all four RL agents (A2C, DQN, PPO,
and DDPG) are configured with a Fully Connected MLP network as their policy
model. Apart from the MLP network, other configuration parameters are
predominantly set to their default values.
In Chapter 5 the impact of different design variations of RL agents and the influence
of RL configuration parameters and neural network setup on the performance and
stability of RL training were explored

Performance Evaluation
In the next step, the last trained model is reloaded and set to run a specific number
of episodes. The performance of RL agents is analysed to identify the most effective
models. The recorded video showcasing the RL agent's performance in MP4 format,
submitted as a supplementary document, can be viewed and downloaded.
In the following sections, the trained RL models are selectively used and combined
with the proposed safety-override layer for experimentation and evaluation of the
impact of the safety layer features on autonomous driving safety. The goal is to
objectively assess whether the proposed safety features can effectively enhance
safety.

181

8.3.1 Highway-env: RL DQN Agent
The DQN reinforcement learning algorithm is comprehensively reviewed in Chapter
4, Section 4.6 and the major design variations to the algorithm were implemented
and evaluated in Chapter 5.
Here, the major configuration parameters for DQN are set according to the code
snippet below.
Instantiate the agent
model = DQN('MlpPolicy', env,
 policy_kwargs=dict(net_arch=[256, 256]),
 learning_rate=5e-4,
 buffer_size=15000,
 learning_starts=200,
 batch_size=32,
 gamma=0.8,
 train_freq=1,
 gradient_steps=1,
 target_update_interval=50,
 verbose=1,
 tensorboard_log=tensorboard_log)

8.3.2 Highway-env: RL PPO Agent
The PPO reinforcement learning algorithm is comprehensively reviewed in Chapter
4, Section 4.7.5. The major configuration parameters for PPO are set according to
the code snippet below.

Instantiate the agent
model = PPO('MlpPolicy', env,
 policy_kwargs=dict(net_arch=[256, 256]),
 learning_rate=2e-3,
 batch_size=64,
 verbose=1,
 tensorboard_log=tensorboard_log)
Other parameters, including the major configuration parameters:
{‘policy’: MlpPolicy, ’learning_rate’, ’batch_size’, ’gamma’, ’clip_range’, ’n_epochs’,’
max_grad_norm’, …}, are set to default values.

8.3.3 Highway-env: RL A2C Agent
The A2C reinforcement learning algorithm is comprehensively reviewed in Chapter
4, Section 4.7.6. A2C parameters, including the major configuration parameters:
{‘policy’: MlpPolicy, ’learning_rate’, ’n_steps’, ’vf_coef’, ’gamma’,’ max_grad_norm’,
’lr_schedule’, …}, are set to default values.

Instantiate the agent
model = A2C('MlpPolicy', env,
 verbose=1,
 tensorboard_log=tensorboard_log)
 Highway-env: RL DDPG Agent

8.3.4 Highway-env: RL DDPG Agent
The DDPG reinforcement learning algorithm is comprehensively reviewed in Chapter
4, Section 4.7.7. As DDPG is specifically designed for environments with continuous
action spaces, it is necessary to adjust the configuration of the environment from a
discrete type of action space to a continuous one.
Create environment
env = gym.make("highway-fast-v0", render_mode='rgb_array')
env.config["normalized"] = False
env.configure({"action": {"type": "ContinuousAction"}})
env.reset()

182

In the continuous action space configuration, the RL agent controls the throttle and
steering angle within the following ranges:
ACCELERATION_RANGE = (-5.0, 5.0) m/s².
STEERING_RANGE = [-45.0, 45.0] degrees

DDPG parameters, including the major configuration parameters:
{‘policy’: MlpPolicy, ’learning_rate’, ’batch_size’, ’tau’, ’gamma’, ’train_freq’,
’gradient_steps’, ’action_noise’, ’replay_buffer’, …}, are set to default values.

Instantiate the agent
model = DDPG('MlpPolicy', env, verbose=1,tensorboard_log=tensorboard_log)

8.3.5 Comparison of RL Agents’ Performance on Highway-Env Environment
Training results of A2C, DQN, PPO, and DDPG Agents on Highway-env Driving

In the examination of RL agents on the Highway-Env environment, two key metrics
were evaluated: average episode reward and average episode length over 40,000
time steps. As shown in Figures 8.3(a) and 8.3(b), PPO emerged with the most
favourable outcomes, securing the top position. Following closely, DQN
demonstrated solid performance, securing the second position. On the other hand,
DDPG and A2C exhibited comparatively less satisfactory results in this evaluation.

Fig. 8 8.3(a): Highway-Env - Agent Training(PPO, DQN, A2C, DDPG) - Average Episode Reward

Run Min Max ΔValue
 Highway_PPO 7,7545 20,56 12,8054
 Highway_DQN 6,135 19,8481 12,324
 Highway_DDPG 0,9199 8,9891 7,3247
 Highway_A2C 7,8212 19,7452 4,8636

183

Fig. 8.3(b): Highway-Env - Agent Training(PPO, DQN, A2C, DDPG) - Average Episode length

Run Min Max ΔValue
 Highway_PPO 10,32 29,39 18,926
 Highway_DQN 8,3567 25,6788 13,5703
 Highway_A2C 10,1429 27,947 5,9734

Performance evaluation of A2C, DQN, PPO, and DDPG Agents on Highway-env
Driving

To evaluate the performance and safety aspects of driving, the final trained
models—A2C, DQN, and PPO—were utilized in a comprehensive assessment
comprising 100 episodes of highway driving within the highway-env environment.
The maximum duration configured for each episode was set at 40 seconds by
default, aiming to replicate realistic driving scenarios.

The observed behaviours of these agents exhibited striking differences, showcasing
distinct driving strategies and safety outcomes. A2C, despite its functionality,
displayed a tendency to drive unsafely, experiencing 95 crashes out of 100 episodes.
Furthermore, it received the least rewards compared to its counterparts, as
illustrated in Figure 8.4(a) and (b). Notably, A2C agent demonstrated a consistent
reluctance to change lanes or slow down, contributing to its higher collision rate and
decreased overall performance.

Conversely, the DQN agent showcased a distinctive driving style characterized by
higher speeds and repeated overtaking manoeuvres compared to other agents.This
resulted in the agent receiving maximum speed rewards from the environment. While
this approach led to enhanced speed-related rewards, it also presented challenges
in terms of safety, with the agent experiencing a notable number of 24 crashes.

184

Fig. 8.4: Highway-Env - Agent Performance (PPO, DQN, A2C) - Reward (a) and Episode Lengths (b)

On the other hand, the PPO agent demonstrated a balanced approach between
speed and safety. Despite driving at a slightly slower pace than DQN, the PPO agent
received commendable rewards. Remarkably, PPO exhibited impressive driving
safety by consistently maintaining a safe distance from the front vehicle, contributing
to its exemplary safety outcomes. Throughout the 100 episodes, the PPO agent
encountered only two crashes, specifically in episodes 23 and 51. The episode
length of PPO, shown in Figure 8.4(b), further emphasizes its consistent
performance and safety record, reaching the configured maximum duration of 40
seconds29.

29 The video showcasing the RL agent's performance in MP4 format, submitted as a supplementary
document, can be viewed and downloaded

185

8.4 Safety Layer-Safety Margin
8.4.1 Highway Driving Safety KPIs from Agent Observations
Safety KPIs based on the longitudinal and lateral distances between EGO and
Target vehicles:
In alignment with the safety margin scheme proposed in Chapter 7, specifically
outlined in Section 7.3, two safety Key Performance Indicators (KPIs), applicable to
the ‘Highway-Env’ environment, are defined as follows:

Fig. 8.5: Highway-env - Definition of Lateral and Longitudinal Distance Arrays

Safety_KPI1 and Safety_KPI2 are characterized by their dependency on both lateral
(𝐷௟௔௧) and longitudinal (𝐷௟௢௡௚) distance arrays, representing the lateral and
longitudinal distances between the Ego and target vehicles, respectively.

Longitudinal Distance Array:
The Longitudinal distance array, denoted by 𝐷௟௢௡௚, is defined as the distance
between the ego vehicle and the target vehicles , regardless of their y-coordinates.
For each target vehicle i, the longitudinal distance is computed as the difference in
the x-coordinates between the ego vehicle and that specific target vehicle.
Mathematically:
𝐷௟௢௡௚[𝑖] = 𝑋ா௚௢ − 𝑋்௔௥௚௘௧೔

 (8.4.1)

Where 𝑋ா௚௢ is the x-coordinate of the ego vehicle, and 𝑋்௔௥௚௘௧೔

 is the x-coordinate of
the target vehicle i.
The resulting 𝐷௟௢௡௚ array provides the longitudinal distances for each target vehicle
relative to the ego vehicle.

Lateral Distance Array:
Similarly, the Lateral distance array, 𝐷௟௔௧ , refers to the sideways distance between
the ego vehicle and the target vehicles, irrespective of their x-coordinates, and is
defined as:

𝐷௟௔௧[𝑖] = 𝑌ா௚௢ − 𝑌 ௔௥௚௘௧೔

 (8.4.2)

Where 𝑌ா௚௢ is the y-coordinate of the ego vehicle, and 𝑌 ௔௥௚௘௧೔

 is the y-coordinate of
the target vehicle i.
The resulting 𝐷௟௔௧ array provides the lateral distances for each target vehicle relative
to the ego vehicle.

 Longitudinal distance
Lateral distance

Lane Space

186

Safety_KPI1: EGO-Target-Longitudinal-Distance

𝑆𝑎𝑓𝑒𝑡𝑦_𝐾𝑃𝐼1[𝑖] = ൜
𝐷௟௢௡௚[𝑖] ; 𝑖𝑓𝐷௟௔௧[𝑖] < 𝑙𝑎𝑛𝑒𝑠𝑝𝑎𝑐𝑒

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 ; 𝑒𝑙𝑠𝑒
 (8.4.3)

Equation 8.4.3 presents the mathematical expression for Ego-Target-Longitudinal-
distance metric, denoted as Safety_KPI1[i].

When 𝐸𝑔𝑜 and 𝑇𝑎𝑟𝑔𝑒𝑡௜ vehicles traverse the roadway within the same line, indicated
by their lateral distance is less than a predefined lane space, then Safety_KPI1[i] is
defined as the longitudinal distance between the two vehicles. Otherwise,
Safety_KPI1[i] is assigned a max-value. The rationale for assigning a max-value in
this scenario is that when EGO and target vehicles are not in the same lane, the risk
of collision or accident significantly decreases.

The nearest target vehicle corresponds to the one with the minimum absolute value
in 𝑆𝑎𝑓𝑒𝑡𝑦_𝐾𝑃𝐼1[𝑖] and is identified by:𝑎𝑟𝑔𝑚𝑖𝑛(𝑆𝑎𝑓𝑒𝑡𝑦_𝐾𝑃𝐼1[𝑖]).

Safety_KPI1 serves as a crucial metric for quantifying the longitudinal safety
distance between the ego and target vehicles, aligning with the safety goal of
maintaining a safe distance from the front vehicle.

