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Abstract

We solve optimal stochastic control problems for a risk-averse trader who uses
market orders and/or limit orders to liquidate a large position in a risky asset.
In each case we aim to maximise terminal wealth, while managing the loss due
to the price impact of our own trader’s trading activity. We solve the problems
using various utility functions for the trader’s risk-aversion and penalty functions
for the trader’s urgency to liquidate the position and reduce market risk. We
compare and contrast the performance of the strategies, and compare them to
industry benchmarks such as TWAP and VWAP.
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Chapter 1

Algorithmic Trading

An algorithmic trading strategy is a set of rules that determine which securities
to invest in, the size of the position, whether to go long or short, at which times
to enter and execute the trade, and the time and the type of order used to
execute the trade. Algorithmic trading is of great importance in the financial
industry. It accounts for a very large proportion of the volume in stock markets,
and is increasing its share of volume in fixed-income markets. Since the turn
of the twenty-first century, the rise of electronic trading over more traditional
pit trading has led to the proliferation of computer-based algorithmic trading.
Regulation NMS in the United States, and the Market in Financial Instruments
Directive (MiFID) II in the European Union have also played a role in the
increasing dominance of algorithmic trading in the financial markets in both
regions.

1.1 Types of algorithmic trading strategies

Algorithmic trading strategies can be divided into several different types. Op-
timal execution strategies try to minimise the price impact incurred when exe-
cuting large buy or sell orders. Market-making involves a trader simultaneously
posting buy and sell limit orders for a particular asset into the market to provide
liquidity, matching buyers and sellers of the asset. Statistical arbitrage tech-
niques try to capitalise on anomalies in the statistical characteristics of prices
of one or several assets, for example the discrepancies in the co-integration of
two assets in pairs trading.

1.2 A brief history of algorithmic trading

Algorithmic trading has developed over the past 50 to 60 years as the use and
the availability of computers for performing financial calculations, building elec-
tronic exchanges, and executing trades has increased. Before the 1960s and
1970s, trading was performed manually. Hull [Hul12] and Guo et al [GLSW17]

5



Optimal Execution for a Risk-Averse Trader

describe how “open-outcry” trading was performed on trading floors or in the
trading pits of exchanges. Trade in a particular asset was announced. Traders
would communicate orders verbally or using a complex system of hand gestures
to indicate the amount of the asset they wanted to trade, whether they wanted
to buy or sell, and at what price they wished to transact. Stock tickers, tiny
printers which printed out abbreviated company names followed by the most re-
cent transacted price, were used to transmit price updates to the public. Traded
volume was added in the 1930s [GLSW17]. These trading floors were rendered
obsolete by the development and eventual mass adoption of electronic trading
since the 1970s. In banks and funds, the trading floor was replaced by sys-
tems of computers running algorithms to execute trades electronically. In many
cases, these computers are monitored by human traders. Despite the almost
universal replacement of physical trading floors with computers and servers,
some open-outcry pits still remain, for example the London Metal Exchange.

1.2.1 Trading pre-1970s: The Manual Era

Trading decisions were made by various participants on the “buy-side” and
facilitated by other participants on the “sell-side”, as detailed in Irene Aldridge’s
book on “High Frequency Trading” [Ald13].

Buy-side Market Participants pre-1970s

• Discretionary asset managers: hedge funds, pension funds, mutual
funds

• Retail flow: smaller investors and businesses.

• Speculators: individual traders betting on the direction of asset prices.

Sell-side Market Participants pre-1970s

• Market-makers: brokers at stockbrokers or dealing firms who provided
quotes for buy-side traders to buy and sell, held short-term inventory risk,
and profited from fees for providing these services.

• Exchange: Exchanges in each asset class, often one per asset class. Ex-
amples include the Chicago Board Options Exchange CBOE, the New
York Stock Exchange, the London Stock Exchange, etc.

• Stockbrokers

• Bucket Shops: unregulated trading houses where individual traders
would speculate on prices by placing bets. (described in great detail in
Edwin Lefevre’s “Reminiscences of a Stock Operator” [Lef23])

Aldridge [Ald13] describes how these market participants traded prior to the
developments of the 1970s. Brokers would contact their buy-side clients with
trade ideas and tip-offs, and those clients would in return trade through the
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broker. The clients would give a verbal order in person or over the telephone to
the broker to buy or sell a particular quantity of a given security.

The broker would then execute the trade. If the order was for a large number
of units of the security, the broker would either execute the order immediately, or
would divide the client’s order into a series of smaller orders and execute trades
sequentially in the market. If the order was smaller than the minimum order
size executable on an exchange (a “round lot”), the broker would accumulate
orders from other clients into a single “round lot”.

The broker would route the order to the exchange for the asset class of the
security desired. Representatives of the exchanges, known as specialists, would
match the order, selling to the broker if the order was a buy order, and buying
from the broker if the order was a sell order.

Now, specialists at exchanges would often provide preferential terms for some
of their clients. Aldridge describes how this practice “resulted in Wall Street
cliques capable of significant price discrimination for in-group verses out-of-
group customers” [Ald13] (page 4).

The broker would finally inform the client of the execution of the trade.
Aldridge argues that brokers were the main profiters from this older system, be-
cause they were able to influence prices and receive compensation for favourable
treatment of particular clients. High transaction costs were a feature of these
“highly manual and labour-intensive” markets [Ald13] (page 3), which Aldridge
argues led to relatively low turnover and a high degree of error associated with
manual processing of orders. Guo et al [GLSW17] (page 3) corroborate this,
stating that “out trades (orders unmatched due to human error in manually
entering two supposedly matching trades to buy and sell a given security) were
considered a cost of trading”.

1.2.2 Trading since 1970s, the Electronic Trading era

In 1969, Instinet, an electronic communication network (ECN), started elec-
tronic trading among institutional clients. Guo et al [GLSW17] describe how
Instinet “grew rapidly in the 1980s and became the dominant ECN by the ...
late 1990s”. NASDAQ was founded in 1971 as the first “electronic stock mar-
ket”. It provided automatic quotations as a computer bulletin board. Guo et al
[GLSW17] state that most trades on NASDAQ took place via telephone until
1987. In the 1980s and 1990s many stock exchanges around the world began
to offer electronic trading services: the London Stock Exchange in 1986, the
Chicago Mercantile Exchange in 1992, the Toronto Stock Exchange in 1997,
and the New York Stock Exchange in 2006.

As computing advances led to electronification of the financial markets, trad-
ing itself was also becoming automated. Quantitative analysis of asset prices,
derivatives, volatility, and other market phenomena led to greater profits for
institutions and were adopted widely on both the sell-side and the buy-side.
Since the 1990s, improvements in computing technology led to the introduction
of high frequency trading (HFT). This industry boomed in the latter half of the
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first decade of the 2000s. Alridge lists the new participants to the markets since
the 1970s.

New Market Participants, post 1970s

• Quantitative Funds: mutual funds, hedge funds, proprietary trading
firms using mathematical and statistical models of asset prices and volatil-
ity to make trading decisions and also using analysis of market microstruc-
ture to design execution strategies (the focus of this work).

• Automated Market Makers: market-makers using automated execu-
tion programs and mathematical and statistical analysis of market mi-
crostructure to provide competititve spreads for quoting limit orders to
buy and sell securities and provide liquidity to the markets.

• Automated arbitrageurs: Statistical arbitrage funds looking to iden-
tify and profit from discrepancies in price movement, correlation, and
co-integration.

• Alternative trading venues: Dark pools, new exchanges (such as BATS,
Chi-X [Men13], IEX [Lew15])

Aldridge argues that the introduction of these participants led to a shift
in the balance of power from brokers to their customers in funds and banks.
Quantitative methods introduced at banks and funds gave them an edge over
brokers in forecasting price movements. Brokers’ expertise was reduced in scope
from “the all-encompassing sell-side research into securities behaviour to ... al-
gorithmic execution strategies” [Ald13] (page 4).

Electronic trading networks facilitated more accurate order recording and
allowed the customer to control entry and recording of their own order directly
to the exchange or broker almost instantaneously.

Following receipt of the order, the broker selects the appropriate optimal exe-
cution algorithm, designed to minimise the customer’s exposure to unfavourable
price direction during execution (price impact), and if requested via the order
type used, to reduce the visibility of the size of the order to the market (say,
via an “iceberg order” [CJP15]).

The algorithm slices the up the customer’s full order into a smaller child
orders and executes them in the market via various exchanges. “Smart order
routing” [GLSW17] can be used to find the optimal exchanges to send each child
order to at given intervals in time.

The trading venues match the respective child orders and provide notice of
execution to the broker, which then accumulates and sends the confirmation
of the full order back to the customer. This process typically occurs within
microseconds or seconds.

Menkveld [Men13], Guo et al [GLSW17] and Aldridge [Ald13] all argue that
the introduction of electronic trading and high frequency trading since the late
1990s has led to much faster trade execution, reduced transaction costs, and
increased liquidity. Guo et al mention increased transparency of the market,
since bid and ask prices are transmitted electronically via the Internet all over

Adam Nii Armah Hesse 8



Optimal Execution for a Risk-Averse Trader

the world. A consequence of the increased competition between market-makers
is reduced bid-ask spreads [Men13], [GLSW17].

The book “Flash Boys” by Martin Lewis [Lew15] presents the view, that
HFT firms are predatory and target slower market participants (such as mu-
tual funds, hedge funds) using various techniques to manipulate markets. An
example is “front-running” to take advantage of order flow provided to them
by banks and executing proprietary trades at better prices, forcing customer
orders to be filled at less favourable prices. Aldridge does describe some of the
more exploitative strategies used by certain HFT firms, such as “quote stuff-
ing”, producing “fake” liquidity by flooding exchanges with limit orders which
are quickly cancelled [Ald13] (page 201) and spoofing, again flooding exchanges
with limit orders at various prices which are not cancelled, in order to pro-
duce “fake” liquidity and distort the limit-order book (page 202). Spoofing was
made illegal in the USA under the Dodd-Frank Act [Ald13] (page 202). De-
spite acknowledging some of these exploitative tactics used by some HFT firms,
Aldridge is overall positive that the benefits provided by high-frequency trading
in particular outweigh the disadvantages.

1.3 Price

We can define and model the price of an asset in several ways. Given a list of
limit orders for transacting in a given asset in the limit order book, the highest
limit order to buy is known as the best bid, and the highest order to sell is
known as the best ask. Let us say one is trading over a finite time horizon
[0, T ]. At a given time t ∈ [0, T ], taking the average of the best bid Sbid

t and
the best ask Sask

t yields us the midprice Smid
t of the asset.

Smid
t =

Sask
t + Sbid

t

2
. (1.1)

The asset midprice can be modelled mathematically in a variety of ways.
Almgren and Chriss [AC00] divide the trading period [0, T ] into N intervals of
length τ . Define the times tk = kτ for each k = 0, 1, ..., T . Then they model
the midprice as an arithmetic random walk in discrete time. Between time tk−1

and time tk, the asset midprice takes the value:

Sk = Sk−1 + µτ + σ
√
τϵ, (1.2)

where µ models the expected growth rate of the asset, σ models the volatility of
the asset, and ϵ ∼ N (0, 1) is a standard Normal random variable. This model
does not incorporate price impact as Almgren and Chriss do themselves. We
will discuss price impact later.

In much of the financial literature, the price has been modelled in contin-
uous time using a Wiener process W = {Wt}0≤t≤T , which has the properties
described in the Appendix A.3.1.

A common model for asset prices in the short term is to model the price
as Brownian motion with an associated scaling factor σ, which represents the
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volatility of the asset at each time. The volatility can be defined numerous ways,
but one is to model it as the standard deviation of the asset price over a given
time interval. Thus the midprice can be modelled as:

St = σWt, 0 ≤ t ≤ T. (1.3)

This model is used by many authors in dealing with optimal execution prob-
lems, for example Cartea et al [CJP15], and also market-making problems as
in Gueant et al [GLFT13], Carmona and Webster [CW12], and Avellaneda and
Stoikov [AS08]. Shreve [Shr08] shows that a Wiener Process can be seen to be
a continuous-time analogue to the discrete-time random walk, obtained in the
limit as the number of partitions N of the trading period [0, T ] tends to infinity.

1.4 Market Orders, Limit Orders, and the Limit
Order Book (LOB)

Electronic exchanges offer a wide variety of order types for traders to buy or sell
securities. There are two main order types offered by most electronic exchanges:
market orders and limit orders.

A limit order (LO) is an order to buy or to sell a specified quantity of an
asset at a price equal to or better than a specified limit price.

Limit orders posted to the exchange are entered into a limit order book
(LOB). In her book “High Frequency Trading”, Irene Aldridge [Ald13] describes
the LOB as a “table with columns corresponding to sequential price increments,
and rows recording sizes of limit orders posted at each price increment” [Ald13].
The LOB records incoming limit orders and accumulates them into bins based on
their price, measured to the “tick”, the smallest possible increment. Aldridge
[Ald13] defines liquidity to be the “cumulative trade size of all limit orders
available to meet incoming market orders at any given time on a specific trading
venue”.

Orders resting in the limit order book are categorised by whether they are
bids (limit orders to buy a particular security) or offers (limit orders to sell a
security, also known as “asks”). The highest bid is known as the “best bid”
and the lowest ask is known as the “best ask” or “best offer”. The difference
between the best ask and the best bid is called the bid-ask spread.

When the bid-ask spread is 0, the best bid matches the best ask, and so
resting limit orders execute against each other at that price until all the liquidity
at that price is finished, i.e. all of the trades possible at the common best bid
and best ask are executed. When the best ask is greater than the best bid, the
limit orders rest in the limit order book awaiting a matching market order to
arrive at the exchange and trigger against either the best bid or best ask.

A market order (MO) is an order to buy or to sell a specified quantity of
an asset at the best available price. As Cartea et al explain [CJP15], this often
results in an immediate execution. Trade does not always occur immediately,
however. Aldridge [Ald13] explains that most exchanges use a price-time priority
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execution system, also known as the “first-in, first-out” schedule, for limit orders
in the limit order book. In this system, at each price level, the limit order which
arrived first is the first to execute against an incoming market order which
matches the order.

1.5 Trade Execution and Price Impact

When a client gives an order to a broker or an execution trader to execute, the
trader must decide how to execute that order to maximize the revenue of the
sale for the client. We can equivalently model this as minimizing the execution
costs for the client. The trader must also manage the risks of adverse price
movements in the form of price impact, and also the risk that the order will
not be filled. As described in Cartea et al [CJP15], the trader will carve the
full ”parent” order into smaller ”child” orders, and try to execute these child
orders over the trading horizon. Cartea et al describe how the trader must
simultaneously address the issues of price impact and price risk.

Price impact occurs when a trader’s activity causes the price of the asset
being traded to move adversely against him due to the size of his order. Price
impact can be divided into temporary and permanent price impact. As ex-
plained by Almgren and Chriss [AC00], temporary impact reflects changes in
supply and demand caused by the trader’s activity which change the price his
trades are executed at. It is caused when a large market order “walks the limit
order book” [CJP15]. When an market order “walks the book”, it executes
against the best limit orders that it can attain based on “price-time priority”
[CJP15]. A market order first executes as much of the quantity at the best
available price. If there is sufficient volume quoted at the best available price in
the market, then the market order will execute in full against the oldest limit
order posted at that price. If there is not sufficient volume available at the best
price, the market order will execute as much as possible at the best price, and
then attempt to execute the rest of the order at limit orders posted deeper in
the limit order book, with the earliest limit orders given priority. This results in
at least part of a large order executing against prices that are less than optimal
for the trader. Permanent impact is a change in the actual market price of the
security, the effect of which lasts throughout the trading period.

A large order to buy a security causes market prices to rise, thus increasing
the trader’s execution price so he pays more for the purchase. A large order
to sell a security causes market prices to fall, decreasing the trader’s execution
price so he receives less for the sale.

1.5.1 TWAP and VWAP

Two commonly used execution algorithms are Time-Weighted Average Price
(TWAP) and Volume-Weighted Average Price (VWAP).
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TWAP

A TWAP order is specified as follows: “Buy / Sell quantity Q of asset Y over
time T with a limit price of S”. TWAP aims to buy or sell a given quantity of
a given asset over a time period by dividing the time period and the quantity
into equal partitions, and executing a set fraction of the order (a “slice” [Ald13]
or “child order” [CJP15]) at each interval, as long as the price at the time of
execution of each child order remains better than the limit price specified in the
original TWAP order.

Given an initial position of Q0 units of an asset to liquidate over a time
horizon [0, T ], at each time t ∈ [0, T ], a trader using TWAP will hold a quantity

QTWAP
t =

(
1 − t

T

)
Q0 (1.4)

and will execute trades at the average trading speed

vTWAP
t =

Q0

T
. (1.5)

The trader will transact on average at the “TWAP price”. Assuming the trader
transacts each trade at the midprice, we can write TWAP as the arithmetic
mean of the prices sampled at each time t:

TWAP =
1

T

T∑
t=1

St. (1.6)

In our continuous-time models for each time t ∈ [0, T ], we use an integral:

TWAP =
1

T

∫ T

0

Stdt. (1.7)

As Brent Donnelly explains [Don19], the limit price referred to in the order
request is optional. When no price is specified, the TWAP algorithm simply
splits the full order into child orders according to the specified time interval and
begins to execute them, executing the first child order immediately, at the best
available price. When the TWAP order request specifies a limit price, each child
order is executed only if the price at the time specified by the TWAP order is at
the limit price or better. Thus it is possible for TWAP orders to execute only
partially. Donnelly advises that TWAP orders are best utilised when the market
is either not moving much, or when one expects the price to move favourably
over the specified time horizon for the trade. For example, a trader looking to
buy a given asset could use TWAP when he expects price to fall steadily over
the trading period. That way, he would execute against increasingly favourable
prices. But when he expects the price to rise over the time horizon, it would
be better to use a market order and liquidate immediately rather than incur
increasingly worse prices for child orders, not as a result of price impact but
instead by timing the market incorrectly.

Adam Nii Armah Hesse 12



Optimal Execution for a Risk-Averse Trader

Irene Aldridge [Ald13] explains that the total number N of slices or child
orders (i.e. the partition into which we divide the time horizon) is “best de-
termined using characteristics specific to the traded security” (page 254), such
as historical volume variation during the trading day, or market depth at the
beginning of execution. More sophisticated algorithms which incorporate mar-
ket depth have been developed by Obizhaeva and Wang [OW13] among other
authors. Aldridge [Ald13] states that the objective when placing a TWAP order
is to “select slices small enough so each child order does not significantly move
the market”, but that will be large enough or frequent enough so that the order
is executed within the time horizon. In this case, the trader is trying to bal-
ance the two risks of market risk (retaining a position in the asset whole price
becomes unfavourable) and price impact (incurring increasingly unfavourable
prices due to size of order).

In order to better manage these two risks, more sophisticated algorithms
have been designed. One of these is VWAP.

VWAP

The Volume-Weighted Average Price, VWAP, described both by Cartea et al
[CJP15] and Aldridge [Ald13] as one of the most popular execution algorithms,
aims to divide the parent order into child orders such that the size of a child
order is larger when the trading volume at the time of execution is larger, and
smaller when the trading volume at the time of execution is smaller. As Aldridge
explains, trading during periods of higher volume is likely to provide a larger
pool of matching orders and thus lead to faster and less costly execution. The
point of VWAP is to take advantage of better liquidity when it is present, and
reduce risk of bad execution in periods of reduced liquidity.

Volume Vt is measured over a given time interval [T1, T2]. At each time
t ∈ [T1, T2], the Volume-Weighted Average Price (VWAP) is given by

VWAP =

∫ T2

T1
StdVt∫ T2

T1
dVt

, (1.8)

where St is the midprice.
Cartea and Jaimungal [CJ16a] explain the rationale for an execution trader

to aim to divide his full order into child orders whose size is not large relative to
the liquidity available in the best quotes of the limit order book. An execution
trader using market orders to execute his child orders must be aware that costs
can be incurred from several features of high frequency markets. There is a
delay or latency between the time an order is sent and the execution of that
order. This leads to slippage, defined by Aldridge [Ald13] as “adverse changes
in the market price” during this time. The actions of other market participants
also has an effect on markets in the short term. They might cancel their limit
orders or add more, and so the quantity of prices available at the best bid or
best ask might change, or the best bid or best ask might change completely to
a new quote if the liquidity at that level is depleted. Cartea and Jaimungal
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[CJ16a] design optimal strategies which aim to optimise the trading speed such
that each child order aims to take (1) a percentage of volume (PoV), or (2) a
percentage of cumulative volume (PoCV) observed over the trading horizon up
to that point.