Safety_KPI2: EGO-Target-Lateral-Distance

𝑆𝑎𝑓𝑒𝑡𝑦_𝐾𝑃𝐼2[𝑖] = ቐ

𝐷௟௔௧[𝑖] ; 𝑖𝑓𝐷௟௢௡௚[𝑖] < 𝑑1

𝛼𝐷௟௔௧[𝑖] ; 𝑖𝑓𝐷௟௢௡௚[𝑖] > 𝑑1

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 ; 𝑖𝑓𝐷௟௢௡௚[𝑖] ≫ 𝑑1

 (8.4.4)

Equation 8.4.4 defines the safety KPI for Ego-Target-Lateral-distance, denoted as
Safety_KPI2[i].

When 𝐸𝑔𝑜 and 𝑇𝑎𝑟𝑔𝑒𝑡௜ vehicles traverse the roadway close to each other in the x-
coordinate and their longitudinal distance, 𝐷௟௢௡௚, is less than a predefined threshold

(d1), Safety_KPI2[i] is set as the lateral distance, 𝐷௟௔௧, between the two vehicles.

If the longitudinal distance is larger less than d1, Safety_KPI2[i] is scaled by the
hyperparameter 𝛼 (𝛼 > 1). In cases where the vehicles are not in close proximity

(𝐷௟௢௡௚[𝑖] ≫ 𝑑1), Safety_KPI2[i] is set to a Max-value, signifying that the Ego vehicle
is presently not at risk of a side collision.

The nearest target vehicle, in terms of lateral distance, corresponds to the one with
the minimum absolute value in 𝑆𝑎𝑓𝑒𝑡𝑦_𝐾𝑃𝐼2[𝑖] and is identified by:
𝑎𝑟𝑔𝑚𝑖𝑛(𝑎𝑏𝑠(𝑆𝑎𝑓𝑒𝑡𝑦_𝐾𝑃𝐼2[𝑖])).

Safety_KPI2 plays a crucial role as a key metric in evaluating the lateral safety
distance between the ego and target vehicles, thereby contributing to the broader
safety goal of maintaining a secure spacing from neighbouring vehicles.

187

8.4.2 Implementation of Safety KPIs in Highway-Env
The code snippet to implement the safety margin scheme, as per Section 7.3, and
compute Safety KPIs for the Highway-env environment is as follows:

class SafetyMargin:
 def __init__(self, SM_Threshold_RLContext, SM_Threshold_safetyContext,
lanespace=3, alpha=2, longitudinalspace=5):
 self.lanespace = lanespace
 self.longitudinalspace = longitudinalspace
 self.alpha = alpha
 self.SM_Threshold_RLContext = SM_Threshold_RLContext
self.SM_Threshold_safetyContext = SM_Threshold_safetyContext

 def compute_safety_kpi1(self, D_long, D_lat):
 # Compute Safety_KPI1 based on the absolute value of D_lat
 return np.where(np.abs(D_lat) < self.lanespace, D_long, XRange)
 def compute_safety_kpi2(self, D_lat, D_long):
 # Compute Safety_KPI2 based on the absolute value of D_long
 condition0 = np.abs(D_lat) < self.lanespace
 condition1 = np.abs(D_long) > 2 * self.longitudinalspace
 condition2 = np.abs(D_long) < self.longitudinalspace
 condition3 = np.abs(D_long) > self.longitudinalspace
 return np.where(condition0 | condition1, YRange, np.where(condition2,
D_lat, self.alpha * D_lat))

8.4.3 Analysing Driving Behaviour of RL Agents utilizing Safety KPIs
In the comparative experimentation section (Section 8.3.5) involving A2C, PPO, and
DQN agents within a highway driving environment, it was highlighted that the A2C
agent drives unsafely, experiencing the maximum number of crash incidents. To gain
insights into the safety aspects of an RL agent's driving behaviour, the Safety KPIs
defined in this dissertation are utilized. The study aims to uncover patterns,
contributing factors, and the correlation between variations in these safety metrics
and the crash incidents of the RL agents.

A2C Agent Performance and crash incident Analysis

The trained A2C, DQN, and PPO models were loaded and run for 10 episodes,
generating visualizations of Safety_KPI1 and Safety_KPI2, as well as crash
incidents, throughout their respective highway driving time steps. The results of this
experiment are presented in the Figures 8.6 (a), (b), (c) and 8.7 (a), (b), (c).

188

Fig. 8.6: A2C Performance: Safety KPIs (a), (b), crash incidents (c) in highway driving

Correlating Safety KPIs with Crash Incidents

A2C consistently encounters a crash incident in each episode, resulting in a total of
10 crashes, as illustrated in Figure 8.6 (c). In instances where the A2C agent fails to
maintain a safe distance from the front vehicle, leading to Safety_KPI1 surpassing
the critical longitudinal distance level (indicated by the dotted horizontal line) of 4 [m],
the risk of colliding with the front target vehicle significantly increases, as depicted in
Figure 8.6 (a).

Similarly, the potential for side collisions rises when Safety_KPI2 exceeds the critical
lateral distance level (dotted horizontal line) of 2.5 [m], as shown in Figure 8.6 (b).

Performance and crash incident Analysis of DQN and PPO Agents

In contrast to A2C, both DQN and, notably, PPO consistently maintain a safe
distance, as reflected in their higher levels of both lateral and longitudinal safety
KPIs, as illustrated in Figure 8.7(a) and (b).

PPO, with a record of zero crashes, exhibits a commendable commitment to safe
driving practices. Hence, the agent successfully navigates through the entirety of 10
episodes, each comprising 40 steps, resulting in a total of 400 time-steps.

In comparison, the driving behaviour of the DQN agent is characterized by a
tendency to change lanes and overtake, as indicated by its smaller values of lateral
safety KPI compared to PPO, as shown in Figure 8.7(b). The DQN agent,
demonstrating a more assertive driving style, encounters 3 crashes over the course

189

of 10 episodes, as depicted in Figure 8.7(c). The crossing of safety KPIs beyond
critical thresholds is evident in these crash incidents (Figure 8.7(a)).

Fig. 8.7: Highway Driving - DQN and PPO Performance: Safety KPIs (a), (b), Crash Incidents(c)

The utilization of Safety KPIs in analysing the dynamic behaviour of RL agents, as
presented in this dissertation, yields valuable insights into their driving performance
and establishes a correlation between safety metrics and crash incidents in RL
agents' highway driving dynamics. In the subsequent section, safety KPIs are further
employed to delineate the distinction between 'safety context' and 'RL context,'
following the safety margin scheme proposed in chapter 7. The type of safety layer
intervention depends on the currently active context.

8.4.4 Safety Layer-RL vs Safety Context
In accordance with the safety margin scheme proposed in Chapter 7, Section 7.3,
the assurance of safety within autonomous driving scenarios relies on the fulfilment
of predetermined safety KPIs. When the calculated value of a safety KPI falls below
an established non-compensable threshold, denoted as Threshold2, the safety of the
autonomous driving system can be ensured within the defined 'safety context.'

The validation of this safety context is formally represented by Formula 7.3.2:

𝑆𝑀_𝑆𝑎𝑓𝑒𝑡𝑦𝐶𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑆𝑎𝑓𝑒𝑡𝑦௄௉ூ௜) < 𝑆𝑀_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2

Compute safety context based on the minimum Safety_KPI values and SM_Threshold1
def compute_safety_context(self, Safety_KPI1, Safety_KPI2):
 # Find the index of the minimum value in each Safety_KPI array

190

 min_index1 = np.argmin(np.abs(Safety_KPI1))
 min_index2 = np.argmin(np.abs(Safety_KPI2))
 # Get the absolute values of the minimum values in each array
 min_value1 = np.abs(Safety_KPI1[min_index1])
 min_value2 = np.abs(Safety_KPI2[min_index2])
 # Compare the absolute values of the argmin values with the thresholds
 sm_safetycontext1 = min_value1 < self.SM_Threshold_safetyContext[0]
 sm_safetycontext2 = min_value2 < self.SM_Threshold_safetyContext[1]
 # Return the comparison results as arrays of boolean values
 return sm_safetycontext1, sm_safetycontext2

The results of the implementation, as depicted in Figure 8.8 (a) and (b), provide
insights into the debugger information. In (a), Target Vehicle 1 is positioned -3.44 [m]
behind the ego vehicle, with a lateral distance of 6.41 [m]. Target Vehicle 2 is
traversing in the same lane and is located 6.610 [m] ahead. Consequently,
Longitudinal Safety-KPI1 is set to 6.610 [m], and Lateral Safety-KPI2 is set to 6.41
[m]. Since both these KPIs are still above SM_Threshold2 [4 m, 4 m], the RL agent
can handle the driving scenario within the RL context and the safety context is
disabled (SM_long_SafetyContext = False, SM_lat_SafetyContext = False).

Fig. 8.8 (a): In-Depth Debugging: Safety KPIs and SM_safetyContext Calculations of Highway-Env

In the driving scenario depicted in Figure 8.8(b), the ego vehicle is approaching
Target Vehicle 2 with a short longitudinal distance of 3.78 [m]. Meanwhile, Target
Vehicle 1 has shifted to the middle lane, traveling closely to the ego vehicle with a
lateral distance of 3.33 [m]. Clearly, in this driving scenario, the safety margin has
decreased, and both KPIs fall below the safe threshold SM_Threshold2.
Consequently, the safety context is activated, as indicated by
SM_long_SafetyContext = True and

SM_lat_SafetyContext = True.

191

Fig. 8.8 (b): In-Depth Debugging: Safety KPIs and SM_safetyContext Calculations of Highway-Env

192

8.5 RL- Safety Layer for Highway-env Environment
A summary of what has been covered in this chapter includes:

- Training state-of-the-art RL agents and evaluating them using TensorBoard
logs.

- Implementing the safety margin scheme proposed in Chapter 7, Section 7.3,
incorporating two safety KPIs along with RL and safety context information.

- Analysing crash incidents based on safety KPIs.
In Chapter 7, the safety layer with eight key features to enhance autonomous driving
safety was proposed. In this chapter the following key features of the safety layer are
implemented for Highway-env Environment and the performance and safety metrics
of each of these features are evaluated in the subsequent sections:

- Safety Layer- Prevent Unsafe Actions (refer to 7.2.2 and its implementation in
section 8.6)

- Safety Layer- Redundant RL Agents (refer to 7.2.6 and its implementation in
section 8.7)

The synopsis of the code snippet (without details) for implementing the safety layer
and the aforementioned features in the Highway-env environment is as follows:

class RLSafety_layer:
 def __init__(self, latDistThreshold, longDistThreshold):
 self.latDistThreshold = latDistThreshold
 self.longDistThreshold = longDistThreshold

 def prevent_unsafe_actions(self,action, safety_KPI1, safety_KPI2, ego_lane):
 def safety_arbitration(self, safety_KPI1, safety_KPI2, Agent1_Action,
Agent2_Action):

193

8.6 Safety Layer-Prevent Unsafe Actions
To validate and implement the innovative 'Safety Layer – Prevention of Unsafe
Actions' feature proposed in Algorithm 7.2.3 in Chapter 7, this dissertation embarks
on a dedicated experimental investigation. The primary decision-making entity in this
exploration is the DQN Agent, previously trained in Section 8.3.5, operating in
conjunction with the safety layer for preventing unsafe actions during highway
driving.