1.5.2 Optimal Execution: The Literature

A mathematical approach to solving optimal execution problems was introduced
in two seminal papers towards the end of the 1990s, first in discrete-time by
Bertsimas and Lo [BL98], and then in continuous time by Almgren and Chriss
[AC00]. In their paper of 2000, “Optimal Execution of Portfolio Transactions”,
Almgren and Chriss created a model to minimize volatility risk and transactions
costs incurred from both permanent and temporary price impact for a trader
managing a portfolio of risky assets [AC00]. Their model extends the discrete-
time optimal execution model introduced earlier by Bertsimas and Lo. Rather
than stochastic control to solve their optimization problem, the authors use
a more direct approach, solving the constrained optimization problem using
Lagrange multipliers.

Cartea, Jaimungal, and Penalva (2015) [CJP15] expand the Almgren-Chriss
model to include several phenomena seen in real markets: in Chapter 7 they
allow the stock midprice process to include order of market participants, and in
Chapter 12 they use volume imbalance as an indicator of future order flow. The
original Almgren-Chriss model allowed only for market orders, which in real
trading incurs expenses because of the spread between the bid and ask prices,
and also slippage due. to latency or the market order walking the limit order
book. Cartea et al experiment first with limit orders only for execution that
does not incur these costs, at the expense of having a fill probability less than
1. They then use a model that allows for both market orders and limit orders,
and solve the resulting stochastic control problems numerically. In Chapter 9
they examine trade execution strategies which target volume.

In this text we will focus on optimal execution using market orders and limit
orders. We model a risk-averse trader seeking to liquidate a number of shares
in a finite time period. We model risk-aversion using utility functions. First we
model a trader using market orders to liquidate the entire position, assuming
his trading can be executed continuously. Afterwards, we allow the trader to
use limit orders, given incoming market orders measured by a Poisson process.
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Chapter 2

Methodology: Stochastic
Control and Reinforcement
Learning

2.1 Stochastic Control

2.1.1 The procedure

Given a stochastic control problem, we attempt to solve the problem using the
following procedure:

1. Create a stochastic model for the controlled process.

2. Express the optimization problem as a value function.

3. Use the Dynamic Programming Principle (DPP) to simplify the
optimization problem.

4. Use the DPP to get the Hamilton-Jacobi-Bellman partial differen-
tial equation (HJB PDE).

5. Solve the HJB PDE to obtain optimal control parameters for the value
function.

2.1.2 A stochastic control problem

Assume that we work in a finite time horizon [0, T ] on the filtered probability
space (Ω,F , (Ft)(0≤t≤T ),P), with the filtration (Ft)(0≤t≤T ) satisfying the “usual
conditions” of being complete: each subfiltration Ft contains all of the “null”
sets of probability zero of the full filtration F , and being right-continuous, i.e.
Ft+ = ∩s>tFs = Ft.

15



Optimal Execution for a Risk-Averse Trader

Suppose we have a process, in our case, a trader’s total wealth from a trading
scheme, that we want to optimize using one or several control parameters. Due
to the random fluctuations in asset prices in financial markets, we model the
trader’s wealth process as a system of stochastic differential equations (SDE),
indexed over the amount of admissible controls. Using the notation of Cartea
and Jaimungal [CJP15]:

dXα
t = µ (t,Xα

t , αt) dt + σ (t,Xα
t , αt) dWt, Xα

0 = x, (2.1)

where the stochastic process W = (Wα
t )0≤t≤T is a d-dimensional vector of inde-

pendent Brownian motions on the filtered probability space (Ω,F , (Ft)(0≤t≤T ),P).
The p-dimensional vector α = (αt)0≤t≤T represents the control processes, which
are progressively measurable with respect to (F)0≤t≤T , and are valued in a
subset A ⊂ Rp. The n-dimensional vector process X = (Xα

t )0≤t≤T repre-
sents the controlled variables. The drift µ : Rn × A → R and volatility
σ : Rn × A → Rn×d can potentially depend on the time t, the value αt of
the particular control being used, and the value of the controlled process Xt at
time t (hence there can be a feedback effect from the choice of control onto the
controlled processes). They are Lipschitz continuous functions, i.e. there exists
a number K ≥ 0, for each x1, x2 ∈ Rn, and for each control a ∈ A with the
property:

|µ(x1, a) − µ(x2, a)| + |σ(x1, a) − σ(x2, a)| ≤ K|x1 − x2|. (2.2)

The admissible set A is a set of controls which satisfy certain properties
making them realistic and regular. For example, admissible trading strategies
must be square-integrable (so as not to be infinite and therefore impossible to
implement in a world of finite resources and speed), and depend only on the
information available up to a given time τ in the trading horizon [t, T ] (so a
trader cannot look into the future in order to design a perfect strategy).

Using Huyên Pham’s [Pha09] formulation for a finite-horizon problem, the
admissible set A is the set of control processes α ∈ A such that:

E

[∫ T

0

|µ(0, αt)|2 + |σ(0, αt)|2 dt

]
< ∞. (2.3)

That is, the control processes α are such that the drift and the diffusion coef-
ficients of the controlled processes X in the underlying model are both square-
integrable, and so is their sum, i.e. they satisfy a quadratic growth condi-
tion. This prevents all of the controlled processes from “blowing up” to infinity.
These admissible controls ensure that the controlled processes have the prop-
erties which allow there to be a strong solution to the SDE 2.1 above, for all
controls α ∈ A and any initial condition (t, x) ∈ [0, T ]×Rn, when the controlled
process begins at a particular value Xt = x. Pham denotes this solution by
{Xt,x

s , t ≤ s ≤ T}. The conditions of Lipschitz continuity (2.2) and quadratic
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growth (2.3) imply that the strong solution Xt,x
s satisfies these properties:

E
[

sup
t≤s≤T

|Xt,x
s |2

]
< ∞ (2.4)

lim
h↓0+

E

[
sup

s∈[t,t+h]

|Xt,x
s − x|2

]
= 0. (2.5)

2.1.3 Value function and performance criteria

We now express the optimization problem as a value function. We find the
optimal value of of this function over all admissible controls u ∈ A.

We first introduce two measurable functions f : [0, T ] x Rn x A → R and
g : Rn → R. The first function f represents what Cartea et al [CJP15] call a
running penalty/reward. This is gain or loss received by the agent at a given
time, depending on the values attained by the (controlled) state variables given
his or her use of a particular control. The second is the terminal reward attained
at the end of the time horizon, depending on the final value of the (controlled)
state variables.

Following Pham [Pha09], we suppose that g has a lower bound, or that
g satisfies a quadratic growth condition: for each x ∈ Rn, there exists some
constant C, which is independent of x, for which:

|g(x)| ≤ C(1 + |x|2). (2.6)

Now for (t, x) ∈ [0, T ] × Rn, we denote by A(t,x) the subset of controls in A
such that the function f has finite expected value on the interval [t,T], given
that the state variables have attained particular values at time t:

E

[∫ T

t

f(s,Xα
s , αs)ds

∣∣∣∣ Xα
t = x

]
< ∞. (2.7)

We define the performance criteria (Pham [Pha09] calls this the gain
function), which expresses our problem mathematically as the expectation at
time t of the sum of the running penalty or reward, and the terminal penalty
or reward:

Definition 2.1.1 (Performance Criteria / Gain Function). For all (t, x) ∈
[0, T ] × Rn and all admissible controls α ∈ A(t,x), we define the performance
criteria as:

J(t, x, α) = E

[∫ T

t

f (s,Xα
s , αs) ds + g(Xα

T )

∣∣∣∣ Xα
t = x

]
. (2.8)

Our optimization problem can then be expressed mathematically by the
value function. We maximize the total reward (or minimize the total penalty)
over all admissible strategies u ∈ A:
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Definition 2.1.2 (Value Function). For all (t, x) ∈ [0, T ]×Rn and all admissible
controls α ∈ A(t,x), we define the value function as:

V (t, x) = sup
α∈A(t,x)

E

[∫ T

t

f (s,Xα
s , αs) ds + g(Xα

T )

∣∣∣∣ Xα
t = x

]
. (2.9)

Thus the value function is the supremum of the performance criteria.

V (t, x) = sup
α∈A(t,x)

J(t, x, α). (2.10)

Definition 2.1.3 (Optimal Control). Given an initial condition (t, x) ∈ [0, T ]×
Rn, we say that an admissible control α∗ ∈ A(t,x) is an optimal control if

V (t, x) = J(t, x, α∗). (2.11)

2.1.4 The Dynamic Programming Principle (DPP)

It is extremely computationally expensive to solve the optimization problem
over all possible scenarios for our controlled process Xt over each time instant
in the time interval [t, T ]. We address this problem by first flowing the process
to a stopping time τ between t and T , and then optimize over the rest of the
time horizon [τ, T ].

Theorem 2.1.1 (The Dynamic Programming Principle (DPP) for Diffusion
Processes). Given the stochastic control problem modelled by (2.1), the value
function (2.9) and performance criteria (2.8) satisfy the Dynamic Programming
Principle: For all (t, x) ∈ [0, T ] × Rn , and all stopping times τ ≤ T ,

V (t, x) = sup
α∈A(t,x)

E
[∫ τ

t

f (s,Xα
s , αs) ds + V (τ,Xα

τ )

∣∣∣∣ Xα
t = x

]
. (2.12)

Proof. We choose an arbitrary admissible control α ∈ A and start with the
performance criteria:

J(t, x, α) = E

[∫ T

t

f (s,Xα
s , αs) ds + g(Xα

T )

∣∣∣∣ Xα
t = x

]
. (2.13)

We introduce an arbitrary stopping time τ ∈ [t, T ] and split the integral of the
running penalty/reward function.

J(t, x, α) = E

[∫ τ

t

f (s,Xα
s , αs) ds +

∫ T

τ

f (s,Xα
s , αs) ds + g(Xα

T )

∣∣∣∣ Xα
t = x

]
.

(2.14)
Introduce the notation that Et,x [•] = E [• | Xα

t = x].
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By iterated expectations, and the definition of the performance criteria (2.8)

Et,x

[∫ T

τ

f (s,Xα
s , αs) ds + g(Xα

T )

]

= Et,x

[
Eτ,Xα

τ

[∫ T

τ

f (s,Xα
s , αs) ds + g(Xα

T )

]]
= Et,x [J(τ,Xα

τ , α)] . (2.15)

Therefore we can define the performance criteria at any time t ∈ [0, T ] as the
expectation, conditional on the process Xt attaining the value x, of the sum of
the performance criteria at a stopping time τ ∈ [t, T ] and the running penalty
or reward attained between our starting point t and that stopping time τ :

J(t, x, α) = Et,x

[
J(τ,Xα

τ , α) +

∫ τ

t

f (s,Xα
s , αs) ds

]
. (2.16)

By definition of the value function (2.9) at time t as the supremum taken over
all admissible controls of the performance criteria (2.8), i.e. since V (t, x) =
supα∈A J(t, x, α):

J(t, x, α) = Et,x

[
J(τ,Xα

τ , α) +

∫ τ

t

f (s,Xα
s , αs) ds

]
≤ Et,x

[
V (τ,Xα

τ ) +

∫ τ

t

f (s,Xα
s , αs) ds

]
. (2.17)

Taking supremum over all admissible controls on both sides gives us an up-
per bound for the value function, and one part of the Dynamic Programming
Principle.

sup
α∈A(t,x)

J(t, x, α) ≤ sup
α∈A(t,x)

Et,x

[
V (τ,Xα

τ ) +

∫ τ

t

f (s,Xα
s , αs) ds

]
=⇒ V (t, x) ≤ sup

α∈A(t,x)

Et,x

[
V (τ,Xα

τ ) +

∫ τ

t

f (s,Xα
s , αs) ds

]
. (2.18)

We now derive the lower bound for the value function, and show that it
equals the upper bound. We choose an arbitrary admissible control α ∈ A(t, x)
and a stopping time τ ∈ [t, T ].

There exists for each ϵ > 0 and each outcome ω ∈ Ω a control αϵ,ω ∈
A(τ(ω),Xτ(ω)(ω)) which is an ϵ-optimal control, that is

V (τ(ω), Xτ(ω)) − ϵ ≤ J(τ(ω), Xτ(ω), α
ϵ,ω) ≤ V (τ(ω), Xτ(ω)). (2.19)

We define a modification of the ϵ-optimal control α̃s(ω) as

α̃s(ω) =

{
αs(ω), s ∈ [0, τ(ω)]

αϵ,ω
s (ω), s ∈ [τ(ω), T ].
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Pham states that this control α̃s(ω) can be shown to be progressively mea-
surable, and therefore α̃s(ω) ∈ A(t,x). Cartea et al formulate the same process
as

α̃s(ω) = αs(ω)It≤τ + αϵ,ω
s (ω)It>τ . (2.20)

This modification α̃s(ω) is ϵ-optimal after the stopping time τ , but could be
sub-optimal before time τ . Comparing the value function to the performance
criteria achieved using this control, we have:

V (t, x) ≥ J(t, x, α̃s(ω))

= Et,x

[
J
(
τ,X α̃s(ω)

τ , α̃s(ω)
)

+

∫ τ

t

f
(
s,X α̃s(ω))

s , α̃s(ω))
)
ds

]
= Et,x

[
J (τ,Xα

τ , α
ϵ
s) +

∫ τ

t

f (s,Xα
s , αs)) ds

]
≥ Et,x

[
V (τ,Xα

τ ) +

∫ τ

t

f (s,Xα
s , αs)) ds

]
− ϵ, (2.21)

where the third line follows from our definition of the modification (2.20) and
the fourth from the definition of the ϵ-optimal control (2.19) and the linearity
of expectation.

Taking limits as ϵ ↓ 0 eliminates the ϵ:

V (t, x) ≥ Et,x

[
V (τ,Xα

τ ) +

∫ τ

t

f (s,Xα
s , αs)) ds

]
. (2.22)

Since the inequality holds for an arbitrary admissible control α ∈ A(t, x), it
also holds for the admissible control that achieves the supremum:

V (t, x) ≥ sup
α∈A(t,x)

Et,x

[
V (τ,Xα

τ ) +

∫ τ

t

f (s,Xα
s , αs)) ds

]
. (2.23)

Thus we have the lower bound for the value function, and it is equal to the
upper bound. Therefore for all (t, x) ∈ [0, T ] × Rn , and all stopping times
τ ≤ T ,

V (t, x) = sup
α∈A(t,x)

Et,x

[
V (τ,Xα

τ ) +

∫ τ

t

f (s,Xα
s , αs)) ds

]
. (2.24)

The Dynamic Programming Principle states that the value function calcu-
lated at time t ∈ [0, T ] equals the expected value, conditional on Xt attaining
value x, of the sum of the value function evaluated at a future stopping time
τ ∈ [t, T ] plus the running penalty/reward obtained between time t and τ , pro-
vided we are using the control α ∈ A which maximises that expected value over
the time interval [t, T ].
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2.1.5 The Hamilton-Jacobi-Bellman Partial Differential Equa-
tion

The Hamilton-Jacobi-Bellman (HJB) equation is an infinitesimal continuous-
time version of the Dynamic Programming Principle. By differentiating the
HJB equation with respect to each of the control variables, we can find the
optimal controls in “feedback form”, that is, in the form of partial derivatives
of the value function. Feeding these optimal control representations back into
the HJB equation leads to a partial differential equation (PDE) for the value
function.

This partial differential equation is usually non-linear and deterministic: it
removes the randomness from the stochastic control problem, making it much
more tractable. Some examples can be solved explicitly, for example, Almgren
and Chriss’ optimal liquidation model. Others must be solved numerically using
techniques such as finite difference methods.

Let us define some items which appear in the HJB equation. Here we follow
similar notation to that of Cartea et al [CJP15]

Lemma 2.1.2 (Itô’s Lemma). Let W = {Wt}t≥0 denote an n-dimensional
column vector of independent Brownian motions. Let X = {Xt}t≥0 be an Itô
process, i.e. let X be an m-dimensional column vector of stochastic processes
which satisfies the SDE:

dXt = µ (t,Xt) dt + σ (t,Xt) dWt, X0 = x, (2.25)

where µ(t,Xt) is an m-dimensional vector of drifts and σ(t,Xt) is an (m ×
n)-dimensional matrix of diffusion coefficients (or volatilities, in the financial
context).

We introduce a new stochastic process Y = f(t,Xt) where f(t, x) ∈ C(1,2),
i,e. f(t, x) is differentiable with respect to t and twice-differentiable with respect
to each xi, with continuous derivatives.

Then Y is another Itô process which satisfies the SDE:

dYt = df(t,Xt)

=

(
∂tf(t,Xt) + µ (t,Xt)

′
Df(t,Xt) +

1

2
Tr
(
σ(t,Xt)σ(t,Xt)

′
D2f(t,Xt)

))
dt

+ Df(t,Xt)
′
σ(t,Xt)dWt, (2.26)

where for any vector or matrix A, A
′
denotes its transpose, Df(t,Xt) denotes

the n-dimensional column vector of first partial derivatives of f(t,Xt), and
D2f(t,Xt) denotes the (m×n)-dimensional matrix of second partial derivatives
of f(t,Xt).

Definition 2.1.4 (Infinitesimal Generator). The infinitesimal generator, de-
noted Lt, of a process Xt is a differential operator that acts on twice-differentiable
functions ϕ(x) ∈ C2 as follows:

Lt = lim
h↘0

E [ϕ(Xt+h) | Xt = x] − ϕ(x)

h
. (2.27)
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Via Itô’s lemma, we can express the infinitesimal generator of a twice dif-
ferentiable function ϕ(x) of the Itô process (2.1) in the following form:

Ltϕ(x) = µ(t, x)
′
Dϕ(x) +

1

2
Tr
(
σ(t, x)σ(t, x)

′
D2ϕ(x)

)
, (2.28)

where for any vector or matrix A, A
′
denotes its transpose, Dϕ(x) denotes the

n-dimensional column vector of first partial derivatives of ϕ(x), and D2ϕ(x)
denotes the (m× n)-dimensional matrix of second partial derivatives of ϕ(x).

Note that with the definition (2.28), we can write Itô’s formula for a function
Y = f(t,Xt) of an Itô process Xt as:

dYt = (∂t + Lt) f(t,Xt) dt + Df(t,Xt)
′
σ(t,Xt) dWt, (2.29)

or in integral form: Given an Itô process {Xt}t≥0, and a new stochastic process
Y = f(t,Xt) where f(t, x) ∈ C(1,2), then for all t ∈ [0, T ] and all T ≥ 0,

Yt = Y0 +

∫ t

0

(∂s + Ls) f(s,Xs) ds +

∫ t

0

Df(s,Xs)
′
σ(s,Xs) dWs. (2.30)

Theorem 2.1.3 (The Hamilton-Jacobi-Bellman Partial Differential Equation).
If the value function (2.9) satisfies the Dynamic Programming Principle (2.1.1),
then it satisfies the HJB equation: For each (t, x) ∈ [0, T ]×Rn, and each control
α ∈ A,

∂tV (t, x) + sup
α∈A

(Lα
t V (t, x) + f(t, x, α)) = 0, (2.31)

V (T, x) = g(x). (2.32)

Proof. We follow Cartea et al’s exposition [CJP15] and we choose the stopping
time τ ≤ T in the DPP (2.1.1) such that it is the minimum between the time it
takes the process Xα

t to exit a ball of size ϵ around its starting point x at time
t, and a fixed time h.

τ = min
{
T, inf

{
s > t :

(
(s− t) , | Xα

s − x |
)
/∈ [0, h) x [0, ϵ)

} }
. (2.33)

So our chosen stopping time τ is either the end of our time horizon T , or τ is
the first time s after time t that either the state variables process Xα

s differs by
ϵ from its value Xα

t = x at t, or after which the time interval s − t is greater
than h. Now

lim
h→0

τ = t, P-a.s. (2.34)

As h shrinks towards 0, it becomes less likely that the process X will exit the
ball (x− ϵ , x + ϵ) before time (t + h). So τ = t + h when h is small enough.

We now use Itô’s lemma (2.30) to write the value function for an arbitrary
control α ∈ A evaluated at the stopping time τ in terms of the value function
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at the starting point t:

V (τ,Xα
τ )

= V (t, x) +

∫ τ

t

(∂s + Lα
s )V (s,Xα

s ) ds +

∫ τ

t

DxV (s,Xα
s )

′
σ (s,Xα

s , αs) dWs.