In the presence of an active safety context, signifying a minimized safety margin, the
algorithm watchfully monitors and intervenes in the agent's actions. Unsafe actions
are detected, blocked, and overridden using a rule-based prevention strategy
implemented by the safety layer. The algorithm remains neutral outside of the safety-
context window and does not interfere with the DQN agent's decision-making
process. These three steps can be summarized as:

- Verify Safety context window is active

- Detect whether the RL agent action is unsafe

- Refer to the rule-based strategy and find a safe replacement

The computation flow is as follows:

Environment state → Safety KPIs → Safety Context active?→ Agent action unsafe? → Override Action

The rule-based strategy for overriding unsafe actions by the safety layer is
summarized in the table below for highway-env driving.30

Unsafe
Action

Prevention unsafe Action
Replacement Action

lane left ‘idle’
‘lane right’
‘slower’

if Safety_KPI1 [nearest car]) >= longDistThresh
if Safety_KPI2 [i] < 0 or Safety_KPI2 [i] > latDistThresh
otherwise

idle ‘lane left’
‘lane right’
‘slower’

if Safety_KPI2 [i] > 0 or abs (Safety_KPI2 [i]) > latDistThresh
if Safety_KPI2 [i] < 0 or Safety_KPI2 [i] > latDistThresh
otherwise

lane right ‘idle’
‘lane left’
‘slower’

if Safety_KPI1 [nearest car]) >= longDistThresh
if Safety_KPI2 [i] > 0 or abs (Safety_KPI2 [i]) > latDistThresh
otherwise

faster ‘idle’
‘slower’

if Safety_KPI1 [nearest car]) >= longDistThresh
otherwise

slower ‘lane left’
‘lane right’
‘slower’

if Safety_KPI2 [i] > 0 or abs (Safety_KPI2 [i]) > latDistThresh
if Safety_KPI2 [i] < 0 or Safety_KPI2 [i] > latDistThresh
otherwise

Table 8.3: Rule-based strategy for prevention of unsafe action in Highway-env driving

According to the rule-based strategy, the 'idle' action holds the highest priority as a
replacement action, while 'slower' is assigned the lowest priority. In instances where
no alternative action is deemed safe, and the vehicle is unable to change lanes, the
safety layer for preventing unsafe agent actions intervenes by slowing down the
vehicle to lower the severity of a potential accident.

30 The rule-based strategy presented here for overriding unsafe actions with safe alternatives is intended for
demonstration purposes. In real-world driving scenarios, a more realistic and sophisticated approach, considering
a broader range of factors, should be implemented to ensure safety.

194

8.6.1 Algorithm Implementation and Experimental Setup
The trained DQN model is loaded and executed for 30 episodes (up to a maximum
of 1200 time-steps). This process generates visualizations of the agent's reward,
episode length, Safety KPIs, crash incidents, as well as the primary actions taken by
the agent and actions overridden by the safety layer.

The code snippet to implement the algorithm is as below:

Compute safety context based on Safety KPI values
SM_long_SafetyContext, SM_lat_SafetyContext =
safety_margin.compute_safety_context(SafetyKPI1, SafetyKPI2)
#----------
ACTIONS
#----------
DQN Agent observes the Environment and predicts Actions
DQNAction, _states = DQNAgent.predict(obs, deterministic=True)
DQNActions.append(DQNAction)
Check if Safety Context is activated
if SM_long_SafetyContext or SM_lat_SafetyContext:
 # Call safety layer - prev_unsafe_action to prevent unsafe actions
 DQNActionUnsafe= action_unsafe(DQNAction, SafetyKPI1, SafetyKPI2,
latdistThresh, longdistThresh, Ego_lane_number)
 if DQNActionUnsafe:
 unsafe_action_detected_count += 1
 ReplacedAction = rl_safety_layer.prevent_unsafe_actions(DQNAction,
SafetyKPI1, SafetyKPI2, Ego_lane_number)
 if ReplacedAction != DQNAction [0]:
 SL_Action_Prevent_count += 1
 else:
 ReplacedAction = DQNAction[0]
else: # no intervention required!
 ReplacedAction = DQNAction[0]
ReplacedActions.append(ReplacedAction)

8.6.2 Analysing Experimentation Results: Crash Incidents and Action Overrides
The characteristics of the DQN agent were examined in Section 8.3.5. In this
experiment, the DQN represents a comparable driving style, characterized by the
failure to maintain a safe distance from the front vehicle and engaging in repeated
lane-changing manoeuvres. This behaviour is evident in Safety_KPI1 and
Safety_KPI2 metrics, surpassing the critical longitudinal distance level of 4 [m] and
the critical lateral distance level (indicated by the dotted horizontal line) of 2.5 [m].

195

Fig. 8.9: Highway Driving with Prevention of Unsafe Actions - Safety KPIs of DQN Agent in

Fig. 8.10: Highway Driving with Prevention of Unsafe Actions - Total Reward and Episode Length of
DQN Agent in

The agent achieves high rewards and episode length and experiences two crash
incidents in episode 11 and 30. (refer to Figure 8.10). The episode numbers range
from 0 to 29.

196

Fig. 8.11: Highway Driving with Prevention of Unsafe Actions - Crash Incidents and Action Override of
DQN Agent in

In driving scenarios with the safety context active, specifically when the longitudinal
distance is below 10 [m] or the lateral distance is below 6 [m], the safety layer
effectively identifies and blocks 230 instances of unsafe actions performed by the
agent. Following the rule-based guidelines outlined in Table 8.4, the safety layer
replaces these risky actions with safer alternatives. This proactive intervention
results in a noteworthy reduction in crash incidents, with only 2 crashes occurring
over 30 episodes (see Figure 8.11 a). For comparison, the DQN agent, as observed
in Section 8.3.5, encountered 24 crash incidents within 100 episodes, indicating a
24% accident rate.

Notable examples of action replacements include:
Transitioning from ‘Faster’ to ‘Idle’ at time-steps: [49-51], [1135-1143], [1080-1092]
Changing from ‘Faster’ to ‘Slower’ at time-steps: [71-75], [96-99], [1117-1120]
(see Figure 8.11b)

These instances illustrate the safety layer's ability to dynamically modify the agent's
behaviour, mitigating potential risks and substantially enhancing the overall safety
performance during highway driving simulations.

197

Analysis of Crash Incidents Despite Safety-Layer Prevention of Unsafe Actions

The software implementation of the algorithm records a log file each time a crash
incident occurs, storing all necessary information for analysing the incident.

To highlight some of the limitations of the algorithm, the first crash incident in the
experiment is thoroughly analysed here:

Fig. 8.12: Highway Driving with Prevention of Unsafe Actions - Ego vs Target Vehicles at Crash
Incident 1

Figure 8.12 presents a snapshot one frame before crash incident 1 occurs. The crash
information extracted from the log file is as follows:

Crash 1 at Time-Step: 424:
Coordinates:
X: [2.99891 3.869151 24.930276 28.20149],
Y: [2.1584259 -0.3415741 7.158426 4.658426]:
EGO Lane Nr.: 0, Agent action [0], SL detected unsafe: False
Episode Information:
{'speed': 20.330862055536215, 'crashed': True, 'action': 0, … }

With only 3.869 m distance to the target vehicle 2 and a travel speed of 20.33 m/s,
the ego vehicle has little chance to avoid an accident. The DQN agent detects target
vehicle 1 at its right side and commands a lane change to the left side, which is
considered an unauthorized action and replaced with ‘Idle’ by the environment.

The safety layer, with limited sophistication and a less comprehensive
implementation, fails to identify the inadequacy of the agent's action, and
consequently, it does not override the action, thus unable to prevent the accident.

One can infer that the 'Safety Layer - Prevention of Unsafe Actions,' characterized by
its minimal yet effective intervention, exhibits the capability to prevent numerous
crash incidents or mitigate the severity of accidents in various scenarios.

While the safety layer provides valuable enhancements, it is essential to underscore
that it serves as a complementary measure and not a replacement for a more robust
and secure machine learning-based autonomous driving system.

The algorithm's sensitivity to the rule-based strategy and its hyperparameters. A
more comprehensive rule-set and fine-tuning of relevant parameters, such as safe
longitudinal or lateral distances, along with the threshold parameter determining the
safety context, can significantly enhance the performance and usability of the
algorithm.

198

8.7 Safety Layer-Redundant Agents
To validate and implement the innovative 'Safety Layer - Redundant RL Agents'
feature proposed in Algorithm 7.2.3 in Chapter 7, this dissertation proceeds with a
dedicated experimental investigation.

Building upon previous experiments in section 8.3.5 with PPO and DQN agents, both
are now employed as redundant agents within the 'Highway-env' environment.

The DQN agent demonstrated fast driving and frequent lane-changing behaviour,
while the PPO agent, although relatively slower than the DQN agent, exhibited very
high safety scoring.

The rule-based strategy for safety arbitration between two RL agents is summarized
in the table below.31

Nr. Action1-Action2 Safety-Arbitration Explanation
2 faster - idle ’idle’
1 faster - slower ‘slower’
3 slower - idle ’slower’
6 lane left - slower ’slower’
9 lane right - slower ’slower’
4 lane left - lane

right ’lane left’
‘lane right’

if Safety_KPI2 [nearest car] >= 0
otherwise

’lane left’ is safer If the nearest
car is at the right side.
‘lane right’ is safer If the nearest
car is at the left side.

5 lane left - faster

‘faster’
‘lane left’

if Safety_KPI1 [nearest car]) >= longDistThresh
if Safety_KPI2 [i] > 0 or
abs(Safety_KPI2 [i]) > latDistThresh

’faster’ is safer if the front
vehicles are far than a
threshold1.
‘lane left’ is safer if no target
vehicle is at left side or lateral
distance is larger than
threshold2.

7 lane left - idle

’Idle’
‘lane left’

if Safety_KPI1 [nearest car]) >= longDistThresh
if Safety_KPI2 [i] > 0 or
abs(Safety_KPI2 [i]) > latDistThresh

‘Idle’ is safer if the front vehicles
are far than a threshold1
‘lane left’ is safer if no target
vehicle is at left side or lateral
distance is larger than
threshold2.

8 lane right - faster

‘faster’
‘lane right’

if Safety_KPI1 [nearest car]) >= longDistThresh
if Safety_KPI2 [i] < 0 or
Safety_KPI2 [i] > latDistThresh

’faster’ is safer if the front
vehicles are far than a
threshold1.
‘lane right’ is safer if no target
vehicle is at right side or lateral
distance is larger than
threshold2.

10 lane right - idle

‘idle’
‘lane right’

if Safety_KPI1 [nearest car]) >= longDistThresh
if Safety_KPI2 [i] < 0 or
Safety_KPI2 [i] > latDistThresh

’idle’ is safer if the front vehicles
are far than a threshold.
‘lane right’ is safer if no target
vehicle is at right side or lateral
distance is larger than
threshold2.

Table 8.4. Rule-Based Safety Arbitration Between Two Redundant Agents in the Highway-env
Environment

31 The rule-based strategy for safety arbitration presented here is intended for demonstration
purposes. In real-world driving scenarios, a more realistic and sophisticated approach, considering a
broader range of factors, should be implemented for ensuring safety.

199

8.7.1 Algorithm Implementation and Experimental Setup
To harness the strengths of each RL agent and enhance the overall safety of
autonomous driving, a specific agent constellation is devised. The configuration
involves:

The DQN agent is designated as the dominant agent within the constellation,
responsible for primary decision-making in autonomous driving.

The PPO agent acts as a redundant agent, operating independently but concurrently
with DQN, executing the same tasks, sharing the same state space, and having
identical action spaces.

The trained DQN and PPO models in a redundant combination, as proposed above,
are loaded and run for 10 episodes (maximum 400 time-steps), generating
visualizations of Safety_KPI1 and Safety_KPI2, as well as action overrides by the
safety layer-redundant agent.

The code snippet for implementing the Redundant Agent is as follows:
Both DQN and PPO Agents observe the Environment and predict Actions
DQNAction, _states = DQNAgent.predict(obs, deterministic=True)
PPOAction, _states = PPOAgent.predict(obs, deterministic=True)
DQNActions.append(DQNAction)
PPOActions.append(PPOAction)

Check if DQNAction and PPOAction are different
if DQNAction != PPOAction:
 # Call safety arbitration to compute Red. Agent action
 RedAgentAction = rl_safety_layer.safety_arbitration(SafetyKPI1, SafetyKPI2,
DQNAction, PPOAction)
 if RedAgentAction == DQNAction:
 # PPO Action overriden
 SL_DQNArbit_count += 1
 elif RedAgentAction == PPOAction:
 #DQN Action overriden
 SL_PPOArbit_count += 1
else: # no arbitration required!
 RedAgentAction = DQNAction[0]
#default DQN action if safety arbitration fails
if RedAgentAction != DQNAction[0] and RedAgentAction != PPOAction[0]:
 RedAgentAction = DQNAction[0]
 SL_failedArbit_count += 1

8.7.2 Analysing Experimentation Results: Redundant Agents and Safety Arbitration
The experiment aimed to visualize Safety_KPI1 and Safety_KPI2 and record action
overrides overruled by the safety layer-redundant agent, guided by the rule-based
arbitration strategy outlined in Table 8.4. The results of this experiment are
presented in the Figures 8.13 (a), (b), (c) and 8.14 (a), (b), (c).

The redundant agent exhibited remarkable effectiveness in preventing any crash
incidents and enhancing the safety KPIs. It intervened by overriding 21 actions of the
PPO agent in favour of the DQN agent and 366 actions of the DQN agent in favour
of the PPO agent. These interventions were meticulously aligned with the safety
layer's rule-based arbitration strategy, as outlined in Table 8.4.

200

Fig. 8.13: Highway Driving with Redundant Agents - Safety KPIs (a), (b), Action Overrides (c)

At intervals for example [0-79], [151-277], and [318-400] the redundant agent
(highlighted in green in Figure 8.13(c)) replaces DQN 'Faster' or 'Lane left' or 'Lane
right' actions with 'Slower' actions from the PPO agent. This strategic adjustment
ensures that the vehicle maintains a safe distance from the one in front.
Consequently, Safety KPI1 remains above the critical longitudinal distance of 4 [m],
as indicated by the dotted line in Figure 8.13(a).

Furthermore, at time-steps for example [80], [83-86], [103], [148-150], and [293-295],
there were instances where the PPO actions 'Lane left' were identified as potentially
unsafe by the safety layer-redundant agent. As a result, the redundant agent
prioritized DQN actions, steering the vehicle to remain in the same lane and even
accelerate. The benefits of overriding the 'Lane left' action can be clearly seen as an
improvement in lateral distance in Figure 8.13(b).

Over the course of an extended duration spanning 100 episodes, providing a basis
for comparison similar to the experimental results presented in Section 8.3.5, Figure
8.4. The results of the long run are depicted in Figure 8.14 (a), (b), and Figure 8.15
(a), (b), and (c).

The safety-layer redundant agent achieves high average rewards and episode
length, as depicted in Figures 8.14(a) and (b).

201

Fig. 8.14: Highway Driving with Redundant Agents - Average Reward (a) and Episode Length (b)

Fig. 8.15: Highway Driving Redundant Agents -100 Episode- Safety KPIs (a), (b), Action Overrides (c)

Thanks to its significant number of interventions (overriding 472 actions of PPO and
3244 actions of DQN), the redundant agent experienced a remarkable decrease in
crash incidents from 24 crashes in 100 episodes, as observed in the DQN-alone
agent in Section 8.3.5, to only 1 crash in 100 episodes in the new experimentation.
These results demonstrate a substantial improvement over the DQN-alone agent.

In conclusion, the implementation of the safety-layer redundant agent, incorporating
rule-based safety arbitration, exhibits promising outcomes. The redundant agent

202

achieves high rewards and episodes and can effectively maintain a safe distance,
hence mitigating crash incidents through numerous interventions.

An interesting aspect of the algorithm lies in its capacity to harmoniously combine
two RL agents with distinct characteristics—one emphasizing performance and the
other prioritizing safety—thereby complementing each other. Furthermore, there are
opportunities to dynamically configure redundant agents more adaptively based on
the specific demands of various applications.

Its implementation complexity is rated as medium. However, the success of the
redundant agent is significantly tied to its rule-based arbitration strategy.

One minor point to highlight here is that, if the environment receives an unauthorized
action from the agent, it substitutes it with the 'Idle' action, which may have
potentially catastrophic consequences. Developing a rule-based arbitration strategy
that takes such aspects into account can undoubtedly lead to safer results.

In scenarios where both agents output unsafe actions, the existing safety arbitration
algorithm is incapable of preventing crash incidents.

203

8.8 Safety Layer-Safety Dependent Policy Optimization
To validate and implement the proposed 'Safety Layer - Safety Dependent Policy
Optimization' feature outlined in Algorithm 7.2.4 from Chapter 7, this dissertation
conducts dedicated experiments by integrating it into a PPO RL Agent.

The safety margin-dependent constraint is designed to dynamically adjust the
clipping of the policy update, relying on an advantage function and a safety penalty
function, as mathematically expressed by Formula 7.2.11: 𝐴 (𝑠, 𝑎) = 𝑅 (𝑠, 𝑎) – 𝜆. 𝑀(𝑠)

Where, λ is a hyperparameter controlling the strength of the safety penalty.

The safety penalty advantage function is defined based on Safety_KPI1, which
represents the longitudinal distance between the autonomous vehicle (Ego) and the
nearest target vehicle ahead.

Penalty M(s) = ൜
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑠𝑎𝑓𝑒𝑡𝑦𝐾𝑃𝐼1 ; 𝑖𝑓 𝑠𝑎𝑓𝑒𝑡𝑦𝐾𝑃𝐼1 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8.8.1)

Here, the Threshold (by default set to 10[m]) serves as the boundary condition
parameter, determining whether the penalty should be imposed.

8.8.1 Algorithm Implementation and Experimental Setup
To incorporate the 'Safety Layer - Safety Dependent Policy Optimization' feature into
a Simulation in the Loop (SiL) framework, it is essential to extend the PPO class
from the Stable Baselines 3 (SB3) library [2] and override its train function. ‘PPO.py’
from SB3 library function is MIT licensed. Hence, both in the code and in the
References, this library is referenced.

The code snippet for inserting a safety penalty into the PPO train function:
Access the current observation from the rollout buffer
current_observations = rollout_data.observations

safety penalty calculation
safety_penalty = self.calculate_safety_penalty(current_observations, 10)

Clipped surrogate loss with safety penalty
policy_loss_1 = advantages * ratio - safety_penalty
policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range) -
safety_penalty
policy_loss = -th.min(policy_loss_1, policy_loss_2).mean()

The code snippet for calculating the safety penalty function from the agent
observations (state):

def calculate_safety_penalty(self, observations, threshold=10.0):
 x_values = observations[:, :, 1]
 Ego_Target_Long = x_values[:, 1:5] * XRange

 # Calculate Safety KPI1 , ignoring negative values
 safety_kpi1_values, _ = th.min(th.where(Ego_Target_Long < 0, th.inf,
Ego_Target_Long), dim=-1)
 # Calculate Safety Penalty based on Safety KPI1
 safety_penalty = th.where(safety_kpi1_values > threshold, th.tensor(0.0),
 (threshold - safety_kpi1_values) * self.safety_coeff)

 return safety_penalty

204

Rationale behind the implementation:

The original Policy Loss (Clipped Surrogate Loss) is computed using the clipped
surrogate objective function, which comprises two terms: ‘policy_loss_1’ and
‘policy_loss_2’, as shown in the code snippet above. ‘policy_loss_1’ and
‘policy_loss_2’ have been modified to incorporate the safety penalty function.

The safety penalty function operates within the range [0, 10] and is multiplied by the
safety coefficient λ (default value: 0.1). This safety penalty function introduces a
regularization effect on policy optimization. Higher penalty values penalize actions
leading to lower safety, thereby encouraging a more conservative policy.

At its maximum value of 10 (SafetyKPI = 0), the safety penalty signifies a scenario
where the longitudinal distance is zero, indicating the worst safety condition.
Consequently, policy_loss_1 will be higher, promoting a more substantial shift in the
policy towards safer actions.

When the safety penalty function is closer to 0 (SafetyKPI = 10 meter or higher), it
indicates a better safety condition. This results in a smaller policy_loss_1, suggesting
a less aggressive policy update in the direction of safety.

8.8.2 Results of the experimentation
The PPO RL agent is once again trained using the new policy optimization based on
the safety penalty function. Both the previously trained (PPO-Baseline) and the
newly trained PPO (PPO with Safety Penalty (SP)) models are loaded and executed
for 30 episodes (with a maximum of 1200 time-steps). This process generates
visualizations of Safety_KPI1 and Safety_KPI2, along with the reward and episode
length of each agent.

The experiment's objective is to visualize Safety_KPI1 for both PPO models and
compare which model maintains the highest safety distance to the nearest target
vehicle ahead. The outcomes of this experiment are presented in Figures 8.16 (a)
and (b). Both PTO baseline and PPO_with_SP exhibit comparable results in terms of
total rewards and episode lengths (see Figure 8.16 (a) and (b)). The PPO agent with
Safety Penalty demonstrates a slightly better average safety margin of 59.17 meters
compared to the PPO baseline, which achieves an average of 51.87 meters over 30
episodes (as shown in Figure 8.16 (c). These results suggest that the inclusion of the
safety layer and the safety-dependent policy optimization feature remarkably
contributes to maintaining a safer distance from the nearest target vehicle. However,
it's important to note that these results were not achieved under identical driving
conditions for both models. For a more accurate evaluation, additional experiments
and fine-tuning of the safety-dependent policy optimization function, are
recommended.

205

Fig. 8.16: Highway Driving PPO Safety Dependent Policy Update -30 Episode- Reward (a) and Ep.
Length (b) Safety KPIs (c)

8.9 Conclusion
By providing essential algorithmic implementation and a well-structured experimental
setup (Software-in-the-Loop (SiL), this chapter examined and reported on the
effectiveness and usefulness of the proposed safety layer and safety margin scheme
in enhancing the safety of autonomous driving.

The introduction of safety versus RL contexts, along with two safety Key
Performance Indicators (KPIs) based on the longitudinal and lateral distances
between the Ego and target vehicles, provided a proof-of-concept for the merits of
RL agent decision-making in various driving scenarios and prevention of crash
incidents.

206

By changing the safety KPIs in a simulation environment, the correlation between
crash incidents and the degradation of safety metrics, particularly in the moments
leading up to accidents was demonstrated. This quantified correlation sheds light on
RL agent behaviour and establishes the analytical capabilities for better
understanding of the potential occurrence and avoidance of accidents in
autonomous driving.