(2.35)

We choose an admissible control that is constant over the period [t, τ ], i.e.
for each s ∈ [t, τ ], αs = a for some a ∈ A.

We apply the lower bound (2.23) to the value function when we operate
under this control.

V (t, x) ≥ sup
α∈A(t,x)

Et,x

[
V (τ,Xα

τ ) +

∫ τ

t

f (s,Xα
s , αs) ds

]
≥ Et,x

[
V (τ,Xa

τ ) +

∫ τ

t

f (s,Xa
s , a) ds

]
. (2.36)

Now we apply Itô’s formula to V (τ,Xa
τ ) using (2.35), so our inequality be-

comes:

V (t, x) ≥ Et,x

[
V (t, x)

+

∫ τ

t

(∂s + La
s)V (s,Xa

s ) ds

+

∫ τ

t

DxV (s,Xα
s )

′
σ (s,Xa

s , a) dWs

+

∫ τ

t

f (s,Xa
s , a) ds

]
. (2.37)

The integrand DxV (s,Xα
s )

′
σ (s,Xa

s , a) in the stochastic integral is bounded
because by the definition of the stopping time τ in (2.33), at each time s ∈
[t, τ ], |Xa

s − x| ≤ ϵ. Thus, the stochastic integral is the stochastic integral of a
martingale, and we can write its expectation as zero.

Also since V (t, x) ∈ Ft, we can remove it from the conditional expectation
on the RHS. Then

V (t, x) ≥ V (t, x) + Et,x

[∫ τ

t

(∂s + La
s)V (s,Xa

s ) + f (s,Xa
s , a) ds

]

0 ≥ Et,x

[∫ τ

t

(∂s + La
s)V (s,Xa

s ) + f (s,Xa
s , a) ds

]
. (2.38)

We recall that when h is sufficiently small, τ = (t + h), P− a.s, because the
process X will not exit the ball (x− ϵ , x + ϵ). Then

0 ≥ Et,x

[∫ t+h

t

(∂s + La
s)V (s,Xa

s ) + f (s,Xa
s , a) ds

]
. (2.39)
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We now divide by h (keeping the factor 1
h within the expectation, and then

take limits as h → 0:

0 ≥ lim
h→0

Et,x

[
1

h

∫ t+h

t

(∂s + La
s)V (s,Xa

s ) + f (s,Xa
s , a) ds

]
. (2.40)

Now, we know that Xa
t = x. The condition |Xa

s − x| ≤ ϵ implies that at the
stopping time τ , Xa

τ ≤ ϵ + x, and so is bounded.
Thus we can use the mean value theorem to write:

lim
h→0

1

h

∫ t+h

t

ωs = ωt. (2.41)

Then our inequality becomes

0 ≥ (∂t + La
t )V (t, x) + f(t, x, a). (2.42)

Since the above inequality holds for any control a ∈ A, it holds true for the
supremum over all admissible controls. So we have the inequality

0 ≥ ∂tV (t, x) + sup
α∈A

(Lα
t V (t, x) + f(t, x, α)) . (2.43)

To show that we have an equality, we start with an optimal control α∗ ∈ A,
which gives us the following equality from the DPP:

V (t, x) = Et,x

[
V
(
τ,Xα∗

τ

)
+

∫ τ

t

f
(
s,Xα∗

s , α∗
)
ds

]
. (2.44)

Following the same process as we have done for the control a, we obtain the
equality

0 = ∂tV (t, x) + Lα∗

t V (t, x) + f(t, x, α∗). (2.45)

Putting the inequality (2.43) and the equality (2.45) together gives us the HJB
equation:

0 = ∂tV (t, x) + sup
α∈A

(Lα
t V (t, x) + f(t, x, α)) . (2.46)

The terminal condition
V (T, x) = g(X) (2.47)

follows from the definition of the value function (2.9) applied at time t = T .
The terminal penalty/reward function g(T ) ∈ FT and so comes out of the
expectation, while the integral of the running penalty/reward function f(t, x, a)
vanishes to zero.

2.1.6 Verification

We want to find a candidate value function and a candidate optimal control
that solves the stochastic control problem (3.160). To verify that our candidate
functions solve the problem, we will follow the method suggested in the proof
in Pham’s book ([Pha09]).
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Theorem 2.1.4 (Verification Theorem). Let Φ(t, x) ∈ C1,2([0, T ] × Rn) and
let Φ(t, x) satisfy a quadratic growth condition, that is for all for all (t, x) ∈
[0, T ] × Rn, there exists a constant C such that:

|Φ(t, x)| ≤ C
(
1 + |x|2

)
. (2.48)

Suppose also that F : R+ → Rn+p and G : Rn → R are measurable uniformly
bounded functions (where n is the number of controlled processes and p is the
number of control processes in our model (2.1)), which satisfy:

∂

∂t
Φ(t, x) − sup

α∈A
(LαΦ(t, x) + F (t, x, α)) ≥ 0, (2.49)

for all (t, x) ∈ [0, T ] × Rn, and

Φ(T, x) ≥ G(x) for all x ∈ Rn, (2.50)

then
Φ(t, x) ≥ J(t, x, α) on [0, T ] × Rn. (2.51)

Now suppose that Φ(T, x) = G(x), and that there exists a measurable func-
tion α∗(t, x) for (t, x) ∈ [0, T ] × Rn, with values in the admissible set A, which
satisfies:

∂

∂t
Φ(t, x) − sup

α∈A
(LαΦ(t, x) + F (t, x, α)) = 0, (2.52)

that is,
∂

∂t
Φ(t, x) −

(
Lα∗(t,x)Φ(t, x) + F (t, x, α∗(t, x))

)
= 0. (2.53)

If the stochastic differential equation

dXα∗

t = µ
(
t,Xα∗

t , α∗
t

)
dt + σ

(
t,Xα∗

t , α∗
t

)
dWt, Xα

0 = x, (2.54)

admits a unique solution, denoted by Xα∗

t , and if the process

α∗
(
s,Xα∗

s

)
t≤s≤T

∈ A, (2.55)

then

Φ(t, x) = V (t, x) on [0, T ] × Rn. (2.56)

and α∗(t, x) is an optimal Markovian control.

Proof. We follow the proof laid out in Section 3.5 of Pham’s book [Pha09].
Since Φ ∈ C1,2([0, T ] × Rn), we can use Itô’s lemma (2.29) to write for all
(t, x) ∈ [0, T ] × Rn and all controls which are admissible over [t, T ] given that
Xα

t = x, ie. all α ∈ A(t,x), any time s ∈ [t, T ), and any stopping time τ ∈ [t, T ],

Φ (s ∧ τ,Xα
s∧τ ) = Φ(t, x) +

∫ s∧τ

t

∂Φ

∂u
(u,Xα

u ) + LαuΦ (u,Xα
u ) du

+

∫ s∧τ

t

DxΦ (u,Xα
u )

′
σ (u,Xα

u , αu) dWu. (2.57)
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Given that the above is true for all stopping times τ ∈ [t, T ], we choose the
particular stopping time τ to be the first time after our initial time t that the
integral of the square of the integrand of the stochastic integral component of
Φ is larger than some integer n:

τ = τn := inf

{
s ≥ t :

∫ s

t

∣∣∣∣DxΦ (u,Xα
u )

′
σ (u,Xα

u , αu)

∣∣∣∣2du ≥ n

}
. (2.58)

From this definition, as the integer n → ∞, the stopping time τn → ∞. We
can select the stopping time τn in this way because we have assumed that for
all (t, x) ∈ [0, T ] × Rn, the candidate value function Φ(t, x) ∈ C1,2([0, T ] × Rn),
so Φ has a continuous second derivative, and because by the definition of the
admissible set A, the volatility matrix σ of the state variables process satisfies
quadratic growth (2.3), and hence σ (u,Xα

u , αu) is finite and integrable.
Then we can define each of our chosen stopping times τn as a member of a

localizing sequence {τn}n∈N of stopping times such that the stopped stochastic
integral process{∫ s∧τn

t

DxΦ (u,Xα
u )

′
σ (u,Xα

u , αu) dWu

}
t≤s≤T

(2.59)

is a martingale. Thus its (conditional) expectation is zero:

Et,x

[∫ s∧τn

t

DxΦ (u,Xα
u )

′
σ (u,Xα

u , αu) dWu

]
= 0. (2.60)

So if we now take the expectation of the stopped candidate value function
Φ (s ∧ τ,Xs∧τ ) conditional on Xα

t = x, we obtain:

Et,x

[
Φ
(
s ∧ τn, X

α
s∧τn

)]
= Φ(t, x)+Et,x

[∫ s∧τn

t

∂Φ

∂u
(u,Xα

u ) + LαuΦ (u,Xα
u ) du

]
.

(2.61)
Now since we have assumed the function Φ satisfies the inequality (2.49) for
the particular control that achieves the supremum, we have the same for all
admissible controls α ∈ A(t,x):

∂Φ

∂t
(u,Xα

u ) + LαuΦ (u,Xα
u ) + F (u,Xα

u , αu) ≤ 0. (2.62)

Hence
∂Φ

∂t
(u,Xα

u ) + LαuΦ (u,Xα
u ) ≤ −F (u,Xα

u , αu) (2.63)

and so in our conditional expectation (2.61) above we get the inequality

Et,x

[
Φ
(
s ∧ τn, X

α
s∧τn

)]
≤ Φ(t, x) − Et,x

[∫ s∧τn

t

F (u,Xα
u , αu) du

]
. (2.64)

Since s ∧ τn ≤ T ,∣∣∣∣ ∫ s∧τn

t

F (u,Xα
u , αu) du

∣∣∣∣ ≤ ∫ T

t

| F (u,Xα
u , αu) | du < ∞, (2.65)
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where the integrability of the right-hand side of the above inequality follows
from the definition of the admissible set A(t,x) conditional on Ft, (2.7).

Because |Φ(t, x)| ≤ C
(

1 + |x|2
)

, Φ satisfies quadratic growth and so we

have a finite upper bound on the expected value of the stopped candidate value
function Φ

(
s ∧ τn, X

α
s∧τn

)
:∣∣∣∣Φ (s ∧ τn, X

α
s∧τn

) ∣∣∣∣ ≤ C

(
1 + sup

s∈[t,T ]

|Xα
s |2
)

< ∞, (2.66)

where the finiteness of this upper bound follows from the properties of the strong
solution (2.4).

Since limn→∞ τn = ∞ and s ∧ τn ≤ T , limn→∞ s ∧ τn = s for all s ∈ [t, T ].
We apply the Dominated Convergence Theorem and take limits as n → ∞ on
the inequality (2.64):

lim
n→∞

Et,x

[
Φ
(
s ∧ τn, X

α
s∧τn

)]
≤ Φ(t, x) − lim

n→∞
Et,x

[∫ s∧τn

t

F (u,Xα
u , αu) du

]
.

=⇒ Et,x [Φ (s,Xα
s )] ≤ Φ(t, x) − Et,x

[∫ s

t

F (u,Xα
u , αu) du

]
. (2.67)

We have assumed that Φ is continuous on [0, T ] ×Rn. Thus we can take limits
as s → T , and apply the Dominated Convergence Theorem again:

lim
s→T

Et,x [Φ (s,Xα
s )] ≤ Φ(t, x) − lim

s→T
Et,x

[∫ s

t

F (u,Xα
u , αu) du

]
=⇒ Et,x [Φ (T,Xα

T )] ≤ Φ(t, x) − Et,x

[∫ T

t

F (u,Xα
u , αu) du

]
, (2.68)

and since we assumed the terminal condition Φ(T, x) ≥ G(x) for all x ∈ Rn,

Et,x [G (Xα
T )] ≤ Φ(t, x) − Et,x

[∫ T

t

F (u,Xα
u , αu) du

]
. (2.69)

Now since our choice of admissible control was arbitrary, we can say for all
admissible controls α ∈ A(t,x) and all (t, x) ∈ [0, T ] × Rn,

Φ(t, x) ≥ Et,x

[
G (Xα

T ) +

∫ T

t

F (u,Xα
u , αu) du

]
=⇒ Φ(t, x) ≥ J(t, x, α). (2.70)

This means that given any admissible control, the candidate value function is
always greater than or equal to the gain function obtained using that control.

To prove the equality, we select the measurable function α∗(t, x) ∈ A as
our candidate optimal control, and we perform the same steps to the process

Adam Nii Armah Hesse 27



Optimal Execution for a Risk-Averse Trader

Φ(u,Xα∗

u ) for where u ranges between t ∈ [0, T ) and s ∈ [t, T ). We consider
again the stopped process Φ

(
s ∧ τ,Xα∗

s∧τ

)
: Itô’s Lemma yields us this:

Φ
(
s ∧ τ,Xα∗

s∧τ

)
= Φ(t, x) +

∫ s∧τ

t

∂Φ

∂u

(
u,Xα∗

u

)
+ Lα∗

Φ
(
u,Xα∗

u

)
du

+

∫ s∧τ

t

DxΦ
(
u,Xα∗

u

)′
σ
(
u,Xα∗

u , α∗
u

)
dWu. (2.71)

We again choose a stopping time τ ∈ [t, T ] such that

τ = τn := inf

{
s ≥ t :

∫ s

t

∣∣∣∣DxΦ
(
u,Xα∗

u

)′
σ
(
u,Xα∗

u , α∗
) ∣∣∣∣2du ≥ n

}
. (2.72)

Then we can define {τn}n∈N as a localizing sequence of stopping times such
that the stopped stochastic integral is a martingale. So, taking the expectation
conditional on Xα

t = x is gives us:

Et,x

[
Φ
(
s ∧ τn, X

α∗

s∧τn

)]
= Φ(t, x) + Et,x

[∫ s∧τn

t

∂Φ

∂u

(
u,Xα∗

u

)
+ Lα∗

Φ
(
u,Xα∗

u

)
du

]
. (2.73)

Using the assumptions that Φ(t, x) ∈ C1,2([0, T ] × Rn) and that |Φ(t, x)| ≤
C
(

1 + |x|2
)

, we take limits as n → ∞ (recalling that limn→∞ τn = ∞ and

s ∧ τn ≤ T implies that limn→∞ s ∧ τn = s for all s ∈ [t, T )) and apply the
Dominated Convergence Theorem to obtain

Et,x

[
Φ
(
s,Xα∗

s

)]
= Φ(t, x) + Et,x

[∫ s

t

∂Φ

∂u

(
u,Xα∗

u

)
+ Lα∗

Φ
(
u,Xα∗

u

)
du

]
.

(2.74)

From the definition of our candidate optimal control α∗ and (2.53),

∂

∂t
Φ(t, x) + Lα∗(t,x)Φ(t, x) = −F (t, x, α∗(t, x)). (2.75)

So we can express the conditional expectation of the candidate value function
evaluated under the optimal control as

Et,x

[
Φ
(
s,Xα∗

s

)]
= Φ(t, x) − Et,x

[∫ s

t

F (t, x, α∗(t, x))du

]
.

We now take limits on the above equality as s → T , and obtain

lim
s→T

Et,x

[
Φ
(
s,Xα∗

s

)]
= Φ(t, x) − lim

s→T
Et,x

[∫ s

t

F (t, x, α∗(t, x))du

]
.

=⇒ Et,x

[
Φ
(
T,Xα∗

T

)]
= Φ(t, x) − Et,x

[∫ T

t

F (t, x, α∗(t, x))du

]
,
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and since we assumed in this second optimal case the terminal condition Φ(T, x) =
G(x) for all x ∈ Rn and all α ∈ A,

Et,x

[
G
(
Xα∗

T

)]
= Φ(t, x) − Et,x

[∫ T

t

F
(
u,Xα∗

u , α∗
)
du

]
. (2.76)

Therefore we have our desired equality: for all (t, x) ∈ [0, T ] × Rn,

Φ(t, x) = Et,x

[
G
(
Xα∗

T

)
+

∫ T

t

F
(
u,Xα∗

u , α∗
)
du

]
= J(t, x, α∗(t, x))

= V (t, x). (2.77)

Therefore our candidate value function Φ(t, x) is the true value function V (t, x)
which solves the stochastic control problem, and our candidate optimal control
α∗(t, x) is the true optimal control which achieves this value function.
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Chapter 3

Optimal Execution for a
Risk-Averse Trader using
Market Orders

In this chapter we design optimal execution algorithms for a risk-averse trader
using market orders. The trader aims to maximise his expected utility of termi-
nal wealth. We incorporate the trader’s risk aversion via the parameter of the
utility functions used.

Consider a trader executing a large order to liquidate a long position in a
particular asset by selling inventory of this asset within a time period [0, T ].
Our trader wishes to liquidate the position in a way such as to minimise loss
of revenue incurred due to price impact, when other market participants detect
they are selling a large amount of shares and thus move their bids downwards,
forcing the trader to sell at lower prices and hence gain less revenue. We assume
our trader can control the rate at which they liquidate the position over time.
Almgren and Chriss [AC00] and Cartea, Jaimungal, and Penalva [CJP15] in
Section 6.5 of their book considered an agent who wishes to maximise terminal
wealth in a risk-neutral way. Schied and Schoeneborn [SS09] found an explicit
solution for the case of a risk-averse trader seeking to maximize exponential
utility of terminal wealth. In Section 6.6 of their book [CJP15], Cartea et al
found a link between their own risk-neutral trader trading with a quadratic
running penalty function punishing non-zero inventory over the trading period,
and the exponential utility case.

3.1 The Stochastic Model

Assume that we work on the filtered probability space (Ω,F , (Ft)(0≤t≤T ),P)
with the filtration (Ft)(0≤t≤T ) satisfying the “usual conditions” of being com-
plete: each subfiltration Ft contains all of the “null” sets of probability zero of
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the full filtration F , and being right-continuous, i.e. Ft+ = ∩s>tFs = Ft.
Following Cartea et al [CJP15], we introduce the following stochastic model

for the problem. We denote by vt the trading rate at which the trader liquidates
their position. This trading rate is the control process for the stochastic control
problem. The rate v is a member of the admissible set A. In our control problem,
an admissible trading strategy must be square-integrable, and F-predictable.

The trader’s inventory or position is represented by Qv
t , and satisfies the

SDE:
dQv

t = −vtdt, Qv
0 = q. (3.1)

The asset midprice is modelled as a generalised Brownian motion with con-
stant volatility σ. We can assume the volatility is constant over the very short
periods of time in which our high-frequency trader trades, as mentioned in Avel-
laneda and Stoikov’s seminal paper on market-making [AS08]. 1

The asset’s growth rate is affected by the permanent impact g(vt) of the
trading of market participants, which in turn is a function of our agent’s speed
of trading:

dSv
t = −g(vt)dt + σdWt, Sv

0 = S. (3.2)

The trader is able to execute their selling trades at the execution price S̃v
t ,

which is calculated by the midprice minus the temporary price impact f(vt)
incurred by the trader’s selling. 2

S̃v
t = Sv

t − f(vt), S̃v
0 = S. (3.3)

The functions f : R+ → R+ and g : R+ → R+ represent the temporary
price impact and the permanent price impact respectively. Both functions are
modelled to depend on the trader’s rate of trading vt.

Temporary price impact is incurred when our trader’s sell orders lead to
other market participants adjusting their offers to sell stock downwards. This
action by other market participants impacts on the execution price at which
our trader is able to sell stock. The more stock our trader sells in a given time
period (i.e. the greater our rate of trading vt), the greater the temporary impact
is on their execution price. The impact is called “temporary” because it only
affects our own trader’s execution price at a given time, not the actual midprice
of the asset.

In contrast, permanent impact is incurred by the general trading activity of
all market participants and affects the market price of the asset. Because our
trader’s activity also contributes to permanent impact, we model permanent
impact as a function of the trading rate vt. In this case we incorporate the
effect of other market participants in the volatility parameter σ of the midprice
process (3.2). 3

1It is possible to consider more sophisticated models for the volatility, including stochastic
volatility, volatility driven by order flow Poisson processes.

2The execution price can be made much more sophisticated, and incorporate many aspects
of market microstructure, including bid-ask spread and order imbalance.