To demonstrate the merit of the safety layer features, two features from its RL
context (SL-Redundant Agents and SL-Safety Dependent Policy Optimization) and
one feature from its Safety Context (SL-Prevent Unsafe Actions) were adapted and
implemented in the SiL simulation framework.

The results show that Safety Layer features are critical factor in enhancing safety,
based on safety constraints and driving behaviour. This is evident in the significant
number of its action overrides, notable improvements in safety KPIs, and a
remarkable reduction in crash incidents.

In addition, this chapter objectively assessed and reported on the limitations and
potential areas for improvement of the Safety Layer features.

It could be concluded that a robust and adaptable environment generated by the
proposed solutions can significantly improve the quality of autonomous control
(controllability) of the vehicle within the diverse safety-enhancing functionalities. It
proves the original hypothesis of this research work.

The results also lay the foundations and proof for the necessity of implementing
features like SL-Reward Shaping and SL-Human Imitations for further improvements
of safety, explained in Chapter 7.

207

9 Chapter 9: Conclusion, Contributions, and Future Work
Summary of Research Objectives

In conclusion, this dissertation has made steps in advancing the understanding the
challenges of safety in road based autonomous driving. It provides and attempts to
provide a tool/solution by improving and customizing reinforcement learning (RL) as
a suitable alternative to the state-of-the-art.

In this thesis, the author set a number of objectives for finding a way to increase road
worthiness of autonomous vehicles, which are gaining momentum in the society and
leading automotive companies. These objectives were:

- Objective 1: Acquiring Subject Area Knowledge
- Objective 2: Gaps in state-of-the-art solutions (comparative analysis)
- Objective 3: Creating Experimental Framework
- Objective 4: Conducting Tests and Evaluations

Objective 1 was achieved through an in-depth literature review, particularly in
Chapters 2, 3, and 4, where essential knowledge was acquired on relevant machine
learning methods, neural networks, and reinforcement learning. Objective 2,
outlined in Chapter 6, focused on identifying risks associated with state-of-the-art
deep neural network (DNN) classifiers in Advanced Driver Assistance Systems
(ADAS). The work included a comparative analysis, leading to the proposal of a
safety framework designed to mitigate these risks and ensure compliance with
industry standards.

Chapter 5 and Chapter 8 achieved Objective 3 by designing experimental
frameworks through the customization of existing Gym environments and the
establishment of necessary metrics for performance evaluation. These frameworks
were designed and the necessary simulation platform was implemented to visualize
and asses the influence design variations on RL DQN performance and safe
autonomous highway driving, respectively.

Finally, Objective 4, detailed in Chapter 8, involved conducting tests and evaluations.
Thanks to the proposed safety metrics, a quantitative analysis of RL agent decision-
making and safety Key Performance Indicators (KPIs) was achieved, establishing a
valuable correlation with crash incidents.

Overall, an attempt was made to fulfill these objectives in this dissertation. It
demonstrated a holistic and structured approach to advancing the body of
knowledge in the field of autonomous driving safety through reinforcement learning
methodologies.

Achievements and Contributions

This dissertation has four interrelated but distinct features, resulting into a number of
contributions.

First, Introduction of various major design variations of DQN reinforcement learning,
including factors such as the size of the replay buffer, various architectures of hidden
layers, backpropagation optimizers, convergence criteria, target network update, etc.

208

It systematically assesses their impact on agent performance and training stability
(presented in Chapter 5).

Second, identification of potential risks, encompassing both immediate and design
variation risks, in the development of deep neural network (DNN) classifiers. It
introduces a qualitative safety framework designed to mitigate these risks throughout
the design, training, implementation, and validation phases. The framework ensures
compliance with automotive safety standards, including ISO 26262, ISO 21448, and
ISO PAS 8800 (presented in Chapter 6).

Third, introduction of a safety override layer with eight key features, empowering
reinforcement learning agents to enhance safety margins across diverse driving
scenarios (presented in Chapter 7). The contributions include:

- Introduction of a new exploration metric, quantifying the exploration profile of
RL agents in continuous state spaces.

- Introduction and Implementation of the Exploration Maximization Algorithm to
maximize RL agent exploration.

- Integration of human expert guidance in RL training for autonomous driving.
- Protecting prior knowledge through policy update constraints.
- Preventing unsafe actions through the detection and override of unsafe RL

decision-making.
- Integration of safety penalty Key Performance Indicators (KPIs) in reward

shaping to enhance the safety awareness of RL agents.
- Safety-dependent policy optimization for enabling a quicker return to a safer

state.
- Safety arbitration in the redundant multi-agent RL setting in AD.
- Introduction of a policy update mechanism based on human imitation
- Introduction of a fail-safe strategy for RL agents in the event of system

degradation in autonomous driving.
- Introduction of a safety margin scheme and safety KPIs to enhance

autonomous driving safety.

Fourth, quantification of safety metrics within the context of the AI-driven solution
proposed by evaluating RL agents in different highway driving scenarios,
establishing a correlation between crash incidents and safety metrics in autonomous
driving, showcasing the effectiveness of the proposed safety layer in detecting and
preventing unsafe actions, and demonstrating its success in conducting safety
arbitration between two distinct RL agents (presented in Chapter 8).

Empirical Results and Key Findings

In essence, the presented results underscore the pivotal role of safety considerations
in RL-based autonomous driving systems. The proposed safety metrics and safety
layer features not only deepen our understanding of RL agent behaviour but also
offer practical solutions to positively influence decision-making and proactively
prevent accidents in dynamic driving situations.

Building upon these findings, the empirical results highlight notable enhancements
achieved by the implemented safety measures:

209

- The Exploration Maximization Algorithm exhibited an increase in exploration
metrics by 0.06% and 0.08%, as illustrated in in Section 7.2.1, Figure 7.5 (a).

- The Safety Layer-Prevent Unsafe Actions module resulted in a notable
reduction of the accident rate from 24% to 6.6%, as illustrated in Section 8.6,
Figure 8.11.

- The Safety Layer-Redundant Agents solution demonstrated remarkable
success, reducing the accident rate from 24% to 1%, as illustrated in Section
8.7, Figure 8.15.

Integration with Real-world Applications

The findings of this dissertation can be further utilized in other safety-critical
domains, such as robotics and the aerospace industry. The Safety Layer, either in its
entirety or through selective features, demonstrates considerable potential for
integration into real-world products to enhance safety in RL-based applications.
Continued collaboration with the broader autonomous driving research community is
essential to share insights and collectively advance the field.

Future work

The simulation framework developed throughout this dissertation provides a solid
foundation for the continued development and accurate evaluation of these safety
measures, aiming to further advance the safety of autonomous driving systems.

The following future work can profit from the existing framework and findings of this
dissertation:

- Implementation and evaluation of additional safety layer features, such as SL-
Reward Shaping and SL-Human Imitation.

- Integration of various safety-enhancing functionalities into RL Agents for
comparative analysis with the safety layer features.

- Further exploration to refine and optimize Safety Layer algorithms for diverse
driving scenarios beyond highways, including stop-and-go driving, city driving,
parking lots, etc.

- Extending the simulation environment to include a broader range of genuine
driving scenarios and the capability to import realistic field data.

- Extending training cycles leveraging powerful GPUs to boost the learning
quality of RL agents

Closing Remarks

To summarize, the continuous advancements in sensor and processing unit
technologies, along with the progress in control algorithms based on deep neural
networks and reinforcement learning techniques hold promise to enhance safety in
autonomous driving. Nevertheless, ensuring safety in this domain remains a
persistent challenge for both researchers and practitioners.

210

References
Chapter 2
[1] Kantardzic, M. (2019). Data Mining: Concepts, Models, Methods, and Algorithms
(3rd ed.). Wiley

[2] Brunton, S. L., & Kutz, J. N. (2021). Data Driven Science &
Engineering_2ndEdition. Cambridge University Press.

[3] Gorunescu, F. (2011). Data Mining: Concepts, Models and Techniques. Springer
Berlin, Heidelberg.

[4] Russell, R. (2018). Machine Learning: Step-By-Step Guide to Implement Machine
Learning Algorithms with Python. CreateSpace Independent Publishing Platform.
ISBN: 1719528403

[5] https://en.wikipedia.org/wiki/Loss_function

[6] https://en.wikipedia.org/wiki/Mathematical_optimization

[7] Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Pearson
Education

[8] Beysolow II, T. (2017). Introduction to Deep Learning Using R: A Step-by-Step
Guide to Learning and Implementing Deep Learning Models Using R. DOI:
10.1007/978-1-4842-2734-3_4

[9] Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001).
https://doi.org/10.1023/A:1010933404324

[10] B Jagadeesh & D. V. Vidhya Sree, 2022. "Detection and Recognition of Traffic
Sign Boards using Random Forest Classifier," Review of Computer Engineering
Research, Conscientia Beam, vol. 9(3), pages 135-149.
https://ideas.repec.org/a/pkp/rocere/v9y2022i3p135-149id3109.html

[11] Dr. K. Velmurugan , B. Mathumitha, B. Merylen Jenow, R. Thamizh Oviyam,
2019, “Automated Vehicle: Autonomous Driving using SVM Algorithm in Supervised
Learning”, International Journal Of Engineering Research & Technology (IJERT)
RTICCT – 2019 (Volume 7 – Issue 01), DOI : 10.17577/IJERTCONV7IS01006

Chapter 3
[1] Buduma, N. and Locascio, N., 2017. Fundamentals of deep learning: designing
next-generation machine intelligence algorithms. Sebastopol, CA: O’Reilly Media.

[2] Zeng Y, Xu X, Fang Y, Zhao K (2015) Traffic sign recognition using deep
convolutional networks and extreme learning machine. In: Intelligence science and
big data engineering. Image and video data engineering (IScIDE). Springer, Berlin,
pp 272–280

[3] Brunton, S. L., & Kutz, J. N. (2021). Data Driven Science &
Engineering_2ndEdition. Cambridge University Press.

211

[4] Beysolow II, T. (2017). Introduction to Deep Learning Using R: A Step-by-Step
Guide to Learning and Implementing Deep Learning Models Using R. DOI:
10.1007/978-1-4842-2734-3_4

[5] Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention Is All You Need. In
Proceedings of the Advances in Neural Information Processing Systems, 5998-6008.

[6] Yao, S., Guan, R., Huang, X., Li, Z., Sha, X., Yue, Y., Lim, E. G., Seo, H., Man, K.
L., Zhu, X., & Yue, Y. (2023). Radar-Camera Fusion for Object Detection and
Semantic Segmentation in Autonomous Driving: A Comprehensive Review. IEEE
Transactions on Intelligent Vehicles. DOI: 10.1007/978-1-4842-2734-3_4.

[7] Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), 2015.

[8] Nair, Y.; Hinton, G. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning, 2010, pp.
807–814.

[9] Kantardzic, M. (2011). Data Mining: Concepts, Models, Methods, and Algorithms.
John Wiley & Sons.

[10] LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied
to Document Recognition. In Proceedings of the IEEE, 1998, p. 2278–2324.

[11] Habibi Aghdam, H., & Jahani Heravi, E. (2017). Guide to Convolutional Neural
Networks: A Practical Application to Traffic-Sign Detection and Classification.
Springer International Publishing

[12] Bishop, C.M. F.R.Eng. 2006, Pattern Recognition and Machine Learning,
Springer, ISBN-10: 0-387-31073-8.

[13] Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. In
Proceedings of the 3rd International Conference for Learning Representations
(ICLR). DOI: 10.48550/arXiv.1412.6980

[14] Heaton, Jeff. (2015). Artificial Intelligence for Humans, Volume 3: Deep Learning
and Neural Networks. ISBN 13: 9781505714340.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. (2015). “ImageNet
Classification with Deep Convolutional Neural Networks”
https://pdfs.semanticscholar.org/09b8/120cbc52e7df46122e8e608146289fddbdfa.pdf

Chapter 4 and5
[1] Sutton, R. S., & Barto, A. G. Reinforcement Learning: An Introduction. 2nd ed.,
MIT Press, 2018.

[2] Lapan, M. (2020). Deep Reinforcement Learning Hands-On: Second Edition.
Packt Publishing Ltd

[3] Liu, Y. (2019). PyTorch 1.x Reinforcement Learning Cookbook. Packt Publishing
Ltd

212

[4] CS Cheatsheet. ([2023]). Markov Decision Processes (MDPs). https://cs-
cheatsheet.readthedocs.io/en/latest/subjects/ai/mdp.html#rl-course-mdp-deepmind

[5] Rahul Sarkar, and Emma Brunskill. “CS234 Notes - Lecture 2 Making Good
Decisions Given a Model of the World.” Stanford University, 20 March 2018
https://web.stanford.edu/~rsarkar/materials/lecture2-CS234.pdf

Rahul Sarkar, and Emma Brunskill. “CS234 Notes - Lecture 3 Model-Free Policy
Evaluation: Policy Evaluation Without Knowing How the World Works.” Stanford
University, Winter 2019.
https://web.stanford.edu/class/cs234/CS234Win2019/slides/lnotes3.pdf

[6] OpenAI. "An Introduction to Reinforcement Learning." Spinning Up in Deep
Reinforcement Learning. OpenAI, December 17, 2018.
https://spinningup.openai.com/en/latest/

[7] Wikipedia. ”Dynamic Programming”
https://en.wikipedia.org/wiki/Dynamic_programming

[8] K. Kim, "Enhancing Reinforcement Learning Performance in Delayed Reward
System Using DQN and Heuristics," in IEEE Access, vol. 10, pp. 50641-50650,
2022, doi: 10.1109/ACCESS.2022.3174361.

[9] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
... & Petersen, S. (2015). Human-level control through deep reinforcement learning.
Nature, 518(7540), 529-533.

[10] Paszke, A., & Towers, M. (n.d.). Reinforcement Learning (DQN) Tutorial.
PyTorch. Retrieved July 31, 2023, from
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

[11] Roy, B. (2019, January 16). optim.Adam vs optim.SGD. Let’s dive in. Medium.
https://medium.com/@Biboswan98/optim-adam-vs-optim-sgd-lets-dive-in-
8dbf1890fbdc

[12] Wang, Z. T., & Ueda, M. (2021). Convergent and Efficient Deep Q Network
Algorithm. arXiv preprint arXiv:2106.15419. Retrieved from
https://arxiv.org/abs/2106.15419

[13] Wang, Z. T., & Ueda, M. (2021). Convergent and efficient deep Q network
algorithm. arXiv preprint arXiv:2106.15419. https://arxiv.org/abs/2106.15419

[14] van Hasselt, H., Guez, A., & Silver, D. (2016). Deep Reinforcement Learning
with Double Q-Learning. Proceedings of the AAAI Conference on Artificial
Intelligence

[15] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized Experience
Replay. arXiv preprint arXiv:1511.05952. https://arxiv.org/abs/1511.05952

[16] Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,
Horgan, D., Piot, B., Azar, M., & Silver, D. (2018). Rainbow: Combining

213

Improvements in Deep Reinforcement Learning. Proceedings of the AAAI
Conference on Artificial Intelligence.

[17] Fortunato, M.; Azar, M. G.; Piot, B.; Menick, J.; Osband,I.; Graves, A.; Mnih, V.;
Munos, R.; Hassabis, D.; Pietquin, O.; Blundell, C.; and Legg, S. 2017. Noisy
networks for exploration. arXiv:1706.10295.

[18] Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., & de Freitas, N.
(2016). Dueling Network Architectures for Deep Reinforcement Learning. In
International Conference on Machine Learning (pp. 1995-2003). arXiv:1511.06581

[19] Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A distributional perspective
on reinforcement learning. In ICML. arXiv:1707.06887

[20] Williams, Ronald J. "Simple statistical gradient-following algorithms for
connectionist reinforcement learning." Machine learning 8.3-4 (1992): 229-256.

[21] Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000). Policy
Gradient Methods for Reinforcement Learning with Function Approximation. In
Advances in Neural Information Processing Systems (NIPS), 12.

[22] Jan Peters (2010) “Policy gradient methods” Scholarpedia, 5(11):3698
http://www.scholarpedia.org/article/Policy_gradient_methods

[23] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy
gradients,” Neural Networks, vol. 21, no. 4, pp. 682-697, 2008.

[24] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region
policy optimization,” in Proceedings of the 32nd International Conference on
Machine Learning, pp. 1889-1897, 2015. https://arxiv.org/pdf/1502.05477.pdf This
version of the paper was last revised on 20 Apr 2017 .

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
Policy Optimization Algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[26] Poupart, P. from University of Waterloo. "CS885 - Module 1: Introduction to
Reinforcement Learning." 2020. Web. URL:
https://cs.uwaterloo.ca/~ppoupart/teaching/cs885-spring20/slides/cs885-module1.pdf

[27] Abhishek Gupta, Joshua Achiam. from University of Berkeley. "CS 294: Deep
Reinforcement Learning" Fall 2017. Web. URL:
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf

[28] Levine, S. (2022). CS 182/282A: Deep Neural Networks [Lecture notes].
University of California, Berkeley

[29] MathWorks. (2021). Actor-Critic Agents. Retrieved from
https://www.mathworks.com/help/reinforcement-learning/ug/actor-critic-agents.html

[30] Pignatelli, E.; Ferret,J.; Geist,M.; Mesnard,T.; van Hasselt,H.; and Toni, L. 2023,
A Survey of Temporal Credit Assignment in Deep Reinforcement Learning.

214

arXiv:2312.01072 https://arxiv.org/pdf/2312.01072.pdf

[31] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., ... &
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
International conference on machine learning (pp. 1928-1937). arXiv: 1602.01783
https://arxiv.org/pdf/1602.01783.pdf

[32] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., &
Wierstra, D. (2016). Continuous control with deep reinforcement learning. In
International Conference on Learning Representations (ICLR). arXiv:1509.02971
https://arxiv.org/pdf/1509.02971.pdf

[33] Gym Environments https://www.gymlibrary.dev/index.html

[34] Pytorch Library https://pytorch.org/

[35] Gym Github https://github.com/openai/gym

[36] Pytorch Reinforcement Learning (DQN) Tutorial
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

[37] Kaviani, S.; Sohn, I. Application of complex systems topologies in artificial neural
networks optimization: An overview. Expert Systems with Applications 2022, 180.
https://doi.org/10.1016/j.eswa.2021.115073

[38] Tian, Y.; Su, D.; Lauria, S.; Liu, X. Recent advances on loss functions in deep
learning for computer vision. Neurocomputing 2022, 497, 129–158.
https://doi.org/10.1016/j.neucom.2022.04.127

[39] RMSProp Cornell Jason Huang (SysEn 6800 Fall 2020) University
Computational Optimization Open Textbook
https://optimization.cbe.cornell.edu/index.php?title=RMSProp

[40] Kingma, D. P. and Ba, J. (2015) ‘Adam: A Method for Stochastic Optimization’,
in Bengio, Y. and LeCun, Y. (eds.) ICLR (Poster). https://arxiv.org/pdf/1412.6980.pdf

[41] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., &
Wierstra, D. (2016). Continuous control with deep reinforcement learning. In
Proceedings of the International Conference on Learning Representations (ICLR)

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, "Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,"
Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015.
https://arxiv.org/pdf/1502.01852.pdf

215

[43] Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In International Conference
on Machine Learning (ICML).
https://arxiv.org/pdf/1502.03167.pdf

[44] S. Karsoliya, "Approximating Number of Hidden layer Neurons in Multiple hidden
Layer BPNN Architecture", International Journal of Engineering Trends and
Technology, vol. 3, no. 6, 2012.

[45] M. Uzair and N. Jamil, "Effects of Hidden Layers on the Efficiency of Neural
networks," 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur,
Pakistan, 2020, pp. 1-6, doi: 10.1109/INMIC50486.2020.9318195.

Chapter 6
1. Shaout, A.; Colella, D.; Awad, S. Advanced Driver Assistance Systems - Past,
present and future. In Proceedings of the Seventh International Computer
Engineering Conference (ICENCO’2011), Cairo, Egypt, 2011, pp. 72–82.

https://doi.org/10.1109/ICENCO.2011.6153935

2. Belmonte, F.J.; Martín, S.; Sancristobal, E.; Ruipérez-Valiente, J.A.; Castro, M.
Overview of Embedded Systems to Build Reliable and Safe ADAS and AD Systems.
IEEE Intelligent Transportation Systems Magazine 2021, 13, 239–250.
https://doi.org/10.1109/MITS.2019.2953543

3. Lee, C.W.; Nayeer, N.; Garcia, D.E.; Agrawal, A.; Liu, B. Identifying the
Operational Design Domain for an Automated Driving System through Assessed
Risk. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Las Vegas,
NV, USA, 2020, pp. 1317–1322. https://doi.org/10.1109/IV47402.2020.9304552

4. Society of Automotive Engineers. Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles. SAE International 2018.

5. Research Insights Automotive 2030.IBM.
https://www.ibm.com/downloads/cas/NWDQPK5B

6. International Organization for Standardization (ISO). ISO 26262 Road vehicles —
Functional safety 2018.

7. ISO - ISO/PAS 21448:2019 - Road vehicles — Safety of the intended functionality
(SOTIF). https://www.iso.org/standard/70939.html

8. SOTIF - A New Challenge for Functional Testing | SpringerLink
https://link.springer.com/article/10.1007/s38314-020-0257-4

9. Xu, S.; et al. A Review of SOTIF Research for Human-machine Driving Mode
Switch of Intelligent Vehicles. In Proceedings of the 6th CAA International
Conference on Vehicular Control and Intelligence (CVCI), Nanjing, China, 2022, pp.
1–6.

https://doi.org/10.1109/CVCI56766.2022.9964885

216

10. Putting Safety of Intended Functionality SOTIF into Practice.
https://www.sae.org/publications/technical-papers/content/2021-01-0196

11. Borrego-Carazo, J.; Castells-Rufas, D.; Biempica, E.; Carrabina, J. Resource-
Constrained Machine Learning for ADAS: A Systematic Review. IEEE Access 2020,
8, 40573–40598. https://doi.org/10.1109/ACCESS.2020.2976513

12. Koopman, P.; Wagner, M. Challenges in Autonomous Vehicle Testing and
Validation. SAE Int. J. Trans. Safety 2016, 4. https://doi.org/10.4271/2016-01-0128

13. Henriksson, J.; Borg, M.; Englund, C. Automotive Safety and Machine Learning:
Initial Results from a Study on How to Adapt the ISO 26262 Safety Standard. In
Proceedings of the IEEE/ACM 1st International Workshop on Software Engineering
for AI in Autonomous Systems (SEFAIAS), Gothenburg, Sweden, 2018, pp. 47–49

14. ISO/AWI PAS 8800 - Road Vehicles — Safety and artificial intelligence.
https://www.iso.org/standard/83303.html

15. (ISO) ISO PAS 8800 Road Vehicles - Safety and Artificial Intelligence.
https://unece.org/transport/documents/2021/09/informal-documents/iso-iso-pas-
8800-road-vehicles-safety-and-artificial

16. Autonomes Fahren – Auf der sicheren Seite - DE / Safe Intelligence.
https://safe-intelligence.fraunhofer.de/artikel/autonomes-fahren-auf-der-sicheren-
seite
17. Xu, P.; et al. Towards the Quantification of Safety Risks in Deep Neural
Networks. arXiv, 2020.