3In more sophisticated models, for example in the order flow model by Cartea and Jaimun-
gal [CJ16b], the action of other traders is encapsulated in a new variable ψt, which satisfies
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From this, we can state that the trader’s cash process Xt has the dynamics:

dXt = −S̃tdQt (3.5)

= (St − f(vt))vtdt. (3.6)

We formulate the problem as a 3-dimensional system with three state vari-
ables: the total wealth Xt, the asset midprice St, and the inventory Qt.

dZt =

dXt

dSt

dQt

 =

Stvt − f(vt)vt
−g(vt)
−vt

 dt +

0
σ
0

 dWt. (3.7)

In this way we have a vector of drifts µ(t, z, v) and a matrix of volatilites
σ(t, z, v) which are both Lipschitz-continuous and integrable, and which satisfy:

µ(t, z, v) =

Stvt − f(vt)vt
−g(vt)
−vt

 (3.8)

and

σ(t, z, v) =

0
σ
0

 . (3.9)

The admissible set A is a set of controls which satisfy certain properties
making them realistic and regular. For example, admissible trading strategies
must be square-integrable (so as not to be infinite and therefore impossible to
implement in a world of finite resources and speed), and depend only on the
information available up to a given time τ in the trading horizon [t, T ] (so a
trader cannot look into the future in order to design a perfect strategy).

Using Huyên Pham’s [Pha09] formulation for a finite-horizon problem, the
admissible set A is the set of control processes v ∈ A such that:

E

[∫ T

0

|µ(t, x, S, q, vt)|2 + |σ(t, x, S, q, vt)|2 dt

]
< ∞. (3.10)

That is, the control processes v are such that the drift and the diffusion coef-
ficients of the controlled processes X, S, Q in the underlying model are both
square-integrable, and so is their sum, i.e. they satisfy a quadratic growth
condition. This prevents all of the controlled processes from “blowing up” to
infinity. These admissible controls ensure that the controlled processes have the
properties which allow there to be a strong solution to the SDE ?? above, for

the equation
dψt = −κψtdt+ ηdLt, (3.4)

where Lt are independent Poisson processes each with equal intensity λ, which represent buy
and sell order flows, and κ the rate of decay of the order flow. Then the permanent impact
function gt becomes a function of both our own trader’s rate of trading vt and the order flow
ψt coming into the limit order book.
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all controls v ∈ A and any initial condition (t, x, S, q) ∈ [0, T ] × R3, when the
controlled processes begin at a particular value Xv

t = x, Sv
t = S,Qv

t = q. We
can follow Pham and denote this solution by {(Xv

u, S
v
u, Q

v
u) ; t ≤ u ≤ T}. The

conditions of Lipschitz continuity (2.2) and quadratic growth (2.3) imply that
the strong solution Xt,x

s satisfies these properties:

Et,x

[
sup

t≤s≤T
||(Xv

t , S
v
t , Q

v
t )||2

]
< ∞ (3.11)

lim
h↓0+

Et,x

[
sup

s∈[t,t+h]

||(Xv
t − x, Sv

t − S, Qv
t − q)||2

]
= 0. (3.12)

Now for (t, x, S, q) ∈ [0, T ]×R3, we denote by A(t,x,S,q) the subset of controls
in A such that the function f has finite expected value on the interval [t,T], given
that the state variables have attained particular values at time t:

Et,x,S,q

[∫ T

t

f(u,Xv
u, S

v
u, Q

v
u, vu)ds

]
< ∞. (3.13)

In this model, all of the randomness comes from the Brownian motion which
drives the asset price. The three-dimensional stochastic model can then be
expressed as a one-dimensional model. We can express each state variable as a
function only of the control v and the Brownian motion W , and initial values
for the asset price S0, the trader’s cash X0, inventory Q0.

Given a particular trading strategy v, we have for the asset price Sv
t :

Sv
t = Sv

0 −
∫ t

0

g(vu)du + σ

∫ t

0

dWu, (3.14)

the inventory process Qv
t :

Qv
t = Qv

0 −
∫ t

0

vudu, (3.15)

and the cash process Xv
t :

Xv
t = Xv

0 +

∫ u=t

u=0

(
Sv
0 −

∫ r=u

r=0

g(vr)dr + σ

∫ r=u

r=0

dWr

)
− f(vu)vudu. (3.16)

If the trader has not liquidated the entire position by the terminal time T ,
he or she is permitted to execute a final market order to immediately sell a
quantity QT of the asset at price ST , and incur a penalty given by −αQT for
this transaction. This penalty takes into account any fee, slippage, or price
impact on that final market order. This model follows that used by Cartea et al
[CJP15] in their book. Hence our trader’s terminal wealth is given by the sum
of their cash at time T and this additional cash flow brought by the final sale
at time T .

Xv
T + Qv

T (Sv
T − αQv

T ) . (3.17)
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3.2 The Stochastic Control problem

Our trader seeks to optimise the expected utility of his or her terminal wealth.
He or she seeks to solve the stochastic control problem with performance criteria
and value function:

Hv(t, x, S, q) = Et,x,S,q [U (Xv
T + Qv

T (Sv
T − αQv

T ))] ; (3.18)

H(t, x, S, q) = sup
v∈A

Hv(t, x, S, q). (3.19)

The Dynamic Programming Principle (2.1.1) implies that for all (t, x, S, q) ∈
[0, T ] × R3 , and all stopping times τ ≤ T ,

H(t, x, S, q) = sup
v∈A(t,x)

Et,x,S,q [H(τ,Xv
τ , S

v
τ , Q

v
τ )] . (3.20)

Then if v∗ ∈ A is the optimal control, which achieves the supremum over the
interval [0, T ], the value function satisfies

H(t, x, S, q) = Et,x,S,q

[
H(T,Xv∗

T , Sv∗

T , Qv∗

T )
]
. (3.21)

Using the Dynamic Programming Principle (2.1.1), we obtain the Hamilton-
Jacobi-Bellman Equation for the value function (writing ∂•Hfor ∂H

∂• ):

∂tH +
1

2
σ2∂SSH + sup

v∈A
(Sv∂xH − f(v)v∂xH − g(v)∂SH − v∂qH) = 0, (3.22)

3.3 Verification

We want to find a candidate value function and a candidate optimal control
that solves the stochastic control problem (3.18). To verify that our candidate
functions solve the problem, we will follow the method suggested in the proof
in Pham’s book ([Pha09]).

Proposition 3.3.1 (Verification of our Candidate Value Function and Candi-
date Optimal Control). Let Φ(t, x, S, q) ∈ C1,2([0, T ] × R3) and let Φ(t, x, S, q)
satisfy a quadratic growth condition, that is for all for all (t, x, S, q) ∈ [0, T ]×R3,
there exists a constant C such that:

|Φ(t, x, S, q)| ≤ C
(
1 + ||(x, S, q)||2

)
. (3.23)

We have 3 controlled processes and 1 control process in our model (3.7). We
introduce the running penalty/reward function F : [0, T ] × R3 × A → R and
the terminal reward G : R3 → R, both measurable uniformly bounded functions.
Suppose that F and G satisfy:

∂

∂t
Φ(t, x, S, q) − sup

v∈A
(LvΦ(t, x, S, q) + F (t, x, S, q, v)) ≥ 0, (3.24)
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for all (t, x, S, q) ∈ [0, T ] × R3, and

Φ(T, x, S, q) ≥ G(x, s, q) for all (x, S, q) ∈ R3, (3.25)

then
Φ(t, x, S, q) ≥ Hv(t, x, S, q) on [0, T ] × R3. (3.26)

Now suppose that Φ(T, x, S, q) = G(x, S, q), and that there exists a mea-
surable function ν∗(t, x, S, q) for (t, x, S, q) ∈ [0, T ] × R3, with values in the
admissible set A, which satisfies:

∂

∂t
Φ(t, x, S, q) − sup

ν∈A
(LνΦ(t, x, S, q) + F (t, x, S, q, ν)) = 0, (3.27)

that is,

∂

∂t
Φ(t, x, S, q) −

(
Lν∗(t,x,S,q)Φ(t, x, S, q) + F (t, x, S, q, ν∗(t, x, S, q))

)
= 0.

(3.28)
If the stochastic differential equation

dZt =

dXt

dSt

dQt

 =

Stν
∗(t, x, S, q) − f(ν∗(t, x, S, q))ν∗(t, x, S, q)

−g(ν∗(t, x, S, q))
−ν∗(t, x, S, q)

 dt+

0
σ
0

 dWt

(3.29)
i.e.

dZt =

dXt

dSt

dQt

 =

Stν
∗
t − f(ν∗t )ν∗t
−g(ν∗t )
−ν∗t

 dt +

0
σ
0

 dWt. (3.30)

admits a unique solution, denoted by Zν∗

r = (Xν∗

r , Sν∗

r , Qν∗

r ), with Z0 = z =
(x, S, q), then

Φ(t, x, S, q) = H(t, x, S, q) on [0, T ] × R3. (3.31)

and ν∗(t, x, S, q) is an optimal control.

We apply the verification theorem to our own stochastic control problem,
given the model (3.7) above. Let Φ := Φ(t, x, S, q) be our candidate value
function. Applying Itô’s Lemma to the candidate value function gives us:

dΦ =
∂Φ

∂t
dt +

∂Φ

∂x
dXt +

∂Φ

∂S
dSt +

∂Φ

∂q
dQt +

1

2

∂2Φ

∂S2
σ2dt. (3.32)

We know from the model (3.7) the terms dXt, dSt, dQt, and that the mixed
2nd-order partial derivatives vanish apart from for (dSt)

2, which being driven
by the Brownian motion W has quadratic variation T and hence < dS, dS >t=
σ2dt.
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We have

dΦ =

(
∂Φ

∂t
+

1

2

∂2Φ

∂S2
σ2

)
dt

+
∂Φ

∂x

(
(St − f(vt)) vtdt

)
+

∂Φ

∂S

(
−g(vt)dt + σdWt

)
+

∂Φ

∂q
(−vtdt) . (3.33)

Collecting terms in dt and dWt, we obtain:

dΦ(t,Xt, St, Qt)

=

(
∂Φ

∂t
+
(
Stvt − f(vt)vt

)∂Φ

∂x
− g(vt)

∂Φ

∂S
− vt

∂Φ

∂q
+

1

2
σ2 ∂

2Φ

∂S2

)
dt

+ σ
∂Φ

∂S
dWt. (3.34)

From this we can write the candidate value function in full integral form. At
any time t ∈ [0, T ] and for an arbitrary control v in the admissible set A:

Φ(t,Xt, St, Qt) = Φ(0, X0, S0, Q0)

+

∫ t

0

(
∂Φ

∂u
+
(
Suvu − f(vu)vu

)∂Φ

∂x
− g(vu)

∂Φ

∂S
− vu

∂Φ

∂q
+

1

2
σ2 ∂

2Φ

∂S2

)
du

+

∫ t

0

σ
∂Φ

∂S
dWu. (3.35)

The infinitesimal generator of the performance criteria for this control problem:

Lv
t Φ(t,Xt, St, Qt) =

(
Sv − f(v)v

) ∂Φ

∂X
− g(v)

∂Φ

∂S
− v

∂Φ

∂q
+

1

2
σ2 ∂

2Φ

∂S2
. (3.36)

Substituting this into the expression for the performance criteria we obtain the
simpler representation

Φ(t,Xt, St, Qt) = Φ(0, X0, S0, Q0) +

∫ t

0

(
∂Φ

∂u
+ Lv

uΦ

)
du +

∫ t

0

σ
∂Φ

∂S
dWu.

(3.37)
Since Φ ∈ C1,2([0, T ]×R3), we can use Itô’s lemma to write for all (t, x, S, q) ∈

[0, T ] × R3 and all controls which are admissible over [t, T ] given that Xv
t =

x, Sv
t = S, Qv

t = q, ie. all v ∈ A(t,x,S,q), any time r ∈ [t, T ), and any stopping
time τ ∈ [t, T ],

Et,x,S,q [Φ(r ∧ τ,Xr∧τ , Sr∧τ , Qr∧τ )] = Φ(t,Xt, St, Qt)

+ Et,x,S,q

[∫ r∧τ

t

(
∂Φ

∂u
+ Lv

uΦ

)
du

]
+ Et,x,S,q

[∫ r∧τ

t

σ
∂Φ

∂S
dWu

]
. (3.38)
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We choose the stopping time τ := τn ∈ [t, T ] to be such that

τn := inf

{
r ≥ t such that

∫ r

t

∣∣∣∣σ∂Φ

∂S

∣∣∣∣2du ≥ n

}
. (3.39)

Then we can define {τn}n∈N as a localizing sequence of stopping times such that
the stopped stochastic integral is a martingale. Then

Et,x,S,q [Φ(r ∧ τ,Xr∧τ , Sr∧τ , Qr∧τ )]

= Φ(t,Xt, St, Qt) + Et,x,S,q

[∫ r∧τ

t

(
∂Φ

∂u
+ Lv

uΦ

)
du

]
. (3.40)

Now since we have assumed the function Φ satisfies the inequality (3.26) for
the particular control that achieves the supremum, we have the same for all
admissible controls v ∈ A(t,x,S,q):

∂Φ

∂t
(u,Xv

u, S
v
u, Q

v
u) + LvuΦ (u,Xv

u, S
v
u, Q

v
u) ≤ −F (u,Xv

u, S
v
u, Q

v
u, vu) (3.41)

In our current problem, F (u,Xv
u, S

v
u, Q

v
u, vu) = 0, since there is no running

penalty or reward function. The terminal function G (T,Xv
T , S

v
T , Q

v
T , vT ) =

U (Xv
T , S

v
T , Q

v
T ). Thus for any time r ∈ [t, T ],

Et,x,S,q [Φ(r,Xr, Sr, Qr)] ≤ Φ(t,Xt, St, Qt). (3.42)

Using the Dominated Convergence Theorem as r → T ,

Et,x,S,q [Φ(T,XT , ST , QT )] ≤ Φ(t,Xt, St, Qt). (3.43)

And since we assumed the terminal condition Φ(T, x, S, q) ≥ G(x, S, q) for all
(x, S, q) ∈ R3,

Et,x,S,q [G (T,Xv
T , S

v
T , Q

v
T , vT )] ≤ Φ(t,Xt, St, Qt). (3.44)

Now since our choice of admissible control was arbitrary, we can say for all
admissible controls α ∈ A(t,x,S,q) and all (t, x, S, q) ∈ [0, T ] × R3,

Φ(t, x, S, q) ≥ Et,x,S,q [U (Xv
T , S

v
T , Q

v
T )]

=⇒ Φ(t, x, S, q) ≥ Hv(t, x, S, q). (3.45)

Similar arguments give us the following equality for the optimal control v∗:
for all (t, x, S, q) ∈ [0, T ] × R3,

Φ(t, x, S, q) ≥ Et,x,S,q

[
U
(
Xv∗

T , Sv∗

T , Qv∗

T

)]
=⇒ Φ(t, x, S, q) = H(t, x, S, q). (3.46)
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3.4 Solving the Stochastic Control Problem

3.4.1 Linear Temporary and Permanent Price Impact

We follow Cartea et al [CJP15] and assume that both temporary and permanent
price impact are linear functions of the speed of trading: that is: f(vt) = κvt
and g(vt) = ηvt.

We then get the stochastic model

dZt =

dXt

dSt

dQt

 =

Stvt − κv2t
−ηvt
−vt

 dt +

0
σ
0

 dWt. (3.47)

and the HJB equation:

∂tH +
1

2
σ2∂SSH + sup

v∈A

(
Sv∂xH − κv2∂xH − ηv∂SH − v∂qH

)
= 0. (3.48)

3.4.2 Feedback form for the Optimal Control

We aim to solve the above HJB equation (3.48). First, we find the optimal
control v∗ in feedback form. Substituting that feedback form back into the HJB
equation will yield us a (possibly non-linear) partial differential equation for the
value function H(t, x, S, q). When that PDE in H is solved, it will give us the
optimized value function H(t, x, S, q) = Hv∗

(t, x, S, q) at each time t ∈ [0, T ].
From this, we will attempt to find an explicit expression for the optimal control
v∗.

To solve the HJB equation (3.48), first, we assume that v∗ is the trading
speed which achieves the supremum in the equation. Then

∂tH +
1

2
σ2∂SSH +

(
Sv∗∂xH − κv∗2∂xH − ηv∗∂SH − v∗∂qH

)
= 0. (3.49)

The equation is a quadratic in v∗.

0 = ∂tH +
1

2
σ2∂SSH + (S∂xH − η∂SH − ∂qH) v∗ − (κ∂xH) v∗2. (3.50)

Completing the square gives us:

0 = − κ∂xH

(
v∗ − (S∂xH − η∂SH − ∂qH)

∂xH

)2

+ ∂tH +
1

2
∂SSH − (S∂xH − η∂SH − ∂qH)2

−4κ∂xH
. (3.51)

Thus the value of v∗ which satisfies the HJB equation is:

v∗ =
1

2κ

(S∂xH − η∂SH − ∂qH)

∂xH
. (3.52)
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Substituting the optimal control in feedback form into the HJB equation
gives us the non-linear PDE:

∂tH +
1

2
σ2∂SSH +

1

4κ

(S∂xH − η∂SH − ∂qH)2

∂xH
= 0. (3.53)

We now need to find the candidate value function H(t,Xt, St, Qt) which
solves this PDE.

3.5 A general ansatz for the Value Function,
based on the Utility Function

We introduce an ansatz for the value function:

H(t, x, S, q) = U (x + Sq + h(t, q)) , (3.54)

with terminal condition

H(T, x, S, q) = U
(
x + Sq − αq2

)
. (3.55)

This ansatz is based on the form of the ansatzes used in Cartea et al’s book
[CJP15], where at time t, x represents the cash obtained up to time t, Sq
represents the marked-to-market book value of the units of the asset remaining
to be liquidated, and the final term h(t, q) represents the value added due to
optimal execution of those shares.

Given this ansatz, we obtain the partial derivatives of the value function as
follows. Let z = z(t, x, S, q) := (x + Sq + h(t, q)) and denote the first derivative
of our utility function U with respect to z by U ′

z and the second derivative of
the utility function with respect to z by U ′′

zz. Also denote the derivative of z
with respect to a variable u by zu. Then we have the partial derivatives of the
value function H as:

∂tH(t, x, S, q) = U ′
z z′t

= U ′
z ∂th(t, q). (3.56)

∂xH(t, x, S, q) = U ′
z z′x

= U ′
z 1. (3.57)

∂SH(t, x, S, q) = U ′
z z′S

= U ′
z q. (3.58)
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∂SSH(t, x, S, q) = ∂SU
′
z q

= q∂SU
′
z

= qU ′′
zz z′S

= q2U ′′
zz. (3.59)

∂qH(t, x, S, q) = U ′
z z′q

= U ′
z (S + ∂qh(t, q)) . (3.60)

We substitute this ansatz (3.54) and its partial derivatives into the PDE
(3.53) and obtain (where we suppress H(t, x, S, q) to H):

0 = ∂th(t, q)U ′
z

+
1

2
σ2q2U ′′

zz

+
1

4κ

(SU ′
z − η (q − (S + ∂qh(t, S, q)) U ′

z))
2

U ′
z

, (3.61)

Cancelling the terms in S and dividing through by the first derivative of the
utility function U ′

z gives us a new PDE in the simpler function h(t, q):

0 = ∂th(t, q) +
1

2
σ2q2

U ′′
zz

U ′
z

+
1

4κ

(
ηq + ∂qh(t, q)

)2

. (3.62)

with terminal condition
h(T, q) = −αq2. (3.63)

In this equation we see the absolute risk aversion coefficient −U ′′
zz

U ′
z

together
with the squared volatility in the second term.

The above equation (3.62) is a non-linear PDE whose solution depends on
the form of the utility function U .

3.6 Utility Functions

We aim to solve the execution problem (3.18)under the stochastic model (3.7).
To do so, we can solve the partial differential equation (3.62) using different
utility functions U(z) applied to the expression z = x + Sq + h(t, q).

3.6.1 Linear Utility - The Risk-neutral approach and the
Almgren-Chriss solution

When the utility function is simply identity, i.e.

U(z) = z, (3.64)
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we have a risk-neutral situation where the trader seeks to optimise his profits.
The trader does not display risk aversion to price impact and so executes his
trades evenly through time using a Time-Weighted Average Price (TWAP) al-
gorithm, as shown in Section 6.3 of Cartea, Jaimungal, and Penalva [CJP15].
To incorporate risk-aversion to held inventory into the problem, Cartea et al
incorporate a running inventory penalty of the form

θ

∫ T

t

(Qv
u)

2
du, θ ≥ 0. (3.65)

This penalises inventories larger than 0 throughout the trading period. Cartea
et al describe this function as representing the trader’s urgency to execute the
entire trade. The greater the value of θ, the quicker the optimal strategy liqui-
dates the shares. They state that this can be seen as “equivalent to ambiguity
aversion on the part of the agent ... over the midprice, which ... may have a
non-zero stochastic drift”.

3.7 Exponential Utility

We consider the situation as explored in Section 6.6 of [CJP15] where the execu-
tion trader is risk-averse with an exponential utility function, where they wants
to maximise exponential utility of their terminal wealth:

U(z) = − exp(−γz). (3.66)

The parameter γ here represents the risk-aversion of our trader. The greater γ
is, the more risk-averse our trader is. Taking derivatives of the utility function
with respect to z gives us

U ′
z = γ exp(−γz) (3.67)

U ′′
zz = −γ2 exp(−γz). (3.68)

Therefore we have the coefficient of absolute risk aversion

−U ′′
zz

U ′
z

= γ. (3.69)

The exponential utility function leads the trader to have a constant absolute
risk aversion (CARA). The trader’s aversion to risk does not change with the
level of the value of z. In our case, z = x + Sq + h(t, q).

3.7.1 Exponential Utility: The Stochastic Control Prob-
lem

The trader’s performance criteria becomes:

Hv(t, x, S, q) = E(t,x,S,q) [− exp (−γ(Xv
T + Qv

T (Sv
T − αQv

T ))] . (3.70)

Adam Nii Armah Hesse 41



Optimal Execution for a Risk-Averse Trader

The value function is:

H(t, x, S, q) = sup
v∈A

Hv(t, x, S, q). (3.71)

We use the ansatz

H(t, x, S, q) = − exp(−γ(x + Sq + h(t, q)). (3.72)

Using this ansatz and substituting the absolute risk aversion coefficient (3.69)
associated with the exponential utility function into the PDE (3.62), we obtain
the equation:

0 = −∂th(t, q) +
1

2
σ2γq2 − 1

4κ
(ηq + ∂qh(t, q))

2
. (3.73)

At this point, Cartea, Jaimungal and Penalva assume that the ansatz solu-
tion h(t, q) a quadratic function of the inventory q. Thus

h(t, q) = h2(t)q2, (3.74)

where h2(t) is a deterministic function of time t, whose subscript implies that
the function h2(t) is a coefficient of q2. Their motivation for this assumption
comes from the form of the terminal condition (3.63) for h(t, q).

Substituting this new ansatz (3.74) into the PDE (3.73) gives us a Riccati
equation in h2(t):

0 = −∂t(h2(t)q2) +
1

2
σ2γq2 − 1

4κ

(
ηq + ∂q(h2(t)q2)

)2
0 = −∂th2(t) +

1

2
σ2γ − 1

κ

(
1

2
η + h2(t)

)2

. (3.75)

3.7.2 Solving the Riccati equation in h2(t)

This equation (3.75) is a Riccati equation in h2(t). To solve it, first we can write

χ(t) = h2(t) +
1

2
η. (3.76)

Then we find the first derivative of χ(t) with respect to time t:

h2(t) = χ(t) − 1

2
η (3.77)

∂th2(t) = ∂tχ(t). (3.78)

Then we obtain a Riccati equation in the new variable χ(t):

0 = ∂tχ(t) − 1

2
σ2γ +

1

κ
(χ(t))

2
. (3.79)
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Rearranging gives us:

∂tχ(t) +
1

κ
(χ(t))

2
=

1

2
σ2γ

∂χ(t)

∂t
=

1

2
σ2γ − 1

κ
(χ(t))

2

∂χ(t)

∂t
=

1

κ

(
1

2
κσ2γ − (χ(t))

2

)
. (3.80)

We can then separate the variables χ(t) and t, and integrate:∫ (
1

1
2κσ

2γ − (χ(t))
2

)
dχ(t) =

∫
1

κ
dt. (3.81)

The denominator ( 1
2κσ

2γ − (χ(t))
2
) in the integral is equal to −(χ(t) −

1√
2

√
κγσ2)(χ(t) + 1√

2

√
κγσ2), so we get:

∫  1(
χ(t) − 1√

2

√
κγσ2

)(
χ(t) + 1√

2

√
κγσ2

)
 dχ(t) = −

∫
1

κ
dt. (3.82)

We evaluate the integral over the time interval [t,T]:

∫ s=T

s=t

 1(
χ(t) − 1√

2

√
κγσ2

)(
χ(t) + 1√

2

√
κγσ2

)
 dχ(t) = −

∫ s=T

s=t

1

κ
dt.

(3.83)
Given that for a ̸= b,∫ (

1

(x + a)(x + b)

)
dx =

1

b− a
(ln(x + a) − ln(x + b)) , (3.84)

evaluating the integral gives us:

1√
2κγσ2

(
ln

(
χ(T ) − 1√

2

√
κγσ2

)
− ln

(
χ(T ) +

1√
2

√
κγσ2

))
− 1√

2κγσ2
−
(

ln

(
χ(t) − 1√

2

√
κγσ2

)
− ln

(
χ(t) +

1√
2

√
κγσ2

))
= − 1

κ
(T − t). (3.85)

Multiplying through by
√

2κγσ2 gives us on the right hand side (LHS):

RHS = −
√

2κγσ2

κ
(T − t)

= −2

√
γσ2

2κ
(T − t). (3.86)
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This leaves us the left-hand side (LHS):

LHS =

(
ln

[
χ(T ) − 1√

2

√
κγσ2

χ(T ) + 1√
2

√
κγσ2

]
− ln

[
χ(t) − 1√

2

√
κγσ2

χ(t) + 1√
2

√
κγσ2

])

=

ln

χ(T ) −
√

1
2κγσ

2

χ(T ) +
√

1
2κγσ

2

− ln

χ(t) −
√

1
2κγσ

2

χ(t) +
√

1
2κγσ

2

 (3.87)

Putting the two sides of the evaluated integral back together, we have:ln

χ(T ) −
√

1
2κγσ

2

χ(T ) +
√

1
2κγσ

2

− ln

χ(t) −
√

1
2κγσ

2

χ(t) +
√

1
2κγσ

2

 = −2

√
γσ2

2κ
(T − t).

(3.88)

=⇒ ln

χ(t) −
√

1
2κγσ

2

χ(t) +
√

1
2κγσ

2

 = ln

χ(T ) −
√

1
2κγσ

2

χ(T ) +
√

1
2κγσ

2

+ 2

√
γσ2

2κ
(T − t). (3.89)

Now we take exponentials:χ(t) −
√

1
2κγσ

2

χ(t) +
√

1
2κγσ

2

 =

χ(T ) −
√

1
2κγσ

2

χ(T ) +
√

1
2κγσ

2

 exp

(
2

√
γσ2

2κ
(T − t)

)
. (3.90)

We continue to solve for χ(t).

χ(t) −
√

1

2
κγσ2

=

(
χ(t) +

√
1

2
κγσ2

)χ(T ) −
√

1
2κγσ

2

χ(T ) +
√

1
2κγσ

2

 exp

(
2

√
γσ2

2κ
(T − t)

)

(3.91)

=⇒ χ(t)

1 −

χ(T ) −
√

1
2κγσ

2

χ(T ) +
√

1
2κγσ

2

 exp

(
2

√
γσ2

2κ
(T − t)

)
=

(√
1

2
κγσ2

)1 +

χ(T ) −
√

1
2κγσ

2

χ(T ) +
√

1
2κγσ

2

 exp

(
2

√
γσ2

2κ
(T − t)

) .

(3.92)

Thus we have an expression for χ(t):

χ(t) =

(√
1

2
κγσ2

) (1 +

[
χ(T )−

√
1
2κγσ

2

χ(T )+
√

1
2κγσ

2

]
exp

(
2
√

γσ2

2κ (T − t)

))
(

1 −
[
χ(T )−

√
1
2κγσ

2

χ(T )+
√

1
2κγσ

2

]
exp

(
2
√

γσ2

2κ (T − t)

)) . (3.93)
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We use the terminal condition h2(T ) = −α to give us χ(T ) = −α + 1
2b,

from our definition (3.76). Substituting the terminal condition for χ(T ) into
our expression for χ(t) yields us an explicit expression for the ansatz h2(t):

h2(t) = χ(t) − 1

2
η

=

(√
1

2
κγσ2

) (1 +

[
χ(T )−

√
1
2κγσ

2

χ(T )+
√

1
2κγσ

2

]
exp

(
2
√

γσ2

2κ (T − t)

))
(

1 −
[
χ(T )−

√
1
2κγσ

2

χ(T )+
√

1
2κγσ

2

]
exp

(
2
√

γσ2

2κ (T − t)

)) − 1

2
η

(3.94)

=

(√
1

2
κγσ2

) (1 +

[
−α+ 1

2η−
√

1
2κγσ

2

−α+ 1
2η+

√
1
2κγσ

2

]
exp

(
2
√

γσ2

2κ (T − t)

))
(

1 −
[
−α+ 1

2η−
√

1
2κγσ

2

−α+ 1
2η+

√
1
2κγσ

2

]
exp

(
2
√

γσ2

2κ (T − t)

)) − 1

2
η.

(3.95)

Now we define constants ξ and ζ as follows:

ξ =

√
γσ2

2κ
, (3.96)

and

ζ =
−α + 1

2η −
√

1
2κγσ

2

−α + 1
2η +

√
1
2κγσ

2
. (3.97)

Substituting ξ and ζ into the formula for h2(t), we obtain the second ansatz in
the form obtained by Cartea et al’s Section 6.6, page 151 [CJP15] (with slightly
different expressions for the constants).

h2(t) =

(√
1

2
κγσ2

)(
1 + ζ exp (2ξ(T − t))

1 − ζ exp (2ξ(T − t))

)
− 1

2
η. (3.98)

3.7.3 Explicit formulae for the Value Function and the
Optimal Trading Speed

Now we use the fact that h(t, q) = q2h2(t) to get the original ansatz:

h(t, q) = q2

(√
1

2
κγσ2

)(
1 + ζ exp (2ξ(T − t))

1 − ζ exp (2ξ(T − t))

)
− 1

2
ηq2. (3.99)

From this, we get the first derivative of h(t, q) with respect to the quantity
q from (3.74):

∂qh(t, q) = 2q

((√
1

2
κγσ2

)(
1 + ζ exp (2ξ(T − t))

1 − ζ exp (2ξ(T − t))

)
− η

)
. (3.100)
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Using the relationship between the ansatz and the value function, we get a
candidate value function

H(t, x, S, q)

= − exp

(
−γ

(
x + Sq + q2

(√
1

2
κγσ2

)(
1 + ζ exp (2ξ(T − t))

1 − ζ exp (2ξ(T − t))

)
− 1

2
ηq2

))
.

(3.101)

Finally, we now find the optimal trading speed v∗ from (3.52):

v∗t = −ξ

(
1 + ζ exp (2ξ(T − t))

1 − ζ exp (2ξ(T − t))

)
Qv∗

t . (3.102)

This optimal trading speed is a non-linear function of time, and increases
with the risk aversion parameter γ. A more risk-averse trader will prefer to
execute more quickly. This speed is also proportional to the trader’s held in-
ventory Qt. Since the trader is averse to the market risk of holding inventory,
the greater the position the trader holds, the faster he trades to liquidate that
position. The trader trades more quickly closer to the beginning of the trading
horizon and then more slowly as time reaches the end of the horizon.

Interestingly, the asset price St does not appear in the optimal speed, so
the trader does not take into account the price in order to obtain a higher sale
price for the client. In our model the price was modelled by a Brownian motion
with constant volatility σ and a drift g(vt) determined by a permanent price
impact which is directly proportional to our trader’s trading speed: g(vt) = gv.
That price impact is affected only by our own trader’s activity. Cartea and
Jaimungal [CJ16b] introduce models incorporating the order flow from other
market participants, and this is a possible extension for this work. The volatility
does appear in the formula for the optimal trading speed, and since our trader
knows his or her trading speed, that volatility encapsulates all of the uncertainty
over the price from the point of view of our trader.

3.7.4 A more explicit representation of the optimal inven-
tory and trading strategy as deterministic functions
of time and the initial inventory

We can write the optimal inventory Qv∗

t and the optimal speed v∗ directly in
terms of the initial inventory Q0. This allows us to simulate the inventory
process along its trajectory.

We find the partial derivatives of H using the ansatz H(t, x, S, q) = x+Sq+
h(t, q) to simplify the situation. The partial derivative of H with respect to
time t is:

∂tH = ∂t (− exp{−γ(x + Sq + h(t, q))})

= −γ exp{−γ(x + Sq + h(t, q)} ∂th(t, q)

= −γH∂th(t, q). (3.103)
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The first partial derivative of H with respect to the stock price S is:

∂SH = ∂S (− exp{−γ(x + Sq + h(t, q))})

= ∂S (− exp{−γx} exp{−γSq} exp{−γh(t, q)})

= −γq exp{−γ(x + Sq − h(t, q))}
= −γqH. (3.104)

The second partial derivative of H with respect to the stock price S is:

∂SSH = ∂SS (− exp{−γ(x + Sq + h(t, q))})

= ∂SS (− exp{−γx} exp{−γSq} exp{−γh(t, q)})

= γ2q2 exp{−γ(x + Sq − h(t, q))}
= γ2q2H. (3.105)

The partial derivative of H with respect to the trader’s wealth x is:

∂xH = ∂x (− exp{−γ(x + Sq + h(t, q))})

= ∂x (− exp{−γx} exp{−γSq} exp{−γh(t, q)})

= −γ exp{−γ(x + Sq − h(t, q))}
= −γH. (3.106)

The partial derivative of H with respect to the trader’s inventory q is:

∂qH = ∂q (− exp{−γ(x + Sq + h(t, q))})

= − exp{−γx} ∂q (exp{−γSq} exp{−γh(t, q)})

= − exp{−γx} (−γ(S + ∂qh(t, q)) exp{−γ(Sq + h(t, q))})

= −γ(S + ∂qh(t, q))(exp{−γ(x + Sq + h(t, q))})

= −γ(S + ∂qh(t, q))H (3.107)

Substituting these partial derivatives into the HJB equation (3.22) we obtain
the simpler PDE

0 = −∂th(t, q) +
1

2
σ2γq2 + sup

v∈A
(v(ηq + ∂qh(t, q) + κv)) . (3.108)

This PDE in h(t, q) has terminal condition:

h(T, q) = −αq2. (3.109)

Now we can use the first-order condition to find an optimal trading speed v∗

which satisfies the PDE (3.110) above.
First we assume that v∗ is the maximiser of the supremum in the equation.

Then we would have:

0 = −∂th(t, q) +
1

2
σ2γq2 + v∗(ηq + ∂qh(t, q) + κv∗). (3.110)
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Differentiating with respect to v, then substituting v∗ for v and solving, gives
us the following equation for the optimal trading speed in feedback form:

v∗ = − 1

2κ
(ηq + ∂qh(t, q)) . (3.111)

From the Riccati equation (3.75) and the definition of χ(t) in (3.76), we
have the following relationship between the optimal trading speed v∗t and the
trajectory Qv∗

t of the inventory under this speed:

v∗t = −χ(t)Qv∗

t

κ
. (3.112)

For each control v ∈ A,

dQv
t = −vtdt

=⇒ vt = −dQv
t

dt
.

Choosing the optimal control v∗, we have:

dQv∗

t

dt
= −χ(t)Qv∗

t

κ
. (3.113)

Separating variables in t and Qv∗

t , and integrating over [0, t] gives us:∫ t

0

1

Qv∗
u

dQv∗

u =

∫ t

0

χ(u)

κ
du

=⇒ ln

(
Qv∗

t

Q0

)
=

∫ t

0

χ(u)

κ
du

=⇒ Qv∗

t = Q0 exp

(∫ t

0

χ(u)

κ
du

)
. (3.114)

We now have an expression for the optimal inventory at any given time in
terms of the trader’s initial position multiplied by an accumulation factor. Now
substituting the expression for χ(t) and using constants ξ and ζ (3.93, 3.96,
3.97), we obtain∫ t

0

χ(u)

κ
du = ξ

∫ t

0

(
1 + ζ exp(2ξ(T − u))

1 − ζ exp(2ξ(T − u))

)
du

= ξ

(∫ t

0

1

1 − ζe2ξ(T−u)
du +

∫ t

0

1

ζe−2ξ(T−u) − 1
du

)
= ln

(
ζeξ(T−t) − e−ξ(T−t)

ζeξT − e−ξT

)
. (3.115)

From this we can find Qv∗

t explicitly as the initial inventory Q0 multiplied by a
deterministic function of time t elapsed from 0:

Qv∗

t =

(
ζeξ(T−t) − e−ξ(T−t)

ζeξT − e−ξT

)
Q0. (3.116)

Adam Nii Armah Hesse 48



Optimal Execution for a Risk-Averse Trader

Finally, we have an explicit expression for the optimal trading speed as a func-
tion of the initial inventory Q0:

v∗ = ξ

(
ζeξ(T−t) + e−ξ(T−t)

ζeξT − e−ξT

)
Q0. (3.117)

The above expressions are identical in form to the ones found when using
the quadratic running penalty function ϕ

∫ t

0
(Qv

u)
2
du as used by Cartea et al

[CJP15]. As Cartea et al state on page 152 of [CJP15], the function h2(t) are
equal when ϕ = 1

2γσ
2, and the two optimal trading strategies can be mapped

isometrically to each other.
Taking limits as α → ∞, we see that ζ → 1. Then we have the following

expressions for the optimal inventory

lim
α→∞

Qv∗

t =

(
sinh(ξ(T − t))

sinh(ξT )

)
Q0 (3.118)

and trading speed

lim
α→∞

v∗ = ξ

(
cosh(ξ(T − t))

sinh(ξT )

)
Q0. (3.119)

These optimal inventory and optimal trading speeds in the limit as α → ∞
are identical in form to the Almgren-Chriss model [AC00]. Using these explicit
expressions, we can easily simulate the optimal inventory and investigate the
way the trader behaves given a particular risk aversion parameter γ and terminal
penalty parameter α.

3.8 Verification

We now verify that our candidate value function (3.101) and our candidate op-
timal control (3.102) actually solve the initial stochastic control problem (3.71).
We follow the method suggested in the proof in Pham’s book ([Pha09]).

Theorem 3.8.1. Our candidate value function Φ(t, x, S, q), where Φ(t, x, S, q)
replaces H(t, x, S, q) in (3.101), and ϕ(t, x, S, q) replaces our ansatz h(t, x, S, q)
and our candidate optimal trading speed v∗t in (3.102) satisfy the following con-
ditions:

Let Φ(t, x, S, q) ∈ C1,2([0, T ] x Rn) and let Φ(t, x, S, q) satisfy a quadratic
growth condition, that is for all for all (t, x, S, q) ∈ [0, T ] x Rn, there exists a
constant C such that:

|Φ(t, x, S, q)| ≤ C
(

1 + |(x, S, q)|2
)
. (3.120)

Suppose also that F : R+ → Rn+p and G : Rn → R are measurable uniformly
bounded functions (where n is the number of controlled processes and p is the
number of control processes in our model (3.7)), which satisfy:

∂

∂t
Φ(t, x, S, q) − sup

v∈A
(LvΦ(t, x, S, q) + F (t, x, S, q, v)) ≥ 0, (3.121)
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for all (t, x, S, q) ∈ [0, T ] x Rn, and

Φ(T, x, S, q) ≥ G(x, s, q) for all (x, S, q) ∈ Rn, (3.122)

then
Φ(t, x, S, q) ≥ Hv(t, x, S, q) on [0, T ] x Rn. (3.123)

Now suppose that Φ(T, x, S, q) = G(x, S, q), and that there exists a mea-
surable function ν∗(t, x, S, q) for (t, x, S, q) ∈ [0, T ] x Rn, with values in the
admissible set A, which satisfies:

∂

∂t
Φ(t, x, S, q) − sup

ν∈A
(LνΦ(t, x, S, q) + F (t, x, S, q, ν)) = 0, (3.124)

that is,

∂

∂t
Φ(t, x, S, q) −

(
Lν∗(t,x,S,q)Φ(t, x, S, q) + F (t, x, S, q, ν∗(t, x, S, q))

)
= 0.

(3.125)
If the stochastic differential equation

dZt =

dXt

dSt

dQt

 =

Stν
∗(t, x, S, q) − f(ν∗(t, x, S, q))ν∗(t, x, S, q)

−g(ν∗(t, x, S, q))
−ν∗(t, x, S, q)

 dt+

0
σ
0

 dWt

(3.126)
i.e.

dZt =

dXt

dSt

dQt

 =

Stν
∗
t − κν∗t

2

−ην∗t
−ν∗t

 dt +

0
σ
0

 dWt. (3.127)

admits a unique solution, denoted by Zν∗

r = (Xν∗

r , Sν∗

r , Qν∗

r ), with Z0 = z =
(x, S, q), then

Φ(t, x, S, q) = H(t, x, S, q) on [0, T ] x Rn. (3.128)

and ν∗(t, x, S, q) is an optimal Markovian control.