18. Zhang, R.; et al. DDE process: A requirements engineering approach for
machine learning in automated driving. In Proceedings of the IEEE 29th International
Requirements Engineering Conference (RE), Notre Dame, IN, USA, 2021, pp. 269–
279 https://doi.org/10.1109/RE51729.2021.00031

19. Schwalbe, G.; Schels, M. A Survey on Methods for the Safety Assurance of
Machine Learning Based Systems. In Proceedings of the 1st European Congress on
Embedded Real Time Software and Systems (ERTS 22), Toulouse, France, 2022.

20. Santana, M.A.; Calinescu, R.; Paterson, C. Mitigating Risk in Neural Network
Classifiers. In Proceedings of the 48th Euromicro Conference Series on Software
Engineering and Advanced Applications (SEAA), 2022.

21. González-Saavedra, J.F.; Figueroa, M.; Céspedes, S.; Montejo-Sánchez, S.
Survey of Cooperative Advanced Driver Assistance Systems: From a Holistic and
Systemic Vision. Sensors 2022, 22, 3040.

22. Nair, Y.; Hinton, G. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning, 2010, pp.
807–814.

23. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier reading below neural
networks. In Proceedings of the the 14th International Conference on Artificial
Intelligence and Statistics, 2011, pp. 315–323.

217

24. Hinton, G.E. A practical guide to training restricted boltzmann machines. Neural
Networks: Tricks of the Trade 2012, pp. 599–619.

25. Dong, X.and Zhuang, B.; Mao, Y.; Liu, L. Radar Camera Fusion via
Representation Learning in Autonomous Driving. In Proceedings of the IEEE
Intelligent Vehicles Symposium (IV), 2021, pp. 1–8.

26. Chen, Z.; Li, Z.; Sun, Y. Radar-Camera Fusion for Object Detection and
Semantic Segmentation in Autonomous Driving: A Comprehensive Review. arXiv
preprint arXiv:2304.10410., 2021.

27. Xue, M.; Li, J.; Luo, Q. Toward Optimal Learning Rate Schedule in Scene
Classification Network. IEEE Geoscience and Remote Sensing Letters 2022, 19, 1–
5. https://doi.org/10.1109/LGRS.2020.3040359

28. Iiduka, H. Appropriate Learning Rates of Adaptive Learning Rate Optimization
Algorithms for Training Deep Neural Networks. IEEE Transactions on Cybernetics
2022, 52, 13250–13261. https://doi.org/10.1109/TCYB.2021.3107415.

29. Kaviani, S.; Sohn, I. Application of complex systems topologies in artificial neural
networks optimization: An overview. Expert Systems with Applications 2022, 180.
https://doi.org/10.1016/j.eswa.2021.115073.

30. Li, L.; Doroslovaˇcki, M.; Loew, M.H. Approximating the Gradient of Cross-
Entropy Loss Function. IEEE Access 2020, 8, 111626– 111635.
https://doi.org/10.1109/ACCESS.2020.3001531

31. Tian, Y.; Su, D.; Lauria, S.; Liu, X. Recent advances on loss functions in deep
learning for computer vision. Neurocomputing 2022, 497, 129–158.
https://doi.org/10.1016/j.neucom.2022.04.127

32. Mokhov, S.B.; Paquet, J.; Debbabi, M. Assessing the Adherence of an Industrial
Autonomous Driving Framework to ISO 26262 Software Guidelines. In Proceedings
of the IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), 2019, pp. 1–10.

33. White paper. Safety First for Automated Driving (SaFAD). Mercedes-Benz, Aptiv,
Audi, Baidu, BMW, Continental, Fiat Chrysler Automobiles, HERE, Infineon, Intel and
Volkswagen, 2019.

Chapter 7
[1] Barros, A., de Carvalho, J. P., & Rocha, L. (2020). Reinforcement and imitation
learning applied to autonomous aerial robot control. In Journal of Intelligent &
Robotic Systems (JIRS), 97(3), pp. 1-27.
https://sol.sbc.org.br/index.php/sbrlars_estendido/article/download/14956/14802

[2] C.Burns, P.Izmailov, J.Hendrik Kirchner, B.Baker, L.Gao, L.Aschenbrenner,
Y.Chen, A.Ecoffet, M.Joglekar, J.Leike, I.Sutskever, J.Wu, "Weak to Strong
Generalization: Eliciting Strong Capabilities with Weak Supervision", 2023,

arXiv:2312.09390 https://doi.org/10.48550/arXiv.2312.09390

218

[3] Saunders, W., Sastry, O., Levine, S., Ekenel, H. K., & Isola, T. (2017). Trial
without error: Towards safe reinforcement learning via human intervention. In
Proceedings of the 31st International Conference on Machine Learning (ICML 2017),
pp. 3286-3294. https://arxiv.org/abs/1707.05173

[4] Dalal, N. M., Finn, C., & Levine, S. (2018). Safe exploration in continuous action
spaces. In Proceedings of the 32nd International Conference on Machine Learning
(ICML 2018), pp. 1706-1717. https://arxiv.org/abs/1801.07780:
https://arxiv.org/abs/1801.07780

[5] Amodei, D., Olah, C., Steinhardt, J., Tenenbaum, J., & Schulman, J. (2016).
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565.
https://arxiv.org/abs/1606.06565: https://arxiv.org/abs/1606.06565

[6] Eysenbach, B., Levine, S., & Clune, D. (2017). Leave no trace: Learning to reset
for safe and autonomous reinforcement learning. In Proceedings of the 34th
International Conference on Machine Learning (ICML 2017), pp. 1580-1589.
https://arxiv.org/abs/1711.06782

[7] L. Zhang, L. Shen, L. Yang, S. Chen, X. Wang, B. Yuan, D. Tao, "Penalized
Proximal Policy Optimization for Safe Reinforcement Learning", 2022,
arXiv:2205.11814 https://arxiv.org/abs/2205.11814

[8] Sumanta Dey, Pallab Dasgupta, Soumyajit Dey, "Safe Reinforcement Learning
through Phasic Safety Oriented Policy Optimization", 2023, CEUR Workshop
Proceedings (CEUR-WS.org) https://ceur-ws.org/Vol-3381/22.pdf

[9] H.Hsu, Q.Huang, S.Ha "Improving Safety in Deep Reinforcement Learning using
Unsupervised Action Planning" 2022 IEEE International Conference on Robotics and
Automation (ICRA) https://ieeexplore.ieee.org/document/9812181

[10] B. Ravi Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani,
and P. Pérez, "Deep Reinforcement Learning for Autonomous Driving: A Survey,"
IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 9, pp. 5786-
5805, 2021. https://arxiv.org/abs/2002.00444

[11] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, Dario
Amodei (2023). Deep reinforcement learning from human preferences. arXiv preprint
arXiv:2204.06085. https://arxiv.org/abs/1706.03741

[12] L. M. Schmidt, J. Brosig, A. Plinge1, B.M. Eskofier, C. Mutschler
An Introduction to Multi-Agent Reinforcement Learning and Review of its Application
to Autonomous Mobility, arXiv:2203.07676v2 [cs.AI] 2 Aug 2022

[13] Zhou, Z., Liu, G., & Tang, Y. (2023). Multi-Agent Reinforcement Learning:
Methods, Applications, Visionary Prospects, and Challenges. arXiv preprint
arXiv:2305.10091

[14] Tong Wu, Pan Zhou, Kai Liu, Yali Yuan, Xiumin Wang, Huawei Huang, and
Dapeng Oliver Wu. 2020. Multi-Agent Deep Reinforcement Learning for Urban

219

Traffic Light Control in Vehicular Networks. IEEE Transactions on Vehicular
Technology (2020) https://doi.org/10.1109/TVT.2020.2997896

[15] Wu, X., Chen, M., & Zhu, F. (2021). Multi-agent reinforcement learning for
cooperative lane changing of connected and autonomous vehicles in mixed traffic. In
Transportation Research Part C: Emerging Technologies, 129, 103401
https://link.springer.com/article/10.1007/s43684-022-00023-5

[16] S. Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “Safe, multi-agent,
reinforcement learning for autonomous driving” (2016). CoRR. arXiv:1610.03295

[17] Peng, X., Bertschinger, M., van de Ven, G., & Abbeel, P. (2018). Deep mimic:
Example guided deep reinforcement learning of physics-based character skills. In
Proceedings of the 35th International Conference on Machine Learning (ICML 2018),
pp. 4248-4257. https://arxiv.org/abs/1804.02717

[18] Seo, S., Ishibashi, T., & Kobayashi, N. (2022). Semi-supervised imitation
learning of team policies. In Machine Learning Proceedings (PMLR), 162(1), pp. 1-
18. https://arxiv.org/abs/2205.02959

[19] Ciosek, K., Choromanski, K., & Isenberg, T. (2022). Imitation learning by
reinforcement learning. In Journal of Machine Learning Research (JMLR), 23(71),
pp. 1-57. https://pi-starlab.github.io/JIRL/

Chapter 8
[1] Highway-Env: An Environment for Autonomous Driving Decision-Making @misc
{highway-env, author = {Leurent, Edouard}, title = {An Environment for Autonomous
Driving Decision-Making}, year = {2018}, publisher = {GitHub}, journal = {GitHub
repository}, howpublished = {\url{https://github.com/eleurent/highway-env}},}

[2] stable-baselines3 Library: @article{stable-baselines3, author = {Antonin Raffin
and Ashley Hill and Adam Gleave and Anssi Kanervisto and Maximilian Ernestus
and Noah Dormann}, title = {Stable-Baselines3: Reliable Reinforcement Learning
Implementations}, journal = {Journal of Machine Learning Research}, year =
{2021}, volume = {22}, number = {268}, pages = {1-8}, url =
{http://jmlr.org/papers/v22/20-1364.html}}