First, the candidate value function ϕ(t, x, S, q) in (3.101) is a continuous
function of (t, x, S, q). We list the first-order partial derivatives of ϕ:

∂tΦ = −γ∂tϕ(t, q)Φ (3.129)

∂xΦ = −γΦ (3.130)

∂SΦ = −γqΦ (3.131)

∂qΦ = −γ (S + ∂qϕ(t, q)) Φ. (3.132)
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The second-order partial and mixed-partial derivatives of Φ:

∂xxΦ = γ2Φ (3.133)

∂SSΦ = γ2q2Φ (3.134)

∂qqΦ =
(
γ2(S + ∂qϕ(t, q))2 + ∂qqϕ(t, q)

)
Φ (3.135)

∂xSΦ = −γ2qΦ (3.136)

∂xqΦ = −γ2 (S + ∂qϕ(t, q)) Φ (3.137)

∂SqΦ = γ (γq (S + ∂qϕ(t, q)) − 1) Φ. (3.138)

Since the value function Φ(t, x, S, q) and the ansatz function ϕ(t, q) (which
appear in the partial derivatives) are continuous functions, all of the required
partial derivatives of Φ exist, and are continuous. Hence Φ(t, x, S, q) lies in the
set C1,2([0, T ] x Rn).

In our model, we are optimising only the exponential utility of terminal
wealth, and so

F (t, x, S, q, v) = 0 (3.139)

G(x, s, q) = − exp (−γ (x + q (S − αq))) . (3.140)

Both are measurable and uniformly bounded functions. Our situation is simpli-
fied relative to Pham’s proof, because we do not have a running penalty/reward
function. We can show immediately that the value function satisfies the re-
quired inequality (3.123) by verifying (3.121), and we do not require the local
martingale argument Pham uses to deal with the running penalty F (t, x, S, q, v).

Choosing a time r ∈ [t, T ], we apply Itô’s lemma to our candidate value
function Φ using the derivatives of Φ we calculated earlier:

Φ(r,Xr, Sr, Qr) = Φ(t, x, S, q)

+

∫ r

t

∂Φ

∂u
(u,Xu, Su, Qu) + LvuΦ(u,Xu, Su, Qu)du

+

∫ r

t

Dx,S,qΦ(u,Xu, Su, Qu)
′
σ(u,Xu, Su, Qu, vu)dWu,

(3.141)

where Dx,S,qΦ(u,Xu, Su, Qu) =
(

∂Φ
∂X , ∂Φ

∂S ,
∂Φ
∂Q

)
is the Jacobian matrix of first

derivatives of the candidate value function.
We take expectations of both sides, conditional on (Xt = x, St = S, Qt =

q):

E
[
Φ(r,Xt,x

r , St,S
r , Qt,q

r )
]

= Φ(t, x, S, q)

+ E
[∫ r

t

∂Φ

∂u
(u,Xt,x

u , St,S
u , Qt,q

u ) + LvuΦ(u,Xt,x
u , St,S

u , Qt,q
u )du

]
+ E

[∫ r

t

Dx,S,qΦ(u,Xt,x
u , St,S

u , Qt,q
u )

′
σ(u,Xt,x

u , St,S
u , Qt,q

u , vu)dWu

]
.

(3.142)
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We want to show that the stochastic integral part is a martingale. That
will allow us to obtain the inequality (3.121) and then the equality (3.125)
immediately.

We can show that the stochastic integral is a martingale by showing that
its integrand is progressively measurable and square-integrable on the interval
[t, r]. First we note that the at any time u ∈ [t, r], the stochastic integrand
equals

Dx,S,qΦ(u,Xt,x
u , St,S

u , Qt,q
u )

′
σ(u,Xt,x

u , St,S
u , Qt,q

u , vu)

=

(
∂Φ

∂X
,
∂H

∂S
,
∂Φ

∂Q

) 0
σ
0


= σ

∂Φ

∂S
(u,Xt,x

u , St,S
u , Qt,q

u )

= −σγQt,q
u Φ(u,Xt,x

u , St,S
u , Qt,q

u )

= σγQt,q
u . . .

exp

(
−γ

(
Xt,x

u + St,S
u Qt,q

u +
(
Qt,q

u

)2(√1

2
κγσ2

)(
1 + ζ exp (2ξ(T − u))

1 − ζ exp (2ξ(T − u))

)
− 1

2
η
(
Qt,q

u

)2))
.

(3.143)

The integrand is progressively measurable, because it is a continuous function
of the adapted state variable processes X, S, and Q.

Taking expectations of the Riemann integral of the square of the integrand,
evaluated over the interval [t, r] gives us:

E

[∫ r

t

∣∣∣∣σ∂Φ

∂S
(u,Xt,x

u , St,S
u , Qt,q

u )

∣∣∣∣2 du
]

= E
[∫ r

t

∣∣σ (−γQt,q
u Φ(u,Xt,x

u , St,S
u , Qt,q

u )
)∣∣2 du]

= E
[∫ r

t

(
γ2σ2

(
Qt,q

u

)2 (
Φ(u,Xt,x

u , St,S
u , Qt,q

u )
)2)

du

]
(3.144)

The exponential function within Φ(u,Xt,x
u , St,S

u , Qt,q
u ) is monotonically in-

creasing over the real line (−∞,+∞). Also the functions Xu, Su, Qu are driven
only by the Wiener process Wu for all times u ∈ [0, T ] in our time horizon. A
Wiener process is finite almost surely. Therefore the integrand in

E
[∫ r

t

(
γ2σ2

(
Qt,q

u

)2 (
Φ(u,Xt,x

u , St,S
u , Qt,q

u )
)2)

du

]
(3.145)

attains a finite maximum P-almost surely at some point within the time interval
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[t, r]. By the mean value theorem, we thus have:

E
[∫ r

t

(
γ2σ2

(
Qt,q

u

)2 (
Φ(u,Xt,x

u , St,S
u , Qt,q

u )
)2)

du

]
≤ (r − t) E

[
sup

u∈[t,r]

(
γ2σ2

(
Qt,q

u

)2 (
Φ(u,Xt,x

u , St,S
u , Qt,q

u )
)2)]

< ∞. (3.146)

Since the integrand is square-integrable, we have:

E
[
Φ(r,Xt,x

r , St,S
r , Qt,q

r )
]

= Φ(t, x, S, q)

+ E
[∫ r

t

∂Φ

∂u
(u,Xt,x

u , St,S
u , Qt,q

u ) + LvuΦ(u,Xt,x
u , St,S

u , Qt,q
u )du

]
.

We now apply the Dominated Convergence Theorem to take r to T .

E
[
Φ(T,Xt,x

T , St,S
T , Qt,q

T )
]

= Φ(t, x, S, q)

+ E

[∫ T

t

∂Φ

∂u
(u,Xt,x

u , St,S
u , Qt,q

u ) + LvuΦ(u,Xt,x
u , St,S

u , Qt,q
u )du

]
,

(3.147)

and since we assumed that Φ(T, x, S, q) ≥ G(x, s, q) for all (x, S, q) ∈ Rn, we
have

E
[
G(Xt,x

T , St,S
T , Qt,q

T )
]
≤ Φ(t, x, S, q)

+ E

[∫ T

t

∂Φ

∂u
(u,Xt,x

u , St,S
u , Qt,q

u ) + LvuΦ(u,Xt,x
u , St,S

u , Qt,q
u )du

]
. (3.148)

Since we chose an arbitrary admissible control v ∈ A, so that we can state that

Φ(t, x, S, q) ≥ Hv(t, x, S, q) on [0, T ] x Rn. (3.149)

To show that the candidate optimal control ν∗ satisfies the equality (3.128),
we apply Itô’s formula to Φ(u, Zν∗

u ) = Φ(u,Xν∗

u , Sν∗

u , Qν∗

q ) between the times
t ∈ [0, T ), and r ∈ [t, T ). Recall that the stochastic integral part of the expansion
is a martingale, with mean 0. We revert to Cartea et al’s notation for conditional
expectation, i.e. Et,Z [.] = E[. | Zt = z]

Et,x,S,q

[
Φ(r,Xν∗

r , Sν∗

r , Qν∗

r )
]

= Φ(t, x, S, q)

+ Et,x,S,q

[∫ r

t

∂Φ

∂u
(u,Xν∗

u , Sν∗

u , Qν∗

u ) + LνuΦ(u,Xν∗

u , Sν∗

u , Qν∗

u )du

]
.

(3.150)
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Our assumption that the candidate optimal control satisfies the HJB equa-
tion 3.125 and the fact that we have no running penalty or reward function
F (t, x, S, q, ν∗(t, x, S, q)) gives us

∂

∂t
Φ(t, x, S, q) −

(
Lν∗(t,x,S,q)Φ(t, x, S, q) + F (t, x, S, q, ν∗(t, x, S, q))

)
= 0

∂

∂t
Φ(t, x, S, q) − Lν∗(t,x,S,q)Φ(t, x, S, q) = 0. (3.151)

From this we take get in the expectation above:

Et,x,S,q

[
Φ(r,Xν∗

r , Sν∗

r , Qν∗

r )
]

= Φ(t, x, S, q). (3.152)

Now sending r to T in the above equation gives us

Et,x,S,q

[
Φ(T,Xν∗

T , Sν∗

T , Qν∗

T )
]

= Φ(t, x, S, q), (3.153)

that is
G(Xt,x

T , St,S
T , Qt,q

T ) = Φ(t, x, S, q), (3.154)

and substituting

G(x, s, q) = − exp (−γ (x + q (S − αq))) for (t, x, S, q) ∈ [0, T ] x R3 (3.155)

gives us the same terminal condition as for our desired value function H(t, x, S, q)

− exp
(
−γ
(
Xv∗

T + Qv∗

T

(
Sv∗

T − αQv∗

T

)))
= Φ(t, x, S, q). (3.156)

Finally, this implies that our candidate value function equals our desired value
function and solves the stochastic control problem.

H(t, x, S, q, v∗) = Φ(t, x, S, q). (3.157)

3.8.1 Graphs of the Optimal Strategies

Here we plot graphs of the optimal strategies for a risk-averse trader liquidating
a position using market orders, with the aim of maximising expected exponential
utility of terminal wealth. From the graphs in figure (3.1) we can see that as the
risk aversion parameter γ increases, the trader seeks to liquidate his position
earlier. The trader trades more quickly earlier on to get rid of inventory and
reduce market risk, but trades more slowly later on in order to reduce price
impact.

When γ is small, the trader finds it optimal to hold some positive inventory
QT (if we assume shares are infinitely divisible) at the terminal time T . This
implies that the trader is prepared to incur the cost −αQ2

T of executing the final
market order at the end of the trading period, rather than to incur a potentially
greater price impact by trading too quickly towards the end of the period.
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Optimal Inventories given varying risk aversion parameter γ

(a) γ = 0.1 (b) γ = 0.5

(c) γ = 1 (d) γ = 2

(e) γ − 5

Figure 3.1: The optimal inventory Q∗
t which the trader holds at each time t,

given he is trading to maximise expected exponential utility of terminal wealth,
with the stated risk aversion parameter γ. The terminal penalty parameter
α = 0.01 and running penalty parameter ϕ = 0.01. The time horizon is T = 1
minute. The trader wishes to liquidate an initial position of Q0 = 10 shares. The
temporary impact parameter κ = 0.001 and the permanent impact parameter
η = 0.001. We plot three graphs on each figure: in blue, the inventory under
TWAP, in green, the optimal inventory as required for the trader’s risk aversion
given the parameters, and in red, the limiting trajectory as α → ∞.
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Interestingly, the “optimal” strategy sometimes trades more slowly than
under TWAP as γ → 0. In this situation the trader is relatively indifferent
to the market risk of holding inventory and so is prepared to retain a positive
inventory until the end of the trading horizon.

It is interesting to see that the limiting strategy as the terminal penalty α →
∞ is identical in shape to that under the Almgren-Chriss strategy. This limiting
strategy always forces the trader to finish trading before the end of the trading
period, because the penalty for having positive inventory is unbounded. This
unbounded terminal penalty would be a good condition to impose in algorithms
in practice in order to incentivize execution traders to complete transactions
within the specified time horizon.
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3.9 Power Utility

We consider the case where our trader’s utility function for risk aversion is
power utility, specifically what Merton [Mer69] calls the iso-elastic marginal
utility function. Given the parameter γ, the utility of a variable z is given by:

u(z) =

{
z1−γ−1
1−γ , γ ≥ 0, γ ̸= 1.

ln(z), γ = 1.
(3.158)

This utility function is a Constant Relative Risk Aversion function: that is:

−z

(
U ′′(z)

U ′(z)

)
= γ. (3.159)

This implies that the relative risk aversion does not scale with the size of the
variable z. If z represents our trader’s terminal wealth, then the use of this
utility function implies that the trader seeks to optimise without taking into
account the size of his or her wealth.

3.10 Power Utility: The Stochastic Control prob-
lem

Our trader seeks to optimise the expected iso-elastic utility function of his or
her terminal wealth. He or she seeks to solve the stochastic control problem
with performance criteria and value function:

Hv(t, x, S, q) = Et,x,S,q [U (Xv
T + Qv

T (Sv
T − αQv

T ))] ; (3.160)

H(t, x, S, q) = sup
v∈A

Hv(t, x, S, q). (3.161)

From the above stochastic model (3.7), and the utility function (3.158) above,
we have the performance criteria:

Hv(t, x, S, q) =

E(t,x,S,q)

[
(XT+STQT−αQ2

T )
1−γ−1

1−γ

]
, γ ≥ 0, γ ̸= 1.

E(t,x,S,q)

[
ln
(
XT + STQT − αQ2

T

)]
, γ = 1.

(3.162)
The value function is:

H(t, x, S, q) = sup
v∈A

Hv(t, x, S, q) (3.163)

Note that this iso-elastic marginal utility function prevents our trader from
making a loss on the final trade: he cannot possibly execute the last trade if his
terminal wealth does not satisfy the following condition after a potential market
order:

α <
XT + STQT

Q2
T

. (3.164)
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The Dynamic Programming Principle (2.1.1) implies that for all (t, x, S, q) ∈
[0, T ] × R3 , and all stopping times τ ≤ T ,

H(t, x, S, q) = sup
v∈A(t,x)

Et,x,S,q [H(τ,Xv
τ , S

v
τ , Q

v
τ )] . (3.165)

Then if v∗ ∈ A is the optimal control, which achieves the supremum over the
interval [0, T ], the value function satisfies

H(t, x, S, q) = Et,x,S,q

[
H(T,Xv∗

T , Sv∗

T , Qv∗

T )
]
. (3.166)

Using the Dynamic Programming Principle (2.1.1), we obtain the Hamilton-
Jacobi-Bellman Equation for the value function (writing ∂•Hfor ∂H

∂• ):

∂tH +
1

2
σ2∂SSH + sup

v∈A
(Sv∂xH − f(v)v∂xH − g(v)∂SH − v∂qH) = 0, (3.167)

We assume that the temporary and permanent impact functions are linear
functions of the speed of trading, i.e. f(vt) = κvt and g(vt) = ηvt, respectively.
We then get the HJB equation:

∂tH +
1

2
σ2∂SSH + sup

v∈A

(
Sv∂xH − κv2∂xH − ηv∂SH − v∂qH

)
= 0. (3.168)

The terminal condition of the HJB PDE is:

H(T, x, S, q) =

{
(x+Sq−αq2)

1−γ−1

1−γ , γ ≥ 0, γ ̸= 1.

ln
(
x + Sq − αq2

)
, γ = 1.

(3.169)

3.11 Verification

We want to find a candidate value function and a candidate optimal control
that solves the stochastic control problem (3.160).

We apply the verification theorem to our own stochastic control problem,
given the model (3.47) above. Let Φ(t, x, S, q) be our candidate value function.
Applying Itô’s Lemma to the candidate value function gives us:

dΦ =
∂Φ

∂t
dt +

∂Φ

∂x
dx +

∂Φ

∂S
dS +

∂Φ

∂q
dq +

1

2

∂2Φ

∂S2
σ2dt. (3.170)

We know from the model (3.7) the terms dx, dS, dq, and that the mixed 2nd-
order partial derivatives vanish apart from for (dS)2, which being driven by the
Brownian motion W has quadratic variation T and hence < dS, dS >= σ2dt.
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We have

dΦ =

(
∂Φ

∂t
+

1

2

∂2Φ

∂S2
σ2

)
dt

+
∂Φ

∂x

(
(St − f(vt)) vtdt

)
+

∂Φ

∂S

(
−g(vt)dt + σdWt

)
+

∂Φ

∂q
(−vtdt) . (3.171)

Collecting terms in dt and dWt, we obtain:

dΦ(t,Xt, St, Qt)

=

(
∂Φ

∂t
+
(
Stvt − f(vt)vt

)∂Φ

∂x
− g(vt)

∂Φ

∂S
− vt

∂Φ

∂q
+

1

2
σ2 ∂

2Φ

∂S2

)
dt

+ σ
∂Φ

∂S
dWt. (3.172)

From this we can write the candidate value function in full integral form. At
any time t ∈ [0, T ] and for an arbitrary control v in the admissible set A:

Φ(t,Xt, St, Qt) = Φ(0, X0, S0, Q0)

+

∫ t

0

(
∂Φ

∂u
+
(
Suvu − f(vu)vu

)∂Φ

∂x
− g(vu)

∂Φ

∂S
− vu

∂Φ

∂q
+

1

2
σ2 ∂

2Φ

∂S2

)
du

+

∫ t

0

σ
∂Φ

∂S
dWu. (3.173)

The infinitesimal generator of the performance criteria for this control problem:

Lv
t Φ(t,Xt, St, Qt) =

(
Sv − f(v)v

) ∂Φ

∂X
− g(v)

∂Φ

∂S
− v

∂Φ

∂q
+

1

2
σ2 ∂

2Φ

∂S2
. (3.174)

Substituting this into the expression for the performance criteria we obtain the
simpler representation

Φ(t,Xt, St, Qt) = Φ(0, X0, S0, Q0) +

∫ t

0

(
∂Φ

∂u
+ LuΦ

)
du +

∫ t

0

σ
∂Φ

∂S
dWu.

(3.175)
Since Φ ∈ C1,2([0, T ]×R3), we can use Itô’s lemma to write for all (t, x, S, q) ∈

[0, T ] × R3 and all controls which are admissible over [t, T ] given that Xv
t =

x, Sv
t = S, Qv

t = q, ie. all v ∈ A(t,x,S,q), any time r ∈ [t, T ), and any stopping
time τ ∈ [t, T ],

Et,x,S,q [Φ(r ∧ τ,Xr∧τ , Sr∧τ , Qr∧τ )] = Φ(t,Xt, St, Qt)

+ Et,x,S,q

[∫ r∧τ

t

(
∂Φ

∂u
+ LuΦ

)
du

]
+ Et,x,S,q

[∫ r∧τ

t

σ
∂Φ

∂S
dWu

]
. (3.176)
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We choose the stopping time τ := τn ∈ [t, T ] to be such that

τn := inf

{
r ≥ t such that

∫ r

t

∣∣∣∣σ∂Φ

∂S

∣∣∣∣2du ≥ n

}
. (3.177)

Then we can define {τn}n∈N as a localizing sequence of stopping times such that
the stopped stochastic integral is a martingale. Then

Et,x,S,q [Φ(r ∧ τ,Xr∧τ , Sr∧τ , Qr∧τ )]

= Φ(t,Xt, St, Qt) + Et,x,S,q

[∫ r∧τ

t

(
∂Φ

∂u
+ LuΦ

)
du

]
. (3.178)

Now since we have assumed the function Φ satisfies the inequality (??) for
the particular control that achieves the supremum, we have the same for all
admissible controls v ∈ A(t,x,S,q):

∂Φ

∂t
(u,Xv

u, S
v
u, Q

v
u) + LvuΦ (u,Xv

u, S
v
u, Q

v
u) ≤ −F (u,Xv

u, S
v
u, Q

v
u, vu) (3.179)

In our current problem, F (u,Xv
u, S

v
u, Q

v
u, vu) = 0, since there is no running

penalty or reward function. The terminal function G (T,Xv
T , S

v
T , Q

v
T , vT ) =

U (Xv
T , S

v
T , Q

v
T ). Thus for any time r ∈ [t, T ],

Et,x,S,q [Φ(r,Xr, Sr, Qr)] ≤ Φ(t,Xt, St, Qt). (3.180)

Using the Dominated Convergence Theorem as r → T ,

Et,x,S,q [Φ(T,XT , ST , QT )] ≤ Φ(t,Xt, St, Qt). (3.181)

And since we assumed the terminal condition Φ(T, x, S, q) ≥ G(x, S, q) for all
(x, S, q) ∈ R3,

Et,x,S,q [G (T,Xv
T , S

v
T , Q

v
T , vT )] ≤ Φ(t,Xt, St, Qt). (3.182)

Now since our choice of admissible control was arbitrary, we can say for all
admissible controls α ∈ A(t,x,S,q) and all (t, x, S, q) ∈ [0, T ] × R3,

Φ(t, x, S, q) ≥ Et,x,S,q [U (Xv
T , S

v
T , Q

v
T )]

=⇒ Φ(t, x, S, q) ≥ Hv(t, x, S, q). (3.183)

Similar arguments give us the following equality for the optimal control v∗:
for all (t, x, S, q) ∈ [0, T ] × R3,

Φ(t, x, S, q) ≥ Et,x,S,q

[
U
(
Xv∗

T , Sv∗

T , Qv∗

T

)]
=⇒ Φ(t, x, S, q) = H(t, x, S, q). (3.184)
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3.12 Solving the Stochastic Control Problem

3.12.1 Feedback form for the Optimal Control

We aim to solve the above HJB equation (3.168). First, we find the optimal
control v∗ in feedback form. Substituting that feedback form back into the HJB
equation will yield us a (possibly non-linear) partial differential equation for the
value function H(t, x, S, q). When that PDE in H is solved, it will give us the
optimized value function H(t, x, S, q) = Hv∗

(t, x, S, q) at each time t ∈ [0, T ].
From this, we will attempt to find an explicit expression for the optimal control
v∗.

To solve the HJB equation (3.168), first, we assume that v∗ is the trading
speed which achieves the supremum in the equation. Then

∂tH +
1

2
σ2∂SSH +

(
Sv∗∂xH − κv∗2∂xH − ηv∗∂SH − v∗∂qH

)
= 0. (3.185)

The equation is a quadratic in v∗.

0 = ∂tH +
1

2
σ2∂SSH + (S∂xH − η∂SH − ∂qH) v∗ − (κ∂xH) v∗2. (3.186)

Completing the square gives us:

0 = − κ∂xH

(
v∗ − (S∂xH − η∂SH − ∂qH)

∂xH

)2

+ ∂tH +
1

2
∂SSH − (S∂xH − η∂SH − ∂qH)2

−4κ∂xH
. (3.187)

Thus the value of v∗ which satisfies the HJB equation is:

v∗ =
1

2κ

(S∂xH − η∂SH − ∂qH)

∂xH
. (3.188)

Substituting the optimal control in feedback form into the HJB equation
gives us the non-linear PDE:

∂tH +
1

2
σ2∂SSH +

1

4κ

(S∂xH − η∂SH − ∂qH)2

∂xH
= 0. (3.189)

The terminal condition of this PDE is:

H(T, x, S, q) =

{
(x+Sq−αq2)

1−γ−1

1−γ , γ ≥ 0, γ ̸= 1.

ln
(
x + Sq − αq2

)
, γ = 1.

(3.190)

We now need to find the candidate value function H(t,Xt, St, Qt) which
solves this PDE.

Using the ansatz (3.54) and the constant relative risk aversion under power
utility (3.159), we obtain from (3.62) the equation

0 = ∂th(t, q) +
1

2
σ2q2

(
γ

x + Sq + h(t, q)

)
+

1

4κ

(
ηq + ∂qh(t, q)

)2

. (3.191)
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This is no longer a Riccati equation as in the exponential case, but is a more
complicated non-linear PDE, due to the presence of h(t, q) in the denominator
of the diffusion term.

3.12.2 Is a solution possible?

It might be the case that this equation is not solvable using the ansatz (3.54), and
so a different ansatz or indeed an entirely different way of solving the problem
might be required. In Section 9.5 of Cartea et al [CJP15], the authors try
to solve a problem involving the maximisation of expected terminal exponential
utility of terminal wealth while targeting a percentage of volume (PoV) strategy.
In this case the authors find that one cannot add a linear penalty function to the
problem because “the exponential utility and the linear penalty are in a sense
incompatible, and ... the cash process does not factor out of the problem”.

This is a similar problem to the one we have encountered while incorporating
a quadratic terminal penalty function while trying to maximise expected power
utility of terminal wealth. We have a PDE where the cash process and the asset
midprice process remain in the problem. This casts doubt on the validity of the
ansatz: there might not be a way to separate the value function H(t, x, S, q)
into the sum x + Sq + h(t, q) because the function h(t, q) might not exist.

It might be necessary to get rid of the penalty, or to try the technique
that Cartea, Jaimungal and Penalva use for the aforementioned problem. They
express the value function Ht as the continuous limit of a recursion, with HT

being the value function at time T. We do not attempt this here.
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Chapter 4

Optimal Execution with
Limit Orders

4.1 Introduction

In this chapter, we look at optimal execution of trades for a trader who uses
limit orders rather than market orders. The trader posts orders to buy in an
acquisition programme, or to sell in a liquidation programme, a specific quantity
of an asset at a specified limit price. In doing this, the trader guarantees that
his trade is executed at or better than the limit price, at the risk of the trade
not being filled if the asset’s market price does not reach the limit price.

4.2 The Stochastic Model

We use the model from Section 8.2 of Cartea et al [CJP15]. Our trader wants
to liquidate a position of Q0 shares over the finite time horizon [0, T ].

4.2.1 Asset price

The share’s midprice S = {St}0≤t≤T obeys the following dynamics:

St = S0 + σWt, σ > 0, (4.1)

where W = {Wt}0≤t≤T is a standard Brownian motion.

4.2.2 Order Depth

The trader aims to control the price level at which he places limit orders such
that he maximises the expected value of his total revenue. As shown in Cartea
et al [CJP15], Avellaneda and Stoikov [AS08], we can represent this price level
via the “depth” in the limit order book, measured from the best bid or best
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ask price. Since we model the asset price using its midprice, we measure this
depth from the midprice via the stochastic process δ = {δ}0≤t≤T . At time t,
our trader posts limit orders to sell at the price level St + δt.

4.2.3 Market Orders and Fill Probability

Cartea et al [CJP15] model incoming market orders from other traders as a
Poisson process M = {Mt}0≤t≤T with rate λ. Thus per unit time, we expect to
see λ market orders sent to the exchange. Not every incoming market order will
be filled by our trader’s posted limit order. We assume that each buy market
order of a price at or above our trader’s sell limit order price level of St + δt
matches with our trader’s limit order and thus leads to a sale. We model the
fill probability to follow an exponential distribution with rate κ:

P (δ) = exp(−κδ). (4.2)

Those incoming market orders which match with our trader’s posted limit orders
are modelled by a counting process Nδ = {Nδ

t }0≤t≤T .
Multiplying the fill probability P (δ) with the intensity λ for the incoming

market orders M gives us a controlled stochastic process for the rate of filled
market orders λδ = {λδ

t}0≤t≤T , which satisfies:

λδ
t = λ exp (−κδt) . (4.3)

4.2.4 Cash process

We model the trader’s cash process by the stochastic process Xδ = {Xδ
t }0≤t≤T ,

which satisfies the SDE
dXδ

t = (St + δt) dN
δ
t . (4.4)

4.2.5 Inventory

We model the trader’s position in the stock by the stochastic process Qδ =
{Qδ

t}0≤t≤T , which satisfies Qδ
t = Q0 −Nδ

t .

4.2.6 The full model

We formulate the problem as a 3-dimensional system with three state variables:
the total wealth Xδ

t , the asset midprice Sδ
t , and the inventory Qδ

t .

dZδ
t =

dXδ
t

dSδ
t

dQδ
t

 =

0
0
0

 dt +

0
σ
0

 dWt +

St + δt
0
−1

 dNδ
t . (4.5)

In this way we have a (3× 1) vector of drifts µ(t, x, S, q, δ), a (3× 1) matrix
of volatilites σ(t, x, S, q, δ) which are both Lipschitz-continuous and integrable,
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and a (3 × 1) matrix of counting processes γ(t, x, S, q, δ) which satisfy:

µ(t, x, S, q, δ) =

0
0
0

 (4.6)

and

σ(t, x, S, q, δ) =

0
σ
0

 (4.7)

and

γ(t, x, S, q, δ) =

St + δt
0
−1

 . (4.8)

4.3 The Optimal Control Problem

The trader wishes to maximise his profit from selling all Q0 shares during the
interval [0, T ]. We define the stopping time τ as the minimum of the final time
T and the first time that the inventory hits zero:

τ = T ∧ min
{
t : Qδ

t = 0
}
. (4.9)

If the trader does not liquidate his entire position by time T , then he incurs a
penalty of αQδ

T per each unit of inventory to liquidate the remaining inventory
via a market order (essentially he receives the price

(
ST − αQδ

T

)
for each unit

in his inventory Qδ
T ). We also add a running penalty function which represents

our trader’s urgency to get rid of inventory to close his entire position. The
function penalises positive (or negative) inventory held up until each stopping

time τ : we subtract from the total revenue −ϕ
∫ τ

t

(
Qδ

t

)2
du, for ϕ ≥ 0.

The trader’s optimisation problem is to find the optimal depth δt above the
best ask at which to post his sell limit orders at each time t so that his revenue
is maximised when he stops trading at time τ :

H(t, x, S, q) = sup
δ∈A

Et,x,S,q

[
Xδ

τ + Qδ
τ

(
Sτ − αQδ

τ

)
− ϕ

∫ τ

t

(
Qδ

t

)2
du

]
. (4.10)

From Cartea et al [CJP15], given a jump diffusion model

dXα
t = µ (t,Xα

t , αt) dt+σ (t,Xα
t , αt) dWt +γ (t,Xα

t , αt) dN
α
t , Xα

0 = x, (4.11)

where the stochastic process W = (Wα
t )0≤t≤T is a d-dimensional vector of inde-

pendent Brownian motions on the filtered probability space (Ω,F , (Ft)(0≤t≤T ),P).
The p-dimensional vector α = (αt)0≤t≤T represents the control processes, which
are progressively measurable with respect to (F)0≤t≤T , and are valued in a sub-
set A ⊂ Rp. The process µ (t,Xα

t , αt) is an (d× 1)-dimensional vector of drifts,
σ (t,Xα

t , αt) is a (p× p)-dimensional matrix of volatilities, and γ (t,Xα
t , αt) is a
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(p× d)-dimensional matrix of jumps in the counting process Nα
t . Another pro-

cess λ(t,Xα
t , α) represents the controlled intensities of the counting processes.

We have the following HJB equation

∂tV (t, x) + sup
α∈A

(Lα
t V (t, x) + f(t, x, α)) = 0, (4.12)

V (T, x) = g(x). (4.13)

where the infinitesimal generator acts as follows:

Lα
t V (t, x) = µ(t, x, α)

′
DV (t, x) +

1

2
Tr
(
σ(t, x, α)σ(t, x, α)

′
D2V (t, x)

)
+

p∑
j=1

λ•,j (t, x, α) [V (t, x + γ•,j (t, x, α)) − V (t, x)] , (4.14)

where for any vector or matrix A, A
′

denotes its transpose, Dϕ(x) denotes the
n-dimensional column vector of first partial derivatives of ϕ(x), and D2ϕ(x)
denotes the (m × n)-dimensional matrix of second partial derivatives of ϕ(x),
and A•,j denotes the vector corresponding to the jth column of the matrix A.

Given our model 4.5, this gives us the HJB equation

0 = ∂tH(t, x, S, q) +
1

2
σ2∂SSH(t, x, S, q) − ϕq2

+ sup
δ∈A

{λ exp (−κδ) [H(t, x + S + δ, S, q − 1) −H(t, x, S, q)]} , (4.15)

with boundary and terminal conditions

H(t, x, S, 0) = 0, (4.16)

H(T, x, S, q) = x + Sq − αq2. (4.17)

4.4 Solving the HJB equation

4.4.1 An Ansatz for the Value Function

Cartea, Jaimungal, and Penalva introduce the ansatz

H(t, x, S, q) = x + Sq + h(t, q). (4.18)

The value function at each time t is then a function of the cash x, proceeds Sq
from selling a quantity q of the shares at price S, plus some function h(t, q) of
time and inventory which represents the value added due to optimal execution
of the shares at time t.

Substituting this ansatz into the HJB equation (4.15) gives us:

0 = ∂th(t, q) + 0 − ϕq2

+ sup
δ∈A

{
λe−κδ ((x + S + δ + S(q − 1) + h(t, q − 1)) − (x + Sq + h(t, q)))

}
(4.19)
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which becomes the simpler PDE in terms of time t and inventory q only:

∂th(t, q) − ϕq2 + sup
δ∈A

{
λe−κδ (δ + h(t, q − 1) − h(t, q))

}
= 0, (4.20)

h(t, 0) = 0, (4.21)

h(T, q) = −αq2. (4.22)

4.4.2 The optimal depth δ∗ in feedback form

Now we can find the optimal control in feedback form by assuming that δ∗ is the
value of δ which maximises the expression within the supremum, differentiating
with respect to δ∗, equating the resulting expression to zero, and then solving
for δ∗. As long as the second derivative of the function h with respect to δ∗ is
negative, we have a maximum.

0 = ∂th(t, q) − ϕq2 + λe−κδ∗ (δ∗ + h(t, q − 1) − h(t, q)) . (4.23)

Differentiating with respect to δ∗ gives us

−κλe−κδ∗ (δ∗ + h(t, q − 1) − h(t, q)) + λe−κδ∗ = 0. (4.24)

Solving for δ∗ yields the optimal control in feedback form:

δ∗(t, q) =
1

κ
− (h(t, q − 1) − h(t, q)) . (4.25)

4.4.3 Simplifying the PDE

We substitute the feedback form (4.25)into the simplified PDE (4.20) to get:

∂th(t, q) − ϕq2 +
λ

κe
exp(−κ (h(t, q) − h(t, q − 1)) = 0. (4.26)

h(t, 0) = 0, (4.27)

h(T, q) = −αq2. (4.28)

We now follow Cartea et al [CJP15] and introduce the substitution

h(t, q) =
1

κ
logω(t, q). (4.29)

Then
ω(t, q) = exp (κh(t, q)) . (4.30)

and

∂th(t, q) =
1

κ

∂tω(t, q)

ω(t, q)
. (4.31)

Our PDE then becomes

∂tω(t, q) +
λ

e
ω(t, q − 1) − ϕq2κω(t, q) = 0. (4.32)

ω(t, 0) = 1, (4.33)

ω(T, q) = exp(−καq2). (4.34)

We now aim to solve this equation.
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4.4.4 A recursive equation for ω(t, q)

We can find a recursive equation for ω(t, q) in terms of ω(t, q − 1) by treating
ω(t, q − 1) as a separate variable and integrating. First, we use Cartea et al’s
[CJP15] notation of λ̃ = λ

e . Our equation becomes

∂tω(t, q) = κϕq2ω(t, q) − λ̃ω(t, q − 1).

We treat ω(t, q − 1) as constant. Separating the variables and integrating over
the trading period [t, T ]:∫ T

t

∂uω(u, q)

κϕq2ω(u, q) − λ̃ω(t, q − 1)
=

∫ T

t

du

gives us

1

κϕq2
log

(
κϕq2ω(T, q) − λ̃ω(t, q − 1)

κϕq2ω(t, q) − λ̃ω(t, q − 1)

)
= T − t.

Taking exponents gives us:

κϕq2ω(T, q) − λ̃ω(t, q − 1)

κϕq2ω(t, q) − λ̃ω(t, q − 1)
= exp

(
κϕq2(T − t)

)
.

Finally we have a recursive equation for ω(t, q) in terms of ω(t, q − 1),

ω(t, q) =
κϕq2ω(T, q) − λ̃ω(t, q − 1)

(
1 − exp

(
κϕq2(T − t)

))
κϕq2 exp (κϕq2(T − t))

.

Simplifying gives us:

ω(t, q) = exp
(
−κϕq2(T − t)

)
ω(T, q)

+
λ̃

κϕq2
(
1 − exp

(
−κϕq2(T − t)

))
ω(t, q − 1). (4.35)

Substituting the terminal conditions into this formula, we obtain

ω(t, q) = exp
(
−κq2 (α + ϕ(T − t))

)
+

λ̃

κϕq2
(
1 − exp

(
−κϕq2(T − t)

))
ω(t, q − 1). (4.36)

Given that we have the boundary condition ω(t, 0) = 0 when q = 0, at each
time t ∈ [0, T ], given a position of size Qt, we recursively calculate ω(t, q) for
q ∈ {0, 1, ..., Qt}.
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4.5 Simulations and Graphs

In B.2, we present Python code which calculates and graphs the optimal depths
using the recursive formula (4.36). We present examples and explain the conse-
quences of them for the trader.

4.5.1 Optimal Depths given varying penalty parameters

We use the same parameters as Cartea et al do in Section 8.2 of their book
[CJP15], which looks at the same execution problem without a running penalty

ϕ
∫ T

t
(Qu)2du penalising inventories throughout the trading period.

The trader is looking to liquidate a position of Q0 = 5 shares within a minute.
The arrival rate of incoming market orders is λ = 50 per minute. Therefore,
the trader is attempting to liquidate a position whose size is a tenth of the
volume expected within the time horizon. The fill probability is exponentially
distributed with parameter κ = 100$−1.

From the graphs in Figure 4.1, we see that the optimal strategy instructs the
trader to post limit orders at depths which increase as the trader’s position size
decreases. The effect of the terminal penalty parameter α on the trajectory of
the optimal depths δ∗(t, q) is subtle. As α increases, the graphs of the optimal
depths flatten when further out from the end of the time horizon, but the overall
depths themselves are marginally greater closer to the end of the time horizon T .
The trader is trying to ensure that any sales made via sell limit orders towards
the end of the time horizon are executed at a price St + δt that is sufficiently
better than the midprice that those sales will cover the penalty −αQ2

T incurred
from being forced to liquidate any inventory QT held using a market order.

The effect of the running penalty parameter ϕ on the trader’s optimal limit
order execution strategy is more significant. The running penalty penalises all
inventories greater than 0 throughout the trading period. Thus the trader is
much more urgent to liquidate his position as quickly as possible. The trader
posts limit orders which are much closer to the midprice in order to maximise the
probability of being filled on his order. The optimal depths are asymptotically
constant further away from the end of the time horizon, where the effect of
the running penalty dominates that of the terminal penalty. As the end of the
trading period looms, the trader narrows his spread in order to increase the
probability of liquidating before the end of the period. For larger inventories,
the trader’s spread is actually humped lower than the limiting value and rises
back up to maximise the probability that any sale covers the costs from the
terminal market order.
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Optimal Depths given varying penalty parameters

(a) α = 10−3, ϕ = 10−4 (b) α = 10−3, ϕ = 10−5

(c) α = 10−4, ϕ = 10−4 (d) α = 10−4, ϕ = 10−5

(e) α = 10−5, ϕ = 10−4 (f) α = 10−5, ϕ = 10−5

Figure 4.1: The optimal depths δ∗(t, q) at which the trader posts limit orders
given an inventory q at time t, for the stated terminal penalty parameter α and
running penalty parameter ϕ. The time horizon is T = 1 minute. The trader
wishes to liquidate an initial position of Q0 = 5 units of the asset. The fill
probability parameter is κ = 100$−1. Incoming market orders arrive at rate
λ = 50 per minute.
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Conclusions and Model
Improvements

We have used stochastic control to solve trade execution problems involving
optimal trading speed v∗t (and holdings Q∗

t through time) of trades using market
orders, provided a general partial differential equation (3.62) and also found the
optimal limit order posting depths δ∗(t, q) for a trader using limit orders to
liquidate an inventory of an asset.

Risk aversion was incorporated into these problems using exponential and
power utility for the market order (MO) problems and a running penalty func-
tion penalising non-zero inventories in the limit order (LO) problem. We have
graphed the optimal solutions for the MO problem in Figure (3.1) and the LO
problem in Figure (4.1).

In the MO problem, we have seen that an increase in risk aversion via the
risk aversion coefficient greatly impacts the resulting optimal behaviour of the
trader. Lower risk aversion leads to more risky behaviour, and the trader willing
to take on market risk by holding a positive inventory closer to the end of the
trading period, even to the point of incurring extra costs due to a forced market
order at the end of the period.