	Enhancing Safety in Autonomous Driving through Reinforcement

Learning
	ABSTRACT
	ACKNOWLEDGMENT
	DEDICATION
	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	1 Chapter 1 - INTRODUCTION
	Motivation
	Identification of gaps
	Research Questions
	The aim and objectives of the thesis
	Hypothesis
	Methodology
	Thesis structure
	2 Chapter 2 - Data Driven Systems
	2.1 Introduction
	2.2 Shortcomings of Classic control theory
	2.3 Data Preparation
	2.4 Supervised Learning versus Unsupervised Learning
	2.5 Regression vs Classification
	2.6 Objective Functions
	2.7 Convergence Criteria and Alternative Stopping Criteria
	2.8 A Short Overview of Important Machine Learning Algorithms
	2.8.1 Decision Trees
	2.8.2 Random Forest
	2.8.3 Support Vector Machine (SVM)
	3 Chapter 3 - Neural Networks
	3.1 Introduction to Neural Networks
	3.2 Types of Neural Networks
	3.2.1 Multi-Layer Perceptron (MLP) Neural Networks
	3.2.2 Convolutional Neural Networks (CNN)
	3.3 Training of Neural Networks - Backpropagation
	3.3.1 Forward Pass
	3.3.2 Backward pass: Gradient-Based optimization
	3.3.3 Optimization Algorithms
	3.4 Activation Functions
	3.5 Challenges of Neural Networks
	4 Chapter 4 – Reinforcement Learning Algorithms
	4.1 Introduction to Reinforcement Learning
	4.2 Markov Decision Process (MDP)
	4.3 Fundamentals of Reinforcement Learning
	4.3.1 RL Terminology and Definitions
	4.3.2 The Bellman Equations
	4.3.2.1 Bellman Expectation Equation
	4.3.2.2 Bellman optimality equation
	4.3.3 Challenges of Reinforcement learning
	4.3.4 Exploration and Exploitation Dilemma
	4.3.4.1 Action selection: Epsilon-greedy algorithm
	4.3.4.2 Action selection: Softmax exploration
	4.3.4.3 Action selection: Upper confidence bound (UCB)
	4.3.4.4 Action selection: Thompson Sampling (TS) algorithm
	4.4 Taxonomy of RL Algorithms and Methods
	4.5 Reinforcement Learning Tabular Methods
	4.5.1 Model-based: Policy and Value based Iteration methods
	4.5.2 Model-free: Monte Carlo Evaluation Method
	4.5.3 Temporal Difference Learning
	4.5.4 Temporal Difference Q-Learning and SARSA
	4.6 Deep Q-Network (DQN) RL Algorithm
	4.6.1 Key concepts
	4.6.2 DQN Neural Network
	4.6.3 Training of the DQN
	4.6.4 DQN Convergence criteria
	4.6.5 Optimizing Safety in Autonomous Driving: Challenges and Potentials of DQN

RL
	4.6.6 DQN Extensions
	4.6.6.1 Double DQN (van Hasselt et al, Google DeepMind 2016)
	4.6.6.2 Prioritized Replay Buffer
	4.6.6.3 Rainbow DQN
	4.6.6.4 A summary of other DQN extensions
	4.7 Policy Gradient Reinforcement Learning Methods
	4.7.1 Key concepts
	4.7.1.1 Parameterized Policy Network
	4.7.1.2 Function approximation
	4.7.1.3 Policy Optimization process
	4.7.1.4 Performance Measure J(θ)
	4.7.1.5 Policy Update Constraint
	4.7.1.6 Policy Gradient Theorem
	4.7.2 Vanilla Policy Gradient – REINFORCE
	4.7.2.1 Derivation of the Gradient estimate and the update rule
	4.7.2.2 The REINFORCE Policy Gradient Algorithm
	4.7.2.3 A brief comparison between REINFORCE Policy Gradient and the DQN
	4.7.3 REINFORCE algorithm with Baseline
	4.7.3.1 Update Rule in REINFORCE algorithm with Baseline
	4.7.3.2 Known Limitations of Vanilla REINFORCE and REINFORCE with Baseline

Methods
	4.7.4 Trust Region Policy Optimization (TRPO)
	4.7.4.1 TRPO Update rule
	4.7.4.2 Surrogate Objective Function
	4.7.4.3 Trust Region Bound
	4.7.4.4 KL Divergence
	4.7.4.5 The TRPO Surrogate Objective Function with the Region Policy Update

Constraint
	4.7.4.6 TRPO Algorithm
	4.7.4.7 Optimizing Safety in Autonomous Driving: Potentials of TRPO RL
	4.7.5 Proximal Policy Optimization (PPO)
	4.7.5.1 Stability in Training
	4.7.5.2 Reduction of implementation complexity and hyperparameter sensitivity
	4.7.5.3 Sample Efficiency
	4.7.5.4 PPO objective function
	4.7.5.5 PPO Algorithm with the Clipped Surrogate Objective
	4.7.5.6 PPO Algorithm with the adaptive KL Penalty coefficient
	4.7.5.7 PPO Algorithms
	4.7.5.8 Advantages of PPO algorithm in practice
	4.7.5.9 Optimizing Safety in Autonomous Driving: Potentials of PPO RL
	4.7.6 Actor-Critic Reinforcement Learning Methods
	4.7.6.1 The Architecture of Actor-Critic Method
	4.7.6.2 Actor learning
	4.7.6.3 Critic learning
	4.7.6.4 Actor-Critic Training Algorithm
	4.7.6.5 Bootstrapping in Actor-Critic vs. Monte Carlo Approach in REINFORCE

Method
	4.7.6.6 Actor-Critic Extensions
	4.7.6.6.1 Advantage Actor-Critic (A2C)
	4.7.6.6.2 Asynchronous Advantage Actor-Critic (A3C)
	4.7.6.7 Optimizing Safety in Autonomous Driving: Potentials of Actor-critic Methods
	4.7.7 Deep Deterministic Policy Gradient (DDPG)
	4.7.7.1 Optimizing Safety in Autonomous Driving: Potentials of DDPG methods
	4.7.8 Summary of policy gradient RL algorithms
	5 Chapter 5 - Optimizing DQN Reinforcement Learning
	5.1 Implementation of DQN RL agent for Cartpole Control task
	5.2 Evaluation of DQN Performance, Learning Dynamics and Convergence
	5.3 DQN Variations
	5.3.1.1 Convergence Criteria
	5.3.1.2 Optimizers
	5.3.1.3 Target Network Update
	5.3.1.4 Gradient Clipping
	5.3.1.5 Neural Network Architecture
	5.3.1.6 Hyperparameter Tuning
	5.3.1.7 Replay Memory
	5.4 Conclusion
	6 Chapter 6 - Safety Framework for ADAS Systems – Deep

Neural Network Classifiers
	6.1 Introduction
	6.2 Overview of Advanced Driver Assistance Systems (ADAS) in

Automotive
	6.2.1 ADAS Sensor Technologies
	6.2.1.1 Long-range Front or near-range Corner Radar
	6.2.1.2 Camera sensors
	6.2.1.3 LIDAR
	6.2.1.4 ADAS Fusion ECU
	6.2.2 ADAS Functions
	6.2.2.1 Summary of Safety Critical Hazards
	6.2.3 Machine learning solution in ADAS systems
	6.3 SAE Levels of Autonomous Driving
	6.4 Driving Scenarios
	6.5 Automotive Safety Standards
	6.5.1 International Organization for Standardization (ISO) 26262
	6.5.2 SOTIF 21448
	6.5.3 ISO PAS 8800
	6.6 Safety Framework for Deep Neural Network (DNN) Classifiers
	6.6.1 Review of related works
	6.6.2 Risk Factors across Key Steps in DNN Classifier Development
	6.6.3 Architectural Model Design of Deep Neural Network Classifiers
	6.6.4 Training of Neural network
	6.6.5 Implementation and Integration of DNN Classifiers
	6.6.6 Verification and Validation Methods for DNN Classifiers
	6.7 Conclusion
	7 Chapter 7 - Enhancing Safety in RL Agents: The 'Safety

Override Layer' for Autonomous Driving
	7.1 Introduction
	7.2 Safety Layer for Autonomous Driving RL Agent
	7.2.1 Safety Layer- Enhance RL Training
	7.2.1.1 Maximizing Exploration of Reinforcement Learning Agents during Training
	7.2.1.1.1 Quantifying and Visualization of the RL Agent Exploration Metric in

Continuous Action/State Spaces
	7.2.1.1.2 Methodology for Computing and Visualizing the Exploration Rating
	7.2.1.1.3 Conversion of x-dimensional state space to segmented state space
	7.2.1.1.4 Data Structure to Store Taken Actions in State Space Segments:
	7.2.1.1.5 Exploration Metric
	7.2.1.1.6 Implementation of the Simulation Framework for Quantifying and

Visualizing Proposed Exploration Metrics
	7.2.1.1.7 Evaluation of the Experiment Results
	7.2.1.1.8 Algorithm: Epsilon-Greedy-with-Exploration Maximization
	7.2.1.1.9 Exploration Maximization Algorithm Experimentation
	7.2.1.1.10 Conclusion
	7.2.1.2 Integrating Human Guidance to Enhance RL Training
	7.2.1.2.1 Targeted Policy or State-Action Q-Values Initialization
	7.2.1.2.2 Forcing certain training patterns by Shaping Environment feedback
	7.2.1.2.3 Forcing RL agent to always or never take certain actions in certain states
	7.2.2 Safety Layer- Protection of prior Knowledge
	7.2.3 Safety Layer- Prevent Unsafe Actions
	7.2.4 Safety Layer- Safety Dependent Policy Optimization
	7.2.5 Safety Layer- Dynamic Reward Shaping
	7.2.6 Safety Layer- Redundant RL Agents
	7.2.7 Safety Layer- Human Driver in Loop (Human Imitation)
	7.2.8 Safety Layer- Fail- Safe Strategy
	7.3 Safety Layer- Safety Margin
	7.3.1 Safety Key Performance Indicators(KPIs)
	7.3.2 Safety goals
	7.3.3 Safety margin scheme - Safety context versus RL context
	8 Chapter 8 – Implementing, validating, and Verifying Safe

Highway Driving RL agent with a safety layer
	8.1 Introduction
	8.2 ‘Highway-env’ Simulation Environment
	8.3 Training State-of-the-Art RL Agents on Highway-env
	8.3.1 Highway-env: RL DQN Agent
	8.3.2 Highway-env: RL PPO Agent
	8.3.3 Highway-env: RL A2C Agent
	8.3.4 Highway-env: RL DDPG Agent
	8.3.5 Comparison of RL Agents’ Performance on Highway-Env Environment
	8.4 Safety Layer-Safety Margin
	8.4.1 Highway Driving Safety KPIs from Agent Observations
	8.4.2 Implementation of Safety KPIs in Highway-Env
	8.4.3 Analysing Driving Behaviour of RL Agents utilizing Safety KPIs
	8.4.4 Safety Layer-RL vs Safety Context
	8.5 RL- Safety Layer for Highway-env Environment
	8.6 Safety Layer-Prevent Unsafe Actions
	8.6.1 Algorithm Implementation and Experimental Setup
	8.6.2 Analysing Experimentation Results: Crash Incidents and Action Overrides
	8.7 Safety Layer-Redundant Agents
	8.7.1 Algorithm Implementation and Experimental Setup
	8.7.2 Analysing Experimentation Results: Redundant Agents and Safety Arbitration
	8.8 Safety Layer-Safety Dependent Policy Optimization
	8.8.1 Algorithm Implementation and Experimental Setup
	8.8.2 Results of the experimentation
	8.9 Conclusion
	9 Chapter 9: Conclusion, Contributions, and Future Work
	Summary of Research Objectives
	Achievements and Contributions
	Empirical Results and Key Findings
	Integration with Real-world Applications
	Future work
	Closing Remarks
	References
	Chapter 2
	Chapter 3
	Chapter 4 and5
	Chapter 6
	Chapter 7
	Chapter 8