In the LO problem, the running penalty function has a similarly impact on
the optimal behaviour of the trader. Greater risk aversion leads to the trader
posting much closer to the midprice for larger inventories, in order to liquidate
the position as quickly as possible.

At this point we will discuss existing and potential improvements to the
models. In the LO model, we did not account for the fact that the optimal
depth might become negative. In fact, for higher levels of ϕ in the running
penalty function, δ∗(t, q) becomes negative. A trader cannot post limit orders
at negative depths in the limit order book. Cartea, Jaimungal, and Penalva
([CJP15]) make the same point in their own model in Section 8.2 (which does
not involve a running penalty but also similarly does not account for negative
values of δ∗). One could take negative depths to imply that the trader’s urgency
to liquidate at least one unit of asset is immediate; they want to get rid of at
least one unit of the asset immediately. In Section 8.4 odf their book ([CJP15])
Cartea et al extend the model to incorporate market orders, so the trader can
at particular stopping times τ , execute a market order to sell one or more units
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of the asset as well as posting limit orders at each time t, and solve the HJB
equation accordingly. Gilbuad and Pham ([GP13]) also incorporate both limit
orders and market orders in their approach to the execution problem. Note that
Cartea et al’s MO and LO problem does not include market impact for each
market order. One could include that and make the problem more complete.
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Appendix A

Probability

We list here some important mathematical concepts from probability theory
which are used in the main text. A reference for this material is Jacod and
Protter’s “Probability Essentials” [JP04].

A.1 Basic concepts in probability theory

A random experiment is one whose outcomes cannot be predicted with certainty
in advance.

• The state space Ω is the set of all possible outcomes ω of the experiment.

• An event A is a set of outcomes of the experiment, a subset of the state
space: A ⊂ Ω. It describes a property which can be observed either to be
true or not true after the experiment has been done.

An event is a set of outcomes of the experiment, a subset of the state space.
It describes a

A.2 Probability Spaces

Definition A.2.1 (Probability Space). A probability space is the triple (Ω,A,P).

A.3 Stochastic Processes

Definition A.3.1 (Wiener Process / Brownian motion). A stochastic process
W = {Wt}0≤t≤T , defined on the filtered probability space (Ω,F , (Ft)(0≤t≤T ),P),
is a Wiener Process (or a standard Brownian motion) if it has the following
properties:

• W0 = 0 P- almost surely;
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• W has independent increments: for all times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤
tn−1 ≤ tn = T , the increments Wtk+1

− Wtk are independent random
variables for k = 0, . . . , n− 1;

• W has stationary increments: for all 0 ≤ t < t + h ≤ T , the increment
Wt+h−Wt has a probability distribution that is independent of the time t;

• the random variable Wt is Normally distributed with mean 0 and variance
t, i.e. Wt ∼ N (0, t);

• the function t → Wt is continuous almost surely.
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Appendix B

Python Code

B.1 Optimal Execution using Market Orders:
Exponential Utility

Listing B.1: Optimal Execution using Market Orders: Exponential Utility

import numpy as np
import pandas as pd
import math
import random

import gz ip
import csv
import j s on

import matp lo t l i b as mpl
mpl . v e r s i o n

import matp lo t l i b . pyplot as p l t

p l t . s t y l e . use ( ’ seaborn ’ )

mpl . rcParams [ ’ f ont . f ami ly ’ ] = ’ s e r i f ’

””” v a r i a b l e s :
S t o c ha s t i c Process :

Brownian motion : W t
Brownian motion Parameters :

v o l a t i l i t y : sigma
d r i f t : mu
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Brownian motion i n i t i a l va lue : W 0

Sta t e Var iab l e s :
a s s e t midprice S t
inven tory Q t
cash X t

Contro l Process :
speed v t

Execut ion Parameters :
r i s k aver s ion : gamma
temporary impact : kappa
permanent impact : e ta
termina l pena l t y : a lpha
running pena l t y : ph i

S imulat ion Parameters :
t e rmina l time : T
Brownian motion i n i t i a l va lue : W 0
i n i t i a l inven tory Q 0
i n i t i a l s t o c k p r i c e S 0
i n i t i a l cash proces s X 0
number o f time s t e p s : nSteps
number o f s imu la t i on s : nSims

”””

# i n i t i a l i s e python random seed to the f i r s t one
# de f in i t i a l i s eRandomSeeds :
random . seed (0 )
# i n i t i a l i s e numpy random seed to the f i r s t one .
# note the python random seed and np random seed are comp l e t e l y independent .
np . random . seed (0 )

# de f simulateBrownianMotion :

# Execution Parameters :
T = 1 # termina l time
r i s kAve r s i on = 1 # r i s k aver s ion parameter gamma
# Note t ha t in our formu la t ion o f exp u t i l i t y as
# U( x ) = −exp(−gamma x ) , gamma can be any r e a l number .
te rmina lPena l ty = 0.01 # termina l pena l t y parameter a lpha
runningPenalty = 0.01 # running pena l t y parameter phi

temporaryImpact = 0.001 # temporary impact parameter kappa
permanentImpact = 0.001 # permanent impact parameter e ta
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# Brownian motion parameters
v o l a t i l i t y = 0 .1
d r i f t = 0
W 0 = 0 # Brownian motion s t a r t s a t 0 .

# cons tan t s from parameters : z e t a and x i
x i = math . s q r t ( ( r i s kAve r s i on ∗math .pow( v o l a t i l i t y , 2 ) ) / (2∗ temporaryImpact ) )
zetaNumerator = ( −te rmina lPena l ty

+ (1/2)∗ permanentImpact
− (math . s q r t ( temporaryImpact

∗ r i s kAve r s i on ∗math .pow( v o l a t i l i t y , 2 ) ) ) )
zetaDenominator = ( −te rmina lPena l ty

+ (1/2)∗ permanentImpact
+ (math . s q r t ( temporaryImpact

∗ r i s kAve r s i on ∗math .pow( v o l a t i l i t y , 2 ) ) ) )

ze ta = zetaNumerator / zetaDenominator

# Simulat ion parameters
# s e t number o f s imu la t i on s
nSims = 1000
# se t number o f time s t e p s
nSteps = 100
# genera te s tandard normal random va r i a t e s f o r each s t ep o f each s imu la t i on .
e p s i l o n = np . random . normal (0 , 1 , ( nSteps , nSims ) )

dt = T / nSteps # time s t ep s i z e

# Sta t e Var iab l e S t a r t i n g Points
i nvento ry 0 = 10 # i n i t i a l inven tory
midpr ice 0 = 30 # i n i t i a l a s s e t midprice
cash 0 = 0 # i n i t i a l cash

# i n i t i a l i s e S ta t e v a r i a b l e s

W = np . z e ro s ( ( nSteps , nSims ) ) # brownian motion W
inventory = np . z e r o s ( ( nSteps , nSims ) ) # inven tory proces s Q
midpr ice = np . z e r o s ( ( nSteps , nSims ) ) # as s e t midprice proces s S
cash = np . z e r o s ( ( nSteps , nSims ) ) # cash process X

# s imu la t e Brownian motion
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for j in range (0 , nSims ) :
W[ 0 ] [ j ] = W 0
for t in range (1 , nSteps ) :

W[ t ] [ j ] = W[ t −1] [ j ] + e p s i l o n [ t ] [ j ]∗ math . s q r t ( dt )

# TWAP

# i n i t i a l i s e c on t r o l under TWAP
speedTWAP = np . z e r o s ( nSteps )
# i n i t i a l i s e s t a t e v a r i a b l e s under TWAP
inventoryTWAP = np . z e ro s ( nSteps )
midpriceTWAP = np . z e r o s ( ( nSteps , nSims ) )
cashTWAP = np . z e r o s ( ( nSteps , nSims ) )

# simu la t e t r ad ing speed under TWAP
for t in range (0 , nSteps ) :

speedTWAP [ t ] = invento ry 0 / T

# simu la t e inven tory under TWAP
for t in range (0 , nSteps ) :

inventoryTWAP [ t ] = ( (1−( t ∗dt )/T)∗ i nvento ry 0 )

# simu la t e midprice under TWAP

for j in range (0 , nSims ) :
midpriceTWAP [ 0 ] [ j ] = midpr i ce 0
for t in range (1 , nSteps ) :

midpriceTWAP [ t ] [ j ] = ( midpriceTWAP [ t −1] [ j ]
− permanentImpact∗speedTWAP [ t −1]∗ dt
+ v o l a t i l i t y ∗(W[ t ] [ j ] − W[ t −1] [ j ] ) )

# simu la t e cash proces s under TWAP
for j in range (0 , nSims ) :

cashTWAP [ 0 ] [ j ] = cash 0
for t in range (1 , nSteps ) :

cashTWAP[ t ] [ j ] = ( cashTWAP[ t −1] [ j ] +
(midpriceTWAP [ t −1] [ j ]∗ speedTWAP [ t −1]
− temporaryImpact∗math .pow(speedTWAP [ t −1] , 2 ) )∗ dt )

# i n i t i a l i s e Optimal S ta t e Var iab l e s
inventoryOpt = np . z e r o s ( nSteps ) # opt imal inven tory proces s Q∗

speedOpt = np . z e r o s ( nSteps ) # Optimal Trading Speed v∗

midpriceOpt = np . z e ro s ( ( nSteps , nSims ) )
# as s e t midprice proces s S∗ g iven opt imal t r ad ing t r a j e c t o r y
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cashOpt = np . z e r o s ( ( nSteps , nSims ) )
# cash process X∗ g iven opt imal t r ad ing t r a j e c t o r y

# s imu la t e opt imal inven tory
inventoryOpt [ 0 ] = invento ry 0

for t in range (1 , nSteps ) :
inventoryOpt [ t ] = ( inventory 0

∗( ( ze ta ∗math . exp ( x i ∗(T−t ∗dt ) )
− math . exp(−x i ∗(T−t ∗dt ) ) )

/ ( ze ta ∗math . exp ( x i ∗T) − math . exp(−x i ∗T) ) ) )

# simu la t e opt imal Trading Speed
for t in range (0 , nSteps ) :

speedOpt [ t ] = ( invento ry 0 ∗ x i
∗ ( ( ze ta ∗math . exp ( x i ∗(T−t ∗dt ) ) + math . exp(−x i ∗(T−t ∗dt ) ) )

/ ( ze ta ∗math . exp ( x i ∗T) − math . exp(−x i ∗T) ) ) )

# simu la t e opt imal Stock p r i c e
for j in range (0 , nSims ) :

midpriceOpt [ 0 ] [ j ] = midpr i ce 0
for t in range (1 , nSteps ) :

midpriceOpt [ t ] [ j ] = ( midpriceOpt [ t −1] [ j ]
− permanentImpact∗ speedOpt [ t −1]∗ dt
+ v o l a t i l i t y ∗(W[ t ] [ j ] − W[ t −1] [ j ] ) )

# simu la t e opt imal cash f l ow
for j in range (0 , nSims ) :

cashOpt [ 0 ] [ j ] = cash 0
for t in range (1 , nSteps ) :

cashOpt [ t ] [ j ] = ( cashOpt [ t −1] [ j ] +
( midpriceOpt [ t −1] [ j ]∗ speedOpt [ t −1]
− temporaryImpact∗math .pow( speedOpt [ t −1] , 2 ) )∗ dt )

# simu la t e opt imal inven tory wi th l im i t i n g pena l t y
inventoryOptLimit = np . z e r o s ( nSteps )
speedOptLimit = np . z e ro s ( nSteps )

midpriceOptLimit = np . z e ro s ( ( nSteps , nSims ) )
# as s e t midprice proces s S∗ g iven opt imal t r ad ing t r a j e c t o r y
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cashOptLimit = np . z e ro s ( ( nSteps , nSims ) )
# cash process X∗ g iven opt imal t r ad ing t r a j e c t o r y

inventoryOptLimit [ 0 ] = invento ry 0

for t in range (1 , nSteps ) :
inventoryOptLimit [ t ] = ( inventory 0

∗( (math . s inh ( x i ∗(T−t ∗dt ) ) )
/ (math . s inh ( x i ∗(T) ) ) ) )

for t in range (0 , nSteps ) :
speedOptLimit [ t ] = ( x i ∗ i nvento ry 0

∗( (math . cosh ( x i ∗(T−t ∗dt ) ) ) / (math . s inh ( x i ∗(T) ) ) ) )

#simu la t ing l im i t i n g opt imal s t o c k p r i c e s and cash f l ows
midpriceOptLimit [ 0 ] = midpr i ce 0
for j in range (0 , nSims ) :

midpriceOptLimit [ 0 ] [ j ] = midpr i ce 0
for t in range (1 , nSteps ) :

midpriceOptLimit [ t ] [ j ] = ( midpriceOptLimit [ t −1] [ j ]
− permanentImpact∗ speedOptLimit [ t −1]∗ dt
+ v o l a t i l i t y ∗(W[ t ] [ j ] − W[ t −1] [ j ] ) )

cashOptLimit [ 0 ] = cash 0
for j in range (0 , nSims ) :

cashOptLimit [ 0 ] [ j ] = cash 0
for t in range (1 , nSteps ) :

cashOptLimit [ t ] [ j ] = ( cashOptLimit [ t −1] [ j ]
+ ( midpriceOptLimit [ t −1] [ j ]∗ speedOptLimit [ t −1]

− ( temporaryImpact
∗math .pow( speedOptLimit [ t −1] , 2 ) )∗ dt ) )

p l t . f i g u r e ( f i g s i z e =(12 ,8))
p l t . p l o t ( inventoryTWAP , l a b e l=” inventory  under  TWAP” )
p l t . p l o t ( inventoryOpt , l a b e l=”Optimal  Inventory ” )
p l t . p l o t ( inventoryOptLimit , l a b e l=”Optimal  Inventory  as  alpha  −>  i n f t y ” )

p l t . l egend ( bbox to anchor =(1.3 , 0 . 5 ) )
p l t . x l a b e l ( ”Time” )
p l t . y l a b e l ( ” Inventory ” )
p l t . t i t l e ( ”Optimal  Inventory  g iven  a  t e rmina l  pena l ty  o f  ”

+ str ( te rmina lPena l ty ) )
p l t . show ( )
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B.2 Optimal Execution using Limit Orders

Listing B.2: Optimal Execution using Limit Orders

# −∗− coding : u t f −8 −∗−
”””
Created on Thu Jun 29 20 :29 :04 2023

@author : AdamNiiArmahHesse
”””

””” Cartea , Jaimungal , Penalva Ex8 .1

This i s a s o l u t i o n to the Optimal Execut ion
problem with Limit Orders ,
wi th a running pena l t y f unc t i on f o r the inven tory he l d by an
execu t i on t rader .

The t rade r i s choos ing the opt imal dep ths
at which to execu te h i s c h i l d orders .

We s o l v e by us ing a r e cu r s i v e formula f o r Omega( t , q )
and then f i n d i n g h ( t , q ) and the opt imal depth d e l t a ∗( t , q ) .

Thurs 29 June 2023 , 20:33
”””
import numpy as np
import pandas as pd
import math

import gz ip
import csv
import j s on

import matp lo t l i b as mpl
mpl . v e r s i o n

import matp lo t l i b . pyplot as p l t

p l t . s t y l e . use ( ’ seaborn ’ )

mpl . rcParams [ ’ f ont . f ami ly ’ ] = ’ s e r i f ’

”””
mpl . use (” pg f ”)
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mpl . rcParams . update ({
” pg f . t exsys tem ”: ” p d f l a t e x ” ,
’ f on t . f ami l y ’ : ’ s e r i f ’ ,
’ t e x t . u s e t e x ’ : True ,
’ pg f . r c f o n t s ’ : False ,

})
”””
inventoryToLiquidate = 5
# termina l time i s 1 minute = 60 seconds .
terminalTime = 60
numberOfSeconds = 60

midpr iceZero = 30
#
v o l a t i l i t y = 0 .01

termina lPena l ty = 0.001
runningPenalty = 0.00001

# 50 incoming MOs per minute on average .
intensityMO = (50 / 60)∗ ( terminalTime /numberOfSeconds )
f i l lProbParamete r = 100
# f i l l P r o b = math . exp(− f i l lProbParamete r ∗ depth [ t ] )
# incomingMO =
# fi l l edMO =

nSteps = terminalTime
nSimulat ions =10000
dt = terminalTime / nSteps

g r id = np . z e ro s ( ( inventoryToLiquidate + 1 , terminalTime + 1))
gr idDimensions = ( inventoryToLiquidate +1, terminalTime +1)

omegaGrid = np . z e r o s ( gr idDimensions )
hGrid = np . z e r o s ( gr idDimensions )
depthGrid = np . z e r o s ( gr idDimensions )

# One s imu la t i on f o r now .
e p s i l o n = np . z e ro s ( nSteps )
inventory = np . z e r o s ( nSteps )
brownianMotion = np . z e r o s ( nSteps )
midpr ice = np . z e r o s ( nSteps )
midpr ice [ 0 ] = 30
#the con t r o l proces s i s the depth at which the t rade r po s t s in the LOB
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depth = np . z e r o s ( nSteps )
incomingMO = np . z e r o s ( nSteps ) # Poisson process f o r incoming MOs,
# i n t e n s i t y g iven by intensityMO
f i l ledMO = np . z e r o s ( nSteps ) # Counting proces s f o r f i l l e d MO.
cash = np . z e r o s ( nSteps )
# cash [ t +1] = cash [ t ] + ( midprice [ t ] + depth [ t ] )∗ f i l l edMO [ t ]

np . random . seed (0 ) # se t random number genera tor to the f i r s t genera tor

e p s i l o n = np . random . normal ( l o c =0, s c a l e =1, s i z e=nSteps )

# Simula t ing midprice ( note t he r e are no feedback e f f e c t s
# from the con t r o l ( depth ) on the midprice here
# so we can pre−s imu la t e the en t i r e p r i c e path . )
for t in range ( nSteps −1):

brownianMotion [ t +1] = brownianMotion [ t ] + e p s i l o n [ t ]∗ math . s q r t ( dt )
midpr ice [ t +1] = midpr ice [ 0 ] + v o l a t i l i t y ∗( brownianMotion [ t +1])

# Generating the Poisson process f o r incoming market orders
for t in range ( nSteps −1):

uni formVariate = np . random . uniform ( low =0.0 , high =1.0 , s i z e=None )
inverseExpCDF = (−math . l og (1−uniformVariate , math . e ) ) / ( intensityMO )
incomingMO [ t ] = math . f l o o r ( inverseExpCDF )

# Se t t i n g boundary cond i t i on s
for t in range (0 , terminalTime +1):

omegaGrid [ 0 ] [ t ] = 1

for q in range (1 , inventoryToLiquidate +1):
omegaGrid [ q ] [ terminalTime ] = math . exp(− f i l lP robParamete r

∗ te rmina lPena l ty ∗pow(q , 2 ) )

for t in range (0 , terminalTime +1):

omegaGrid [ q ] [ t ] = (
math . exp(− f i l lP robParamete r

∗ runningPenalty
∗ pow(q , 2 )
∗ ( terminalTime − t ) )

∗ ( math . exp(− f i l lP robParamete r
∗ te rmina lPena l ty ∗ pow(q , 2 ) ) )

+ ( ( intensityMO /math . e )/ ( f i l lProbParamete r
∗ runningPenalty
∗ pow(q , 2 ) ) )
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∗(1
− math . exp(− f i l lP robParamete r

∗ runningPenalty
∗ pow(q , 2)
∗ ( terminalTime − t ) ) )

∗ omegaGrid [ q −1] [ t ]
)

for q in range (0 , inventoryToLiquidate +1):
for t in range (0 , terminalTime +1):

hGrid [ q ] [ t ] = ((1/ f i l lProbParamete r )
∗math . l og ( omegaGrid [ q ] [ t ] , math . e )

)
# de l t a g r i d
for q in range (1 , inventoryToLiquidate +1):

for t in range (0 , terminalTime +1):
depthGrid [ q ] [ t ] = ( (1 / f i l lProbParamete r )

+ ( hGrid [ q ] [ t ] − hGrid [ q −1] [ t ] )
)

p l t . f i g u r e ( f i g s i z e =(12 ,8))
for q in range (1 , inventoryToLiquidate +1):

p l t . p l o t ( depthGrid [ q ] )
#p l t . l e gend ( bbox to anchor =(1.3 , 0 . 5 ) )
p l t . x l a b e l ( ”Time” )
p l t . y l a b e l ( ”Optimal  LO Depths” )
#p l t . t i t l e (”Optimal Depths f o r LOs”)
p l t . yl im ( ymin=0) # forc e y−ax i s to s t a r t a t 0 .
p l t . show ( )
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